
C-mulator
Design and development of an educational web

application for teaching C language

Lućıa Uguina Gadella

Tutorship: Iria Manuela Estévez Ayres

Bachelor’s Degree in Telecommunication Technologies
Engineering School

March 2016

”To finish a work?
To finish a picture?
What nonsense!
To finish it means to be through with it, to kill it, to rid it of its soul, to
give it its final blow, the coup de grace for the painter as well as for the
picture.”

Pablo Picasso

Summary

In the Bachelor’s Final Project named C-mulator: Design and development of an
educational web application for teaching C language the analysis, design, development
and evaluation process of an educational web application is described.

C-mulator is a tool created with the aim of helping students understand concepts
related to Systems Architecture subject.

It is conceived as a Java application that simulates C files generating machine
states which change with the code statements. Its main characteristic is the capabil-
ity of showing the memory condition for each machine state. C-mulator also shows
the C code and the output of the program. In order to facilitate the use, this Java
application was embedded in a web application.

This web application was designed in order to facilitate the use of the C-mulator
tool. A Client-Server model with a three tiers architecture has been implemented
for this project.

After doing a thorough research about the possible technologies that could have
been used in the application development, the selected ones were: Apache-Tomcat
as the web server, JSON as the client-server communication language, AJAX as the
client web technique and MySQL as database management system.

As it has been said before, one of the major functionalities of C-mulator are the
possibility of simulate C programs in a web based architecture. But C-mulator has
other characteristics such as having several C files stored in a database that sorted
them by chapter and the administrator capability of releasing chapters for specific
students’ groups.

C-mulator helps the understanding of medium-level abstract concepts that are
related with C programming and the Systems Architecture subject.

Acknoledgement

Gracias a mis padres, por apoyarme siempre y haber estado animándome cada vez
que perd́ıa las ganas de continuar. Sin vosotros todo este camino no habŕıa sido
posible.

Gracias a mi t́ıo y a mi t́ıa, por hacerme sonréır en los momentos más arduos y
por acompañarme siempre, sin importar lo duras que fueran las circunstancias.

Por supuesto, gracias a mi tutora, Iria. Que me ha brindado una inestimable
ayuda durante todo el desarrollo de este trabajo y ha hecho que me supere d́ıa a d́ıa.

Agradecer a mis amigos toda su paciencia y sus ganas de aguantarme. Gracias,
Carlos, por haberme soportado estos tres años, práctica tras práctica. Gracias, Elena,
por esas tardes de risas. Gracias, Christian, Artai, Sandra, Carlota..., todos habéis
sido un apoyo inestimable. Sobre todo, gracias Jose, por llevarme de la mano en
todo este recorrido.

También brindo este trabajo a todos los que en algún momento de mi vida han
hecho que continúe con mis sueños. Sin todas esas personas, yo no habŕıa llegado
hasta aqúı.

Pero sobre todo, gracias Yayi.

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Objectives . 3
1.3 Regulatory Framework . 3
1.4 Report structure . 4

2 State of the Art 6
2.1 Introduction . 6
2.2 MVC . 7
2.3 Server . 7

2.3.1 Database Management System 8
2.3.1.1 Oracle . 9
2.3.1.2 Microsoft SQL Server 9
2.3.1.3 MySQL . 10
2.3.1.4 IBM DB2 . 11
2.3.1.5 Microsoft Access . 12
2.3.1.6 Comparison . 12

2.3.2 Middleware . 14
2.3.2.1 Application Server 15
2.3.2.2 Web Server . 15

Apache . 16
Nginx . 16
Tomcat . 17
Comparison . 17

2.4 Client . 18
2.4.1 HTML/XHTML . 18
2.4.2 JavaScript . 19
2.4.3 Shockwave Flash . 20
2.4.4 AJAX . 20

i

2.4.5 Comparison . 20
2.5 Client-Server Communication . 22

2.5.1 XML . 22
2.5.2 YAML . 22
2.5.3 JSON . 22
2.5.4 Comparison . 23

2.6 Related Work . 23
2.6.1 A crowd of little man computers: visual computer simulator

teaching tools . 23
2.6.2 DCMSim: Didactic cache memory simulator 25
2.6.3 DRAMSim2: A cycle accurate memory system simulator . . . 25
2.6.4 Teaching computer architecture/organisation using simulators 25
2.6.5 Design and Evaluation of a Cache Memory Simulation Program 26
2.6.6 Conclusion . 26

3 Project Description 27
3.1 Introduction . 27
3.2 Requirements . 27

3.2.1 C Language Subset . 28
3.2.2 Application Requirements . 29

3.3 Design . 30
3.4 Use cases . 30

3.4.1 Simulation . 32
3.4.2 Database . 32
3.4.3 Server . 33

3.4.3.1 Servlet . 33
3.4.4 Client Design . 34
3.4.5 Client-Server Communication Design 34
3.4.6 Summarize . 34

4 Implementation 37
4.1 Introduction . 37
4.2 Selected Technologies . 37

4.2.1 Server . 37
4.2.2 Client . 39
4.2.3 Client-Server Communication 39
4.2.4 Conclusion . 39

4.3 Simulation part . 39

ii

4.3.1 Introduction . 40
4.3.2 Program behaviour . 40

4.3.2.1 Serialization . 42
4.3.2.2 ALU . 43
4.3.2.3 IO . 44
4.3.2.4 BUS . 44
4.3.2.5 RAM . 45
4.3.2.6 CPU . 46

4.4 Data Model . 51
4.5 Server . 52

4.5.1 Access System . 52
4.5.2 Servlet . 53

4.6 Client . 54
4.6.1 Access System . 54
4.6.2 File selection system . 56
4.6.3 Simulation part . 57
4.6.4 Disconnect . 60
4.6.5 Information pages . 60

5 Validation 61
5.1 Introduction . 61
5.2 Obtained results . 61

5.2.1 Test 1 . 61
5.2.2 Test 2 . 62
5.2.3 Test 3 . 64
5.2.4 Test 4 . 64
5.2.5 Test 5 . 65
5.2.6 Test Comparison . 65

5.3 Conclusion . 67

6 Conclusions and Future Work 68
6.1 Introduction . 68
6.2 Conclusions . 68
6.3 Future Work . 69

7 Planning and Budget 70
7.1 Planning . 70

7.1.1 Gantt Chart . 72
7.2 Budget . 72

iii

Appendix A Raspberry Configuration 77
1 Installing Raspbian . 77
2 Installing and Configuring Apache-Tomcat 77
3 Installing and Configuring MySQL and phpMyAdmin 79
4 Configuring Hypertext Preprocessor (PHP) in Tomcat 82
5 TLS Configuration . 83
6 Application Deployment . 84

Bibliography

iv

List of Figures

1.1 Percentages of student respondents (n = 64) who preferred to use vi-
sual, aural, read-write, kinaesthetic, and multiple sensory modalities
when learning information [3] . 2

2.1 Three tiers architecture . 6
2.2 Model View Controller (MVC) view [12] 7
2.3 Average Execution Time . 13
2.4 Average Central Processing Unit (CPU) Utilization 13
2.5 Average Memory Usage . 13
2.6 Basic presentation of an application server and its environment. Fig-

ure from [23] . 15
2.7 How Asynchronous JavaScript And XML (AJAX) works 21

3.1 Application Scheme . 30
3.2 Use Cases . 31
3.3 Simulator tool behaviour . 32
3.4 Database Structure . 33
3.5 Server Sections . 34
3.6 Web Page Views . 35
3.7 Design Scheme . 35

4.1 Raspberry Pi comparative . 38
4.2 Class Diagram . 41
4.3 Serialization Flowchart . 42
4.4 CPU flow diagram . 47
4.5 deleteSpaces flowchart . 48
4.6 tagger flow diagram . 49
4.7 Access System . 55
4.8 Check login behaviour . 55
4.9 File selection system . 57
4.10 Simulation behaviour . 58

v

5.1 Login . 61
5.2 Invalid Username or Password . 62
5.3 Not Allowed User . 62
5.4 Navigation bar . 62
5.5 Chapter Selection . 63
5.6 File Selection . 63
5.7 Chapters for Students . 63
5.8 Simulation Page . 64
5.9 Contact Information . 64
5.10 C-mulator in class . 67
5.11 C-mulator in class . 67

7.1 Gantt Chart . 73

A.1 Tomcat Welcome Page . 78
A.2 MySQL Configuration . 80
A.3 phpMyAdmin Configuration . 80
A.4 phpMyAdmin Configuration . 81
A.5 phpMyAdmin Configuration . 81
A.6 phpMyAdmin Configuration . 81
A.7 phpMyAdmin Configuration . 82

vi

List of Tables

2.1 Server Types [13] . 8

2.2 Relational Database Management Systems (RDBMS)s comparison . . 14

2.3 RDBMSs comparison . 14

2.4 Web Servers comparison . 17

2.5 Web Servers comparison . 18

2.6 Client Technologies Comparison . 21

2.7 Client-Server Communication Technologies Comparison 23

2.8 Related Work Comparison . 24

4.1 Selected Technologies . 40

4.2 LDAP code . 53

4.3 HyperText Markup Language (HTML) header 54

4.4 Selection Query . 56

4.5 Logging User Activity . 60

5.1 Generating Log File . 65

5.2 Tests Comparison . 66

7.1 Previous Study Duration . 70

7.2 Simulation Block Duration . 71

7.3 Client Block Duration . 71

7.4 Database and Server Block Duration 71

7.5 Test Phase Block Duration . 72

7.6 Report Duration . 72

7.7 Project Duration . 74

7.8 Staff Cost . 75

7.9 Equipment Cost . 75

7.10 Amortization . 75

7.11 Total cost . 76

7.12 Total cost with taxes . 76

vii

A.1 Tomcat Installation . 78
A.2 Java SE Development Kit (JDK) Installation 78
A.3 Update System . 79
A.4 MySQL Installation . 79
A.5 PHP and phpMyAdmin Installation 79
A.6 JavaBridge Configuration . 83
A.7 Keystore Creation . 84
A.8 Keystore Creation . 84

viii

Glossary

ADO Automatic Data Optimization.

AEPD Agencia Española de Protección de Datos.

AJAX Asynchronous JavaScript And XML.

ALU Arithmetic Logic Unit.

API Application Programming Interface.

ASM Automatic Storage Management.

CPU Central Processing Unit.

CSS Cascading Style Sheets.

DBMS Database Management System.

EJB Enterprise JavaBean.

FIFO First In First Out.

GUI Graphic User Interface.

HDMI High-Definition Multimedia Interface.

HTML HyperText Markup Language.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

ix

IIS Internet Information Services.

IO Input/Output.

Java EE Java Platform Enterprise Edition.

JavaCC Java Compiler-Compiler.

JDK Java SE Development Kit.

JSON JavaScript Object Notation.

JSP JavaServer Pages.

LDAP Lightweight Directory Access Protocol.

LMC Little Man Computer.

LOPD Ley Orgánica 15/1999 de Protección de Datos.

LRU Least Recently Used.

MVC Model View Controller.

ODBC Open Database Connectivity.

PDF Portable Document Format.

PHP Hypertext Preprocessor.

RAM Random Access Memory.

RDBMS Relational Database Management Systems.

RGPD Registro General de Protección de Datos.

RPC Remote Procedure Call.

SD Secure Digital.

SQL Structured Query Language.

SWF Shockwave Flash.

x

TLS Transport Layer Security.

URL Uniform Resource Locator.

W3C World Wide Web Consortium.

XHTML eXtensible Hypertext Markup Language.

XML eXtensible Markup Language.

XPS XML Paper Specification.

YAML YAML Ain’t Markup Language.

xi

Chapter 1

Introduction

This chapter introduces the objectives and motivations of this project. It will also
give a brief description of the project structure.

1.1 Context and Motivation

During the last century, the educational research field has developed different theories
trying to bring light on how humans learn and how to make the learning process more
effective . For example, in 1956, Bloom [1] proposed their taxonomy of educational
objectives, where the authors try to convey and classify educational objectives into
levels of complexity and mastery. More specifically, in the cognitive domain this
taxonomy recognises the following ordered categories: knowledge, comprehension,
application, analysis, synthesis and evaluation. Although there are controversies
around how the higher levels are ordered and several other authors [1] reviewed the
original taxonomy, there is consensus about the complexity of the higher levels. More
specifically when it came to the learning of critical and logical thinking.

Additionally to this inherent difficulty, when the teachers have to explain some
logical thoughts there could be some students that get it right away and some of
them that could get lost. This is due to the fact that people do not learn in same
ways.

A learning style model classifies students according to where they fit on a number
of scales pertaining to the ways they receive and process information [2].

Depending on the student, its way of learning will be different from the others.
Because of that, the appropriate solution for getting the best of the students is giving
them the right tools for any of their learning styles. While some of the students need
the out-loud explanation of the teacher, others learn better if they can see what the

1

2 1. Introduction

teacher is explaining on the blackboard as a picture. Some others just need a written
explanation. And, finally, there are students that learn by themselves, just trying
the exercises and practising.

Nevertheless, there are some students that have a multi-modal way of learning.
It has been researched by other scientists that more than a half of the students have
a multiple sensory modality [3] as it is shown in Figure 1.1.

Figure 1.1: Percentages of student respondents (n = 64) who preferred to use vi-
sual, aural, read-write, kinaesthetic, and multiple sensory modalities when learning
information [3]

Felder exposed that there are several types of learning styles. There is a perception
dimension which could be sensory or intuitive. Input dimension is divided in visual
or auditory. Organization could be inductive or deductive. Processing could be
done actively or reflectively. And finally the understanding dimension is divided in
sequential or global [2].

Due to the disclosed before, the strategies and tools used in education have
changed in time. The teachers ways of speaking and implication with their stu-
dents are different now than thirty years ago. Since the technology introduction in
classrooms, the way of teaching and learning has changed from bottom to top.

