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Abstract

In this paper we analyze the feasibility of using renewable energy for powering a data center located on the 60th parallel north.
We analyze the workload energy consumption and the cost-energy trade-off related to available wind and solar energy sources.
A wind and solar power model is built based on real weather data for three different geographical locations, and The available
monthly and annual renewable energy is analyzed for different scenarios and compared with the energy consumption of a
simulated data center. We show the impact different data center sizes have on the coverage percentage of renewables, and we
discuss the competitiveness of constructing datacenters in different geographical location based on the results.

Keywords Green energy, datacenter, simulation, geographical locations

I. Introduction

The global energy price and tighter restrictions on energy
production has led to a higher utilization of green energy,
which is produced from completely carbon neutral sources.
One of the latest trends in reducing the carbon footprint
of data centers is powering the datacenters with renewable
sources of energy. This course is being encouraged by the
advances of renewable technologies and continuously de-
creasing renewable energy costs. Renewable energy sources
have become an interesting option for large scale server
farms, and initiatives such as Google Green1 and Facebook
Sustainability2 have been taken to decrease the carbon foot-
print both for ecological and monetary reasons. Recently, the
location of large scale server farms has shifted to the nordic
countries above the 60th parallel because of a cooler climate,
which in turn reduces the cooling costs for such datacenters.
The energy required for computation and the infrastructure
must, however, be delivered from the electric grid, preferably
generated by renewable energy. This poses a challenges for
northern countries because of the large variation in available
solar energy throughout the year. While the summer period
provides from 18 to 20 hours of sunlight, the winter period
provides merely a few hours – this from a very shallow an-
gle of reflection. The lack solar energy can be compensated
with other sources such as wind energy, but the total cost of

1https://www.google.com/green/
2https://sustainability.fb.com/en/

powering the data center must be sufficiently low in order to
stay competitive to other geographical locations.

We present in this paper a thorough analysis of the fea-
sibility of powering large scale datacenters in geographical
locations above the 60th parallel north with renewable energy.
The analysis contains simulations of different datacenters ex-
ecuting various workloads and the requirements in green
energy production for different geographical locations. In
contrast to previous work we compare different geograph-
ical locations in terms of both available renewable energy
and required datacenter capacity for satisfying the end user.
We also provide an a competitiveness factor between differ-
ent geographical locations for the feasibility of powering a
datacenter with renewable energy sources.

II. Related Work

Real implementations of green data centers. Researchers
at Rutgers University [9] present Parasol and GreenSwitch, a
research platform for a green data center prototype. It con-
sists of GreenSwitch software running over a real hardware
data center, Parasol. Its aim is reducing the total data center
cost by properly managing workloads and available energy
sources for maximum benefits. It also studies the space re-
quirements and capital costs of self-generation with wind
and solar energy. Similarly, [18] presents Blink, a physical
implementation of using intermittent power to supply a clus-
ter of 10 laptops by two micro wind turbines and two solar
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panels, supported by small 5-minute energy buffer batteries.
HP Labs has built a 4 servers data center partially powered
by solar panels [6]. The data center is powered by the grid
when no solar energy is available. In contrast to these real
implementations, we simulate different scenarios to adapt
different data center sizes and workload, with thousands of
physical and virtual machines. Thus, we have a broader view
of the impact they have on the amount of required renewable
energy.

Simulators for green data centers. Michael Brown and
Jose Renau present ReRack [2], an extensible simulation in-
frastructure that can be used to evaluate the energy cost of
a data center using renewable energy sources. It also in-
cludes an optimization module to find the best combination
of renewable sources that minimize cost. Yanwei Zhang et
al [24] have developed GreenWare, a middleware system
that conducts dynamic request dispatching to maximize the
percentage of renewable energy used to power a network
of distributed data centers, based on the time-varying elec-
tricity prices and availabilities of renewable energy in their
geographical locations. It also considers different prices per
kWh solar and wind energy have in different geographical
data center locations, distributing the workload accordingly
for lowest overall cost possible. In our study, instead, we do
not develop a simulator but focus on studying the relation be-
tween quantity of renewable energy sources and data center
energy consumption for a certain coverage with renewable.
We take into consideration different workload scenarios.

