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Abstract.The Value at Risk (VaR) is a very important risk measure for prac-
titioners, supervisors and researchers. Many practitioners draw on VaR as a critical
instrument in Risk Management and other Actuarial/Financial problems, while super-
visors and regulators must deal with VaR due to the Basel Accords and Solvency II,
among other reasons. From a theoretical point of view VaR presents some drawbacks
overcome by other risk measures such as the Conditional Value at Risk (CVaR). VaR
is neither di¤erentiable nor sub-additive because it is neither continuous nor convex.
On the contrary, CVaR satis�es all of these properties, and this simpli�es many ana-
lytical studies if VaR is replaced by CVaR. In this paper several di¤erential equations
connecting both VaR and CVaR will be presented. They will allow us to address
several important issues involving VaR with the help of the CVaR properties. This
new methodology seems to be very e¢ cient. In particular, a new VaR Representation
Theorem may be found, and optimization problems involving VaR or probabilistic con-
straints always have an equivalent di¤erentiable optimization problem. Applications
in VaR, marginal VaR, CVaR and marginal CVaR estimates will be addressed as well.
An illustrative actuarial numerical example will be given.

Key words VaR and CVaR, Di¤erential Equations, VaR Representation Theo-
rem, Risk Optimization and Probabilistic Constraints, Risk and Marginal Risk Esti-
mation.

A.M.S. Classi�cation. 91B06, 91B30, 91G99, 90C90, 34A30.
J.E.L. Classi�cation. C65, G11, G12, G22.

1 Introduction

The Value at Risk (V aR) is a very important risk measure for several reasons.
Firstly, regulation (Basel, Solvency, etc.) often deals with V aR. Secondly, many
practitioners use V aR in risk management problems because this risk measure
has a simple and intuitive economic interpretation and provides us with ade-
quate capital requirements preventing the arrival of bad news and unfavorable
scenarios.
From a theoretical point of view V aR presents several drawbacks motivat-

ing the use of alternative risk measures such as the Conditional Value at Risk
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(CV aR). In particular, CV aR is continuous and convex and can be repre-
sented by means of a linear optimization problem (Rockafellar et al, 2006).
Consequently, applications of risk measurement in Asset Allocation (Stoyanov
et al, 2007), Optimal Reinsurance (Centeno and Simoes, 2009) and other clas-
sical issues of Actuarial and/or Financial Mathematics become much easier if
V aR is replaced by CV aR. Nevertheless, there are also reasons justifying the
convenience of V aR in some theoretical approaches. Indeed, V aR re�ects some
kind of consistency (Goovaerts et al, 2004), V aR makes sense for risks with un-
bounded expectations (Chavez-Demoulin et al, 2006), the lack of sub-additivity
of V aR may be useful in some actuarial applications (Dhaene et al, 2008),
some pricing and/or hedging methods are easy to interpret if V aR is involved
(Goovaerts and Laeven, 2008, or Assa and Karai, 2013), etc.
The main purpose of this paper is to recover analytical properties for prob-

lems involving V aR. This seems to be an interesting objective if V aR must be
used in theoretical approaches but it is neither di¤erentiable nor convex because
it is nether continuous nor sub-additive. In a recent paper Balbás et al (2017)
showed that V aR can be interpreted in terms of CV aR sensitivity with respect
to the level of con�dence. These authors dealt with this property in order to
develop new methods in V aR optimization. In Section 3 we will draw on the
Balbás et al result in order to prove that V aR and CV aR are related by a �rst
order linear di¤erential equation with constant coe¢ cients. On the other hand,
as said above, the CV aR representation implies that CV aR is the optimal value
of a linear optimization problem, and hence, standard results in Mathematical
Programming guarantee that the �rst derivative of the CV aR with respect to
the level of con�dence is given by a Lagrange multiplier. As a consequence,
bearing in mind both the di¤erential equation and the Lagrange multiplier in-
terpretation, in Lemma 4 and Theorem 8 we will give a new representation
result for V aR. Indeed, V aR will equal CV aR plus this Lagrange multiplier.
To the best of our knowledge, Theorem 8 will be the �rst V aR Representation
Theorem available in the literature.
The rest of the paper will be devoted to explore applications of the represen-

tation above. In Section 4 we will give new Karush-Kuhn-Tucker-like and Fritz
John-like necessary optimality conditions for optimization problems involving
V aR in the objective function. Actually, the V aR representation will allow us
to transform the original optimization problem into an equivalent di¤erentiable
one. This is important because the minimization of V aR is traditionally a very
complex problem due to the lack of continuity and di¤erentiability (Rockafellar
and Uryasev, 2000, Larsen et al, 2002, etc.). Our approach makes the prob-
lem di¤erentiable and provides an alternative methodology to that proposed in
Balbás et al (2017), who used their sensitivity result in order to illustrate that
V aR is in the limit the di¤erence of two convex functions. Wozabal (2012) had
shown that V aR equals the di¤erence of two convex functions under adequate
assumptions and for probability spaces only containing �nitely many scenarios.
In Section 5 the V aR Representation Theorem (Theorem 8) will allow us to

give Karush-Kuhn-Tucker and Fritz John multipliers for optimization problems
involving V aR in the constraints and optimization problems with probabilistic
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constraints, also called �probabilistically constrained problems�(Lejeune, 2012,
Lejeune and Shen, 2016, etc.). These problems are becoming very important in
Applied Mathematics and Operations Research. The main reason is that rigid
constraints sometimes invalidate many potential solutions and lead to �optimal
decisions�with a poor realization of the objective function. However, if some
constraints are relaxed, in the sense that they only have to hold with a high
enough but lower than one probability, then the optimal objective value re�ects
a signi�cant improvement.
Section 6 will present further applications of Lemma 4 and Theorem 8. Under

appropriate (but general) assumptions, a second order di¤erential equation will
also relate V aR and CV aR, and this will enable us to establish new methods
in V aR, marginal V aR, CV aR and marginal CV aR estimation.
Section 7 will present a practical example illustrating all the �ndings of

previous sections. We will focus on the Optimal Reinsurance Problem. Since
this is a classical topic in Actuarial Mathematics, a complete solution is complex
and obviously beyond our scope. We will only attempt to point out how the
results above may be useful in the study of this problem and other classical
topics of Actuarial and/or Financial Mathematics.
Section 8 will conclude the paper.