Some studies have found a correlation between the use of technology in the class-
room and an improvement in the students achievement from the lessons [4].

Even though, this does not mean that learning a computer language is less de-
manding. With a language close to the machine one, it is more difficult to understand
widely what is happening in the computer while the program is running. This is due
to the high abstract thinking that is required in programming subjects [5].

This situation does not motivate students in subjects related to Computer Sci-
ence [5]. The logical difficulty is high and, to our knowledge, there are no tools that
facilitate the part of understanding the processes running in the computer. Further-
more, the most difficult part of understanding a programming language is when it is
related to pointers and memory handling, as they are abstract concepts [5].

1.3. Objectives 3

The students’ performance could be enhanced with computer simulations if it is
compared with a lack of them. Researchers strongly recommend the use of simula-
tions as a supplementary tool to the traditional lectures, in order to help students
defy its barriers in cognitive learning [6].

As a solution, computer simulations go along with the lines exposed before, C-
mulator comes up to help students with its difficulties learning the C programming
language within the scope of a second-year programming course of an engineering
bachelor degree, namely the Systems Architecture subject in the Bachelor’s Degree
in Telecommunications Technologies.

1.2 Objectives

This project consists in developing the simulation tool C-mulator, which is embedded
in a web application that simplifies the usage of this tool. It solves the problems
defined above, trying at the same time to improve the students’ performance in the
subject.

This application needs to cover the simulation of several files stored in the system
but organized in a database. It will also implement a log-in system in order to monitor
with a log file the user that is testing the application.

The preliminary objectives of this project are:

� Study of the technologies that can be applied in order to achieve the final
objective of the project.

� Analysis, design and development of the application system.

� Carrying on the necessary tests on the application to prove that it works ac-
cording to the specifications.

� Distribution of the tool to an audience and study of its benefits in a classroom.

� Establishment of project future lines in order to continue and improve the tool.

1.3 Regulatory Framework

This project will manage some data about the users of the application. Due to this it
is important to talk about the Ley Orgánica 15/1999 de Protección de Datos (LOPD).
The organization that is in charge of data protection compliance in a national level

4 1. Introduction

is the Agencia Española de Protección de Datos (AEPD). The LOPD objective is to
guarantee and protect, in what is related with the personal data treatment, people’s
public freedoms and fundamental rights, and specially their honour and personal and
familiar privacy [7].

When someone is treating with files containing sensitive data, those files have to
be registered in the Registro General de Protección de Datos (RGPD) [7].

Besides, this law establishes three levels of security: low, medium and high. These
depend on the nature of the files and if they contain sensitive information and how
much information related to personal data is stored [8]:

� HIGH LEVEL: files or data that contain information about several topics
such as health, ideology, sexual behaviour or religion.

� MEDIUM LEVEL: files or data that contain information about administra-
tive infractions related with the 29th article of the LOPD, economic data, fiscal
administrations, etc.

� LOW LEVEL: any other data or file that contain any personal information,
such as phone, address, age or name.

The level of security of C-mulator is the lowest one, as it only stores the university
username (a number). Moreover, all the login process is done through the university
servers, implying that C-mulator does not store any sensitive password. C-mulator
generates and stores user logs that will be used for research purposes and it runs in
an university server within the University facilities.

Due to the fact that this data is generated by the university and it is below the
protection of the LOPD, the files do not need to be registered [9], as they are already
gathered by the university.

1.4 Report structure

This report is divided in several chapters:

1. This chapter, Introduction, explained the motivation and social context of this
project, its objectives and the regulatory framework that surrounds it.

2. The State of the Art chapter reviews the different possible technologies that
can be used to implement the project, along with a revision of the related work.

1.4. Report structure 5

3. The Project Description chapter presents the requirements and the design of
the application.

4. The Implementation chapter uses the previous study performed in chapter 2
to choose the specific technologies to be used. Moreover, all the application
operation is explained here step by step.

5. The Validation shows how the tool works and it proves that the requirements
are fulfilled.

6. In Conclusions and Future Work the obtained conclusions of developing the
project are described along with the future lines that can be carried out.

7. The Planning and Budget chapter describes the time planning of the project
and its budget.

Chapter 2

State of the Art

2.1 Introduction

This chapter presents the carried-out study about the different technologies that can
be selected to implement this project.

Although the core of the C-mulator tool is a simulator of the execution of a
program over a specific architecture, one of the main requirements of the project is the
development of such simulator as a web application. This constraint conditions the
set of technologies to be studied and also the structure of the developed application.

Thus, in this project, the Client-Server model will be used along with a three
tiers architecture (see Figure 2.1).

Figure 2.1: Three tiers architecture

In a Client-Server architecture, the client, a local computer, sends a request to
the server, an application that offers a service to internet users. This request is
processed by the server which returns the results to the client.

The three tiers architecture, as shown in Figure 2.1, includes a database server

6

2.3. MVC 7

which stores structured information. This database can be accessed by the server in
order to extract data. In this architecture, Remote Procedure Call (RPC) calls from
presentation client to middle-tier server provide greater overall system flexibility
than the Structured Query Language (SQL) calls made by clients in the two-tier
architecture. Therefore, the client presentation does not need to ’speak’ SQL [10].

The three tiers architecture also provides for more-flexible resource allocation.
Middle-tier functionality servers are highly portable and can be dynamically allocated
and shifted as the needs of the application change [10].

Apart from the architecture, it is also remarkable to study this technologies in
a MVC pattern because this system makes maintenance and testing simple and
easier [11]. This simplicity is due to the separation of the HTML from the rest of
the application.

2.2 MVC

Figure 2.2: MVC view [12]

Usually, if an application follows the MVC pattern, it means that it will be split
in three different parts [11], as shown in 2.2:

� Models : which contain or represent the data that the user works with.

� Views : which are used to render some part of the model as a user interface.

� Controllers : which process incoming requests, perform operations on the model,
and select views to render to the user.

2.3 Server

There are several types of servers, the relation is shown in Table 2.1.

8 2. State of the Art

Server Type Definition

Mail Server A server that stores, send and receive mails from and to its
clients.

Proxy Server This server is located between a client and a conventional
server. It processes the request and send it like an anonymous
user, so the final server does not know who has send the
request.

Web Server Stores and sends to clients several types of information, such
as HTML files, images, videos...

Database Server Allows database storing and management to its clients.
Image Server Supports a high number of images without consuming lots of

resources of a web server.
Dedicated Server Shared server.

Cluster Group of servers that stores large amounts of information,
foreseeing a lost of it by creating backups in other servers.

Table 2.1: Server Types [13]

As explained above, the server in this project will be a Web Server. In addition to
the web server that is going to give the user access to the application, this project also
consists of a database management server which will allow the access to organized C
files related to the tool.

2.3.1 Database Management System

First of all, a database can be defined as a collection of related data from which users
can efficiently retrieve the desired information [14]. This access is mainly done by a
Database Management System (DBMS) which is an integrated set of programs used
to create and maintain a database. The main objective of a DBMS is to provide
a convenient and effective method of defining, storing, retrieving and manipulating
the data contained in the database [14].

There exist several types of DBMS but in this report only RDBMS will be studied
as the data to be stored in the C-mulator databases is related and susceptible of being
stored in bi-dimensional tables.

The next section presents a review of the most popular RDBMS (Oracle, Mi-
crosoft SQL, MySQL, IBM DB2 and Microsoft Access). Notice that all of them use
SQL for managing data.

2.3. Server 9

2.3.1.1 Oracle

Oracle has not only a RDBMS but it also has its own database. The Oracle Database
comprises the database and, at least, an instance of the application. An instance
comprises a set of operating system processes and memory structures that interact
with the storage [15].

This database has also a system of online redo logs, which are two or more files
that store the database changes, that can be turn into archive logs which will allow
a data recovery or data replication, depending on the situation. The data storage is
done logically with table-spaces and physically with data files [15].

Its main characteristics are [16]:

� Client/Server model.

� Multi-tenant architecture which is intended for working with multiple and sep-
arated Pluggable Databases.

� Possibility of migration from IBM DB2 to Oracle.

� Interval and reference partitioning.

� Statistics automatically generated.

� Automatic Data Optimization (ADO) which provides the ability to automate
compression and movement of data.

� Privilege analysis along with Real Application Security, these monitor the users
privilege as well as the assignation of those privileges.

� Multi-user Concurrency with very large groups of users without noticing con-
tention.

� Highly availability thanks to features like Automatic Storage Management
(ASM) Servers, Data Guard or Point-in-time Recovery.

� High scalability.

2.3.1.2 Microsoft SQL Server

Microsoft SQL Server is a relational database management system that supports the
implementation of clusters and mirroring.

A cluster is a set of SQL Servers working in parallel and identically distributed,
that enables to perform load balancing.

10 2. State of the Art

Apart from supporting data mirroring, it also includes a data partitioning system
for distributed databases [15].

Its language is not SQL as such, it is Transaction-SQL, which is an implementa-
tion of the standard SQL. SQL Server also supports atomic, durable, consisted and
isolated transactions [15].

Its main characteristics are [17]:

� Handle data in sets.

� Partitioned tables segments data across multiple file-groups.

� It allows both clustering and mirroring. But it has only one copy of the
database, that can be accessed by two or three servers at the same time [18].

� Scheduled backups with logs [18].

� SQL Replication allows granular data at a table level [18].

� It has access control and data protection with tools such as integrated cryp-
tography and nested roles.

� Concurrency and Cloud Concurrency.

� Client/Server model.

2.3.1.3 MySQL

MySQL is an open-source and free RDBMS. It has a client/server architecture, as
the majority of database systems, which allows it to have the database server in one
computer and the management system in another, just connected through network.
It is compatible with various databases, though its primary language is standard
SQL [19].

This management system is quite popular, with more than ten million installa-
tions. It is also multi-user and multi-threaded [15].

Its main characteristics are [19]:

� Easy to use as it is popular and there are several GUIs (Graphical User Inter-
face) for MySQL.

� Multi-platform support.

� Client/Server architecture.

2.3. Server 11

� Several Application Programming Interface (API) for different languages.

� Standard SQL as its native language.

� Stored Procedures for simplification and triggers.

� Full-text search.

� Replication of data and transactions, this means that several operations are
executed as a block.

� Foreign key constraints.

� Supports Open Database Connectivity (ODBC).

2.3.1.4 IBM DB2

This RDBMS can be accessed through a terminal or a Graphic User Interface (GUI).
The GUI is a Java client that eases the learning of the tool to novice administrators,
as the command-line interface requires a greater knowledge of the product. However,
the command-line interface is more powerful, allowing the implementation of scripts
and automated processes [15].

IBM DB2 can be run in Linux, Unix and Windows systems. It can be integrated
in Eclipse or Visual Studio .NET and stores eXtensible Markup Language (XML)
data with XQuery natively. This database system also provides the programmer
with an error processing tool for SQL statements [15].

Its main characteristics are [20]:

� Client/Server architecture.

� Database-aware clustering solution.

� Portability from other databases.

� Transparent automated fail-over, automatic workload balancing and automatic
client reroute capabilities.

� Multi-platform.

� Shared-storage formatter for a shared-everything architecture.

� Built-in capabilities for formatting, adding or deleting disks.

12 2. State of the Art

2.3.1.5 Microsoft Access

Microsoft Access is a relational database management system which combines the
Microsoft Jet Database Engine with a graphical user interface. This RDBMS does
not supports triggers or stored procedures. It is mainly intended for application
development prototypes as this RDBMS is easy to use and fast for programming
development [15]. Moreover, Microsoft Access is a file-server system not only a
client/server system as the others, which has a poor performance in a network sce-
nario but a higher one if they are installed (both database and the system) in the
same machine [19].

Its main characteristics are [21]:

� File-server architecture, not Client/Server one.

� Easy to use due to its native GUI.

� If the security requisites are high, it is not recommended to use Microsoft
Access.

� Reduced scalability.

� Access from web apps. It is able to modify the database from the browser.

� Database templates.

� Export to Portable Document Format (PDF) and XML Paper Specification
(XPS) files database reports.

2.3.1.6 Comparison

The following Figures, 2.3, 2.4, 2.5; are extracted from [15] and compare the perfor-
mance of the RDBMS for several queries.

The Tables 2.2 and 2.3 shows the comparison between RDBMSs. In the tables,
means that that RDBMS has that characteristic, if the following symbol is shown,

, it means that the characteristic is fully fulfilled.

2.3. Server 13

Figure 2.3: Average Execution Time

Figure 2.4: Average CPU Utilization

Figure 2.5: Average Memory Usage

14 2. State of the Art

RDBMS Velocity Strength Capacity Security
Reduced
Memory
Usage

Oracle

SQL Server

MySQL

IBM DB2

Microsoft
Access

Table 2.2: RDBMSs comparison

RDBMS
Multi-

platform
Scalability

Transactions
Support

Function
Definition
Support

Oracle

SQL Server

MySQL

IBM DB2

Microsoft
Access

Table 2.3: RDBMSs comparison

As it is stated in both tables and in charts, the Oracle database is the most pow-
erful one, with great security and multiple tools and extensions. But this database
is not open-source nor free to use. The cost of this database is really high as well as
the SQL Server RDBMS cost.

The next option should be IBM DB2. Since DB2 has also a great cost is dis-
charged too.

Due to the exposed before, the options are MySQL or Microsoft Access. Access
is visual and easy to use, mainly intended for novice programmers or for a small
enterprise [21]. On the other part, MySQL is intended for systems in which the
security is not a real matter and capacity and strength are highly required [19].

2.3.2 Middleware

Middleware is sometimes described as the software layer between the application and
the operating system [22]. So, in this section, the project web and application servers

2.3. Server 15

are going to be analysed.

2.3.2.1 Application Server

An application server provides the infrastructure for executing applications that run
a project or business [23]. It serves as a platform for developing web services and
usually refers to a Java Platform Enterprise Edition (Java EE) application server [23].