Managing the workload in green data centers. Rutgers
University proposes GreenSlot [8], a parallel batch job sched-
uler for a data center powered by a solar panel and the
electrical grid (as a backup). It can predict the amount of
solar energy that will be available in the near future, and
schedules the workload to maximize the renewable energy
consumption up to 117% while meeting the jobs’ deadlines.
Likewise, GreenHadoop [10], a GreenSlot successor, rep-
resents a MapReduce framework seeking to maximize the
renewable energy consumption within the jobs’ time bounds.
Ghamkhari et. al. [7] offer an optimization-based workload
distribution framework for Internet and cloud computing
data centers with behind-the-meter renewable generators in
order to save energy. This is achieved by better resource
utilization taking into account several impacting factors like
computer servers’ power consumption profiles, data center’s
power usage effectiveness, availability of renewable power at
different locations, price of electricity at different locations.
Aksanli et al. [1] design a new data center job scheduling
methodology that effectively leverages green energy predic-
tion, which enables the scaling of the number of jobs to the
expected energy availability. They develop a discrete event-

based simulation platform for applying this methodology
in a data center consisting of hundreds of servers. Liu et
al. [14] evaluate the impact of geographical load balancing
and the role of storage in decreasing the brown energy costs.
The authors also suggest the optimal mix of renewables to
power Internet-scale systems using (nearly) entirely renew-
able energy. They use homogeneous servers and 1 week
HP Labs workload traces, while we base our simulations on
heterogeneous sets of servers and a more generalized work-
load trace, which is automatically generated by uniformly
distributed time, duration and type of the user requests.
Beside this, their selected data center countries represent
locations with high solar energy production, but we give
contribute in studying the renewable energy capacity on the
60th parallel north where sun intermittent nature is more
significant. Workload management is not part of our analysis
in this paper but we plan to address it in our future work.
Furthermore, our simulation input parameters are intended
to resemble real data centers as closely as possible in terms
of size and power, and provides clear guidelines for green
data centers’ designers.

Managing energy sources for green data centers. Re-
searchers at University of Florida, IDEAL Lab, propose
iSwitch [13], a novel dynamic load power tuning scheme
for managing intermittent renewable energy sources. The
study introduces a renewable energy utilization (REU) met-
ric, defined as (PL / PR) x 100%, where PL is the amount
of renewable power utilized by the load and PR is the to-
tal renewable power generation. Instead, we study another
parameter called Minimal Percentage Supply (MPS) which
is the percentage of total energy consumption that can be
driven by available renewable energy, given as renewable
energy divided by energy consumption converted in percent-
age.

Studies on battery usage in data centers have also been
conducted by [23],[11], [22] to optimize the energy manage-
ment and minimize the energy cost. This study does not
include the usage battery as an energy storage, but initiates a
discussion on the impact of energy storage to the cost model
and how to integrate such a factor when modelling a data
center.

III. Available renewable energy

In our study, we consider renewable energy produced by
wind turbines and solar panels. To simulate the system
and analyze the results, we must first model both the con-
sumption and production rate of our datacenter and energy
sources. Since the weather and the season directly influ-
ences the production of renewable energy, we must utilize a
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weathermodeltopredicttheproductionrate. Wemustalso

useasimulationenvironmentrealisticenoughtoaccurately

modeltheenergyconsumptionofadatacenter.