2 Preliminaries and notations

Consider the probability space (Ω,F , IP0) composed of the set Ω, the σ−algebra
F and the probability measure IP0. For 1 ≤ p < ∞ the Banach space Lp

(also denoted by Lp (IP0), Lp (Ω) or Lp (Ω,F , IP0)) is composed of the real-
valued random variables y such that IE (|y|p) <∞, IE () representing the math-
ematical expectation. If p = ∞ then L∞ is the Banach space of essentially
bounded random variables. The usual norm of Lp is ‖y‖p := (IE (|y|p))1/p for
1 ≤ p < ∞ and ‖y‖∞ := Ess_Sup {|y|} for p = ∞, Ess_Sup denoting �es-
sential supremum�. The inclusion Lp ⊃ LP holds for 1 ≤ p ≤ P ≤ ∞. If
1 ≤ p < ∞, 1 < q ≤ ∞ and 1/p + 1/q = 1 then Lq is the dual space of Lp

(Riesz Representation Theorem, Kopp,1984). Moreover Lq may be endowed
with the (weak∗) topology σ (Lq, Lp), which is weaker than the norm topol-
ogy. Every σ (Lq, Lp)−closed and bounded subset of Lq is σ (Lq, Lp)−compact
(Alaoglu�s Theorem, Kopp,1984). If Ω is a �nite set then Lp and Lq become
�nite-dimensional spaces, and the two given topologies of Lq coincide. Lastly,
the space L0 contains every real-valued and F−measurable random variable.
L0 is a metric (but not Banach) space whose natural distance is given by

d (x, y) := IE (Max {|y − x| , 1}) .

This metric generates the classical convergence in probability. Further details
about metric, Banach or Hilbert spaces of random variables and some other
topological results may be found in Kelly (1955), Rudin (1973), Kopp (1984) or
Zeidler (1995).
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Let us �x a con�dence level 1− α ∈ (0, 1). As usual, for a random variable
y ∈ L0 the Value at Risk V aR1−α (y) of y is given by1

V aR1−α (y) := −Inf {x ∈ IR; IP0 (y ≤ x) > α} . (2)

For y ∈ L1 the Conditional Value at Risk CV aR1−α (y) of y is

CV aR1−α (y) :=
1

α

∫ α

0

V aR1−t (y) dt. (3)

Furthermore, according to the CV aR Representation Theorem (Rockafellar et
al, 2006), we have that

CV aR1−α (y) = Max {−IE (yz) ; z ∈ ∆α} , (4)

where the sub-gradient ∆α of CV aR1−α is given by

∆α = {z ∈ L∞; IE (z) = 1 and 0 ≤ z ≤ 1/α} . (5)

Bearing in mind some ideas summarized above, ∆α ⊂ Lq for every 1 < q ≤ ∞,
and ∆α is convex and σ (Lq, Lp)−compact.
Fix y ∈ L1. The function

(0, 1) 3 t→ ψ (t) = V aR1−t (y) ∈ IR (6)

is non-increasing, right-continuous and Lebesgue integrable in (0, 1). Thus, if
one considers the function

(0, 1) 3 α→ ϕy (α) := αCV aR1−α (y) ∈ IR, (7)

which satis�es (see (3))

ϕy (α) =

∫ α

0

V aR1−t (y) dt, (8)

then the First Fundamental Theorem of Calculus guarantees that

ϕ′+y (α) = V aR1−α (y) (9)

for every α ∈ (0, 1), ϕ′+y denoting the right-hand side �rst order derivative of
ϕy.

1 (2) is the usual de�nition of V aR1�α (y) if y represents a future random wealth (or
income). In many actuarial and �nancial applications y represents random losses, in which
case (2) is replaced by

V aR1�α (y) := Sup {x ∈ IR; IP0 (y ≤ x) < 1− α} . (1)

Throughout this paper we will deal with (2), but a parallel analysis holds for (1).
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3 VaR Representation Theorem

Representation theorems may play a very important role in risk analysis. This
is the reason why several authors have provided representation results for a vast
family of risk measures (Rockafellar et al, 2006, for expectation bounded risk
measures, Kupper and Svindland, 2011, for monotone convex risk measures,
etc.). Let us deal with several links between V aR and CV aR in order to give
a representation result applying for V aR. To the best of our knowledge, this is
the �rst V aR representation result available in the literature.
A simple change of variable and Expression (9) allow one to prove a main

result for this paper.

Lemma 1 (Ordinary Linear Di¤erential Equation). Fix y ∈ L1 and the func-
tions

h (µ) = V aR1−eµ (y) and H (µ) = CV aR1−eµ (y) (10)

for every −∞ < µ < 0. Then,

h (µ) = H (µ) +H ′+ (µ) . (11)

Consequently, if H has �rst order derivative at µ ∈ (−∞, 0) then

h (µ) = H (µ) +H ′ (µ) . (12)

Lastly, if the function ϕy of (7) or (8) has a �rst order derivative for every
α ∈ (0, 1) then (12) and

H (µ) = H (ν) +

∫ µ

ν

h (s) es−µds (13)

hold for every −∞ < µ, ν < 0.

Proof. Consider the composition of functions

(−∞, 0) 3 µ→ α = eµ ∈ (0, 1)→ CV aR1−α (y) = H (µ) .