The application server acts as a middleware between back-end systems and clients,
as can be seen in Figure 2.6. It provides a programming model, an infrastructure
framework, and a set of standards for a consistent design link between them [23].

Figure 2.6: Basic presentation of an application server and its environment. Figure
from [23]

Some of this application servers are WebSphere form IBM, WebLogic from Oracle,
JBoss AS from JBoss, Geronimo from Apache and some others.

Unless Tomcat may seem an Application Server, it is only a Web Application
Server Container. Tomcat is designed for running Servlets and JavaServer Pages
(JSP) but not Enterprise JavaBean (EJB) [24]. Due to this, it will be analysed
in 2.3.2.2.

2.3.2.2 Web Server

A web server main function is translating an Uniform Resource Locator (URL) either
into a program name, run it an throw back its output, or into a file name, and send
the file back to the client [25].

This web server listens to a port, the Hypertext Transfer Protocol (HTTP) one
is 80, waiting for any connection to arrive. Then, when this connection reaches the
server, it fulfils the request and throws back the output [25].

In this report, the web servers that are going to be analysed are: Apache, lighttpd,
Internet Information Services (IIS) and Nginx.

16 2. State of the Art

Apache

Apache is the most popular web server, almost the 50 percent of active websites use
Apache [26]. It is open-source, secure and stable [25]. Apache is a quite reliable web
server as it is open-source, that is, the source code can be examined by anyone who
wish to take a look at it, so if it has any error or bug, there would be thousands of
users looking for the bug in order to correct it [25].

Its main characteristics are [25]:

� Open-source and free to use.

� Secure and stable due it is open-source.

� It is flexible, it is intended for small sites as well as large ones.

� Popular and easy to use. There are lots of pages with tutorials related to
Apache.

� Compatible with Windows, Linux and Mac.

Nginx

Nginx is an open-source high-performance web server [27]. Nginx is not the web
server leader, as it is Apache, but it has gained some popularity in some of the most
visited sites, such as Facebook, Netflix or WordPress [28].

Nginx has been chose as a load-balancing proxy server by lots of smaller Web 2.0
companies due to its modular architecture and small footprint [27].

Nginx main characteristics are [28]:

� Efficient and lightweight.

� It has asynchronous sockets.

� Ease of use.

� Modularity.

� Compatible with Windows and Linux.

2.4. Server 17

Tomcat

Tomcat is a Java servlet container and a web server developed by the Apache Software
Foundation. It provides both Java servlet and JSP technologies in addition to serving
traditional static web pages [29].

Tomcat is a good choice if the objective is developing a web application or using
a JSP or Java servlet engine. It is free and open-source and can be also used in
conjunction with other web servers such Apache [29].

Tomcat main characteristics are [29]:

� Java servlet container and JSP.

� Open-source and free.

� Clustering.

� Fewer web server features than Apache.

� Compatible with Windows, Linux and Mac.

Comparison

Tables 2.4 and 2.5 show the comparison between the three web servers, attending
to their speed, Hypertext Transfer Protocol Secure (HTTPS) support, authentica-
tion availability, Java Servlets technologies and Server-Side JavaScript in the first
table. In the second one the multi-platform, scalability, popularity and development
language features will be compared.

In these tables means that the characteristic is present in the web server. A
means that the characteristic is fulfilled by far in that web server.

Web
Server

Speed JavaScript HTTPS Auth.
Java

Servlets

Apache

Nginx
Tomcat

Table 2.4: Web Servers comparison

Even though, Nginx is a powerful and fast web server, it does not have a large
amount of users and developers behind it. So the options will be Apache or Tomcat
depending on the architecture of the application. If this application is going to be

18 2. State of the Art

RDBMS
Multi-

platform
Scalability Popularity Language

Apache C

Nginx C

Tomcat Java

Table 2.5: Web Servers comparison

developed with Servlets, Tomcat will be the chosen option, if not, Apache will be
the web server.

2.4 Client

In this section the technologies related with the client part will be analysed.
As in the tree tiers architecture the client is completely separated from the server,

it has to be analysed in a different way.
The client presentation is a set of programs that send requests and receive

responses to and from the server [10]. The responses can be static documents
(HTML), multimedia content (Flash), interactive content (AJAX), dynamic doc-
uments (JavaScript)...

As these technologies allow the client to execute some processes, this alleviates
the server load processing.

2.4.1 HTML/XHTML

HTML is a collection of standard tags and rules for identifying web content in a way
that enables web browsers to render web pages properly. The hyper in HyperText
refers to the fact that web pages typically contain interactive links that connect to
other content on the same or different sites [30].

There have been several versions of HTML since the Web began, and the devel-
opment of the language is overseen by an organisation called the World Wide Web
Consortium (W3C) [31].

One of the major versions of HTML was the 4.01 (December 2009). In January
2000, some stricter rules were added to HTML 4.01, creating what is known as
eXtensible Hypertext Markup Language (XHTML) [31].

Nevertheless, HTML has a new major version HTML 5. This version introduces
several improvements over earlier standards, providing better ways to structure doc-

2.4. Client 19

uments and make them more animated and interactive [30]. Some of these improve-
ments are:

� Simple document type declaration (DTD): in HTML5 it can be declared
as <!DOCTYPE html>

� <audio> and <video> tags : These tags simplify the process of placing
audio and video content on sites and enable the function of adding text, such
as the transcript of a video for the visually impaired.

� New interactive elements :

– <details> : it is used for adding information about an element that can
be displayed when a mouse pointer is over it.

– <data grid> : creates an interactive table.

– <menu> : used for creating toolbars or context menus.

� New async attribute : this attribute tells the browser not to wait until
a particular script loads before displaying other elements on the page, thus
eliminating delays often caused by scripts.

2.4.2 JavaScript

JavaScript is an interpreted language used for creating dynamic effects in web pages,
such as interacting with users, getting information from them, and validating their
actions.

JavaScript is not the only scripting language; there are others such as VBScript
and Perl.

The main reason for choosing JavaScript is its widespread use and availability.
Both of the most commonly used browsers, IE and Firefox, support JavaScript, as
do almost all of the less commonly used browsers.

JavaScript is not the script version of the Java language. In fact, although they
share the same name, that’s virtually all they do share. Particularly good news is
that JavaScript is much, much easier to learn and use than Java. In fact, languages
like JavaScript are the easiest of all languages to learn, but they are still surprisingly
powerful [32].

20 2. State of the Art

2.4.3 Shockwave Flash

Shockwave Flash (SWF) is a proprietary file format developed by Adobe to deliver
multimedia and vector graphics to the Web. A SWF file contains the video, audio,
animations, interactive scripts, program controls and other features related with user
interactions.

SWF is less intuitive than JavaScript and XML/HTML because it requires several
steps between the coding process and the implementation in a web page.

With the new HTML standard, HTML5, SWF could get extinct as their func-
tionalities are covered in HTML5 [33].

2.4.4 AJAX

AJAX is a group of interrelated web-programming technologies that can send and
retrieve data in the background, without having to reload the page [34].

AJAX offers a technique to make background server calls via JavaScript and
retrieve additional data as needed, updating portions of the page without causing
full page reloads [35].

Some of the benefits of AJAX are [35]:

� It makes it possible to create responsive and intuitive web applications.

� It encourages the development of patterns and frameworks that reduce the
development time of common tasks.

� It makes use of the existing technologies and features that are already supported
by all modern web browsers.

� It makes use of many existing developer skills.

The AJAX operation is described in Figure 2.7.

2.4.5 Comparison

HTML/XHTML is intended for static web pages, although HTML5 provides several
improvements. JavaScript is used for creating dynamic web pages as well as SWF,
but this last one is quite more complex than JavaScript.

Finally, AJAX is a mixture of several technologies, including JavaScript, HTML
and XML.

In the Table 2.6, the described technologies are compared in a more visual way.
As before, a means that the characteristic is fulfilled by the technology.

2.5. Client 21

Figure 2.7: How AJAX works

Ease of
Use

Dinamic Secure Multimedia Interactive

HTML (HTML5)

JavaScript

Shockwave
Flash
AJAX

Table 2.6: Client Technologies Comparison

22 2. State of the Art

2.5 Client-Server Communication

As in this project is desired to exchange data between server and client, it is impor-
tant to choose the information format. In this section some of the most used formats
are going to be compared.

2.5.1 XML

XML describes a class of data objects called XML documents and partially describes
the behaviour of programs which process them.

XML documents are made up of storage units called entities, which contain either
parsed or unparsed data. Parsed data is made up of characters, which form character
data or markup. Markup encodes a description of the document’s storage layout and
logical structure. XML provides a mechanism to impose constraints on the storage
layout and logical structure.

XML processor is used to read XML documents. The application describes the
required behaviour of an XML processor.

It is used in complex communication systems and when the data is relevant [36].

2.5.2 YAML

YAML Ain’t Markup Language (YAML) is a data serialization language designed to
be human-friendly and work well with modern programming languages for common
everyday task.

YAML was designed from the start to be useful and friendly to people working
with data. It uses Unicode printable characters, some of which provide structural in-
formation and the rest containing the data itself. YAML achieves a unique cleanness
by minimising the amount of structural characters and allowing the data to show
itself in a natural and meaningful way. For example, indentation may be used for
structure, colons separate key: value pairs, and dashes are used to create “bullet”
lists [37].

2.5.3 JSON

JavaScript Object Notation (JSON) is a data format derived from the literals of
the JavaScript programming language. This means that JSON is a subset of the
JavaScript language. Even though, JSON is a subset of a programming language, it
is not a programming language but, in fact, a data interchange format [38].

2.6. Related Work 23

JSON is today’s standard in data formatting for the web. It implies that it can
be used as the data format wherever the exchange of data occurs [38].

2.5.4 Comparison

In Table 2.7 the mentioned technologies for Client-Server Communication are com-
pared.

Legible Ordered Simple
Development

Tools

XML

YAML
JSON

Table 2.7: Client-Server Communication Technologies Comparison

As it can be seen in the table 2.7, the XML language has the best support and a
huge variety of tools, but JSON is more lineal, simple and legible.

2.6 Related Work

This section explains some technologies that inspired this work or have similar pro-
cedures to this project.

The table 2.8 shows the comparison of several researches about this topic.

2.6.1 A crowd of little man computers: visual computer sim-
ulator teaching tools

The usage of the LMC paradigm in order to create a simulation tool for teaching
computer architecture is described in [39].

Several simulation tools that are based in the LMC paradigm are described. One
of this tools is the Postroom Computer which is a tool that can simulate its own
assembly language.

Another tool is the web based LMC mentioned in [39]. It allows students to
visualize simultaneous events happening during the execution of their LMC assembly
language programs. It is done through a Java applet.

24 2. State of the Art

Paper/Tool
Developing
Language

Simulation Description

A crowd of little
man

computers 2.6.1

Not
mentioned

The Postroom
Computer simulates

its own assembly
language, and the

web-based Little Man
Computer (LMC)

simulate basic
commands

The LMC paradigm is
intended for explaining

memory usage, and only
the Postroom Computer
is capable of simulating a

simple high level
abstraction language.

DCMSim 2.6.2
Not

mentioned

DCMSim is a
development of Cache

Memory Systems
simulator

The system can be
configured and then
DCMSim can read
memory trace files.
However, it cannot
simulate high level

abstraction languages.

DRAMSim2 2.6.3 C++

It uses a DDR2/3
memory system for

trace-based
simulations

It can be combined with
a cycle-accurate simulator

in order to perform full
system simulations. But
it can only read memory

commands.

Teaching
computer... 2.6.4

C++

The three tools
described in this
paper simulate

memory cache usage

The objective of these
tools is improve the
students’ knowledge

about pipelines.

Design and
Evaluation of a
Cache Memory

Simulation
Program 2.6.5

Not
mentioned

This tool simulates
the cache memory

It is web-based and
allows the user to

configure the memory
parameters before doing
the simulation. However,

it does not allow a
program simulation.

Table 2.8: Related Work Comparison

The source also presents a second version of the web based LMC. This version
displays the calculator, location counter, input/output boxes and memory in a simple
and intuitive interface.

Although this paper describes some interesting simulators, they are not intended
for simulating a programming language such as C. These tools are intended for
showing how the memory management works with its own simple assembly language.

2.6. Related Work 25

2.6.2 DCMSim: Didactic cache memory simulator

A didactic cache memory simulator is presented in [40]. This tool simulates real
cache memory system. It builds the constructive blocks such as the main memory,
the cache comparator and the cache memory blocks and structure.

Users can change cache memory configurations and techniques and also verify the
results and effectiveness of these changes.

This tool can read input memory trace files that will be executed and simulated.
DCMSim is a powerful memory simulator, and, even though it can read input

files, these files only contain instructions related to memory moves and changes, not
taking into account CPU, Arithmetic Logic Unit (ALU), BUS, etc. So, it cannot
simulate a program that involves complex statements.

2.6.3 DRAMSim2: A cycle accurate memory system simu-
lator

DRAMSim2 [41] is a cycle accurate memory system simulator. It is implemented in
C++ as an object oriented model of a DDR2/3 memory system. This system includes
a detailed, cycle accurate model of a memory controller that issues commands to a
set of DRAM devices attached to a standard memory bus.

This tool can be used in two modes: standalone binary or shared library. In the
standalone one, DRAMSim2 reads commands from a memory trace and simulates
them. In the shared library mode, DRAMSim2 creates a MemorySystem object and
add requests to it.

DRAMSim2 is pretty similar to the DCMSim tool analysed before. And as DCM-
Sim, it cannot simulate the behaviour of program that involves complex statements.
DRAMSim2 simulates the cycle of a memory controller from instructions related to
memory moves and changes.

2.6.4 Teaching computer architecture/organisation using sim-
ulators

Three different pipelined processor simulators are described in [42].
The first one is the WinDLX simulator. It is based on Hennessy/Pattersons DLX

architecture. It gives very little processor-internal information as it is modelled at
the architecture level.

