
Proceedings of the Third International Workshop on Sustainable
Ultrascale Computing Systems (NESUS 2016)

Sofia, Bulgaria

Jesus Carretero, Javier Garcia Blas, Svetozar Margenov
(Editors)

October, 6-7, 2016

Schlatter, P., & Peplinski. A., N. (2016). Highly Tuned Small Matrix Multiplications
Applied to Spectral Element Code Nek5000. En Proceedings of the Third
International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2016)
Sofia, Bulgaria (pp. 69-72). Madrid: Universidad Carlos III de Madrid. Computer
Architecture, Communications, and Systems Group (ARCOS).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/79177011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NESUS
Network for Sustainable Ultrascale Computing

IC1305

Book paper template • September 2014 • Vol. I, No. 1

Highly Tuned Small Matrix Multiplications
Applied to Spectral Element Code Nek5000

Berk Hess, Jing Gong, Szilárd Páll

KTH Royal Institute of Technology, Sweden
hess,gongjing,pszilard@kth.se

Philipp Schlatter, Adam Peplinski

Department of Mechanics, KTH Royal Institute of Technology, Sweden
pschlatt,adam@mech.kth.se

Abstract

Nek5000 is an open-source code for simulating incompressible flows using MPI for parallel communication. In the Nek5000
code, the tensor-product-based operator evaluation can be implemented as small dense matrix-matrix multiplications. It is clear
that the routines for calculating the matrix-matrix product dominate the execution time of Nek5000. In this paper, we conduct
the optimization of matrix-matrix multiplication using SIMD intrinsics and the LIBXSMM package. The evaluation of the
computational cost and optimization of these subroutines is not only applied to the CFD code Nek5000, but also to the NekCEM
and NekLEM software, which share same data structures with Nek5000.

Keywords Spectral Element Method (SEM), Nek5000, Nekbone, Single instruction multiple data (SIMD), LIBXSMM

I. Introduction

Nek5000 [1] is an open-source code for simulating incom-
pressible flows using MPI for parallel communication. The
code is widely used in a broad range of applications. The
Nek5000 discretization scheme is based on the spectral-
element method [2]. In this approach, the incompressible
Navier-Stokes equations are discretized in space by using
high-order weighted residual techniques employing tensor-
product polynomial bases. The tensor-product-based opera-
tor evaluation can be implemented as small matrix-matrix
multiplication, The main part of the program Nek5000
consists in small matrix-matrix multiplication routines, in
which the program spends most of its time (more than 60%
in a 2D version) [3].

Currently, the routines are basic FORTRAN routines
with nested loops to compute the matrix multiplications in
Nek5000. The aim of the work is to enhance the routines us-
ing vectorization techniques like SIMD (Single Instruction
Multiple Data) instructions [4] and the high performance li-
brary for small matrix multiplications LIBXSMM [5].

The remainder of this paper is organized as follow. Sec-

tion 2 describes the algorithms and the SIMD implemen-
tations. Section 3 presents the main performance results.
Finally the conclusions and further works are discussed in
Section 4.

II. The algorithms and the SIMD
implementation

In Nek5000, the small dense matrix multiplication is written
as

Cn1×n3 = An1×n2 Bn2×n3

where the size of n1, n2, and n3 can be N or N2 with typical
N ∈ (4− 16). In the routine written as below we use the “C”
ordering wherein columns of B are assumed stored consec-
utively and that successive rows of A are stored n1 floating
point words apart in memory, see [7]).

int i, j, k;
for (i = 0; i < n1; i++) {

for (k = 0; k < n3; k++) {
c[i][k] = 0.0;
for (j = 0; j < n2; j++) {

1

Berk Hess, Jing Gong, Szilard Pall, Philipp Schlatter, Adam Peplinski 69

Book paper template • September 2014 • Vol. I, No. 1

c[i][k] += a[i][j] * b[j][k];
}

}
}

However this implementation is very time consuming
since the compilers have a hard time optimizing and vector-
izing it. Also there is no hint given for the values of the loop
parameters, and the compiler would not take full advantage
of the underlying SIMD architecture.

The principle of SIMD instruction is to apply an instruc-
tion to multiple operands at once instead of on one operand
and thus considerable improving code performance. Re-
cent processors, e.g. Intel Haswell, have support for 256-bit
SIMD instructions that operate on 256-bit registers [6] (512-
bit for the next generation), thus processing 4 double pre-
cision numbers simultaneously. With 2 fused multiply-add
operations per cycle per core, this results in a peak through-
put of 16 FLOPs per cycle per core. However, with standard
code one has to rely on the compiler to extract sufficient
SIMD vectorization. Except for triial cases, such as opera-
tions on large vectors, this is a difficult task. Furthermore,
the throughput is often limited by speed with which the
operands can be loaded from memory or L2/L3 cache into
SIMD registers.