Forthiswehavechosenthreegeographicallydistributed

locationsforinvestigatingthefeasibilitystudyofusingre-

newableenergy. FirstlywechoseTurku,Finlandat60◦

latitudeasourreferencebecauseoftheincreasedinterestin

constructingdatacentersinnortherncountries.Secondlywe

choseCrete,Greeceat35◦latitudebecauseofitstypically

solarintensesouthernEuropeanclimate. Andthirdlywe

selected,Ilorin,Nigeriaat8.5◦latitudetocovertheequa-

torialextremepoint. Foreachoftheselocationsweare

goingtoanalyzethegenerationofrenewableenergyusing

solar-andwindpower.Inthissectionwedescribethetotal

amountofrenewableenergyproducedinoneyearforour

chosengeographicallocation,andinSectionVwecompare

theproductionofenergytotheconsumption.

Datacollection Wecollectedtheweatherdatafromdif-

ferentsources.TheweatherdataforFinlandwascollected

fromaweatherstationlocatedatÅboAkademiUniversityin

Turku,Finland[3].Sensorsinthisweatherstation[12]mea-

sureavarietyofmeteorologicaldata,includingwindspeed

anddirection,temperature,humidity,barometricpressure,

rainandsolarradiation.

For the non-local geographical locations,

we collected the solar radiation data from

❤ ♣✿✴✴♦❧❛❞✲♥❡✳❣❢❝✳♥❛❛✳❣♦✈✴.Thewebsitecontains

freelyavailabledatafromsolarradiationsuchasvarious

formsofradiationdataandtheenergyintensitymeasuredby

pyranometerswhicharecompatiblewiththeweatherdata

fromtheFinnishlocation. Alldataissampledbyatleast

thegranularityofonehour.Fordescribingtheproduction

rateofasolarpanel,weacquirethedatacontainingthe

solarpowerradianceonahorizontal1m2solarpanel,and

wecalculatedtheproducedpowerin Wattsdescribelater

inourpower model. Weacquiredthelocalwindspeed

datafromthesameweatherstationinTurku[3],andfrom

❤ ♣✿✴✴♠❡♦♥❡✳❛❣♦♥✳✐❛ ❛❡✳❡❞✉✴forthenon-local

data.Thewindspeeddatawasconvertedtometer/seconds

[m/s]fromthenon-localweatherdatainordertomatch
withthelocalweatherdata.Alldataissampledbyatleast

thegranularityofonehour.

III.1 Solarpowermodel

Thesolarpowermodelisconstructedbyanalyzingthesolar

radiationobtainedfromtheweatherdata,andbyconsidering

thefollowingtrigonometricalaspectsoftheradiationangle

andpracticalaspectsofthesolarpanel:

•Angletilt:Thepowerincidentonasolarpaneldepends

notonlyonthepowercontainedinthesunlight,but

alsoontheanglebetweenthemoduleandthesun.Re-

ferringto[4],wecalculatetheoptimalangleatwhich

asolararrayshouldbetiltedinordertoachievemaxi-

mumenergythroughtheyear.Differentgeographical

locationswithdifferentlatitudeareoperatingoptimally

usingdifferentangletiltwithrespecttothehorizontal

plane.Inallcasesweassumedthattheangletiltisfixed

throughouttheyearforallgeographicallocations,but

weassumethatthesolararraytracksthesunonthe

verticalaxis(easttowest).Equation1showsthepower

generationofa1m2solarpanelas:

Psolar=Psolar_h×sin(α+β)/sin(α) (1)

where Psolar_histhesolarradianceinthehorizontal

planewealreadyhavefromweatherdata,αisthesun

elevationanglethroughtheyearandβisthetiltangle

ofthemodulemeasuredfromhorizontalplane,45◦.The

valueforαiscalculatedaccordingtoEquation2:

α=90−φ+δ (2)

whereφisthelatitude(60◦)andδisthedeclination

anglecomputedinEquation3as:

δ=23.45◦×sin[360×(284+d)/365] (3)

wheredisthedayoftheyear.

•Solarpanelefficiency:isthepercentageofthesunlight

energythatisactuallytransformedintoelectricitybe-

causeoflimitationsinthesolarpanelcells. Today’s

solarpaneltechnology(multi-crystallinesilicon)effi-

ciencyvaluevariesfrom15%upto18%–whichisthe

recordof2015[19].Therefore,wemultiplyallhourly

solarenergyvalueswiththecoefficient0.18inorderto

achieverealisticdata.