Obviously,

H ′+ (µ) =
d (CV aR1−α (y))

dα+
eµ (14)

because (−∞, 0) 3 µ → α = eµ ∈ (0, 1) is increasing. Expressions (7) and (9),
along with α = eµ, lead to

h (µ) = V aR1−α (y) = ϕ′+y (α) = CV aR1−α (y) + α
d (CV aR1−α (y))

dα+
,

i.e. (see (14)), h (µ) = H (µ) +H ′+ (µ). Besides, (12) becomes obvious, and so
does (13) because this is the general solution of the ordinary di¤erential equation
(12) (Coddington and Levinson, 1955). �
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Remark 2 Fix 1 ≤ p <∞ and y ∈ Lp. (4), (5) and (10) imply that −H (µ) =
−CV aR1−eµ (y) is the optimal value of Problem

Min IE (yw)

{
IE (w) = 1
0 ≤ w ≤ e−µ (15)

w ∈ L∞ being the decision variable. According to Balbás et al (2016) and
others, the optimal solution of (15) and the Karush-Kuhn-Tucker multiplier
(λ, λm, λM ) ∈ IR× Lp × Lp of (15) exist and are characterized by System

IE (w) = 1
y = λm − λM − λ
(e−µ − w)λM = wλm = 0
0 ≤ w ≤ e−µ, 0 ≤ λm, 0 ≤ λM

(16)

In general, the uniqueness of the multiplier (λ, λm, λM ) cannot be guaranteed.
Similarly, the uniqueness of the solution w of (15) is false in general. �

De�nition 3 Fix 1 ≤ p <∞, y ∈ Lp and −∞ < µ0 < 0. (y, p, µ0) will be said
to be regular if there exists a function

(−∞, 0) 3 µ→ (λ (y, p, µ) , λm (y, p, µ) , λM (y, p, µ)) ∈ IR× Lp × Lp

such that (λ (y, p, µ) , λm (y, p, µ) , λM (y, p, µ)) is a multiplier of (15) for every
−∞ < µ < 0 and

(−∞, 0) 3 µ→ IE (λM (y, p, µ)) ∈ IR (17)

is continuous at µ0.
2 �

Lemma 4 Suppose that 1 ≤ p < ∞, y ∈ Lp, −∞ < µ0 < 0 and (y, p, µ0) is
regular. Consider the functions h and H of (10) and a multiplier

(λ (y, p, µ) , λm (y, p, µ) , λM (y, p, µ))

of (15) such that (17) is continuous at µ0.Then,{
H ′ (µ0) = −e−µ0 IE (λM (y, p, µ0))
h (µ0) = H (µ0)− e−µ0 IE (λM (y, p, µ0))

(18)

Proof. According to classical results about sensitivity analysis in Convex Op-
timization (Luenberger, 1969, Theorem 1, pp 222), if (y, p, µ0) is regular and
(λ, λm, λM ) is the given multiplier of (15) at µ0, then −IE (λM ) is the �rst order
derivative of (−∞, 0) 3 µ → −CV aR1−eµ (y) = −H (µ) ∈ IR with respect to
e−µ at e−µ0 . Consequently,

H ′ =
dH

dµ
=

dH

d (e−µ)

d (e−µ)

dµ
=

dH

d (e−µ)

(
−e−µ

)
= −e−µIE (λM )

holds at µ = µ0, and Lemma 1 implies (18). �
2Obviously, (y, p, µ0) will be regular if (−∞, 0) 3 µ → λM (y, p, µ) ∈ Lp is continuous at

µ0. Notice also that the regularity of (y, p, µ0) implies the regularity of (y, P, µ0) for every
P ∈ [1, p] and, more generally, for every P such that y ∈ LP .
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De�nition 5 If −∞ < µ < 0 then the V aR1−eµ Representation Set δeµ ⊂
L∞ × L1 × L1 will be composed of those (w, λm, λM ) such that IE (w) = 1,
(e−µ − w)λM = wλm = 0, 0 ≤ w ≤ e−µ, 0 ≤ λ0 and 0 ≤ λM . �

Lemma 6 Suppose that y ∈ L1 and −∞ < µ < 0. Then,

λ ≥ h (µ) = V aR1−eµ (y)

holds for every λ ∈ IR and every (w, λm, λM ) ∈ δeµ such that y = λm− λM − λ.

Proof. If λ ∈ IR and (w, λm, λM ) ∈ δeµ satisfy the given condition then λ −
IE (w (λm − λM ))− e−µIE (λM ) = λ− IE (wλm)− IE (λM (e−µ − w)) = λ because
wλm = λM (e−µ − w) = 0. Besides, Remark 2 and (16) show that w solves (15)
and (λ, λm, λM ) is a multiplier of this problem. Consequently,

λ = λ− IE (w (λm − λM ))− e−µIE (λM ) =
IE (λw)− IE (w (λm − λM ))− e−µIE (λM ) =
−IE (w (λm − λM − λ))− e−µIE (λM ) =
−IE (wy)− e−µIE (λM ) =
CV aR1−eµ (y)− e−µIE (λM ) = H (µ)− e−µIE (λM ) ,

where H is given by (10). Hence (Lemma 1 and (11)), it is su¢ cient to see that

−e−µIE (λM ) ≥ H ′+ (µ) . (19)

As in the proof of Lemma 4, classical results about sensitivity analysis in Convex
Optimization (Luenberger, 1969, Corollary 1, pp 219) apply on Problem (15)
and lead to

IE (y (z − w)) ≥ −IE (λM (z − w)) (20)

for every z ∈ L∞ such that 0 ≤ z and IE (z) = 1. Since (w, λm, λM ) ∈ δeµ we
have that λM (e−µ − w) = 0 and therefore

λMw = λMe
−µ. (21)

Since λM ≥ 0, if ε > 0 is small enough and 0 ≤ zε ≤ e−(µ+ε) one has that
λMz ≤ λMe−(µ+ε), and (21) implies that

IE (λM (zε − w)) ≤ IE
(
λMe

−(µ+ε)
)
− IE (λMw)

= IE
(
λMe

−(µ+ε)
)
− IE (λMe

−µ) =
(
e−(µ+ε) − e−µ

)
IE (λM ) .

