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ABSTRACT 

Traction Force Microscopy (TFM) is a technique widely 
used to recover cellular tractions from the deformation they 
cause in their surrounding substrate. Traction recovery is an 
ill-posed inverse problem that benefits of a regularization 
scheme constraining the solution. Typically, Tikhonov 
regularization is used but it is well known that L1-
regularization is a superior alternative to solve this type of 
problems. For that, recent approaches have started to 
explore what could be their contribution to increase the 
sensitivity and resolution in the estimation of the exerted 
tractions. In this manuscript, we adapt the L1-regularization 
of the curl and divergence to 2D TFM and compare the 
recovered tractions on simulated and real data with those 
obtained using Tikhonov and L1-norm regularization. 

Index Terms — Traction Force Microscopy, 
regularization, vector operators, L1-norm.1 

1. INTRODUCTION

Force mediated cell-matrix interactions play a key role in 
regulating a variety of physiological and pathological 
processes such as wound healing, angiogenesis or cancer 
metastasis [1]. The quantification of these forces is 
becoming an extensively used tool as it provides insight on 
the way cells sense and react to their microenvironment.  

Traction Force Microscopy (TFM) is a widespread 
technique to estimate the tractions exerted by adherent cells 
onto the extracellular matrix (ECM) through large 
macromolecular assemblies known as focal adhesions [2]. 
Those tractions are recovered from the deformations they 
cause in a flexible and transparent gel mimicking the ECM 
mechanical properties. We focus here in the study of a 2D 
setup in which the cells are cultured on the surface of the gel 
and only in-plane tractions are considered.  

In any TFM experiment, two images of the gel must be 
acquired by optical microscopy: one while the adhered cells 
are exerting mechanical tractions (deformed gel), and the 
other one, after disrupting cell tractions (relaxed gel). 
Comparing these two images, the displacement field of the 
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gel is obtained and then, combined with its mechanical 
model to recover the cellular tractions.  

 Due to the optical clarity of the gels, a large number of 
fluorescent nanobeads embedded inside serve as references 
to infer the local deformation. Motion-tracking image 
processing techniques (i.e., particle image velocimetry, 
particle tracking velocimetry) are typically applied to 
calculate the displacements of these beads.  

Due to experimental limitations, the measured 
displacements are usually under-sampled, which makes the 
mapping between the effects (gel displacements) and their 
originating causes (cellular tractions) non-unique. Indeed, 
the recovery of cellular tractions requires solving an ill-
posed inverse problem being the solution very sensitive to 
the errors in the measured displacement field.  To deal with 
this situation, the traction recovery is usually regularized to 
constraint the solution. The classical zeroth order Tikhonov 
regularization, which imposes a penalty in the L2-norm of 
the tractions, is commonly employed. However, this 
regularization causes a considerable smoothing of the 
solution, underestimating the traction field magnitude and 
spreading the recovered tractions over large areas [3].  

As it is well known, L1-regularization is a superior 
alternative to its least squares counterpart to solve this type 
of problems [4]. In this manuscript, we elaborate on the very 
recent application of L1-regularization to 2D TFM [5, 6]. 

In Section 2, we present the regularized traction 
reconstruction of 2D TFM particularized for the L2-norm, 
the L1-norm and the L1-norm of the traction field curl and 

Figure 1. Schematic representation of a Traction Force 
Microscopy experiment. 
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divergence. The simulations performed are described in 
Section 3. Then, the tractions recovered by each 
regularization method are compared on simulated and real 
data (Section 4) before providing some concluding remarks 
(Section 5).  

2. REGULARIZED TRACTION RECONSTRUCTION

As indicated before, we consider the 2D TFM case. Namely, 
we assume that cells adhered to the surface of a linear 
elastic substrate exerting parallel tractions (i.e., shear 
tractions). Then, the gel deformation can be obtained as the 
direct solution of the elasticity problem: 

𝑢𝑗(𝒙) = ∑ ∫𝑔𝑗𝑖(𝒙, 𝒙′) 𝑡𝑖(𝒙
′) 𝑑𝒙′𝑖  (1)

Here, the 𝑗-th component (𝑗 ∈ {𝑥, 𝑦}) of the 
displacement field 𝐮 at spatial location 𝒙 is related to the 
tractions 𝐭 exerted along the 𝑖-th Cartesian direction 
(𝑖 ∈ {𝑥, 𝑦}) at the location 𝒙′ by the Green’s function 
𝑔(𝒙, 𝒙′). The Green’s function models the gel mechanics 
and it is usually given by the Boussinesq solution in 2D 
TFM [7]. 