The second one is MIPSim. It is modelled at the computer organization level,
MIPSim displays content and dynamic behaviour of register file, pipeline registers

26 2. State of the Art

and multiplexers. It is based on Hennessy/Pattersons MIPS processor.
The third simulator tool is M10kSim. It is based on the MIPS R10000 architec-

ture. It simulates memory instructions through a pipeline. It is useful for explaining
register renaming, branch resume buffer or branch history table concepts.

These simulators are pretty useful for showing how the memory operations are
performed. However, they cannot simulate programs with complex statements, but
just memory instructions related to memory moves.

2.6.5 Design and Evaluation of a Cache Memory Simulation
Program

A memory Web-based simulator is explained in [43]. It is used for generating a
complete memory cache system that can execute commands (read/write) in a CPU.

This tool can be entirely configured. The user can select the organization type
of the cache memory, the block size of the cache memory, the replacement policy
(Random, Least Recently Used (LRU) or First In First Out (FIFO)), the write
policy in case of hit and the write policy in case of miss.

Even though this tool is capable of displaying a CPU with its ALU, it does not
allow a step by step program simulation, apart from reading and writing memory
operations.

2.6.6 Conclusion

Although there are several memory simulators and some of them are Web-based and
are used for educational purposes, only two of the presented tools can simulate a
low level abstraction language similar to assembler. These tools are the Postroom
Computer and the LMC web-based simulators.

Nevertheless, these simulators cannot reproduce the processing steps done in a
computer while a C, Java, Python or any other medium or high level abstraction
language code is being executed. Because of this, the necessity of having a C pro-
gramming language simulator gave the C-mulator tool as a result.

Chapter 3

Project Description

3.1 Introduction

This chapter presents the requirements of this project. It also analyses the function-
ality to be offered by the C-mulator tool.

As said before, the purpose of this project is to develop an educational web
application that simulates the execution of programs written in C language over a
specific architecture in order to help students to understand better concepts related
to the Systems Architecture subject.

The simulation tool will not implement the execution of any program written in
C language. So, a set of the C language standard was chosen as will be explained
in Section 3.2.1. It is important to notice that the selection of the language subset
does not affect the application requirements (see Section 3.2.2),as it should be imple-
mented in a modular and extensible fashion to allow further development in order to
support a broader subset of the language and the simulation of other functionalities,
such as multiple file programs or the simulation of external libraries.

3.2 Requirements

This section will present both the language subset to be implemented and the appli-
cation requirements.

27

28 3. Project Description

3.2.1 C Language Subset

The language subset defined for C-mulator is based in the Systems Architecture
scheme, and it includes the following features [44]:

� Lexical Elements: tokens that make up C source code after preprocessing.
C-mulator implements all the lexical elements present in the C language. These
elements are: identifiers, keywords, constants (comments, integers, floats and
strings), operators, separators and white spaces.

� Data types: there are different data types in C language. C-mulator im-
plements char , int , short , long , float , double , enumeration, union,
structure, array and pointer.

� Expresssions and Operations: an expression consists of at least one operand
and zero or more operators. An operator specifies an operation to be performed
on its operand(s). C-mulator implements expressions, assignment operators,
incrementing and decrementing, arithmetic operators, comparison operators,
pointer operators, array subscripts, function calls as expressions, operator
precedence and order of evaluation.

� Statements: the statements are written to cause actions and to control flow
within the programs. C-mulator implements expression statements, if state-
ment, for statement, blocks, null statement and return statement.

� Functions: functions are written in order to separate parts of the program in
distinct subprocedures. C-mulator allows function declarations, calling func-
tions, function parameters, main function and nested functions.

� Scope: it refers to what parts of the program can ’see’ a declared object. The
scope is implemented in C-mulator.

The features that are not implemented in this C subset are: complex number
types, incomplete types, type qualifiers, storage class specifiers, renaming types,
complex conjugation, bit shifting, bitwise logical operators, sizeof operator, type
casts, comma operator, member access expressions, statement and declaration in ex-
pressions, labels, switch statement, while statement, do statement, goto statement,
break statement, continue statement, typedef statement, function definition, vari-
able length parameter lists, calling functions through function pointers, recursive
functions, static functions and program structure.

3.2. Requirements 29

3.2.2 Application Requirements

In this section the functions that this application has to fulfil will be explained more
specifically.

1. Access System

(a) (all) To log user activity by storing log files in the system, for research
purposes.

(b) (all) To access with username and password using the Lightweight Direc-
tory Access Protocol (LDAP) server of the Telematics Department.

(c) (teacher/admin) To restrict the access only to a set of users.

(d) (all) To make possible the log out of the user at any moment recording
her/his activity until that moment.

(e) To not allow directory traversal attacks.

2. File System

(a) (teacher/admin) To visualize every C file that is in the application database.

(b) (all) To go to the selection page whenever the user wants to.

(c) (all) To select which C code the user wants to simulate.

(d) (admin) To manage files in the database.

(e) (all) To select different files classified by themes.

(f) (admin) To hide/unhide chapters or files to students.

3. Simulation System (all)

(a) To support the simulation of a code written in a given a subset of the C
language.

(b) To automatically select the file for simulation after selecting it from a set.

(c) To show the simulated Random Access Memory (RAM) in each of the
program stages.

(d) To display the output of the selected C code in a separated section from
the code itself.

(e) To show which line of code the user is simulating by highlighting it.

(f) To show the heap and stack pointers.

30 3. Project Description

(g) To stop the simulation and to select another file at any moment.

4. Contact information

(a) To be able for the teaching staff to contact the administrator for releasing
lessons as well as granting students permissions.

(b) To be able for the user to contact either the professor or the system
administrator in order to report an error.

3.3 Design

In order to do so it is necessary to implement a database management system along
with its database, a server that runs the simulation program and attends the re-
quests and the client web page that is going to provide access to the students. This
relationship is shown in Figure 3.1

Figure 3.1: Application Scheme

Although the final project is a web page with a three tiers architecture and a
MVC pattern, the design is done from bottom to top. That is, the simulation tool
is conceived as a separated part that can be run in a machine without any web
application.

3.4 Use cases

This section shows the application behaviour depending on the different possible
scenarios.

To begin with, different actors will play distinct roles in this application:

� The administrator will be able to test the application functionality as well as
manage the different C files that the web has to simulate. This person is also
responsible for granting the teaching staff permissions. Moreover, the admin-
istrator has to handle possible errors and add or modify some functionalities.

3.4. Use cases 31

� The teacher will be able to see all of the files in the applications classified
by lessons. Additionally, he or she can contact the administrator in order to
incrementally hide/unhide the lessons to his students.

� The student will have a reduced view of the application, as they have access
only to a subset of the files.

As a consequence, the application will only need a view, but different queries to
the database depending on the user.

This section can be summarized in the following diagram1 that is showed in
Figure 3.2.

Figure 3.2: Use Cases

1In this diagram, if the actor can view all of the files, it is also able to view some of them.

32 3. Project Description

3.4.1 Simulation

The simulation tool will be implemented as a black-box in which a file enters in the
program and after some processes, that will be explained in chapter 4, a machine
state with all computer components initialized for simulating the file.

On the other hand, if it is a machine state what enters in the program, it will
generate the next state, updating each component and returning a fully new file that
represents that machine state.

In order to clarify this, Figure 3.3 is attached.

Figure 3.3: Simulator tool behaviour

3.4.2 Database

Once the simulation tool is designed, the second step is designing a database that
will organize the files introduced in the simulation program.

As shown in Figure 3.4, the database structure will include a table with the
chapter names, another table with files associated with the chapters, a table of
student groups, along with the administrative group, and, finally, a table associating
the groups and the chapters that the students in the group are able to see.

The access to the database will be divided in reading information and the inser-
tion and modification of that information. The first one can be fully done by the
administrator and the professor, but the students will have a limited access to the
chapters and files. This is because the professor can release or not the files that are
in some chapters.

The insertion and modification of data can only be done by the administrator.
The user access registry will be modelled by creating folders in the server with

3.4. Use cases 33

Figure 3.4: Database Structure

the user id and writing, inside those folders, logs file for research purposes and
JSON files for communication between server and client. Therefore, tables with
users’ information are not needed as the .htaccess protocol will be used, so only the
allowed users can access to the directory in which the web files are stored.

3.4.3 Server

This module is in charge of processing client requests and respond them with the
data required.

This block implementation is divided in three different parts, the two explained
before and the servlet, which perform distinct functions as can be seen in Figure 3.5.

3.4.3.1 Servlet

The servlet will be in charge of communicating with the client. It will pass the file
selected by the user to the Serialization class, explained before. Then, when the
Serialization class had written the JSON file, the servlet will deliver it to the client,
in order to let the JavaScript update the RAM tables and the code and output
windows.

34 3. Project Description

Figure 3.5: Server Sections

3.4.4 Client Design

Once the simulation, database and servlet parts are designed the next step is prepar-
ing the client architecture.

The client will consist of a fully designed web page with access service, log-
out service and the choosing files and simulation parts. Although the application is
intuitive, it is necessary to introduce a description with the required steps to simulate
a file along with the professor and administrator’s emails.

Figure 3.6 shows the main design of all the web page views that are in the
application as well as their relationship with each others.

This is the mock-up of the web page. It is a graphical representation of how it will
look like once it is fully implemented, this is explained in chapter 4. The mock-up is
the best way to show how the finished web site will look like [45].

3.4.5 Client-Server Communication Design

In order to communicate the client browser with the server, JSON format will be
used in AJAX requests. Then, the client can send parameters in JSON format to
the servlet and this can send the responses in the same format for the JavaScript to
analyse these responses.

3.4.6 Summarize

The client and server behaviour, along with the communication between them, ex-
plained before can be summarized in the diagram showed in Figure 3.7.

3.4. Use cases 35

Figure 3.6: Web Page Views

Figure 3.7: Design Scheme

36 3. Project Description

Figure 3.7 explains how the requests are delivered through the internet to the
servlet. Then, this servlet, after performing some operations, gets the file and chapter
names from the database in order to show them in the web page.

Once the user selects a file, the server sends the file to the compiler, this compiles
the file and returns a machine state in JSON format to the servlet. Finally, the
servlet sends the JSON machine state as a response to the client.

Chapter 4

Implementation

4.1 Introduction

The first section of this chapter will explain the selected technologies that are going
to be implemented in the application. The simulation tool will be fully explained
and finally, the other parts of the web application will be added.

4.2 Selected Technologies

In this section, the results and conclusions of chapter 2 will be useful for deciding
the right technologies that are going to be used in this project.

First of all, it is important to consider that web applications are complex com-
pounds of different technologies that are related between them. For this reason, it is
critical to make a previous study of the available technologies and compare them in
a suitable way.

The technologies decision will be analysed starting from the software of the
project server, the database management system and the middleware. All of them
are related with the server side.

Secondly, the client language will be decided and finally, the client-server com-
munication part will be exposed.

4.2.1 Server

The C-mulator application has been developed in a Raspberry Pi 2 with a Rasp-
bian operative system. This decision has been done taking into account the porta-

37

38 4. Implementation

bility, due to its reduced size, of the Raspberry. Regarding the model, the second
one has been decided due to the greater computational capability, comparing it with
other Raspberry Pi models, and its larger RAM capacity (1 Gb). The image 4.1
is a comparative of these mini-computers. The configuration of the Raspberry Pi
is explained in Appendix A.

Figure 4.1: Raspberry Pi comparative

On the other hand, regarding the Database Management System, discussed pre-
viously in subsection 2.3.1, two systems were chosen among five of them, taking into
account the cost of the other three RDBMSs. Then the decision of the database was
done between MySQL and Microsoft Access.

4.3. Simulation part 39

MySQL was chosen instead of Microsoft Access because of its extensive back-
ground and bibliography. Moreover, the community behind MySQL is the largest
one and this had a considerable impact in the decision. Even though, MySQL charac-
teristics such as its multi-user and multi-platform capabilities and its computational
power related to large quantities of data, were another noteworthy point for taking
the decision.

Finally, the middleware was limited between Apache or Tomcat. As the project
was thought to be implemented with servlets, due to their simplicity, ease of use and
extended response capabilities, Tomcat was the desired option.

4.2.2 Client

C-mulator is a dynamic web page, as the required use is to show the user how a
simple C code works in a computer. Due to this consideration, only HTML could
not be the desired choice. SWF was dismissed due to its complicity and because of
the lack of multimedia content in the application.

Then the choice was reduced to AJAX or JavaScript. As the AJAX solution
contains itself the JavaScript language, it was the chosen client technology for this
project.

4.2.3 Client-Server Communication

As any of the data interchange formats that have been discussed in subsection 2.5
will fit the into the project structure. JSON has been chosen among the others
because it is the most popular one and it has been chosen as the standard in data
formatting for the web [38].

4.2.4 Conclusion

Finally, the selected technologies are structured and described together with the
reason for its choice in Table 4.1.

4.3 Simulation part

This part can be explained as a separated tool in which a web application has been
implemented on top of it. Because of that, this tool can be used with or without a
web application.

40 4. Implementation

Technology Reason

MySQL

One of the most used RDBMSs. With Oracle
is one of the most powerful systems but it

has the advantage that it has no cost unlike
Oracle.

Tomcat

As the project has been implemented in
Java, servlets came as a suitable option for

server implementation. That reason explains
why Tomcat was chosen above Apache.

AJAX

AJAX is a compound of several technologies
including JavaScript, which has a large
community of users. It made a suitable

solution for client implementation.

JSON

JSON has been chosen as the data
formatting standard [38]. It has a large

community of users as well and provides a
clear and structured way of viewing data.

Table 4.1: Selected Technologies

4.3.1 Introduction

The simulation part will be done by a compiler made in Java. This compiler will
check the code in order to find any syntax errors. If there were any, it will return an
error message and will not continue with the execution.