•Solarinverterefficiency:istheefficiencyoftheinverter

connectedbetweenthesolarpanelcellsandtheAC

grid. Accordingto[20],theaveragecoefficientofthe

DC-ACpowerconvertingtodayis95%.Thus,wetake

thisvalueintoaccounttoassureaccurateandrealistic

powervalues.

III.2 Windpowermodel

Thewindpowermodeldescribesthepowergenerationfrom

thewindturbinesinthesystem.Toproducethewinden-

ergywehavechosenaHY1000[21],5bladewindturbine

generatingapeakoutputpowerof1200 W. Wechosethis

modelbecauseofitsavailabilityonthemarketandbecause
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of its suitable size for our datacenter. The wind power model
is constructed by taking into consideration the following key
features:

• Wind turbine power curve: According to the power profile
in the technical specifications, we constructed the math-
ematical model of power as a function of wind speed.
Equation 4 describes the power production of a wind
turbine as follows:

Pwind = 1151 × exp(−((windspeed − 14.28)/6.103)2)
(4)

where windspeed is the wind speed in [m/s]. The param-
eters in Equation 4 were obtained by using curve fitting
tools in Matlab.

• Wind inverter efficiency: according to [5], wind turbine
power converters typically reach an efficiency of 95%.
Thus, we multiply this value with the prediction of the
power model to provide a more accurate and realistic
model.

Finally, the total renewable power model is given as:

Prenewable = Psolar + Pwind (5)

which is simply the sum of the total solar and total wind pro-
duction. As a result of the above processing and calculations,
we have available total renewable (solar and wind) energy
information in hourly granularity for the whole year.

IV. Renewable Energy Analysis

To illustrate the impact of the weather conditions on the re-
newable energy production, we used the previously defined
power models for the wind turbine and solar panels to cal-
culate the total sum of the produced energy for each month
of the year. The weather data was collected at the following
points in time:

Figure 1: Solar energy produced by 1 m2 solar panel in three
geographical locations during one year

Finland: January 1, 2012 – December 31 2012
Greece: January 1, 2006 – December 31 2006
Nigeria: January 1, 2011 – December 31 2011
Even though the data origins from different years, we assume
that the average over one year will provide a sufficiently ac-
curate and comparable result. Figure 1 shows the energy
production of a 1 m2 solar panel in Finland, Greece and Nige-
ria Figure 2 shows the energy production of one 1200W wind
turbine, and Figure 3 shows the total sum of both energy
sources throughout one year in each location.

The very predictable weather in Ilorin, Nigeria shows an
almost constant solar energy production in Figure 1. Since
all days throughout the year is approximately 12h, there is
only a slight difference between winter and summer months.
The low point is in July due to weather conditions such as
rainy seasons with an extensive cloud coverage. In Crete,
Greece, the 35◦latitude and solar intensity provides a large
but varying energy production. The winter months in Greece
provide far less sunlight than the summer months, and have
therefore a lower energy production than Nigeria. However,
the days in the summer months are longer, and the solar
energy produced in one day exceeds the energy productions
of Nigeria even if the intensity of the solar radiation is larger
in Nigeria. The most varying results are measured in the
Finnish location. The winter months produce almost no
solar energy because of a very short time of sunlight during
the day. On the other hand, during the summer the solar
energy production can exceed both Greece and Nigeria; in
this case during May and June because of the long duration
of sunlight during the day. Table 1 finally shows the energy
values in kWh for each of these extreme points for total, solar
and wind energy.

