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Abstract

The power consumption of data centers is becoming a crucial challenge in the context of the steadily increasing demand for

computation. In this regard finding a way to improve energy efficiency of running applications in data centers is becoming a crucial

trend. One method to improve the processor utilization is the consolidation of applications on physical servers. It is possible to

run multiple jobs in parallel on the same machine, especially when their requirements regarding computation are smaller than the
maximum processor performance. It reduces the number of servers in the data center required to handle multiple requests and
therefore leads to energy usage reductions. In this paper, we introduce a realistic model of applications with deadlines executed

in parallel on a server and competing for the shared resources and present an energy-aware algorithm which may be used to

minimize the overall energy consumption of the servers.

Keywords Data centers, Energy efficiency, Processor utilization, Applications scheduling

I. INTRODUCTION

Data centers are under pressure to transform their infrastructure to
reduce energy cost, increase reliability and efficiency. Increasing
the data volumes and network traffic in data centers is a worldwide
trend. At the same time, the number of applications running in these
data centers is becoming bigger and bigger over time. The types of
the executed applications differ and include databases, file servers,
middleware and various others. The difference between such data
centers and typical HPC supercomputers is that it is natural in such
places to co-locate dozens of tasks on a single physical node. It is
a method for improving resource utilization. The relocation of the
applications on servers is playing an important role to decrease the
number of physical servers in data centers and to reduce the energy
consumption.

In the case of data centers particularly important is the Service
Layer Agreement which needs to fulfilled. In our model, it is
introduced in the form of deadlines for the tasks.

In this paper, we create a realistic model of applications with
deadlines executed in parallel on a server, which compete for the
shared resources, such as memory or disk. We explain the obser-
vations from the experiments that create the basis for the model.

We describe how the processor time quantum is shared between the
applications and how their performance degrades through the use of
the shared resources. We also present a Branch and Bound algorithm
which may be used to minimize the overall energy consumption of
the servers.

The reminder of this paper is divided into the following sections:
Section 2 presents related work; Section 3 describes the model; Sec-
tion 4 shows the performed experiments and their results; Section 5
concludes the paper.

II. RELATED WORK

As virtualization [1] has become the most widespread used technol-
ogy in modern data centers, and due to the advances in virtualization
technologies it is much easier to manage the allocation of tasks to
the available resources. The live migration technique allows moving
a running virtual machine from one physical server to another with
no impact on virtual machine availability. Increasingly popular be-
comes the Docker platform, which allows starting up its containers
even ten times faster than a standard virtual machine. The man-
agement of tasks is therefore very fast and efficient. However, the
allocation of tasks to servers to maximize the utilization of resources
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remains a challenge.

In [2] the authors illustrate the workload sensitivity to the ma-
chine on which it executed and the type of co-running applications.
They analyzed co-running different applications on various proces-
sors and proved that it resulted in various levels of performance
degradation of these jobs. The authors observed significant perfor-
mance variability from the heterogeneity of the datacentre and from
the co-allocation of applications. It is, therefore visible that in order
to efficiently utilize available resources it is required to take into
account the type of applications that are executed in parallel.

Multiple researchers have aimed at creating an algorithm to in-
crease the utilization of machines in datacentres. In [3] the authors
propose a Bubble-Up characterization methodology that enables
the accurate prediction of the performance degradation that results
from the contention for shared resources in the memory subsys-
tem. Using this methodology they can improve the utilization of a
500-machines cluster by 50% to 90%.

In [4] the authors propose a performance model that considers
the interferences in the shared last-level cache and memory bus.
They also present a virtual machines consolidation method which is
based on their interference model.

In [5] the authors propose a new resource management model
for the collocation of different tasks that share a single physical
machine. The model uses two parameters of a task — its size and
its type — to characterize how a task influences the performance of
other tasks allocated on the same machine.

However, all of the above methods are simplified. They take
into account only one parameter of the application (such as mem-
ory accesses) or model the interference between applications by
using one artificial parameter specified by the user. Experiments on
real hardware prove that the dependencies between jobs are more
complicated.

III. MODEL OF TASKS EXECUTED IN PARALLEL ON A
SINGLE MACHINE

‘We propose a mathematical model that simulates the complex de-
pendencies between co-running applications and hardware. It based
on the observation that each of the executed benchmarks affects
the underlying hardware by utilizing its resources (processor, mem-
ory, hard drive, etc.). The load exerted on these subcomponents
influences in turn other co-running applications — their performance
degrades due to the need to compete for shared resources. The
model does not try to simulate the interactions between applications
per se, but rather captures the relationships between applications
that appear when sharing the available resources.