After checking the code, the program will analyse it line by line doing the required
tasks with the RAM, Input/Output (IO), BUS, ALU and CPU.

This program will be controlled by a Serialization class, that will provide the
code and the number of lines that the compiler needs to simulate. Once the compiler
executes the code and the execution pointer return to Serialization. This class will
serialize all the other classes and will save the serialization in the user directory as a
JSON file.

4.3.2 Program behaviour

In the program that does the simulation part, a file and an username are the input
parameters. Once this program has a file or a machine status, it returns the first
machine status of the program or the next one, respectively.

In order to get a clearer view of what is going to be explained, Figure 4.2 repre-
sents a class diagram of the six classes of this program. CPU class will be analysed

4.3. Simulation part 41

Figure 4.2: Class Diagram

42 4. Implementation

at the end of this section due to its complexity and importance.

4.3.2.1 Serialization

The one that has the main method is called Serialization. Figure 4.3 shows the
behaviour of this class.

Figure 4.3: Serialization Flowchart

This class checks if there exists a previous serialized program inside the user
directory previously made in file check login.php. If it does not exist any serialized
file, it means that is the ’loading’ process, not the execution one. Then the file is
created and class CPU is created, initialized and the scan method is called.

When the CPU class finishes, Serialization checks if there were any errors in
the scan process. If there were, this function calls the IO class and introduces a
”Check syntax” error message. If there were none, it calls its own method serialize,
with the object ’cpu’, instance of the class with the same name, and the username
as parameters.

If there is not a serialized version of the program, the second argument of the
server is an integer number, not a file name. Then the cpu object is ’de-serialized’
with the method deSerialize, having as an argument the username. Once the cpu
object is created, method doit from class CPU is invoked with the previous inte-

4.3. Simulation part 43

ger number passed as parameter. Finally, the existing serialized file is deleted and
serialize method is invoked.

Finally, the three methods that are part of Serialization are going to be ex-
plained:

� void serialize(CPU cpu, String arg): this method receives the cpu object cre-
ated in the main method, and a string that is the student’s username. This
two arguments are used for creating a file inside the user’s directory in the
server that will store the serialization of the CPU class in JSON format.
Moreover, this method will return the JSON file to the servlet.

� CPU deSerialize(String arg): this method receives the student’s username as
an argument and it access to the JSON file stored in the student’s directory
in order to deserialize it and continue in the same state as the object cpu was
when it was serialized.

� static void main(String[] args): the main method receives as arguments the
student’s username, which is the first input argument, and a second string that
can be a number, if the JSON file is already created in order to continue with
the C code simulation, or it can be a string that indicates the file name in order
to start the simulation of that C file.
If it is the first time that the main is simulating a file, second input argument
is a file name, this method will create a CPU object called cpu and it will
also invoke the method scan() of this cpu object.
If it is not the first time that the main is simulating the file, second input
argument is a number, main will call the deSerialize() method and it will
create a CPU object from the JSON file. Then, it will call the doit() method
from cpu.

4.3.2.2 ALU

This class carries out the arithmetic operations that have to be done in any code.
For example comparing numbers, characters or adding or subtracting them.

This class has several methods that are going to be explained one by one:

� byte [] arit(int oper, byte[] value1, byte[] value2, String type): this method
receives as arguments, the operation type as an integer, and the values of each
byte array that are going to be operated. It returns the result of the operation
in an array of bytes.

44 4. Implementation

– If the oper argument is 1 or 3, the arit method will perform a sum.

– If the oper argument is 2 or 4, the arit method will perform a subtrac-
tion.

– If the oper argument is 5, the arit method will perform a multiplication.

– If the oper argument is 6, the arit method will perform a division.

� int decide (**type** n1, **type** n2): there are five different methods with
the same purpose, deciding if the values passed as parameters are equal, n1
greater than n2 or n1 smaller than n2. The types of inputs can be:

– char: due to Java way of compiling, chars can be compared as normal
numbers.

– int.

– float.

– double.

– byte[]: this type is compared by checking if the arrays are equal, if they
are not, then the bytes are compared one by one.

4.3.2.3 IO

This class is used for displaying values or messages in the output window of the web
page. It has a constructor an a method:

� IO(): it initializes the attributes of the class, setting the pointer to 0 and the
array length for the system output to 1024 lines.

� void push (String line): this method checks the input line, verifying that it is
not null, and then add it to its stack array.

4.3.2.4 BUS

The BUS class is intended for not directly access the RAM. Due to this, the BUS
class is used as a ’transport’ between the operational part and the memory.

This class has several methods and a constructor:

� BUS(int sizeRAM): as it is shown in Figure 4.2, the BUS creates the RAM ob-
ject. In this constructor the BUS creates a RAM object with the size indicated
as parameter.

4.3. Simulation part 45

� other methods : these methods call the namesake one in the RAM, so they will
be analysed in RAM.

4.3.2.5 RAM

Here is where the memory management happens. The RAM is structured with three
arrays, one for storing the program lines, another for storing the memory bytes and
the last one for storing the owner of those bytes. This class also has pointers in order
to maintain the data mentioned before.

The constructor and several methods that are inside this class are:

� RAM(int size): the memory has a size of 2size as well as the owner array, as
they have to be of the same length. However, the display array which stores
the code has a size of size2. And the pointers starting positions are:

– tempMemory : 2size − 100, then the temporary memory is 100 bytes long.

– pointerSTACK : 2size − 2000.

– pointerHEAP : 2size − 101.

� void pushArchive(String line): this method introduces each line of the C file
inside the array of the RAM that is prepared for this.

� String pullArchive(int line): this one, on the contrary, pulls out the line that
has the position passed as parameter from the array.

� void deleteMemStack(int size): it clears from the stack the number of bytes
indicated by size.

� void deleteMemHeap(int size): it clears from the heap the number of bytes
indicated by size.

� int knowSizeHeap(int pos, String own): this method returns the number of
bytes in the heap that have the same owner as the one passed by parameter
from the position indicated also by parameter.

� int pushMem(byte b[], String own, int StackHeapMem): this one introduces the
byte array b passed as parameter with the owner indicated in the stack, heap
or normal memory, depending on the third parameter. This method returns
the first position in which the array is stored.

46 4. Implementation

� byte[] pullMem(int size, int pos, String own): this method returns the array
of bytes stored in the position pos with owner own and size size. If the owner
does not corresponds with own in any of the positions requested, it throws a
Segmentation Fault error.

� boolean updateMem (int pos, byte value[], String own): this method updates
the memory stored in position pos overwriting it with the array of bytes named
value and checks if the owner is the same as own in each position. If it is not
the same owner, it throws a Segmentation Fault error.

� int pushTempMem(byte b[]): it stores the array of bytes b in the temporary
memory, returning the first position in which the array is stored.

� byte[] pullTempMem(int size): this method returns the last size bytes intro-
duced in the temporary memory.

4.3.2.6 CPU

This is the main and most important class. This class has to analyse and check every
line of code in order to know if it is a line in which a variable is declared or if it is a
for line.

In order to get a clearer view of this class, a flow diagram of it is shown in
Figure 4.4.

These two methods and the constructor of CPU class can be explained like this:

� CPU(int sizeRAM, File file): in this constructor IO, ALU and BUS objects
are created. Moreover, three arraylists that are going to be useful for tagging
and memory positions are also created. An scanner of the file is initialized too.

� void scan(): this method is executed when the file is loaded in Serialization
class, that means, when it is first selected by the user in the web page. It
traverse the entire C code, storing each line in the memory and calling the
methods deleteSpaces and tagger that are going to be analysed after.

� void doit(int li): as it is shown in the flowchart of Figure 4.4, this method pulls
code lines from the RAM, through the BUS, and calls the method decide. If
the string returned by decide is null, doit will end its execution, if the string is
an error, doit will call the IO object in order to push the string ”Error in doit”.
Finally, if the returned string starts with a minus, it will mean that the program
has reached and end of an if clause and will jump the final line. If none of this

4.3. Simulation part 47

Figure 4.4: CPU flow diagram

48 4. Implementation

clauses is accomplished, then the method will call the IO object and will print
the line.

Now that the core of this class has been evaluated, the next step is going deeper
inside the class and study the secondary methods.

� String[] deleteSpaces(String line): this method is called by scan and it splits
the lines, in case there are more than one ’;’, deletes the tabs and spaces for an
easier analysis and takes into account the comments that could appear in the
lines. So, it returns an array of Strings that stores each line of code that has
been splitted from the original one. Figure 4.5 summarize this.

Figure 4.5: deleteSpaces flowchart

� void tagger(String[] line): it is one of the most important methods of this class.
Its function is to determine which function does each line of C code. That is, it
checks whether the line is a ’printf’, a variable declaration or so on. Depending
on the result, this method will behave differently. In order to explain it in a
clearer way, Figure 4.6 is attached.

� String decide (String line): this method, along with tagger, is one of the most
important of the entire tool. Unlike tagger, this method does not determine

4.3. Simulation part 49

Figure 4.6: tagger flow diagram

50 4. Implementation

the function of each line, it executes each line taking into consideration the
arraylists that were filled in tagger. Then depending on the function of each
line, this method will behave differently.

– Jumping to main function: if the program is starting and it tries to
enter in a function that it is not the main before entering the main, decide
will jump to the line where main is.

– Calloc, realloc or free: decide will reserve memory taking into account
the input parameters of these functions. If it is a free, it will delete the
heap memory that is related with the parameter pointer of this function.

– Checking if the program is inside a for: if the simulation reaches an
end of a for loop, decide will check it and it will go to the next iteration
if the for condition is satisfied.

– Return of a function: if the simulation reaches a return line, decide
will delete the memory associated with that function (local variables) and
return to the line where the function was called. Moreover, the program
will store the returned value and it will check if it is the return of the main,
if that is the case, the simulation will finish its process. Nevertheless

– Calling a function: when the code calls a function, this method stores
the input parameters in the stack, creating a copy of them and then it
jumps to the function called.

– If,for or while: if the simulation reaches a line with an if or a for, decide
will first check if the condition is true or false. If it is false, decide will
jump to the else, if there is any, or will not enter into the loop. If it is
true and an if, it will just jump into the if block. Finally, if it is true and
a for or a while, this method will store the for variable in the memory (in
for case), if it is not stored before, and it will jump inside the loop.

– Else: if the method finds an else line it will mean that the if clause was
true and the block was simulated, then it will be jumped. When the if
is not true and there exists an else, the jumped is done in the previous
explained situation and the simulations enters directly into the else clause.

– Printf : if the line is a prinft, decide will just return the String between
the ””.

– Static Array: this method will store the values in case that the line
initializes the array. If the array is not initialized and only declared,
decide will not store memory, but will store the name of the array in case

4.4. Data Model 51

it is initialized afterwards. If the case is that the array has been declared
before and in this line it is being initialized, decide will store the values
in memory and will change the array declaration to an initialized one.

– Variable: similar to the array case. If the variable is only declared, decide
will not store memory but will store the variable name. If it is declared
and initialized, it will store the value in memory and the variable name.
If the variable is being initialized after it has been declared, the definition
of it will change to initialized and the value will be stored.

� byte [] arrayGet (String str, String pos): this method is used for retrieving from
the memory an array. ’pos’ String is parsed to an integer and it will indicate
the first memory position of the array. ’str’ indicates the owner of the array,
that is, the variable name.

� boolean arrayPush(String str, String pos, byte[] value): on the other hand, this
method stores an array of bytes, ’value’, in the memory with a starting position
’pos’ and the owner is ’str’. It will return a true if everything was fine, if not,
it will return a false.

� boolean compareOP(int alu, int op): this method compares the result of con-
trasting two variables in the ALU and the clause that an if or a loop has. If
the condition is fulfilled it returns true, if not, it returns false.

� boolean aritCheck(String line): this one indicates if there is an arithmetic op-
eration in that line.

� byte [] aritExec(String line): it executes the arithmetic operation detected in
the previous method and returns the byte array with the result.

� int checkSHM(): this method checks if the memory needs to be stored in
stack, heap or global memory. Depending on the option, it returns an integer
or another.

4.4 Data Model

As explained in section 3.3 the database structure is a really important part in the
server implementation. This is due to the reason that the web server has to make
queries to the database regularly. Because of this, the database architecture is a
fundamental part of the system.

52 4. Implementation

Knowing the requirements and the use cases that the application would have, the
database was designed as explained in Figure 3.4 .

In this project there are only needed four tables with a relationship between them.
This tables are needed in order to have the C files structured by chapters or

lessons and for releasing them incrementally or how the professor needs.
The table chapters stores the titles of every lesson of the System Architecture

subject. In this table, the ids of every chapter are generated incrementally and
automatically by the RDBMS. These ids are the primary keys for the chapters
table.

The table files contains the id of every file, this id is a primary key as in the
chapters table; the chapter id which relates every file with its related lesson and,
finally, the file name which has the name of the C file that is stored in the server.

Finally, the table Groups defines the group label and their corresponding id.
These ids are related with the chapters ids in table GroupChapter.

This tables allow the server to display all the files classified by chapter and also,
it is possible to hide some entire chapters and not display them for each students’
group.

4.5 Server

This part was implemented at the same time as the client side so some things that
are explained here are repeated but from the client view in section 4.6.

As there are only three types of requests to the server and two of them are almost
equal and the third is quite similar, in order to simplify the code and not making
repetitions, the behaviour of the application will be modelled by only one servlet.

4.5.1 Access System

This system is modelled entirely by the PHP file explained in 4.6.1 that is connected
to an external LDAP server. This LDAP server stores the students’ Telematics
accounts and also the professor’s account.

The ip of this server is ’ldaps://ldap.lab.it.uc3m.es’. The necessary code in order
to connect to, bind to and search in, is in Table 4.2.