Also the wind speed is relatively constant in Nigeria
throughout the year as seen in Figure 2. The wind speed is
relatively low in most months with the exception of a slight
increase during August and September. The wind speed in
Greece is, on the other hand, very strong in the early months

Figure 2: Wind energy produced by a 1200W wind turbine in three
geographical locations during one year

4
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Figure3:CombinationofSolar-andwindenergyproducedinthree

geographicallocationsduringoneyear

Table1:Totalrenewable,solar-andwindenergy(kWh)extreme

monthsvalues,from1m2solarpanelanda1200Wwindturbine

Minmonth Minenergy Maxmonth Maxenergy
Finland
Solar Dec. 1.89 May 83.34
Wind Dec. 48.71 Mar. 126.36
Total Dec. 50.6 May 182.52
Greece
Solar Dec. 15.75 Jul 67.12
Wind Nov. 29.12 Feb. 138.80
Total Nov. 47.21 Feb 158.83
Nigeria
Solar Jul. 37.98 Mar. 54.78
Wind Jan. 18.90 Sep. 44.85
Total Jul. 56.38 Sep 83.45

oftheyear,alsoseeninFigure2,withamaximuminFebru-

ary.Thishighwindspeedcausesalmostapossible140kWh

ofenergytobeproducedwiththeaforementionedwind

turbine.Itisabout7xhigherthanNigeriaandalmosttwice

ashighastherelatedwindproductioninFinland.During

thesummermonth,thewindproductioninGreeceislower

andhitstheminimumabout4xlowerthanthewindpro-

ductioninFebruary.ThewindspeedinFinlandistypically

morerandomized,withaslightdecreaseduringthesummer

monthsasseeninFigure2. Overallthoughtheyear,the

windenergygenerationishighestinFinlandcomparedto

theotherlocations,evenduringsummermonths.

Withthisdata,wewillanalyzetheextrememonthsof

maximumand minimum windandsolarenergyas we

intendtoinvestigatethefeasibilityofusingrenewable

energysourcesduringoneyear. Furthermore,thedata

usedtobuildthis modelcanbeappliedtootherloca-

tionsbyconsideringdifferentinputvaluesoflatitudeand

weathercharacteristicsfortheselectedareawithoutmod-

ifyingthecore method. Alldataisfreelyavailableat:

❤ ♣✿✴✴❞♦✐✳♦❣✴✶✵✳✺✷✽✶✴③❡♥♦❞♦✳✶✺✹✹✵✶

V. Energyconsumption

Toaccountforalltheattributesincludedincausingenergy

consumptioninadatacenter,weusedanalreadymadesim-

ulationenvironment,

Systemsimulation Weperformedthesimulationsusing

thePhilharmonicsimulatordevelopedbyViennaUniversity

ofTechnology,freelyavailableat[15].Itisanopensource

cloudsimulatorusedtocalculateenergyconsumptionand

electricitycostsfordatacenters.Thesimulatorallowsthe

usertoinputconfigurationparameterssuchasthenumber

ofphysicalmachines(PM),virtualmachines(VM)andin-

ternalspecificationparameterssuchasclockspeed,RAM

sizeetc.VirtualMachinesarevirtualentitiesrunningover

thephysicalmachinesandperformingworkloadtasks.The

cloudcontrolalgorithmdecidesonschedulingtheworkload

usingVMmigrationsandfrequencyscalingofthephysical

machinestocontrolthepowerdissipation3.Theworkloadis

modelledwithuserrequestsuniformlydistributedintime

andduration[17].Figure4illustratestheoverviewofthe

Philharmonicsimulator.Agivenworkloadandcloudserver

settingsaretakenasinputafterwhichthetoolsimulatesthe

schedulingoftheworkloadonthedefinedservercloud.