In the model both the processor performance and the application,
size is represented as Instructions Per Second (IPS). When all of
the applications exert load that is equal to or smaller than 100%,
the server has enough performance to efficiently execute all of

them. The situation becomes more complicated when the total
requirements from applications are higher, for example, if each of
the two applications requires 60% of the CPU load. In such case,
they exceed the maximum processor performance. It is possible
to execute them sequentially with the expected performance. They
may also run in parallel but slower due to: a) the competition for
shared resources, b) not satisfied CPU performance requirements.
In both cases, the overall energy consumption and the duration of
the execution may be analyzed.

To explain this mechanism in more detail, consider an application
X that executes on a given server in T1 seconds and exerts the
L1 load on the CPU. Another application with L2 load on the
CPU may be executed in parallel, where L1 + L2 <= 100%. The
execution time of X will increase slightly due to the interference
effect, as they will compete for shared resources, such as memory
or disk. Starting additional applications will further extend the
execution time of application X. As long as the aggregated load
from all applications will be smaller than 100%, the performance
degradation of application X will only result from the increasing
load on the shared resources. However, when CPU load exceeds
100%, another factor of performance degradation becomes visible.
The execution of the application is affected by periods of inactivity
when it needs to wait for the processor time quantum.

We have performed a few experiments on Intel Core i5 6200U
with three different applications, each exerting different load on the
CPU: pi (30%), siege (50%) and openssl (65%). We tested the exe-
cution time of pi application while running additional applications
in parallel. When the aggregated load was lower than 100%, the ex-
ecution of Pi increased slightly. However, it increased significantly
more after exceeding 100% CPU load, when all applications were
executed in parallel.

The situation changes when the power consumption is considered.
Starting additional applications increases the power consumption of
the processor proportionally to the load that they make.

Similar experiment was performed with the same three appli-
cations, but this time to calculate the power consumption of the
processor. The CPU power increased only until the CPU load was
below 100%. After this point it stabilized. Since it is not possible to
exceed the maximum processor speed, after reaching the point of
100% CPU load the power consumption did not change. However,
the execution time of the applications increased significantly, having
an impact on the whole energy consumption

When realistic energy efficient job scheduling is considered, two
challenges need therefore to be analyzed.

o the interference of applications on each other when they com-
pete for shared resources,

o the calculation of the execution time of applications when
their aggregated performance requirements exceed maximum
processor performance.
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III.1 Interference of applications

Our model is based on the observation that the applications do not
affect directly each other but rather influence the underlying hard-
ware, which in turn has an impact on the other executed applications.
For example, accessing the memory by one application may cause a
delay in accesses by another application.

In the model for each application different parameters regarding
hardware may be specified, such as the number of memory accesses
or disk usage. The more parameters are defined, the more accurate
the results, but at the same time, the more data needs to be collected
to run the experiments. For each application, there also needs to be
defined a function of execution slowdown due to the aggregated load
of a given subcomponent. It may be calculated using the Bubble-Up
methodology, presented in [3]. It enables the accurate prediction of
the performance degradation using a tunable amount of “pressure”
to the subcomponent — memory in the case of this paper. “Bubble”
is an artificial benchmark which is only used to stress the server
memory. For different values of this pressure, the performance
degradation of the original application is analyzed.

III.2 The extension of the execution time due to higher
processor performance requirements

The model is based on the fact that the processor time quantum
is consistently shared between the executed applications. This
situation is presented in Figure 1. In this example, the maximum
processor performance is 10 IPS and is named here “an execution
window”. This run window is moved down in each second and
shared between neighboring applications. Linux Completely Fair
Scheduler is based on the same assumption that each application
receives a fair amount of time quantum — according to its needs.

Figure 2 presents the new speed of execution of an application
when the aggregated requirements of all applications are higher than
the maximum processor performance. The size of the execution
window is equal to the maximum processor performance — 10 IPS
in this example. For the sake of clarity the applications are ana-
lyzed for a time which is equal to the time window — though the
calculations are general and independent of the length of execution
of any application. Variable x represents the exceeded processor
performance. In this example there are four applications, x is cal-
culated as x = (s1 + 52+ s3 + s4) — perf, where perf is the
maximum processor performance and s1, s2, s3 and s4 are the ex-
ecution speeds or the CPU loads exerted by the four consecutive
applications. New speed of any application may be calculated as
IPSpery = =E — 22X, For example, the original speed of the second
application in Figure 2 was 4 IPS, while when running with three
other applications in parallel it slows down to % IPS =~ 3,08 IPS
(interference effect due to the competition for shared resources is
not considered in these calculations yet).
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Figure 1: Model of the execution of the applications that exceed
100% of the processor load