Consequently, if IE (zε) = 1 then (20) implies that

IE (y (zε − w)) ≥
(
e−µ − e−(µ+ε)

)
IE (λM ) . (22)

Suppose that zε is the solution of (15) once e−µ is replaced by e−(µ+ε) for ε > 0
and small enough. (10) and (22) imply that

−H (µ+ ε) +H (µ) ≥
(
e−µ − e−(µ+ε)

)
IE (λM ) ,
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i.e.,

H (µ+ ε)−H (µ) ≤
(
e−(µ+ε) − e−µ

)
IE (λM ) .

Hence, since e−(µ+ε) − e−µ < 0,

H (µ+ ε)−H (µ)

e−(µ+ε) − e−µ ≥ IE (λM )

and therefore

IE (λM ) ≤

Limε→0+

(
H (µ+ ε)−H (µ)

e−(µ+ε) − e−µ

)
= H ′+ (µ)Limε→0+

(
ε

e−(µ+ε) − e−µ

)
,

which trivially leads to
IE (λM ) ≤ −eµH ′+ (µ) ,

and (19) holds. �
Next let us consider a particular probability space (Ω,F , IP0) and let us give

a �rst V aR representation result.

Lemma 7 Suppose that Ω = (0, 1), F is the Borel σ−algebra of (0, 1) and IP0

is the Lebesgue probability measure on F . Suppose that −∞ < µ < 0 and
y ∈ L1 is a right-continuous non-decreasing real valued function on (0, 1).Then,
V aR1−eµ (y) is the optimal value of the solvable Problem

Min λ

 y = λm − λM − λ
λ ∈ IR
(w, λm, λM ) ∈ δeµ

(23)

(λ,w, λm, λM ) being the decision variable.

Proof. Bearing in mind the properties of y, it is obvious that

V aR1−eµ (y) = −y (eµ) (24)

for every µ ∈ (−∞, 0). Besides, w (µ) = e−µX(0,eµ) ∈ L∞ solves (15) for every
µ ∈ (−∞, 0), X(0,eµ) denoting the indicator of (0, eµ). Moreover, it is lastly
obvious that 

λ (µ) = −y (eµ)

λm (µ) =

{
0, on (0, eµ)
y − y (eµ) , on (eµ, 1)

λM (µ) =

{
y (eµ)− y, on (0, eµ)
0, on (eµ, 1)

(25)

along with w (µ) above satisfy (16), and therefore (λ (µ) , λm (µ) , λM (µ)) is a
multiplier of (15) and (λ (µ) , w (µ) , λm (µ) , λM (µ)) is (23)-feasible for every
µ ∈ (−∞, 0). Obviously, (24) and (25) imply that λ (µ) = V aR1−eµ (y), and
the result trivially follows from Lemma 6. �
Next we will prove a V aR representation result for a general probability

space (Ω,F , IP0).
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Theorem 8 (V aR Representation Theorem) Suppose that 1 ≤ p < ∞, −∞ <
µ < 0 and y ∈ Lp. V aR1−eµ (y) is the optimal value of the solvable Problem
(23). Moreover, the result remains true if δeµ ⊂ L∞ × L1 × L1 is replaced by
δeµ ⊂ L∞ × Lp × Lp in De�nition 5.

Proof. Suppose that we prove the equality between V aR1−eµ (y) and the op-
timal value of (23). Then, δeµ ⊂ L∞ × L1 × L1 may be obviously replaced by
δeµ ⊂ L∞×Lp×Lp because the constraints of δeµ and y = λm−λM −λ imply
that

λm =

{
y + λ w = 0
0, otherwise

and

λM =

{
−y − λ w = e−µ

0, otherwise

and consequently (λm, λM ) ∈ Lp × Lp.
Let us prove the equality between V aR1−eµ (y) and the optimal value of

(23). According to Lemma 6, it is su¢ cient to see that there exists a (23)-
feasible (λ,w, λm, λM ) such that

λ = V aR1−eµ (y) . (26)

Consider the function ψ (t) = V aR1−t (y) of (6). As said in Section 2, ψ is
non-increasing, right-continuous and Lebesgue integrable in (0, 1). Thus, −ψ is
non-decreasing, right-continuous and Lebesgue integrable in (0, 1). Bearing in
mind that V aR1−eµ (y) = V aR1−eµ (−ψ) obviously holds (see (2)), Lemma 7
implies the existence of(

λ, w̃, λ̃m, λ̃M

)
∈ IR×L∞ (0, 1)×L1 (0, 1)×L1 (0, 1)

satisfying the obvious conditions and such that (26) holds. Denote by F the
cumulative distribution function of y, and for ω ∈ Ω de�ne λm (ω) = λ̃m (F (y (ω)))

λM (ω) = λ̃M (F (y (ω)))
w (ω) = w̃ (F (y (ω)))

It is easy to see that (w, λm, λM ) ∈ L∞×L1×L1. Besides,

λm (ω) = λ̃m (F (y (ω))) ≥ 0,

λM (ω) = λ̃M (F (y (ω))) ≥ 0,

w (ω) = w̃ (F (y (ω))) ≥ 0,

w (ω) = w̃ (F (y (ω))) ≤ e−µ,

w (ω)λm (ω) = w̃ (F (y (ω))) λ̃m (F (y (ω))) = 0

9



and (
e−µ − w (ω)

)
λM (ω) =

(
e−µ − w̃ (F (y (ω)))

)
λ̃M (F (y (ω))) = 0.

The ful�llment of (26) implies that the proof will be complete if one shows that

y = λm − λM − λ.