Figure4:ThePhilharmonicsimulatorusesacloudserversetupand

adefinedworkloadtocalculatepowerdissipation,cost,utilization

andotherparametersasafunctionoftime

Weused3differentdatacentersizestoobservethepro-

portionbywhichtheyimpactenergyconsumption.ThePMs

areconfigureswith1-4CPUcoresand16-32GBRAM,to

modelaheterogeneousinfrastructure.EachVMisconfig-

uredtohaveoneCPUcoreand4-16GBamountofRAMto

varyresourceutilizationovertime.Theworkloadconsistsof

userrequeststobehandledbyVMs.Theuserrequestsare

3ThepowermodelofthePhilharmonicsimulatorwasdevelopedduring
aNESUSSTSMatTUWienMay2015andistoappearinIEEETransactions
2016

5
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generated randomly by uniformly distributing the creation
time and their duration. Each of the requests can either ask
for a new VM to be booted or an existing one to be deleted.
The specifications of the requested VMs were modelled by
normally distributing each resource type, i.e 4-16 GB of RAM.
Further details on the simulator can be found in [16] and
[17].

The total duration of the simulation was set to 1 week,
with 1 hour step size in order to be compatible with the en-
ergy production data. The simulation step size was selected
based on the available weather data input of solar and wind
energy, so that we can compare hourly available renewable
and consumed energy. Finally, the cloud control algorithm
decides on the suitable VM migrations and frequency scaling
of the physical machines to make the scenario as realistic as
possible. The best cost fit frequency scaling (BCFFS) cloud
controller described in [17] was used.

Consumed energy We defined input scenarios of 500 to
2500 PMs in the Philharmonic simulator, with a step size of
1000 PMs. The number of virtual machines was chosen 2 fold
the number of physical machines for each simulation in order
to replicate a realistic scenario. We replicate results of one
week for every week of the year, assuming that the workload
weekly pattern is homogeneously distributed over the year.
As a result, Table 2 shows the total energy consumption for
3 server scenarios during one week and one year.

Table 2: Weekly and annual energy consumption (kWh) of different
data center configurations

Nr. nr. PMs nr. VMs weekly energy annual energy
1 500 1000 2425 126500
2 1500 3000 7285 380200
3 2500 5000 12146 634000

VI. Minimal Percentage Supply

With a model of both energy production (in Section III) and
energy consumption (in Section V), we evaluate different
scenarios to investigate the feasibility of using renewable
energy sources in different geographical locations. We give
the notion of a new metric Minimal Percentage Supply (MPS),
used to determine the data center energy coverage provided
from 1 single turbine and 1 m2 solar panel. Furthermore,
we build a quantity model describing the number of wind
turbines and solar panels needed to obtain a certain energy

Table 3: MPS annual, maximal and minimal months values in
percentage

Scenario Nr. 1 2 3
Finland
Annual MPS(%) 1.17 0.39 0.23
May MPS(%) 1.88 0.62 0.38
December MPS(%) 0.52 0.17 0.10
Greece
Annual MPS(%) 1.01 0.34 0.20
May MPS(%) 1.16 0.39 0.23
December MPS(%) 0.54 0.18 0.11
Nigeria
Annual MPS(%) 0.70 0.23 0.14
May MPS(%) 0.68 0.23 0.14
December MPS(%) 0.70 0.23 0.14

coverage in a certain location. MPS is calculated as:

MPS =
RenewableEnergyProduction(kWh)

TotalEnergyConsumption(kWh)
× 100% (6)

When comparing the energy production with the energy
consumption, we determine the MPS value for each data
center setting. Table 3 presents the annual, Maximum and
Minimum MPS values when applying the respective energy
values to Equation 6. The results from Table 3 indicate that
the order of magnitude for powering such a datacenter is
roughly between 102 and 103.

We further analyze Scenario 2 datacenter with different
MPS values. The MPS of 100%, 75% and 50% for a datacenter
of size according to Scenario 2 is illustrated in Figures 5
and 6. The figures illustrate the requirements in both solar
and wind power, and various combinations for all three
geographical locations. Figure 5 shows the results from May
month, since it is the best case scenario for our reference
location: Finland. As seen in Figure 5, the least amount
of solar or wind power sources are required in Finland to
meet the MPS constraints compared to Greece and Nigeria.
For example, for an equal distribution of solar- and wind
energy a MPS of 75% can be achieved in Finland, while the
same configuration only provides 50% MPS in Greece. This
is due to the long duration of sunlight in Finland during
the summer months in combination with moderate wind
production throughout the year.