Since the locations of both measured displacements and 
applied tractions are only obtained at discrete locations, eq. 
(1) can be transformed into a set of linear equations: 

𝐮 = 𝐊 ∙ 𝐭 (2) 
where 𝐮 = [𝑢𝑥(𝒙1); … ; 𝑢𝑥(𝒙𝑁); 𝑢𝑦(𝒙1); … ; 𝑢𝑦(𝒙𝑁)] is

a 2𝑁 × 1 column vector with 𝑁 being the number of 
locations where displacements are measured, 𝐭 =

[𝑡𝑥(𝒙′1); … ; (𝒙′
𝑀); 𝑡𝑦(𝒙

′
1); … ; 𝑡𝑦(𝒙′𝑀)]  is a 2𝑀 × 1

column vector with 𝑀 being the number of locations where 
tractions will be recovered, and 𝐊 is the 2𝑁 × 2𝑀 stiffness 
matrix given by  

𝐊 = [
𝐆𝑥𝑥 𝐆𝑥𝑦

𝐆𝑦𝑥 𝐆𝑦𝑦
] (3) 

with 

𝐆𝑗𝑖 = [

𝑔𝑗𝑖(1,1) ⋯ 𝑔𝑗𝑖(1,𝑀)

⋮ ⋱ ⋮
𝑔𝑗𝑖(𝑁, 1) ⋯ 𝑔𝑗𝑖(𝑁,𝑀)

] (4)

Since the stiffness matrix behaves as a smoothing 
operator, its inverse will amplify the existing errors in the 
calculated displacements, making the inversion of eq. (2) an 
ill-posed problem. To overcome this situation and stabilize 
the reconstruction of cellular tractions, a penalty term is 
commonly included and the traction recovery is 
reformulated as the minimization of a cost functional: 

�̂� = argmin
𝐭

[∥ 𝐊𝐭 − 𝐮 ∥2
2+ 𝜆 ∥ 𝐑𝐭 ∥𝑝

𝑝
] (5) 

where ‖⋅‖𝑝 denotes the Lp-norm, 𝐑 is a regularization
operator and 𝜆 is a parameter that controls the amount of 
regularization applied. 

2.1. L2-norm regularization 

Due to its simplicity and closed form, zero order Tikhonov 
regularization is still widely used in TFM. In this type of 
regularization, L2 norm is used for the penalty term, and 𝐑 is 
set to the identity matrix, 𝐑 = 𝐈. Then, the minimization 
problem in eq. (5) can be analytically solved as [4]: 

�̂�L2
= (𝐊T𝐊 + 𝜆𝐈)−1𝐊T𝐮 (6) 

with 𝐊T being the transpose of the stiffness matrix.

2.2. L1-norm regularization 

Alternatively, a penalty term based on the L1-norm can be 
used to induce the recovery of sparser traction fields. 
Unfortunately, we cannot obtain a closed form solution for 
the global minimum as for the L2 penalty. Iterative 
Reweighted Least Squares (IRLS) [8] can be used instead to 
solve the minimization problem and find �̂�L1

 as was used in
[5]. This algorithm approximates the L1-norm by a weighted 
L2-norm problem, whose weights are updated iteratively. 
Then, at each iteration 𝑠, an algebraic solution of the 
problem can be easily derived as approximation of the L1-
norm: 

�̂�L1

𝑠 = (𝐊T𝐊 + 𝜆𝐖𝑠)−1𝐊T𝐮 (7) 

where 𝐖𝑠 is the weight matrix at the 𝑠-th iteration.

2.3. L1-norm regularization of the curl and divergence 

Another alternative regularization scheme recently proposed 
for vector field denoising [9], penalizes the L1-norm of the 
traction field curl and divergence. Particularly, for the 2D 
traction fields found in TFM experiments, the curl and 
divergence are given by: 

curl(𝐭) = (
𝜕𝑡𝑦

𝜕𝑥
−

𝜕𝑡𝑥

𝜕𝑦
) �⃗�  div(𝐭) =

𝜕𝑡𝑥

𝜕𝑥
+

𝜕𝑡𝑦

𝜕𝑦
   (8) 

Then, the general regularization formulation in eq. (5) is 
transformed to: 

�̂�L1,cd
= argmin𝐭[∥ 𝐊𝐭 − 𝐮 ∥2

2 +𝜆𝑐 ∥ 𝐑curl𝐭 ∥1
1+

+𝜆𝑑 ∥ 𝐑div𝐭 ∥1
1]  (9)

where 𝜆𝑐, 𝜆𝑑 are the parameters that controls the amount of
regularization, and 𝐑curl, 𝐑div are two matrices that encodes
the curl and divergence operators with central differences, 
respectively. Here, we have considered central differences 
of order three to obtain an accurate approximation of the 
derivatives. Also in this case, the iterative Reweighted Least 
Squares (IRLS) is used to solve the minimization problem 
and find �̂�L1,cd

.