int i, j, k;
for(k = 0; k + 1 < n3; k += 1) {

simd_db bs0[n2];
for (int j = 0; j < n2; j++) {

bs0[j] = simd_broadcast_sd(b + j + k * n2);
}

i = 0;
while(i + SIMD_WIDTH <= n1) {

simd_db as = simd_loadu_pd(a + i);
simd_db c0 = simd_mul_pd(as, *bs0);

for (int j = 1; j < n2; j++) {
as = simd_loadu_pd(a + i + j*n1);
c0 = simd_fmadd_pd(as, bs0[j], c0);

}
simd_storeu_pd(c + i + k * n1, c0);
i += SIMD_WIDTH;

}
if (i < n1) {

simd_si mm = simd_castpd_si(simd_loadu_pd(
(const double*)mask[n1-i]));

simd_db as = simd_maskload_pd(a + i, mm);
simd_db c0 = simd_mul_pd(as, *bs0);
for (j = 1; j < n2; j++) {

as = simd_maskload_pd(a + i + j*n1, mm);
c0 = simd_fmadd_pd(as, bs0[j], c0);

}
simd_maskstore_pd(c + i + k * n1, mm, c0);

}
}

To optimize the matrix-matrix multiplication routines in
the program we firstly take maximum advantage of the un-
derlying architecture by using SIMD intrinsics, supported
by several compilers, and to help the compiler by unrolling
the different loops that are involved in the routine [8]. The
fact that we have stride-1 access within the j-loops and not
necessarily within the i-loops at the same time makes this
idea less appealing. Thus, we could aim at SIMD vectoriz-
ing to ensure that all j-loops will SIMD vectorize well in the
matrix-matrix multiplication and this requires that the com-
piler does indeed recognize the j-loops as stride-1 loop. By
using the instruction set provided for AVX2-compatible ar-
chitecture (_mm256_*). One instruction has been replicated 4
times in B and 4 rows in A are computed simultaneously.




|B1,1| · · · B1,p
B2,1 · · · B2,p
B3,1 · · · B3,p
B4,1 · · · B4,p

...
. . .

...
Bn,1 · · · Bp,p







|A1,1| · · · A1,n
|A2,1| · · · A2,n
|A3,1| · · · A3,n
|A4,1| · · · A4,n

...
. . .

...
An,1 · · · An,n




Using assembly code can further optimize loops and
memory fetching wherever possible and manually unroll. In
Algorithm 1 we shown the core of assembly code for the rou-
tine. Most of the loops go downwards instead of the natural
upward scheme. We keep in register everything that is often
need (loop indexes) to avoid redundancy when possible.

The Intel LIBXSMM is designed in a very flexible way, that
is, separated into a frontend (routine selection) and backend
(specific xGEMM code generation). As a result, LIBXSMM
can achieve its high application level performance for In-
tel processors. LIBXSMM offers an auto dispatcher which
decides which backend should be executed for the given
parameter set [5]. Finally we call through the interface
of LIBXSMM, which implements the matrix multiplication
shown in Algorithm 2 [9].

III. Performance results

To understand the performance implications of SIMD opti-
mization, this paper presents case studies of porting and op-
timization of kernel benchmarks for a spectral element code
Nekbone, which is a simplified version of a computational

2

70 Highly Tuned Small Matrix Multiplications Applied to Spectral Element Code Nek5000

Book paper template • September 2014 • Vol. I, No. 1

Algorithm 1 Assembly SIMD code

for_j_loop:
subq %r9, %r14
load_bs0_array

#Initialisation of i-loop
movl %r8d, %r11d
subq %r8, %rdi
subl $32, %r11d
jle while_i_loop_end

while_i_loop:
loop_mult for_k_loop
subl $32, %r11d
jg while_i_loop

while_i_loop_end:
loop_mult for_k_loop_in_n1, 1
decl %r10d
jge for_j_loop

end_of_function:
popq %r15
popq %r14

Algorithm 2 LIBXSMM Interface

CALL libxsmm_init()
CALL libxsmm_dispatch(xmm, &

n1, n3, n2, alpha=alpha, beta=beta)
IF (libxsmm_available(xmm)) then

CALL libxsmm_call(xmm, C_LOC(ap), &
C_LOC(bp), C_LOC(cp))

ENDIF
CALL libxsmm_finalize()

fluid dynamics (CFD) code Nek5000. Nekbone focuses on
the Poisson operator evaluation that is a central computa-
tional kernel in Nek5000. As kernel benchmarks, we focus
on highly tuned matrix multiplications for fine-grained par-
allelism of matrix-vector multiplications.

An initial performance profiling of Nek5000 application
on a single Haswell node was carried out using the Cray
Performance Analysis Tools (CrayPAT) profiler. The goal of
this profiling work was to identify which subroutines are
the most time consuming and can provide enough work-
load to exploit the SIMD instructions. The profiling table
above shows the profiling results. The subroutine mx2mf2
for the matrix multiplication takes around 42.3% total exec-
utive time.