IV. THE ENERGY-AWARE JOB SCHEDULING ALGORITHM

The input parameters for the algorithm are:

e the maximum processor performance (in IPS),
e the maximum power consumption of the processor,
o the number of all instructions for each application,

o the initial requirements for each application regarding proces-
sor performance (in IPS),

e the requirements for each application regarding its hardware
usage (such as memory or disk usage),

e the function of performance degradation for each application
due to the load exerted on different subcomponents of the
server (such as memory or disk),

o the deadline for each application.

To calculate the optimal solution for a given processor and a num-
ber of various applications we implemented a Branch and Bound
algorithm. It analyzes all correct instances of the problem. It starts
with an array of a size N x N, where N is the number of applications.
Each analyzed job may allocated to one of the N x N cells in the
array. Columns represent the sequential execution of applications,
while rows allow them to run in parallel. More generally — X axis
represents passing time, while Y axis is the load of the CPU. An
example instance of the problem presented in Figure 3 a). All of
the jobs are allocated to the first column. Therefore all of them
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should be executed at time O in parallel. Figure 3 b) shows their
final execution on the processor. It is important to underline here
that the array in Figure 3 a) does not take into account the length of
the execution of any job and its requirements regarding processor
performance. At this stage these values are not calculated, only their
relative position against each other considered here.

Figure 4 a) presents another example of scheduling the tasks. In
this case, there is a blank space between an orange and a green
task. Figure 4 b) shows how these applications will executed on the
server. It represents a situation where the green task should not be
executed in parallel with the blue task.

Please note that the position of the green task on the Y axis has no
meaning, since there is no other job running in parallel. In this case
only the height of the green task is significant as it represents the
CPU load. In Figure 4 b) the green task may be therefore depicted
at the same level as the blue task.

Please also note that if the green application would be scheduled
in the same last column but in the lower row (the same row as the
blue task), this allocation would not be correct. It would represent
a situation in which there should be a delay of execution between
the blue and the green task. However, since the orange application
is shorter than the blue one, there is no other application that could
separate them. Artificial delays of any length are not considered by
the algorithm since they are useless. They do not improve the energy
consumption and do not prevent from exceeding the deadlines. Such
a schedule would be correct if the orange application would be
longer than the blue one. At this stage this information is not
available yet — the correctness of the instance validated at a later
stage.

The algorithm creates all possible instances of the problem using
a Branch and Bound technique. A few different instances of the
problem are presented in Figure 5.

For each instance of the problem in the first step the algorithm
calculates the time when each application finishes its execution. An
example is presented in Figure 6. Vertical borders that represent
these times create different phases of execution. If the length of
the execution of each application is different, there are always as
many stages as the number of applications, no matter what is their
relative order. Please note that in each phase the same application
might have a different speed of execution. In this example the
maximum processor performance is not exceeded, therefore it does
not contribute to a slowdown of any application. However, if that
would be the case here, the green application in phase 2 would have
a higher speed (higher height in the figure) because it would no

longer share the processor time quantum with the blue application.

For this reason, every phase needs to be analyzed separately.
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Figure 2: New speed of execution of an application after exceeding
maximum processor performance
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Figure 3: a) An example scheduling of the tasks and b) their final
execution on the processor.
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Figure 4: a) Another example of scheduling the tasks with a delay
between an orange and a green task and b) their final execution on
the processor.
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In the second step for each row a bidirectional list is created (see
Figure 6 c). Each item on these lists represents either a given job or
an empty space between them. Each of these elements will hold the
time when its phase finishes.

The algorithm iterates over every phase. For each list is saves the
pointer to the currently analyzed item. For each phase it does two
rounds — in the first one it analyzes items that are jobs, it the second
round it analyzes blank items.

It starts with the first item on every list. If the first item on a given
list represents a job (in our example on both lists the first items are
jobs), it saves in it the execution time of this job, which is calculated
as time = instructions/speed.

This value is added to the list borders, which holds information
about the times of consecutive borders between phases. It moves
the pointer of the currently analyzed item to the next one. While the
next item on the given list is also a job, it repeats the same procedure
— it calculates the time of the execution of this job. It adds to it the
time of the previous item on the list and saves this value inside the
currently analyzed item. It also adds it to the list borders. If the
next item on a given list is a blank space, the algorithm moves to
the next list and repeats the same procedure.