4.6. Server 53

$zonas = array (array ('type' => '1', 'server ' => 'ldaps :// ldap.lab.it.uc3m.es' , 'basedn ' => 'dc=lab ,dc

=it ,dc=uc3m ,dc=es'),);

for ($i = 0, $size = count($zonas); $i < $size; ++$i) {

$server = $zonas[$i]['server '];

$ldap_base_dn = $zonas[$i]['basedn '];

$ldapconn = ldap_connect($server)

or die("Could not connect to LDAPit server.");

// Set some ldap options for talking to

ldap_set_option($ldapconn , LDAP_OPT_PROTOCOL_VERSION , 3);

ldap_set_option($ldapconn , LDAP_OPT_REFERRALS , 0);

if ($ldapconn) {

$ccid=$_POST['username '];

$filter="(&(uid=$ccid))";

if (!($result = ldap_search($ldapconn , $ldap_base_dn , $filter))) {

die("Unable to search ldap server");

}

if (ldap_count_entries($ldapconn ,$result) == 1) {

//User found

}else{

//user not found

}

}else{

//No connection

}

}

Table 4.2: LDAP code

4.5.2 Servlet

In this servlet the three different AJAX calls are managed. As this calls are pretty
similar, the decision was to made an unique servlet in order to simplify the manage-
ment of the server.

The three possible scenarios are:

� Load function: when the user selects a file for the first time, the client sends
the user id and the file selected. Then the servlet checks if the directory of
this user has an older serialized state in it and delete it. When everything is
prepared, it sends the file and the username to the simulation tool and waits
until the machine state in form of a JSON file is returned. Once the servlet
has the JSON file, it sends it back to the client.

� Reload function: is exactly the same as the load function from the point
of view of the servlet.

� Play function: once the user clicks the ’play’ button at the client, the client
sends only the username. The servlet gets the previous machine state from the
file stored in the user directory and pass it to the simulation tool. This returns
the following state and the servlet updates the file in the user directory. Then
it passes the JSON to the client.

54 4. Implementation

4.6 Client

In this section the client functionalities will be explained.
The client implementation is based in a combination of HTML, Cascading Style

Sheets (CSS) and JavaScript files.
There are five different HTML files, four of them have a navigation bar which

allow the user to log out or change views whenever he wants. The other HTML file
is the index one, in this web the user can log in the application with his telematic
user and password.

Secondly, there are six CSS files that are used to model the web pages style.
Five of them are related with each HTML file, and the other one is the style of the
navigation bar that appears in four of the HTMLs.

Finally, there are several PHP files used for displaying the files, connecting to
the LDAP server and, also, there is an .htaccess file that grants permissions to the
users. Even though some of the features are managed by the server in PHP, there
also exists a JavaScript which handles the entire simulation behaviour and connects
the file cmulator.html , simulation view, with the server.

4.6.1 Access System

As it is said previously, the user has to be validated by the application in order to
enter into the simulation part. Then the authentication part is needed.

For this purpose, the HTML page index.html was created. This file header can
be seen in Table 4.3.

<html lang= " en ">
<head>
<title>Cmulator</title>
<link href=" s t y l e I n d e x . c s s " rel=" s t y l e s h e e t ">
</head>

[. . .]

</html>

Table 4.3: HTML header

The page shows the application logo as well as a form for introducing the user
password and username. These credentials are the same as for the Telematics labs,
this is due to the fact that the PHP file to which the credentials are sent makes a
request to the LDAP server of the Telematics Department.

4.6. Client 55

Depending on the server response, the PHP file handles several actions:

� Not registered user or not allowed student The application will return an error
that will be displayed in the user’s browser with the following message: ”Invalid
Username or Password”.

� Allowed user The user will be redirected to the web page in which he has to
select the file that he wants to simulate.

In order to clarify this, the diagram 4.7 is added.

Figure 4.7: Access System

To conclude this section, the role of the PHP file (check login.php) that makes
this behaviour possible will be described as shown in Figure 4.8.

Figure 4.8: Check login behaviour

� Empty field: the file will check it and return an error if it is the case.

56 4. Implementation

� Cannot connect to LDAP server: the file will try to stablish a connection
with the server, if it is not possible, it will throw an error.

� Cannot search into LDAP server: before doing the query, the PHP file
checks if bind and search are possible. If not, it will throw an error.

� Not registered user: if the user introduced and the password are not in the
LDAP server, the file will announce the error.

� Registered but not allowed user: if the user does not have privileges to
enter the web page, the server will alert him and redirect to the login page.

� Allowed user: if the user is registered and has privileges, the application
will create a session with his username and a log directory for educational and
research purposes.

4.6.2 File selection system

As there is a difference between the files that students can visualize and the ones
that the professor or the administrator can access to, there is a PHP file that makes
the queries to the database server depending on the type of user that has opened the
session.

This file that models the chapters visualization is Files.php. It checks if the
user is the professor or the administrator, if it is not any of them, it will only show
certain chapters.

This decision is done with the simple code shown in Table 4.4.

<?php

[...]

if($_SESSION['group '] == 0)

{

$_SESSION['group ']="admin";

}

$query1 = "SELECT Chapters.ChapterID ,Chapters.ChapterName FROM Chapters INNER JOIN GroupChapter ON

GroupChapter.chapterID = Chapters.ChapterID WHERE GroupChapter.groupID = (SELECT groupID FROM

Groups WHERE groupName = \"{ $_SESSION['group ']}\");";

[...]

?>

Table 4.4: Selection Query

4.6. Client 57

Then the chapters returned from the query are displayed as a select input in the
same web page. Once the user selects a chapter and click the submit button, the
management of the application is delivered to another PHP file, the file files.php.

This file has the same structure as Files.php but it displays all of the files that
are inside the selected chapter with a submit button that allows the post request
and stores the selected file in the PHP session.

As a summarize, the Figure 4.9 illustrate the above explained.

Figure 4.9: File selection system

4.6.3 Simulation part

As this is the client section, only the simulation part related with the HTML and
JavaScript files will be explained here.

The file that is in charge of the simulation web page is cmulator.php which
contains two tables, one that stores global variables and the other that contains the
heap and stack piles. Moreover, this application view has two rectangular blocks,
one for the C code and the other for the output of the program.

The behaviour of these blocks is modelled by the file app.php, which is a
JavaScript file but with a PHP header in order to be able to get the user and file
session variables.

58 4. Implementation

Figure 4.10: Simulation behaviour

4.6. Client 59

Figure 4.10 shows the flow diagram of the JavaScript file.
This file has three main functions, one that is executed just after the page is

loaded, other that is accomplished when the play button is clicked, and the last one
is done when the reload button is hit. These functions behaviour is the following:

� Load function: this function sends an AJAX post request to the servlet with
a string parameter that contains the username and the file selected. When the
response reaches the client in a JSON format, this function calls the secondary
functions separate, setWhite, fillVAR, fillHEAP and fillOutput.
These JavaScript functions populate the RAM tables and the output window.
The load function also fills the code window that is passed in a JSON format
too.

� Play function: this function also performs an AJAX request to the servlet,
but with only the username as a parameter. If the response, also in JSON
format, is successful it calls the secondary functions separate, setWhite, updat-
eRAM, updateHEAP and fillOutput.
This function updates the information that is stored in the RAM tables and in
code and output windows.

� Reload function: this function performs almost the same activity as the load
function but updating the tables to the program very first state.

The secondary functions that are named previously behave in the following way:

� separate(text,textT): this function creates a table in which rows are filled
with code lines and returns the full table.

� setWhite(table): it erases the background of the code table.

� fillVAR(ram,own,pos): this function fills the global memory table with the
first two thousands positions of the ram that is passed as parameter. It also re-
lates the position pointer and owner with its byte of information. The function
returns the full table.

� fillHEAP(ram,own,heap,stack): it performs the same activity as the fill-
VAR function. Even though, the heap only has one hundred positions and it
has the stack and heap pointers that are passed as parameters. It also returns
the filled table.

60 4. Implementation

� updateRAM(ram,own,pos): this function deletes the global memory table
and fills it again.

� updateHEAP(ram,own,heap,stack): it performs the same function as up-
dateRAM but with the heap table.

� fillOutput(ioS,textO): this function erases the output window table (textO)
and then fill it again with the ioS array.

4.6.4 Disconnect

The session control is done throughout the entire application with a PHP session.
There is no custom time limit, but the default one is twenty-four minutes, as it is
configure in the server.

As with every click in play or reload buttons the session is overwritten, it is not
necessary for the user to log in every twenty-four minutes. The server will only close
session automatically if the session is inactive the entire default time.

Even though there exists that time limit, if the user wants to close session at any
instant, he can do it by pressing the ’Close Session’ button that is in the right top
corner of the web page. This button is present in all of the application views with
the exception of the log-in page.

The functionality is handled by the code shown in Table 4.5.

<?php

session_start ();

$string = date("d-m-Y H:i:s");

$string = "{$string} User: {$_SESSION['username ']} closed session.";

file_put_contents("/users /{ $_SESSION['username ']}/log",$string . PHP_EOL , FILE_APPEND | LOCK_EX);

session_destroy ();

header('Location: ../ index.html');

?>

Table 4.5: Logging User Activity

This code writes in the log file the manual session close and then destroys the
PHP session.

4.6.5 Information pages

There are three information pages. One of them is the about page, it shows the
description of the application together with contact information. The others are
help pages that explain the operation of the file selection and the simulation part.

Chapter 5

Validation

5.1 Introduction

In this chapter the different tests done to the application are going to be described.
These tests were made in order to confirm that the different requirements of chapter 3
were fulfilled.

The equipment needed for carrying out these tests was a computer connected to
the internet with a browser.

5.2 Obtained results

5.2.1 Test 1

In this test the login platform is going to be evaluated. As it can be seen in Figure
5.1 the application asks for an username and a password [Requirement: 1b].

Figure 5.1: Login

61

62 5. Validation

If the wrong username or password is introduced the application shows an error
message as in Figure 5.2.

Figure 5.2: Invalid Username or Password

Moreover, if the user do not have permissions to access the webpage, the appli-
cation will alert this and will not allow the visualization of the other pages [Require-
ment: 1c]. The error is shown in Figure 5.3.

Figure 5.3: Not Allowed User

The navigation bar that is shown in Figre 5.4 is active in every page of the
application [Requirement: 1d, 2b and 3g].

Figure 5.4: Navigation bar

If the user tries to access any web page that is not the login one without intro-
ducing its username and password, it will be automatically redirected to the login
page [Requirement: 1e].

5.2.2 Test 2

In this test the chapter selection system will be checked.
As it can be seen in Figure 5.5 and in Figure 5.6 the files are ordered by chapters

and by selecting one chapter the application displays all the files that are contained
in that chapter [Requirements: 2a, 2c and 2e].

If the user enters and the professor has not released the chapters 5, 6 and 7, the
web will look like Figure 5.7.

5.2. Obtained results 63

Figure 5.5: Chapter Selection

Figure 5.6: File Selection

Figure 5.7: Chapters for Students

64 5. Validation

5.2.3 Test 3

In Figure 5.8 the simulation tool is shown. The RAM is displayed along with the C
code and the output window. Moreover, the line that is executed is highlighted in
red [Requirements: 3a, 3b, 3c, 3d, 3e and 3f].

Figure 5.8: Simulation Page

5.2.4 Test 4

In the About page the contact information of the professor and the administrator is
displayed as can be seen in Figure 5.9 [Requirement: 4a and 4b].

Figure 5.9: Contact Information

5.2. Obtained results 65

5.2.5 Test 5

In order to check the administrative functionalities some files are going to be anal-
ysed.

When the user logs in the PHP code shown in Table 5.1 is executed.

<?php

[...]

if(! is_dir("/users/" . $ccid)){

mkdir("/users/" . $ccid , 0700);

}

$string = date("d-m-Y H:i:s");

$string = "{$string} User: {$ccid} logged.";

file_put_contents("/users/{$ccid}/log",$string . PHP_EOL , FILE_APPEND | LOCK_EX);

[...]

?>

Table 5.1: Generating Log File

And this is done every time a user logs in, selects a file or logs out [Require-
ment: 1a].

The administrator is also able to log in the MySQL server and manage files and
the chapters that each students’ group can see [Requirements: 2d and 2f].

5.2.6 Test Comparison

In Table 5.2 the different tests and requirements are associated.

66 5. Validation

Requirement Test 1 Test 2 Test 3 Test 4 Test 5

1a

1b

1c
1d

1e

2a

2b

2c

2d

2e

2f

3a

3b

3c

3d

3e

3f

3g

4a

4b

Table 5.2: Tests Comparison

5.3. Conclusion 67

5.3 Conclusion

The application meets all the requirements specified in chapter 3.
It is also remarkable that this application has been used in class as a concept

test and a reduced group of volunteer students has been able to test the C-mulator
tool. This has been done in order to use, in a near future, C-mulator as an useful
educational tool that provides a better understanding of concepts related to Systems
Architecture subject.

Figures 5.10, and 5.11 show how the tool was used to explain concepts during
several lessons.

Figure 5.10: C-mulator in class

Figure 5.11: C-mulator in class

Chapter 6

Conclusions and Future Work

6.1 Introduction

Once the objectives and requirements of the project have been fulfilled and several
tests have been done in order to prove that the application works as expected, the
project has been brought to an end.

Even though the project has concluded with a satisfactory ending, some improve-
ments that can be included in the application are proposed in this chapter.

6.2 Conclusions

This project has shown the development of a web application based in a simulation
tool for C language. The application was a Client-Server web based in a three tiers
architecture.

This tool has been designed from bottom to top in order to simplify the use of the
simulation device and embed it into the web page. This web application has been
used during the first four-month period of the university year in Systems Architecture
subject.

This whole project has been useful for internalising and learning how a good
project is done. That means, it has been useful in order to have a better and clearer
idea of what will be the functions developed by a graduate engineer in a real work
environment.

Finally, the development of the web application was good option in order to
simplify the use of the simulation program. This also goes along with the fact that
the public of this project is a group of students, then the simpler it is to run the

68

6.3. Future Work 69

simulator, the better they will accept it as an useful tool.