Since −ψ = λ̃m−λ̃M−λ, it is su¢ cient to see that y (ω) = −ψ (F (y (ω))) almost
surely (i.e., out of a IP0−null set), but (2) and (6) show that x = −ψ (F (x))
holds almost surely if IR and its Borel σ−algebra are endowed with the proba-
bility measure y (IP0) (B) := IP0 (y ∈ B) for every Borel set B ⊂ IR. �

Corollary 9 Suppose that 1 ≤ p < ∞, −∞ < µ < 0 and y ∈ Lp. If the the
multiplier (λ, λm, λM ) of Problem (15) is unique then V aR1−eµ (y) = λ.3 �

4 VaR optimization

The minimization of risk measures beyond the standard deviation frequently
arises in practical applications of risk analysis such as portfolio choice (Gaiv-
oronski and P�ug, 2005, Stoyanov et al, 2007, Zakamouline and Koekebbaker,
2009, etc.), pricing and hedging (Assa and Karai, 2013) optimal reinsurance
(Cai and Tan, 2007, Cai et al, 2016, etc.), etc. Balbás et al (2010) gave a
general method to optimize convex risk measures and later Balbás et al (2017)
dealt with their previous �ndings and Expression (9) in order to provide new
methods in V aR optimization. Next let us address again the V aR optimiza-
tion problem with a di¤erent approach. In particular, despite the fact that
Lp 3 y → V aR1−α (y) ∈ IR is not continuous for 1 ≤ p <∞ (Balbás et al, 2017,
among many others), Theorem 10 below will allow us to transform the mini-
mization of this non-continuous function in the equivalent optimization problem
(28) with di¤erentiable (and �almost linear�) objective and constraints.

Theorem 10 Consider 1 ≤ p < ∞, Y ⊂ Lp and −∞ < µ < 0. Consider also
the optimization problems

Min {V aR1−eµ (y) ; y ∈ Y } (27)

and  Min λ
y = λm − λM − λ
λ ∈ IR, y ∈ Y, (w, λm, λM ) ∈ δeµ

(28)

y ∈ Lp and (y, w, λ, λm, λM ) ∈ Lp × L∞ × IR × Lp × Lp being the decision
variables, respectively. Then, y∗ ∈ Y solves (27) if and only if there exists

3Obviously, if w solves (15), then

CV aR1�eµ (y) = −IE (wy) = λ− IE (w (λm − λM ))

holds even if the multiplier of (15) is not unique.
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(w∗, λ∗, λ∗m, λ
∗
M ) ∈ L∞× IR×Lp×Lp such that (y∗, w∗, λ∗, λ∗m, λ

∗
M ) solves (28).

If so, the optimal values of both problems coincide,

CV aR1−eµ (y∗) = λ∗ − IE (w∗ (λ∗m − λ∗M )) (29)

and the right-hand side derivative of H in (10) if y = y∗ satis�es

d (CV aR1−eµ (y∗))

dµ+
= −e−µIE (λ∗M ) . (30)

Moreover, δeµ ⊂ L∞×L1×L1 may replaced by δeµ ⊂ L∞×Lp×Lp in De�nition
5.

Proof. Let us prove (29) and (30) because the rest of properties are obvious im-
plications of Theorem 8. Since (y∗, w∗, λ∗, λ∗m, λ

∗
M ) must satisfy the constraints

of (28), Remark 2 implies that w∗ solves (15) and (λ∗, λ∗m, λ
∗
M ) is a multiplier

of this problem when y = y∗. Hence, (4) implies that

CV aR1−eµ (y∗) = −IE (y∗w∗) = −IE ((λ∗m − λ∗M − λ∗)w∗)
= λ∗ − IE (w∗ (λ∗m − λ∗M )) .

Thus, Lemma 1 implies that

H ′+ (µ) = h (µ)−H (µ) = λ∗ − (λ∗ − IE (w∗ (λ∗m − λ∗M ))) = IE (w∗ (λ∗m − λ∗M )) .

Since w∗λ∗m = 0 and w∗λ∗M = e−µλ∗M we have H ′+ (µ) = −e−µIE (λ∗M ). �

Remark 11 (Karush-Kuhn-Tucker (KKT ) and Fritz John (FJ) optimality
conditions). As said above, despite the fact that Problem (27) is neither di¤er-
entiable nor convex, the equivalent Problem (28) becomes di¤erentiable. Con-
sequently, the KKT or FJ necessary optimality conditions (Mangasarian and
Fromovitz, 1967) of (28) will allow us to provide (27) with optimality conditions
too. In order to make that possible, we need to represent the constraint y ∈ Y
by means of equalities/inequalities. Thus, suppose that B is a Banach space,
B′ is its dual, A ⊂ Lp is an open set, ϕ : A → B is a continuously Frechet
di¤erentiable function and

Y = {y ∈ A ⊂ Lp; ϕ (y) = 0} .4 (31)

In order to select appropriate multipliers we have to analyze the Banach spaces
where the constraints of (28) are valued. Bearing in mind De�nition 5, (28) is

4A totally similar analysis would apply if Y were represented by inequality constraints.
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the same problem as 

Min λ
IE (w) = 1
ϕ (y) = 0
y = λm − λM − λ
wλm = 0
(e−µ − w)λM = 0
w ≤ e−µ
w ≥ 0
λm ≥ 0
λM ≥ 0

(32)

The �rst constraint of (32) is valued on IR, the second one on B and the rest of
constraints are valued in Lp. Accordingly, the related multipliers should satisfy
(Luenberger, 1969)

(Γ1, b
′,Γ2,Γ3,Γ4,Γ5,Γ6,Γ7,Γ8) ∈

IR×B′ × Lq × Lq × Lq × Lq × Lq × Lq × Lq

and the components associated with inequality constraints must be non-negative.
The Lagrangian function becomes (Luenberger, 1969)

L (y, w, λ, λm, λM ,Γ1, b
′,Γ2,Γ3,Γ4,Γ5,Γ6,Γ7,Γ8) =

λ+ Γ1 (IE (w)− 1) + 〈ϕ (y) , b′〉
+IE (Γ2 (y − λm + λM + λ)) + IE (Γ3λmw) + IE (Γ4λM (e−µ − w))
+IE (Γ5 (w − e−µ))− IE (Γ6w)− IE (Γ7λm)− IE (Γ8λM ) .