When all first jobs on each list are analyzed, the algorithm moves
to the second phase — it examines blank spaces for each list. The
algorithm checks whether the first item on the list borders is higher
than the value saved for the previous item on the analyzed list. If
yes, it saves it inside the item and moves the pointer to the currently
analyzed item to the next one. If not, it leaves the item untouched.
When all blank spaces in this phase for every list are checked, it
removes the first item on the borders list.

The algorithm then moves to the next phase and repeats the whole
procedure until all items on all lists are checked.

This step calculates the execution times for each job and the
phases in which they are run. For instance, in the analyzed example,
it shows that the green application is executed in phase 1 and 2,
the blue one only in phase 1, while the orange one only in phase 3.

83

It also shows which applications are run in parallel with others in
every phase.

Since the allocations to different stages are now known, the
algorithm may calculate for each phase the processor load and the
aggregated loads exerted on the subcomponents, such as memory.
For example, in phase 1 it sums up the memory requirements of
the green and the blue application. Then it analyzes the speed
degradation for each of them under this aggregated memory load.
Based on that information it updates the time of each phase, already
saved in the previously mentioned lists. In the next step, it analyzes
the new speed of each application according to the calculations
presented in section I11.2. Based on that information it again updates
the time of each phase, already saved in the previously mentioned
lists.

Max perf

I

A

a)

time_green

" @=l1-@®
time_blue time_blank time_orange

<)

Figure 6: a) An example instance of the problem, b) marked the end
of execution for each application (borders between phases) and c)
the lists for each row that present the dependencies between tasks

The final result is the time of the end of every phase. It allows
the algorithm to calculate the whole time required to run all of the
applications. It also verifies the deadlines — if they are exceeded,
the solution is treated as unacceptable. The energy consumption
may be calculated as the time multiplied by the power (both of these
values are known).

Since this is a Branch and Bound algorithm, the currently ana-
lyzed solution is compared to the previously saved. If it is better
than the previous one, it will consider the best option. Finally, the
algorithm returns the best instance from all analyzed.

V. EXPERIMENT

To test the algorithm we have started it with five applications. The
applications compete for one shared resource, which is a memory.
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The number of instructions, initial CPU and memory requirements
and deadlines for each application is specified in Table 1. Appli-
cations three and four have high memory requirements. The first
and the last applications have many instructions to execute (at the
same time their execution would be the longest without taking into
account the interference effects). All of them have specified dead-
lines.

Table 2 presents speed degradation of all applications in function
of the memory load. For example, application one slows down by
5% when the memory load is 10 (e.g. Mb/s).

‘ Name ‘ Instructions ‘ CPU ‘ Memory ‘ Deadline

one 1000 40 10 50
two 200 15 1 40
three 400 45 55 30
four 400 60 55 12
five 1000 30 10 40

Table 1: Parameters of five applications used to test the algorithm

Application slowdown
Memory one ‘ two ‘ three ‘ four ‘ five
10 5,00% | 5,00% | 10,0% | 15,0% | 5,00%
20 6,00% | 6,00% | 18,0% | 20,0% | 6,00%
30 7,00% | 6,30% | 21,0% | 25,0% | 7,00%
40 7,30% | 6,80% | 23,0% | 30,0% | 7,30%
50 7,60% | 7,10% | 30,0% | 35,0% | 7,60%
60 8,00% | 7,20% | 35,0% | 40,0% | 8,00%
70 8,10% | 7,20% | 38,0% | 45,0% | 8,10%

Table 2: Speed degradation of applications in function of the mem-
ory load

Figure 7 presents the most energy-efficient scheduling for the
proposed parameters. The time of calculations is 47,48 seconds and
the energy consumed is 1751 Ws. In this solution, no deadlines are
exceeded. Itis also visible that the maximum processor performance
is not exceeded in any phase. All of the applications are executed
with the initially required speed.

VI. CONCLUSION

In this paper, we presented a model of applications with deadlines
executed in parallel on a server, which compete for the shared re-
sources, such as memory or disk. This model realistically represents
the real execution of applications on physical servers, taking into
account their speed, hardware requirements and performance degra-
dation due to loaded subcomponents of the server. We presented a

Branch and Bound algorithm to calculate the most energy-efficient
scheduling of jobs. The algorithm was verified by five applications
with specified hardware requirements and deadlines.

CPU
load
Max CPU

performance

35175 35635 47,485

1 1 time
11,115 20,995

Figure 7: The most energy-efficient scheduling for the selected
applications.
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