6.3 Future Work

Once the requirements are fulfilled and the application is done, the next step is
improving the functionalities covered by this tool.

Some of the possible future work lines are:

� Improving the response time of the server.

� Developing an scalable web application.

� Having a larger collection of files.

� Creating a service of files upload.

� Improving the code of the simulation part in order to be able to upload any
kind of C files and simulate them.

� Enhancing the web simulation experience by creating more effects and showing
the operations that are taking place not only inside the RAM but in any other
component.

� Adding a GUI for the teaching staff in order to manage files and permissions
without contacting the administrator.

� Completely separating the simulation tool module from the web application
one.

� Implementing Java Compiler-Compiler (JavaCC) in order to be able to simulate
C projects with more than one C file.

� Testing if there exists Learning Gain by using C-mulator.

� A paper about this project is being writing in order to present it in a conference.

All of these lines of future work are intended for creating a web service that
could be use as a competitive tool for educational purposes. This tool would be able
to simulate any kind of C program and tell the user what is happening at every
moment in his code. This is only an enhancement of what this project is doing in
the restricted environment of the Systems Architecture subject.

Chapter 7

Planning and Budget

7.1 Planning

In this section the duration of each project phase is going to be shown by itemising
the tasks in how many working days each task lasted.

Firstly, in Table 7.1 the duration of the first project phase: the previous study,
is shown.

Task Name Duration Start Date End Date

Previous Study Phase Block 10d Thu 02/19/2015
Wed

03/04/2015

Possible Project Study 5d Thu 02/19/2015
Wed

02/25/2015

Viability Study 5d Thu 02/26/2015
Wed

03/04/2015

Table 7.1: Previous Study Duration

Secondly, the next block of the application was the simulation tool. In Table 7.2
this part planning is shown.

Thirdly, the client implementation and design was done. This phase block is
shown in Table 7.3

After that, the server and the database along with the communication between
server and client and server and database was done. This duration is shown in
Table 7.4.

The time dedicated to the tests phase is shown in Table 7.5.
Finally, this report was written time after the project was finished because the

70

7.1. Planning 71

Task Name Duration Start Date End Date

Simulation Tool Phase Block 50d Thu 03/05/2015
Wed

05/13/2015

Simulation Design 5d Thu 03/05/2015
Wed

03/11/2015

Simulation Implementation 45d Thu 03/12/2015
Wed

04/29/2015

Simulation Tests 10d Thu 04/30/2015
Wed

05/13/2015

Table 7.2: Simulation Block Duration

Task Name Duration Start Date End Date

Client Phase Block 25d Thu 05/14/2015
Wed

06/17/2015

Client Design 5d Thu 05/14/2015
Wed

05/20/2015

Client Implementation 15d Thu 05/21/2015
Wed

06/10/2015

Client Tests 10d Thu 06/11/2015
Wed

06/17/2015

Table 7.3: Client Block Duration

Task Name Duration Start Date End Date

Server and Database Phase
Block

51d Thu 06/18/2015 Thu 08/27/2015

Database Design 3d Thu 06/18/2015
Mon

06/22/2015
Server Design 3d Tue 06/23/2015 Thu 06/25/2015

Database Implementation 5d Fri 06/26/2015 Thu 07/02/2015

Server Implementation 25d Fri 07/03/2015 Thu 08/06/2015

Client-Server Communication 10d Fri 08/07/2015 Thu 08/20/2015

Client-Server Communication 5d Fri 08/21/2015 Thu 08/27/2015

Table 7.4: Database and Server Block Duration

72 7. Planning and Budget

Task Name Duration Start Date End Date

Test Phase Block 27d Fri 08/28/2015
Mon

10/05/2015
Application Tests 3d Fri 08/28/2015 Tue 09/01/2015

Error Correction 10d
Wed

09/02/2015
Tue 09/15/2015

Improvements 10d
Wed

09/16/2015
Tue 09/29/2015

Final Tests 4d
Wed

09/30/2015
Mon

10/05/2015

Table 7.5: Test Phase Block Duration

Systems Architecture subject began and the students were using the tool during the
first four-month period of the university year. The duration of the report writing is
shown in Table 7.6.

Task Name Duration Start Date End Date

Report Phase Block 30d
Mon

01/11/2016
Fri 02/19/2016

Report Writting 30d
Mon

01/11/2016
Fri 02/19/2016

Table 7.6: Report Duration

To conclude, if all of these phases are summed up, skipping the report part as it
was done afterwards, the result is Table 7.7.

7.1.1 Gantt Chart

In Figure 7.1 the Gantt Chart of the project is shown. In this graphic the itemisation
described before is displayed.

7.2 Budget

In this section the project budget is detailed, in this budget the staff cost, machine
cost and so on, are included. This cost computation is based in the Universidad
Carlos III de Madrid budget manual [46].

7.2. Budget 73

Figure 7.1: Gantt Chart

74 7. Planning and Budget

Task Name Duration Start Date End Date

End of Degree Project 163d Fri 02/19/2015
Mon

10/05/2015

Previous Study Phase Block 10d Thu 02/19/2015
Wed

03/04/2015

Simulation Tool Phase Block 50d Thu 03/05/2015
Wed

05/13/2015

Client Phase Block 25d Thu 05/14/2015
Wed

06/17/2015
Server and Database Phase

Block
51d Thu 06/18/2015 Thu 08/27/2015

Test Phase Block 27d Fri 08/28/2015
Mon

10/05/2015

Table 7.7: Project Duration

It is established that a man can dedicate a maximum of 131.25 hours per month,
as it is said in [46].

If 3 hours per day are dedicated by average. As not all of the days have been
working days and not all of the days have the same dedicated time. The average
dedication per month follows the formula:

Dedication(month) = Hours/day∗Totaldays∗NumberofMen
MaximumHourspermonth

Then the dedication of the different professionals that have being part of this
project is:

� Senior Engineer

Dedication(month) = 3∗(10(previousstudy)+20(projectadvances)+30(reportwriting))∗1
131.25

=
1.37months

� Junior Engineer

Dedication(month) = 3∗(193)∗1
131.25

= 4.41months

� Test Verificator

Dedication(month) = 3∗(3+4+10+10)∗3
131.25

= 1.85months

7.2. Budget 75

Full Name Category Dedication Cost/month Cost

Iria Manuela Estévez Ayres
Senior

Engineer
1.37 4289.54e 5876.67e

Lućıa Uguina Gadella
Junior

Engineer
4.41 2694.39e 11882.26e

Not Especified
Test Verifi-
cator [47]

1.85 2086.41e 3859.86e

Total 7.63 9070.34e 21618.79e

Table 7.8: Staff Cost

Then the staff cost is computed and it is shown in Table 7.8.
In order to compute the cost of personnel hiring the following formula has been

used:

Cost = Dedication(months) ∗ Salary/month

The gross cost of the machines used in this project is shown in Table 7.9.

Object Cost Taxes Total Cost

Computer 1298.76e 21% 1571.50e
Laptop 495.79e 21% 599.90e

Raspberry Pi 2 77.56e 21% 93.85e
Total 1872.11e 21% 2265.25e

Table 7.9: Equipment Cost

The amortization is shown in Table 7.10.

Object Cost
Dedicated

Use
Dedication
(months)

Devaluation
period

Chargeable
Cost

Computer 1298.76e 100% 9 60 194.81e
Laptop 495.79e 100% 9 60 74.37e

Raspberry Pi 2 77.56e 100% 3 60 3.88e
Total 1872.11e 273.06e

Table 7.10: Amortization

The chargeable cost is computed in the following way:

ChargeableCost = A∗B
C∗D

76 . Planning and Budget

Being:

� A : the equipment cost without taxes.

� B : the dedication in months.

� C : the dedicated use.

� D : the devaluation period in months.

Once all of the costs are detailed, they have to be summed up with indirect costs
of 20%. This is shown in Table 7.11.

Description Total Cost

Staff 21618.79e
Amortization 273.06e

Indirect Costs(20%) 4378.33e
Total 26269.98e

Table 7.11: Total cost

Finally, the total budget with taxes is shown in Table 7.12.

Description Total Cost

Staff 26269.98e
Taxes 21%

Total 31768.68e

Table 7.12: Total cost with taxes

Appendix A

Raspberry Configuration

In this appendix the configuration made in the Raspberry Pi 2 Model B will be
explained. This Raspberry was configured to be used as an Apache-Tomcat server
with PHP usability and a database using MySQL.

1 Installing Raspbian

First of all, the Raspbian image is downloaded from [48]. In this case, the Raspbian
Jessie version was downloaded. Then, the Secure Digital (SD) card needs to be
prepared for installing the images. For Windows systems, the Win32DiskImager
utility has to be downloaded from [49]. Once it is downloaded, it has to be run as
administrator.

After configuring Win32DiskImager by selecting the Raspbian Jessie image file
and the appropriate drive letter, the one that corresponds to the SD. The SD will
be prepared.

Now, the SD card has to be inserted inside the Raspberry Pi. Once the keyboard,
mouse and the High-Definition Multimedia Interface (HDMI) are plugged in, the
Raspberry is switched on.

After booting it will show the Raspbian symbol and will configure the system.

2 Installing and Configuring Apache-Tomcat

Firstly, in order to install Tomcat the commands shown in Table A.1 need to be run
in the Raspberry Pi.

Secondly, for running Java applications in Tomcat the default JDK is needed. In

77

78 A. Raspberry Configuration

sudo apt−get update
sudo apt−get i n s t a l l tomcat7

Table A.1: Tomcat Installation

order to install it, the command shown in Table A.2 is executed. Then, Tomcat has
to be restarted, this command is also shown in Table A.2.

sudo apt−get i n s t a l l de fau l t−jdk
sudo / e tc / i n i t . d/ tomcat7 r e s t a r t

Table A.2: JDK Installation

Once Tomcat is successfully installed, if the url http://localhost:8080 is visit-
ted the page shown in Figure A.1 will be displayed.

Figure A.1: Tomcat Welcome Page

http://localhost:8080

3. Installing and Configuring MySQL and phpMyAdmin 79

3 Installing and Configuring MySQL and phpMyAd-

min

The next step of the server configuration is installing the database management
system and a GUI that will simplify the database management.

In order to do so, MySQL needs to be installed. First of all, all the packages
management tools need to be up-to-date and the latest software available has to be
installed. For this, the commands shown in Table A.3 need to be executed.

sudo apt−get update
sudo apt−get d i s t−upgrade

Table A.3: Update System

Later on, when the system has installed all the necessary packages, the MySQL
ones are going to be installed. In Table A.4 the command needed is shown.

sudo apt−get i n s t a l l mysql−s e r v e r mysql−c l i e n t

Table A.4: MySQL Installation

While MySQL is being configured, the system will ask the user to set a ’root’
password. A window similar to the shown in Figure A.2 will be displayed.

Now that MySQL has been successfully installed and configured. The server also
needs the phpMyAdmin tool and PHP. In order to get them, the commands shown
in A.5 have to be executed.

sudo apt−get i n s t a l l php5−mysql
sudo apt−get i n s t a l l phpmyadmin

Table A.5: PHP and phpMyAdmin Installation

80 A. Raspberry Configuration

Figure A.2: MySQL Configuration

For the phpMyAdmin configuration, the system will ask for some information.
First of all, phpMyAdmin will demand the default web server as shown in Figure A.3.
Apache 2 has to be selected.

Figure A.3: phpMyAdmin Configuration

The following question will ask for creating a database needed for phpMyAdmin.
This can be seen in Figure A.4.

3. Installing and Configuring MySQL and phpMyAdmin 81

Figure A.4: phpMyAdmin Configuration

The next step is to introduce the MySQL root password. This is shown in Fig-
ure A.5.

Figure A.5: phpMyAdmin Configuration

The final step is to configure the root password for phpMyAdmin as shown in
Figures A.6 and A.7.

Figure A.6: phpMyAdmin Configuration

82 A. Raspberry Configuration

Figure A.7: phpMyAdmin Configuration

Now that everything is configured, MySQL server can be accessed through com-
mand or by going to http://localhost/phpmyadmin.

4 Configuring PHP in Tomcat

One of the main issues of this configuration is that Tomcat do not allow a native
PHP configuration. Thus, JavaBridge [50] is going to be installed.

JavaBridge provides a PHP environment for Tomcat. Firstly, the tool has to
be downloaded from http://php-java-bridge.sourceforge.net/doc/download.

php, there are several ways to download it, the most complete one is the Binary
option.

Once it is downloaded, Tomcat has to be stopped. Then the files JavaBridge.jar,
php-servlet.jar and php-script.jar has to be moved to the tomcat library directory,
in this case this directory is /usr/share/tomcat7/lib .

The next step is to edit the file /var/lib/tomcat7/conf/web.xml the lines
marked with a ’+’ sign in Table A.6 need to be added.

http://localhost/phpmyadmin
http://php-java-bridge.sourceforge.net/doc/download.php
http://php-java-bridge.sourceforge.net/doc/download.php

5. TLS Configuration 83

<web−app xmlns = . . . >

+ < l i s t e n e r ><l i s t e n e r −c l a s s>php . java . s e r v l e t . ContextLoaderListener
</ l i s t e n e r −c l a s s ></l i s t e n e r >

+ <s e r v l e t ><s e r v l e t −name>PhpJavaServlet</s e r v l e t −name><s e r v l e t −
c l a s s>php . java . s e r v l e t . PhpJavaServlet</s e r v l e t −c l a s s>

+ </s e r v l e t >
+ <s e r v l e t ><s e r v l e t −name>PhpCGIServlet</s e r v l e t −name><s e r v l e t −

c l a s s>php . java . s e r v l e t . f a s t c g i . FastCGIServlet</s e r v l e t −c l a s s>
+ < i n i t −param><param−name>pre f e r sys t em php exec </param−name><

param−value>On</param−value></i n i t −param>
+ < i n i t −param><param−name>php inc lude java </param−name><param−

value>Off</param−value></i n i t −param>
+ </s e r v l e t >
+ <s e r v l e t −mapping><s e r v l e t −name>PhpJavaServlet</s e r v l e t −name><ur l

−pattern >*. phpjavabridge</ur l−pattern> </s e r v l e t −mapping>
+ <s e r v l e t −mapping><s e r v l e t −name>PhpCGIServlet</s e r v l e t −name><ur l−

pattern >*.php</ur l−pattern></s e r v l e t −mapping>
. . .