(33)

Consequently, denoting by 〈ϕ′ (y) , b′〉 the composition of b′ with the Frechet
di¤erential ϕ′ (y) of ϕ at y, the KKT optimality conditions for (32) (and (27))
become,5

〈ϕ′ (y) , b′〉+ Γ2 = 0 (y)
Γ1 + Γ3λm − Γ4λM + Γ5 − Γ6 = 0 (w)
1 + IE (Γ2) = 0 (λ)
−Γ2 + Γ3w − Γ7 = 0 (λm)
Γ2 + Γ4 (e−µ − w)− Γ8 = 0 (λM )
ϕ (y) = 0 (b′)
IE (w) = 1 (Γ1)



y = λm − λM − λ (Γ2)
wλm = 0 (Γ3)
(e−µ − w)λM = 0 (Γ4)
0 ≤ w (Γ5)
e−µ − w ≥ 0 (Γ6)
λm ≥ 0 (Γ7)
λM ≥ 0 (Γ8)

(34)

The FJ multipliers arise if one slightly modi�es (33) and adds the new

5The partial di¤erential with respect to several variables must vanish. These variables
are indicated on the right hand side. Notice that, as usual with the KKT multipliers, those
partial di¤erentials with respect to the multipliers related to inequalities (Γ5, Γ6, Γ7 and Γ8)
must be replaced by the associated inequalities themselves.

12



multiplier Γ0 ∈ IR. The Lagrangian function becomes

L (y, w, λ, λm, λM ,Γ0,Γ1, b
′,Γ2,Γ3,Γ4,Γ5,Γ6,Γ7,Γ8) =

Γ0λ+ Γ1 (IE (w)− 1) + 〈ϕ (y) , b′〉
+IE (Γ2 (y − λm + λM + λ)) + IE (Γ3λmw) + IE (Γ4λM (e−µ − w))
+IE (Γ5 (w − e−µ))− IE (Γ6w)− IE (Γ7λm)− IE (Γ8λM ) .

and consequently, the FJ optimality conditions of both (27) and (32) are similar
to (34) once the third equality 1 + IE (Γ2) = 0 is replaced by Γ0 + IE (Γ2) = 0. �

5 Optimization with VaR-constraints and prob-
abilistic constraints

Let us deal with optimization problems with V aR−linked constraints. These
problems are usual in applications of risk analysis such as portfolio choice (Zhao
and Xiao, 2016), optimal reinsurance (Centeno and Simoes, 2009), combinations
of both optimal investment and optimal reinsurance (Peng and Wang, 2016),
etc. Moreover, as will be seen, probabilistic constraints are a particular case of
V aR−linked constraints.
Suppose that −∞ < µ < 0, 1 ≤ p < ∞, B̃ is a Banach space, Y ⊂ A ⊂ B̃

and A is an open set, and Ψ : A → IR and φ : A → Lp are continuously
di¤erentiable functions. Consider Problem,6

Min Ψ (y)

{
V aR1−eµ (φ (y)) ≤ 0
y ∈ Y (35)

If c ∈ IR then notice that V aR1−eµ (φ (y)) ≤ c is equivalent to

V aR1−eµ (φ (y) + c) ≤ 0

because V aR1−eµ is translation invariant (Rockafellar and Uryasev, 2000), and
therefore (35) still applies if 0 is replaced by a di¤erent number.
Theorem 8 also allows us to �nd a di¤erentiable optimization problem equiv-

alent to (35).

Theorem 12 Under the notations above, �x µ ∈ (−∞, 0). Consider Problem

Min Ψ (y)

 φ (y) = λm − λM − λ
λ ≤ 0
λ ∈ IR, y ∈ Y, (w, λm, λM ) ∈ δeµ

(36)

(y, λ, w, λm, λM ) ∈ B̃×IR×L∞×Lp×Lp being the decision variable. Then, y∗ ∈
Y solves (35) if and only if there exists (λ∗, w∗, λ∗m, λ

∗
M ) ∈ IR×L∞×Lp×Lp such

6As in (31), Y may be given by

Y = {y ∈ A ⊂ B; ϕ (y) = 0} or Y = {y ∈ A ⊂ B; ϕ (y) ≤ 0}

B being a (ordered, if necessary) Banach space and ϕ : A → B being a continuously Frechet
di¤erentiable function.
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that (y∗, w∗, λ∗, λ∗m, λ
∗
M ) solves (36), and the optimal values of both problems

coincide. Moreover,

CV aR1−eµ (φ (y∗)) = λ∗ − IE (w∗ (λ∗m − λ∗M ))

holds. Lastly, if (λ∗, λ∗m, λ
∗
M ) is the unique multiplier of (15) when y is replaced

by φ (y∗), then
d (CV aR1−eµ (φ (y∗)))

dµ+
= −e−µIE (λ∗M )

holds too.

Proof. Bearing in mind Corollary 9, the proof of this result is analogous to the
proof of Theorem 10. �
Optimization problems with probabilistic constraints, also called �probabilis-

tically constrained optimization problems� (Lejeune, 2012, Lejeune and Shen,
2016, etc.), are becoming very important in Applied Mathematics and Opera-
tions Research. The main reason is that rigid constraints sometimes invalidate
many potential solutions and lead to �optimal decisions�with a poor realization
of the objective function. However, if some constraints are relaxed, in the sense
that they only have to hold with a high enough but lower than one probability,
then the optimal objective value re�ects a signi�cant improvement. Let us show
that probabilistic restrictions are equivalent to V aR−linked restrictions (Propo-
sition 13 below), and consequently every problem with probabilistic constraints
may be solved with the aid of Theorem 12.
Suppose that −∞ < µ < 0, 1 ≤ p < ∞, B̃ is a Banach space, Y ⊂ A ⊂ B̃

and A is an open set, and Ψ : A → IR and φ : A → Lp are continuously
di¤erentiable functions. Consider Problem,7

Min Ψ (y)

{
IP0 (φ (y) < 0) ≤ eµ
y ∈ Y (37)

Notice that Constraint IP0 (φ (y) < c) ≤ eµ is equivalent to IP0 (φ (y)− c < 0) ≤
eµ, and therefore (37) still applies if 0 is replaced by a di¤erent number. No-
tice also that IP0 (φ (y) < 0) ≤ eµ is equivalent to IP0 (φ (y) ≥ 0) ≥ 1 − eµ (or
IP0 (−φ (y) ≤ 0) ≥ 1−eµ), and consequently it contains every restriction impos-
ing an inequality with a �high�probability.