Table 1: Profile by Function

Samp% | Samp | Group
| | Function

100.0% | 2811.0 | Total
|-----------------------------------
| 95.7% | 2689.0 | USER
||----------------------------------
|| 42.3% | 1190.0 | mxmf2_
|| 14.5% | 408.0 | cg_
|| 12.3% | 347.0 | glsc3_
|| 11.3% | 319.0 | add2s2_
|| 4.0% | 113.0 | add2s1_
|| 3.1% | 86.0 | jl_gs_gather
|| 2.0% | 55.0 | jl_gs_scatter
|| 1.7% | 47.0 | add2_
|| 1.7% | 47.0 | jl_sortp_ull
|| 1.3% | 37.0 | jl_sortp_ui
||==================================
| 4.3% | 120.0 | ETC
|===================================

We carry out the performance tests on Beskow which is
a Cray XC40 system, based on Intel Haswell processors and
Cray Aries interconnect technology. This system has Intel
Xeon E5-2698v3 (Haswell) CPUs with processor frequency
of 2.3 GHz.

Figures 1 and 2 show the performance results with num-
ber of elements E = 10000 and E = 20000, respectively.
From these figures, we find that better performance can
be obtained using the SIMD intrinsics and LIBXSMM. Also
SIMD intrinsic code can lead high performance with lower
orders of polynomial (N = 4, 6, 8).

IV. Conclusion and Future Work

We have studied the performance implications of several
optimization of small matrix-matrix multiplication. Specifi-
cally an originally optimized version is adapted to Nek5000.
Through the SIMD vector instructions and the Intel library
LIBXSMM, the results show that the performance signifi-
cantly improved on the matrix multiplication. The overall
performance of Nek5000 has also been improved due to the
use of SIMD instructions.

References

[1] P. F. Fischer, J. W. Lottes, and S. G. Kerkemeier, Nek5000
web page, Web page: http://nek5000.mcs.anl.gov.

3

Berk Hess, Jing Gong, Szilard Pall, Philipp Schlatter, Adam Peplinski 71

Book paper template • September 2014 • Vol. I, No. 1

N=4 N=6 N=8 N=10 N=12 N=14 N=16
0

5

10

15

20

25

Pe
rf

o
rm

a
n
ce

 (
G

FL
O

P
S
)

MXM

SIMD

LIBXSMM

Figure 1: Performance results on a Haswell node with number of
elements E = 10000

[2] M. Deville, P. Fischer, and E. Mund, High-order methods
for incompressible fluid flow, Cambridge University Press,
2002.

[3] P. Fischer, J. Lottes, W. D. Pointer, and A. Siegel, “Petas-
cale Algorithms for Reactor Hydrodynamics”, Journal of
Physics: Conference Series, vol. 125, 012076, 2008.

[4] Intel Architecture Instruction Set Ex-
tensions Programming Reference,
www.naic.edu/ phil/software/intel/319433-014.pdf

[5] A. Heinecke, H. Pabst and G. Henry, “LIBXSMM: A
High Performance Library for Small Matrix Multiplica-
tions,” in the Proceedings of SC15, Austin, USA, Novem-
ber 15-20, 2015.

[6] G. Mitra, B. Johnston, A.P. Rendell, E. Mccreath, and J.
Zhou, “Use of SIMD vector operations to accelerate ap-
plication code performance on low-powered ARM and
Intel platforms. in IEEE 27th International Parallel and Dis-
tributed Processing Symposium Workshops and PhD Forum
(IPDPSW), pp 1107-1116, 2013.

[7] W. P. Petersen and P. Arbenz, Introduction to Parallel Com-
puting, A Practical Guide with Examples in C, Oxford Uni-
versity Press, 2004.

[8] S. Páll and B. Hess “A flexible algorithm for calculat-
ing pair interactions on SIMD architectures”, Computer
Physics Communications, vol. 184, no. 12, pp. 2641–2650,
2013.

N=4 N=6 N=8 N=10 N=12 N=14 N=16
0

5

10

15

20

25

Pe
rf

o
rm

a
n
ce

 (
G

FL
O

P
S
)

MXM

SIMD

LIBXSMM

Figure 2: Performance results on a Haswell node with number of
elements E = 20000

[9] M. Hutchinson, A. Heinecke, H. Pabst, G. Henry, M.
Parsani and D. Keyes, “Efficiency of High Order Spec-
tral Element Methods on Petascale Architectures,” in
ISC High Performance 2016 LNCS 9697, J.M. Kunkel et al.
(Eds), pp. 449–466, 2016.

Acknowledgment

This work is partially supported by EU under the COST
Program Action IC1305: Network for Sustainable Ultrascale
Computing (NESUS) and the Swedish e-Science Research
Center (SeRC).

We would also like to thank Erik Lindahl and Ismael
Bouya for help with the SIMD code as well as Alexander
Heinecke, Hans Pabst, and Greg Henry from Intel for the
LIBXSMM used in the paper.

4

72 Highly Tuned Small Matrix Multiplications Applied to Spectral Element Code Nek5000

	Página en blanco