3. EVALUATION ON SIMULATED DATA

3.1. Generation of the simulated data 
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We have simulated point-like tractions applied along the x-
axis. We have chosen the magnitude of the simulated focal 
adhesions (𝑡𝑔𝑡) to follow a Gaussian distribution:

𝑡𝑔𝑡(𝒙) = 𝑡𝑚𝑎𝑥𝑒
−(

(𝒙−𝒙𝑐)
2

2𝜎
)
𝐻(𝒙)  (10) 

where 𝒙c is the center of the circle, tmax is the magnitude of 
the simulated traction at its center (10% of the gel Young 
modulus), 𝜎is the Gaussian standard deviation (chosen such 
as the magnitude of the tractions decrease a 30% of their 
peak magnitude at the border) and 𝐻(𝒙) is a Heaviside 
function (to force a null background).  

We consider the simulated hydrogel to be linear, 
isotropic, homogeneous and elastic with a Young’s modulus 
of 1.5 kPa and a Poisson ratio of 0.45. The forward equation 
(2) can then be applied to compute the ideal displacements 
and then, white Gaussian noise with a standard deviation of 
0.02 m is added. The resulting noisy displacements (with a 
isotropic pixel size with a length of 0.25 m) are randomly 
downsampled considering a density of one bead per 𝜇𝑚2.
Finally, to simplify the computations, these down sampled 
displacements are interpolated using a non-uniform linear 
method to fit their initial resolution.  

The optimal parameter 𝜆 is chosen for each of the 
regularization methods through an exhaustive search 
minimizing the least squares error between the simulated 
and the recovered tractions.  

3.2. Error metrics 

We have evaluated the error in the recovery of the traction 
field within a region of interest defined by the stress 
footprint. This footprint has been obtained by segmenting 
the magnitude of the recovered tractions using an Otsu 
threshold.  

Being 𝐭gt the simulated ground-truth traction field, and �̂� 
the retrieved traction field, P and Q the total number of 
points within the respective stress footprints, the error 
metrics are defined as given below. 

Error in magnitude. Absolute error in the recovered traction 
magnitude (in percentage): 

𝑒𝑚 = 100 ∙
∑ | ‖�̂�(𝒙𝒊)‖−‖𝐭𝑔𝑡(𝒙𝒊)‖ |

𝑄
𝑖=1

∑ ‖𝐭𝑔𝑡(𝒙𝒊)‖
𝑃
𝒊=𝟏

(11) 
Error in angle. Average angular error (in degrees) in the 
recovered stress footprint, weighted at each point by the 
traction magnitude: 

𝑒a = ∑ (
‖�̂� ‖𝑖

∑ ‖�̂� ‖𝑖
𝑄
𝑖=1

)  cos−1 (
�̂� 𝑖 ∙ 𝒕𝑔𝑡

‖�̂� ‖𝑖   ‖𝒕𝑔𝑡‖
)

𝑄

𝑛=1

 

Error in area: Absolute error of the recovered stress 
footprint area (in percentage): 

𝑒𝐴 = 100 ∙ |
𝐴 − 𝐴𝑔𝑡

𝐴𝑔𝑡

| 

with A and 𝐴𝑔𝑡 being the area of the recovered and ground-
truth footprints, respectively. 

4. EXPERIMENTAL RESULTS

4.1. Simulated data 

We use the procedure described in Section 3.1 to generate 
point-like tractions of 3m radius, applied along the x-axis 
and the corresponding noisy displacements for three 
conditions: an isolated and two focal adhesions separated by 
1.5 and 3m. For each condition, ten realizations are 
considered.  

Figure 2 (a) shows an example of a simulated traction 
field for two circular traction patches with a separation of 
1.5 m. The corresponding ideal and noisy displacements 
are shown in Figures 2 (b) and (c), respectively. The 
magnitude and orientation of the recovered traction field 
using the different regularizations are shown in Figures 2 (d-
f). We observe that the zero order Tikhonov regularization 
collapses the point-like tractions in a unique stress footprint 
while the L1-regularizations recover both of them. In terms 
of the magnitude, observe that L2-norm regularization tends 
to underestimate while the L1-norm regularization slightly 
overestimates, compared with the estimation performed by 
the L1-norm regularization of the curl and divergence. Note 
also how the L1-norm regularization recovers nearly no 
background noise while the L2-norm regularization 
generates a significant amount of it. The L1-nrom 
regularization of the curl and divergence generates a certain 
amount of noise due mainly to the derivatives computation. 
In terms of the traction orientations, L1-norm regularization 
recovers the cleanest map being the nosiest the one obtained 
by the L1-norm regularization of the curl and divergence. 