Proposition 13 Under the given notations, IP0 (φ (y) < 0) ≤ eµ holds if and
only if V aR1−eµ (φ (y)) ≤ 0 holds, and therefore (35) and (37) are exactly the
same problem.

Proof. According to (2), V aR1−eµ (φ (y)) ≤ 0 holds if and only if the implica-
tion (IP0 (φ (y) ≤ x) > eµ) =⇒ x ≥ 0 holds. Hence, if V aR1−eµ (φ (y)) ≤ 0 then
for n = 1, 2, 3, ... we have the inequality IP0

(
φ (y) ≤ − 1

n

)
≤ eµ, and therefore

IP0 (φ (y) < 0) = Limn→∞

(
IP0

(
φ (y) ≤ − 1

n

))
≤ eµ.

7The footnote of Problem (35) about the de�nition of Y still applies.
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Conversely, suppose that IP0 (φ (y) < 0) ≤ eµ. If IP0 (φ (y) ≤ x) > eµ then
x ≥ 0. Hence, Inf {x; IP0 (φ (y) ≤ x) > eµ} ≥ 0, and (2) leads to the inequality
V aR1−eµ (φ (y)) ≤ 0. �

Remark 14 Theorem 12 and Proposition 13 above enable us to provide the non
di¤erentiable Problems (35) and (37) with KKT and FJ optimality conditions.
Since the analysis is analogous to that of Remark 11, we will skip details and
shorten the exposition. �

6 Further applications

Lemmas 1 and 4, along with the di¤erential equations (11) and (12), may have
further applications, some of them beyond optimization problems or V aR rep-
resentation. In order to illustrate this fact, in this section we will select two
examples related to the estimation and sensitivity of both V aR and CV aR. A
third application will be devoted to heavy tailed risks.

6.1 Marginal CVaR with respect to the con�dence level

Expression (11) trivially implies that H ′+ (µ) = h (µ)−H (µ) for −∞ < µ < 0,
and therefore, if α = eµ

d (CV aR1−α (y))

dα+
=
d (CV aR1−α (y))

dµ+

dµ

dα

= (h (µ)−H (µ))
1

α
=
V aR1−α (y)− CV aR1−α (y)

α
.

In other words, if y ∈ L1 and one estimates both V aR1−α (y) and CV aR1−α (y),
then the right hand side marginal CV aR with respect to the level of con�dence
is given by the proportion (V aR1−α (y)− CV aR1−α (y)) /α. If (6) is continuous
in α then H ′ (µ) does exist and this marginal value of the CV aR also holds on
the left hand side, i.e.,

d (CV aR1−α (y))

dα
=
V aR1−α (y)− CV aR1−α (y)

α
. (38)

6.2 The second order di¤erential equation

Consider −∞ ≤ a < b ≤ ∞, 0 ≤ c < d ≤ 1 and y ∈ L1, and suppose that
F : (a, b) → (c, d) and f : (a, b) → (0,∞) are the restrictions to (a, b) of the
cumulative distribution function and the density function of y, respectively.
Suppose that F−1 : (c, d) → (a, b) is the inverse of F and it is di¤erentiable.
It is known that (2) leads to V aR1−α (y) = −F−1 (α) for c < α = eµ <
d. This equality implies the continuity of (6) in (c, d), and then H ′ (µ) does
exist and (12) holds for Log (c) < µ < Log (d).8 Consequently, (12) leads

8 If necessary, take Log (0) = −∞.
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to H + H ′ = −F−1 (eµ), i.e., H ′ is di¤erentiable and F (−H −H ′) = eµ.
Hence, computing derivatives, f (−H −H ′) (−H ′ −H ′′) = eµ, which implies
that f (−H −H ′) 6= 0 and

H ′′ = −H ′ − eµ

f (−H −H ′) . (39)

This second order ordinary di¤erential equation may be easily transformed into
a system of two �rst order di¤erential equations with the usual change of variable
(H1, H2) = (H,H ′). We will obtain

H ′1 = H2

H ′2 = −H2 −
eµ

f (−H1 −H2)

(40)

Both (39) and (40) hold for Log (c) < µ < Log (d) if F−1 exists on (c, d) and
both F and F−1 are di¤erentiable on (a, b) and (c, d) respectively.

6.3 VaR and CVaR estimation and sensitivity

Under appropriate conditions one can go beyond Expression (38). If we know the
CV aR and the marginal CV aR for a speci�c level of con�dence eµ0 then we can
give CV aR, marginal CV aR, V aR and marginal V aR for every level of con�-
dence. Indeed, suppose that the assumptions guaranteeing the ful�llment of (40)
hold. Suppose that we are able to estimate both H (µ0) = CV aR1−eµ0 (y) and
H ′ (µ0) for some y ∈ L1 and some Log (c) < µ0 < Log (d). Then, the classical
Picard�Lindelöf Theorem (Coddington and Levinson, 1955) about the existence
and uniqueness of solution for ordinary di¤erential equations will enable us to
give approximations of the global solution (H1, H2) = (H,H ′) of (40). In other
words, we will have approximations of both the CV aR1−eµ and the marginal
CV aR1−eµ of y for a con�dence level such that Log (c) < µ < Log (d). More-
over, h (µ) = V aR1−eµ (y) and the marginal V aR1−eµ of y will also be easily
estimated. Indeed, for every µ ∈ (Log (c) , Log (d)) we have that h (µ) will be
given by (12), and the marginal V aR, h′ (µ) = H ′ (µ) + H ′′ (µ), will be easily
obtained from (39).
In order to reach an approximation of the global solution of (40) we have

several alternatives. Firstly, we can transform (40) into an integral equation and
then iterate the integral operator in order to obtain approximations of its �xed
point (Picard�Lindelöf Theorem, Coddington and Levinson, 1955). Secondly,
we can deal with standards in Numerical Analysis such as the Eüler method or
the Runge - Kutta method and its classical extensions (Butcher, 2008).
Though for most of them there are closed formulas, this general methodology