Figure 6 shows the same MPS configurations as in Figure
5 but for the worst-case month in Finland: December. Since
the duration of sunlight during the day is very limited, a
very large amount of solar panels are needed to cover the
MPS of the Scenario 2 datacenter. For MPS values over 75%,
more than 104 m2 of solar panels are needed, which is orders
of magnitude more than both Nigeria and Greece. Combin-
ing solar power with wind power decreases the number of

6
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Figure 5: MPS of 100%, 75% and 50% for three geographical
locations in May month

required panels, and half an order of magnitude is decreased
for a 50/50 configuration. However, with the limited amount
of sunlight in December, Finland is only competitive with
Greece and Nigeria when using a significantly larger amount
of wind turbines.

Figure 7 finally shows the MPS for the annual average

Figure 6: MPS of 100%, 75% and 50% for three geographical
locations annually

Figure 7: MPS of 100%, 75% and 50% for three geographical
locations in December month

energy productions from solar- and wind power. Similarly
to the previous figures, the MPS values for 100%, 75% and
50% coverage is shown for all three geographical locations.
On an annual average all three locations have the same or-
der of magnitude in energy production, but a few details
differ. With the predictable and high intensity sunlight in
Nigeria, the annual average energy production from solar
power is higher than the wind power. Greece has a more bal-
anced annual energy generation from solar- and wind power.
For example using 150 solar panels and 450 wind turbines
reaches 100% MPS in Greece while the same configuration
in Nigeria results in only 50% MPS. Lastly, Figure 7 shows
that Finland reaches the MPS coverage faster than the other
locations on an annual basis only if the ratio solar-to-wind is
about 1:2.

As seen in the table, there is a 3 fold difference between
minimal and maximal MPS values, which clearly indicates
different operational costs for producing the same amount
of renewable energy during different times of the year. Ob-
viously, we need more physical resources, i.e wind turbines
and solar panels, in December to produce same amount of
energy compared to May.

VII. Conclusions

In this paper we analyzed the feasibility on competitive-
ness of powering datacenters with renewable energy at
60◦latitude. The energy production on different geographi-
cal locations was determined by an energy model based on

7
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realweatherdatafromthreegeographicaldifferentlocations,

andtheenergyconsumptionofdifferentdatacenterswas

simulatedonahourlybasisforoneyear.Inordertomea-

suretherenewablecoverageovertheenergyconsumption

ofadatacenteranewmetricisintroduced,calledMinimal

PercentageSupply(MPS).Webuiltamodelforrelatingthe

quantitybetweensolar-andwindenergysourcesinorderto

achieveacertainMPScoveragewithrenewables.

Resultsindicatethatthegeographicallocationinfluences

heavilytheutilizationofrenewableenergy;fornorthernlat-

itudes,energyproducedfromonlysolarenergyisfeasible

duringthesummermonths,butprobablyinsufficientduring

thewintermonthsbecauseofthelowamountofsunlight

duringtheday.ToachievecompetitiveMPSona60◦northern

latitudeonanannualbasis,theratioofsolar-to-windenergy

mustbeabout1:2. Howeverduringthesummermonths,

competitive(orhigher)MPSisachievedon60◦latitudeloca-

tionindependentofthesolar-to-windratioandusing30-40%

lessenergygenerators.DuringthewintermonthsinFinland,

thelackofsunlightnaturallydeemssolarpowerhighlyinef-

ficient,andacompetitiveMPSvalueisonlyachievedwitha

solar-to-windratioofroughly1:1.5.Also,duringthewinter

monthsinFinland1.3xtheamountpowergeneratorsmust

beinstalledinordertoreachthesamepowergenerationas

thesummermonthsinFinland.

Usingthisinformationdatacenterdesignerscandetermine

thefeasibilityandcostefficiencyofconstructingdatacenters

poweredbyrenewableenergyonanorthernlatitude.
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