Table 1 presents the computed error metrics. Overall, 
L1-norm regularization performs best having the L1-norm 
regularization of the curl and divergence slightly smaller 
magnitude error.  

4.2. Real data 

In this section, we present an example of traction recovery 
on a real cell with the different regularization approaches. 
Fluorescent polystyrene microbeads (0.2μm in diameter) 
were embedded in a ~90μm thick polyacrylamide hydrogel 
with a Young’s modulus of 1.3kPa and a Poisson ratio of 
0.45. Human umbilical vein endothelial cells (HUVEC) 
expressing the Green fluorescent protein were cultured on 
the surface of hydrogel. Images of the cells (see Figure 3 
(a)) and the polyacrylamide gel (see Figure 3 (b)) containing 
HUVEC were acquired at multiple locations of the surface 
of the stressed hydrogel with a 40x dry objective (NA=0.95) 
mounted in an Olympus FV1000-IX81 FluoView Laser-
Scanning Confocal microscope. After imaging, detergent 
was added to the culture medium. Once the cells were 
completely removed and the gel had returned to the 
unstrained state, new images of the fluorescent beads were 
taken at the previously recorded locations. 
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(a) (b) 

(c) (d) 

(e) (f) 
Figure 2. Simulated data. (a) Magnitude (in kPa) and 
orientation (in angles) of a traction field applied in the x-
axis simulating two circular focal adhesions of 3 m of 
radius, 1.5 m of separation and a peak magnitude of 10% 
of the gel Young Modulus; (b) Magnitude (in m) of the 
displacement field  calculated from the simulated tractions; 
(c) Noisy displacements used for the traction recovery 
step; (d-f) Magnitude and orientation of the recovered 
traction field obtained with zero order Tikhonov, L1-norm 
and L1-norm regularization of the curl and divergence, 
respectively. The scale bar represents 5 m. The brown 
line corresponds to Otsu thresholding.

Figure 4 (a) shows for a zoomed region of the cell, the 
estimated displacements and (b-d) the recovered tractions 
magnitude and orientations for the different regularizations. 
As expected, the zero order Tikhonov regularization when 
compared to their L1 counterparts smoothens the solution, 
estimating lower traction field magnitudes and spreading the 
recovered tractions over large areas. 

5. CONCLUSION

In this manuscript, we have compared the performance of 
different regularization schemes (Tikhonov, L1-norm, L1-
norm of the curl and divergence) when applied to constraint 
the traction reconstruction in 2D TFM experiments. L1-
regularization of the tractions reduces the background noise  
recovering the traction magnitude with a smaller error than 
Tikhonov regularization. More importantly, L1-
regularization promotes the recovery of sparser traction 
fields; thus, better reproducing the nature of cellular 
tractions, which are mainly localized at few discrete clusters 
of adhesion sites. 

Errors 

One Focal Adhesion 1.5 m separation 3 m separation 

L2  L1  L1,cd L2 L1 L1,cd L2 L1 L1,cd 

Mag (%) 2.02 ±0.14 1.71 ±0.16  1.61 ± 0.28 1.95 ± 0.14 1.69 ± 0.09 1.57 ± 0.17 2.00 ± 0.07 1.73 ± 0.11 1.46 ± 0.12 

Ang (º) 4.09 ± 1.06 (4.60±1.43)10-5 9.02 ± 3.52 4.17 ± 1.03 (3.22±1.1)10-5 7.21 ± 1.82 3.96 ± 0.64 0.03 ± 0.01 8.68 ± 1.76 
Area (%) 11.97 ±2.42 3.24 ± 1.27 13.83 ± 5.83 15.91 ± 2.48 1.51 ± 0.22 12.69 ± 4.56 13.17 ± 1.59  2.15 ± 0.92 9.35 ± 3.26 
Table 1. Quantitative comparison of the recovered tractions for L2-norm, L1-norm and L1-norm regularization of the curl 
and divergence (L1,cd). Ten realizations were used for each case. 

(a) (b) 

(c) (d) 
Figure 4. Experimental data (a) Estimated displacements 
(in m) recovered from the bead positions. Recovered 
tractions magnitude (in kPa) and orientations (in angles) 
using: (b) zero order Tikhonov regularization; (c) L1-norm 
regularization; (d) L1-norm regularization of the curl and 
divergence. The images correspond to the square box shown 
in Figure 3 (b). The scale bar represents 5 m. 

(a) (b) 
Figure 3. Bead displacements induced by a real cell. The 
beads of the unstressed and stressed hydrogels have been 
pseudo-colored in red and green, respectively; therefore, 
beads are colored yellow when not displaced. 
Additionally, the contrast of the pseudo-color image has 
been modified to highlight the areas with bead 
displacements. The scale bar represents 20 m. 
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