</web−app>

Table A.6: JavaBridge Configuration

Finally, the last step is to start Tomcat again.

5 TLS Configuration

In order to add the cryptography protocol Transport Layer Security (TLS) to the
Apache-Tomcat server the following configuration is necessary.

A new keystore has to be created. The commands shown in Table A.7 create the
keystore. This command will ask for a password, the default one for Apache-Tomcat
is ”changeit”.

84 A. Raspberry Configuration

/ usr / bin / java / bin / keytoo l −genkey −a l ias tomcat −keya lg RSA
−keys to r e /

Table A.7: Keystore Creation

Then, the lines in Table A.8 are added to the configuration file
/var/lib/tomcat7/conf/server.xml .

<!−− Def ine a SSL Coyote HTTP/1 .1 Connector on port 8443 −−>
<Connector

p ro to co l=” org . apache . coyote . http11 . Http11NioProtocol ”
port=”8443” maxThreads=”200”
scheme=” https ” s ecure=” true ” SSLEnabled=” true ”
k e y s t o r e F i l e=”$ / . keys to r e ” keystorePass=” change i t ”
c l i entAuth=” f a l s e ” s s l P r o t o c o l=”TLS”/>

Table A.8: Keystore Creation

Finally, Tomcat has to be restarted.

6 Application Deployment

Once the server is fully configured. The war files can be moved to
/var/lib/tomcat7/webapps . In this case the war is named as ’JavaServlet’. So,
in order to access the website the URL that has to be typed is https://SERVER_IP:
8443/JavaServlet.

https://SERVER_IP:8443/JavaServlet
https://SERVER_IP:8443/JavaServlet

Bibliography

[1] David R Krathwohl. “A revision of Bloom’s taxonomy: An overview”. In:
Theory into practice 41.4 (2002), pp. 212–218.

[2] Richard M. Felder and Linda K. Silverman. “Learning and Teaching Styles”.
In: Engineering Education 78.7 (1988), pp. 674–681.

[3] John L. Dobson. “A comparison between learning style preferences and sex,
status, and course performance”. In: Advances in Physiology Education 34.4
(Dec. 2010), pp. 197–204.

[4] Abbas Pourhosein Gilakjani Fouzieh Sabzian and Sedigheh Sodouri. “Use of
Technology in Classroom for Professional Development”. In: Journal of
Language Teaching and Research 4.4 (July 2013), pp. 684–692.

[5] Kirsti Ala-Mutka Essi Lahtinen and Hannu-Matti Järvinen. “A study of the
difficulties of novice programmers”. In: ACM SIGCSE Bulletin 37.3 (Sept.
2005), pp. 14–18.

[6] Athanassios Jimoyiannis and Vassilis Komis. “Computer simulations in
physics teaching and learning: a case study on students’ understanding of
trajectory motion”. In: Computers & Education 36.2 (Feb. 2001),
pp. 183–204.

[7] Jefatura del Estado. “Ley Orgánica de Protección de Datos de Carácter
Personal”. In: BOE (Dec. 1999).

[8] Agencia Española de Protección de Datos. “Gúıa de Seguridad de Datos”.
In: NILO Industria Gráfica (2010). url:
https://www.agpd.es/portalwebAGPD/canaldocumentacion/

publicaciones/common/Guias/GUIA_SEGURIDAD_2010.pdf.

[9] Universidad Carlos III de Madrid. Datos Personales: utilización y derechos.
url: http:
//portal.uc3m.es/portal/page/portal/varios_cg/dat_pers_uti_der

(visited on 01/31/2016).

https://www.agpd.es/portalwebAGPD/canaldocumentacion/publicaciones/common/Guias/GUIA_SEGURIDAD_2010.pdf
https://www.agpd.es/portalwebAGPD/canaldocumentacion/publicaciones/common/Guias/GUIA_SEGURIDAD_2010.pdf
http://portal.uc3m.es/portal/page/portal/varios_cg/dat_pers_uti_der
http://portal.uc3m.es/portal/page/portal/varios_cg/dat_pers_uti_der

[10] John M. Gallaugher and Suresh C. Ramanathan. “Choosing a client/server
architecture”. In: Information Systems Management 13.2 (Jan. 1996),
pp. 7–13.

[11] Adam Freeman and Steven Sanderson. Pro ASP.NET MVC 3 Framework.
Apress, 2011.

[12] Rick Miller and Raffi Kasparian. Java for artists : the art, philosophy, and
science of object-oriented programming. Falls Church, 2006.

[13] Douglas E. Comer and David L. Stevens. Internetworking with TCP/IP.
vol. III: client-server programming and applications. Prentice-Hall, 1993.

[14] ITL Education Solutions Limited. Express Learning: Database Management
Systems. Pearson India, Jan. 2012.

[15] Youssef Bassil. “A Comparative Study on the Performance of the Top DBMS
Systems”. In: Journal of Computer Science & Research (JCSCR) 1.1 (Feb.
2012), pp. 20–31.

[16] Robert Stackowiak Rick Greenwald and Jonathan Stem. Oracle Essentials:
Oracle Database 12c. O’Reilly, 2013.

[17] Paul Nielsen with Mike White and Uttam Parui. Microsoft SQL Server 2008
Bible. Wiley, 2009.

[18] Jason Buffington. Data Protection for Virtual Data Centers. Sybex, July
2010. Chap. Microsoft SQL Server.

[19] Michael Kofler. The Definitive Guide to MySQL 5. Vol. 3rd Edition. Apress,
2005.

[20] Adrian Neagu and Robert Pelletier. IBM DB2 9.7 Advanced Administration
Cookbook. Packt Publishing Ltd., Mar. 2012.

[21] Joyce Cox and Joan Lamber. Microsoft Access 2013 Step by Step. Microsoft
Press, 2013.

[22] Jess Thompson. “Avoiding a middleware muddle”. In: IEEE Software 14.6
(Dec. 1997), pp. 92–95.

[23] Margaret Ticknor & Alan Corcoran & Balazs Csepregi-Horvath &
Addison Goering & José Pablo Hernandez & Julien Limodin &
Sergio Straessli Pinto. IBM WebSphere Application Server V8 Concepts,
Planning, and Design Guide. IBM Redbooks, Aug. 2011.

[24] Aleksa Vuktic and James Goodwill. Apache Tomcat 7. Apress, Sept. 2011.

[25] Ben Laurie and Peter Laurie. Apache: The Definitive Guide. Vol. Third
Edition. O’Reilly, 2003.

[26] Netcraft. November 2015 Web Server Survey. Nov. 2015. url:
http://news.netcraft.com/archives/2015/11/16/

november-2015-web-server-survey.html (visited on 01/10/2016).

[27] Dipankar Sarkar. Nginx 1 Web Server Implementation Cookbook. Packt
Publishing Ltd., May 2011.

[28] Clément Nedelcu. Nginx HTTP Server Second Edition. Packt Publishing
Ltd., July 2013.

[29] Jason Brittain with Ian F. Darwin. Tomcat: The Definitive Guide, Second
Edition. O’Reilly, Oct. 2007.

[30] Joe Kraynak. The Complete Idiot’s Guide® To HTML5 and CSS3. Alpha
Books, June 2011.

[31] Jon Duckett. Beginning HTML, XHTML, CSS, and JavaScript®. Wrox,
Dec. 2009.

[32] Paul Wilton and Jeremy McPeak. Beginning JavaScript®, Fourth Edition.
Wrox, Oct. 2009.

[33] Patrick Carey. New Perspectives on Creating Web Pages with HTML,
XHTML, and XML. Course Technology, May 2009.

[34] Jim Boulton. 100 Ideas that Changed the Web. Laurence King, Aug. 2014.

[35] Bogdan Brinzarea Audra Hendrix and Cristian Darie. AJAX and PHP.
Packt Publishing, Dec. 2009.

[36] Tim Bray et al. Extensible Markup Language (XML). W3C, Aug. 2006.

[37] Clark Evans Oren Ben-Kiki and Ingy döt Net. YAML Ain’t Markup
Language (YAML�) Version 1.2. Patched, Oct. 2009.

[38] Ben Smith. Beginning JSON. Apress, Feb. 2015.

[39] William Yurcik and Hugh Osborne. “A crowd of little man computers: visual
computer simulator teaching tools”. In: Simulation Conference, 2001.
Proceedings of the Winter. Vol. 2. IEEE. 2001, pp. 1632–1639.

[40] Eduardo S Cordeiro et al. “DCMSim: Didactic cache memory simulator”. In:
Frontiers in Education, 2003. FIE 2003 33rd Annual 2 (2003), F1C–14.

[41] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. “DRAMSim2: A
cycle accurate memory system simulator”. In: Computer Architecture Letters
10.1 (2011), pp. 16–19.

http://news.netcraft.com/archives/2015/11/16/november-2015-web-server-survey.html
http://news.netcraft.com/archives/2015/11/16/november-2015-web-server-survey.html

[42] Herbert Grünbacher. “Teaching computer architecture/organisation using
simulators”. In: Frontiers in Education Conference, 1998. FIE’98. 28th
Annual. Vol. 3. IEEE. 1998, pp. 1107–1112.

[43] Maria Grigoriadou, Evangelos Kanidis, and Agoritsa Gogoulou. “A
Web-based educational environment for teaching the computer cache
memory”. In: Education, IEEE Transactions on 49.1 (2006), pp. 147–156.

[44] GNU C reference manual. url:
http://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html

(visited on 02/05/2016).

[45] Sue Jenkins. Web Design All-in-One For Dummies. Wiley Publishing, 2009.

[46] Universidad Carlos III de Madrid. Gúıa Presupuestaria para TFG. url:
https://www.uc3m.es/portal/page/portal/administracion_campus_

leganes_est_cg/proyecto_fin_carrera/Formulario_

PresupuestoPFC-TFG2028329_1.xlsx (visited on 01/30/2016).

[47] Test Verificator Salary. url: http:
//www.expoqa.com/pdf/expoqa12/SalariosTestersEspana-ES-V03.pdf

(visited on 01/30/2016).

[48] Raspbian Download. url:
https://www.raspberrypi.org/downloads/raspbian/ (visited on
05/15/2015).

[49] Win32DiskImager Utility. url:
http://sourceforge.net/projects/win32diskimager/ (visited on
05/15/2015).

[50] JavaBridge. url: http://php-java-bridge.sourceforge.net/pjb/
(visited on 05/17/2015).

http://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html
https://www.uc3m.es/portal/page/portal/administracion_campus_leganes_est_cg/proyecto_fin_carrera/Formulario_PresupuestoPFC-TFG2028329_1.xlsx
https://www.uc3m.es/portal/page/portal/administracion_campus_leganes_est_cg/proyecto_fin_carrera/Formulario_PresupuestoPFC-TFG2028329_1.xlsx
https://www.uc3m.es/portal/page/portal/administracion_campus_leganes_est_cg/proyecto_fin_carrera/Formulario_PresupuestoPFC-TFG2028329_1.xlsx
http://www.expoqa.com/pdf/expoqa12/SalariosTestersEspana-ES-V03.pdf
http://www.expoqa.com/pdf/expoqa12/SalariosTestersEspana-ES-V03.pdf
https://www.raspberrypi.org/downloads/raspbian/
http://sourceforge.net/projects/win32diskimager/
http://php-java-bridge.sourceforge.net/pjb/

	Introduction
	Context and Motivation
	Objectives
	Regulatory Framework
	Report structure

	State of the Art
	Introduction
	MVC
	Server
	Database Management System
	Oracle
	Microsoft SQL Server
	MySQL
	IBM DB2
	Microsoft Access
	Comparison

	Middleware
	Application Server
	Web Server
	Apache
	Nginx
	Tomcat
	Comparison

	Client
	HTML/XHTML
	JavaScript
	Shockwave Flash
	AJAX
	Comparison

	Client-Server Communication
	XML
	YAML
	JSON
	Comparison

	Related Work
	A crowd of little man computers: visual computer simulator teaching tools
	DCMSim: Didactic cache memory simulator
	DRAMSim2: A cycle accurate memory system simulator
	Teaching computer architecture/organisation using simulators
	Design and Evaluation of a Cache Memory Simulation Program
	Conclusion

	Project Description
	Introduction
	Requirements
	C Language Subset
	Application Requirements

	Design
	Use cases
	Simulation
	Database
	Server
	Servlet

	Client Design
	Client-Server Communication Design
	Summarize

	Implementation
	Introduction
	Selected Technologies
	Server
	Client
	Client-Server Communication
	Conclusion

	Simulation part
	Introduction
	Program behaviour
	Serialization
	ALU
	IO
	BUS
	RAM
	CPU

	Data Model
	Server
	Access System
	Servlet

	Client
	Access System
	File selection system
	Simulation part
	Disconnect
	Information pages

	Validation
	Introduction
	Obtained results
	Test 1
	Test 2
	Test 3
	Test 4
	Test 5
	Test Comparison

	Conclusion

	Conclusions and Future Work
	Introduction
	Conclusions
	Future Work

	Planning and Budget
	Planning
	Gantt Chart

	Budget

	Appendix Raspberry Configuration
	Installing Raspbian
	Installing and Configuring Apache-Tomcat
	Installing and Configuring MySQL and phpMyAdmin
	Configuring php in Tomcat
	TLS Configuration
	Application Deployment

	Bibliography