�rstly applies for many classical continuous distributions (normal, log-normal,
Weibull, Student�s t, Fisher�Snedecor�s F , Gamma, Beta, Pareto, etc.). Sec-
ondly, this methodology also applies for some compositions/mixtures and other
practical distributions related to the examples above. Lastly, and maybe more
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importantly, the methodology also applies for the solutions of many optimiza-
tion problems involving V aR or CV aR. For instance, if one solves Problem (32)
in order to solve (27) (respectively, one solves (36) in order to solve (35) or (37)),
and the solution y∗ of (27) (respectively, φ (y∗), where y∗ solves (35)) satis�es
the conditions guaranteeing the ful�llment of (39) and (40),9 then Theorem 10
(respectively, Theorem 12) will provide us with the CV aR and marginal CV aR
of y∗ (respectively, φ (y∗)) at a given con�dence level, and therefore we will
have the instruments so as to compute CV aR, marginal CV aR, V aR and mar-
ginal V aR of y∗ (respectively, φ (y∗)) at every con�dence level. Analogously,
in CV aR minimization problems, i.e., if CV aR replaces V aR in (27), the ar-
guments of Lemma 4 and Expression (18) still apply, and consequently, if the
solution y∗ satis�es the conditions of Section 6.2, (12), (39) and (40) will allow
us to estimate V aR(y), CV aR(y) and their marginal values for in�nitely many
levels of con�dence.

6.4 VaR representation for heavy tailed risks

As indicated in the introduction, V aR makes sense for heavy tailed risks with
unbounded expectations. Though some other risk measures may also apply
for some of these risks (Kupper and Svindland, 2011), the most important ones
(CV aR, the weighted CV aR of Rockafellar et al, 2006, etc.) will become in�nite
for risks beyond L1. Actually, to the best of our knowledge, V aR1−eµ (y) is the
unique �popular� risk measure applying for every y ∈ L0, and for that reason
several authors have proposed the use of V aR1−eµ in their analytical studies
of problems involving heavy tailed risks. For instance, Chavez-Demoulin et al
( 2006) dealt with V aR1−eµ in order to address some Operational Risk topics.
The ideas above may justify the interest of extensions of Theorem 8 and

(23) beyond L1. If −∞ < µ < 0, y ∈ L0, V aR1−eµ (y) > 0, θ1 ≥ 0, and one
considers

yθ1 =

 θ1, θ1 ≤ y
y, −θ1 < y < θ1

−θ1, y ≤ −θ1

(41)

then it is easy to see that V aR1−eµ (y) = V aR1−eµ (yθ1) for

−θ1 < −V aR1−eµ (y)− 1.

Furthermore, yθ1 ∈ Lp for every 1 ≤ p ≤ ∞. Since θ1 → V aR1−eµ (yθ1) is
obviously a non-decreasing function, one has that

V aR1−eµ (y) = Max {V aR1−eµ (yθ1) ; θ1 ≥ 0}

or, equivalently, V aR1−eµ (y) is the optimal value of Max θ2

θ1 ≥ 0
θ2 ≤ V aR1−eµ (yθ1)

(42)

9Actually, these conditions could be slightly relaxed (Mohammadi et al, 2017).
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(θ1, θ2) ∈ IR2 being the decision variable. Besides, (23) applies for V aR1−eµ (yθ1),
and consequently (42) implies that V aR1−eµ (y) equals the optimal value of

Max θ2

θ1 ≥ 0

θ2 ≤ λ,
{
∀ (λ,w, λm, λM ) ∈ IR×δeµ
with yθ1 = λm − λM − λ

(43)

(θ1, θ2) ∈ IR2 being the decision variable. This representation of V aR1−eµ (y)
remains true if L1 is replaced by Lp, 1 < p < ∞, in De�nition 5. Moreover,
it is obvious that �the de�nition of yθ1 is not unique�, in the sense that many
modi�cations of (41) will still imply the ful�llment of (43).

7 Illustrative actuarial example

Let us present an application showing the potential practical interest of the
�ndings of this paper. In particular, let us deal with the optimal reinsurance
problem. The purpose of this section is merely illustrative. Though we will focus
on a classical topic in Actuarial Mathematics, a complete solution is complex
and is obviously beyond our scope. We will only attempt to point out how the
results above may be useful in the analysis of this problem.10

Consider the random variable u re�ecting claims within a given time period
[0, T ]. The insurer has to select the retained (ur) and ceded (uc) risks satisfying
u = ur + uc. In classical literature both ur and uc are given by measurable
functions of u, i.e., ur = g (u) and uc = u− g (u), so without loss of generality
one can assume that Ω = (0, 1) and IP0 is the Lebesgue probability measure on
(0, 1). Moreover, though it is not necessary, in order to simplify the exposition
we will accept the existence of −∞ < ζ < Ξ < ∞ such that u : (0, 1) → (ζ,Ξ)
is a strictly increasing bijection such that u ∈ L2 = L2 (0, 1), and u and u−1 are
continuously di¤erentiable.11

In order to prevent moral hazard, it is usually imposed that the three random
risks, u, ur and uc, must be co-monotone.12 Nevertheless, for the stop-loss
contract with deductible D ∈ IR, i.e., ur = Max {D,u} and uc = (u−D)

+,

10An interesting survey about the State of the Art a few years ago in optimal reinsurance
may be found in Centeno and Simoes (2009). Recent approaches may be found in Balbas et
al (2015) or Cai et al (2016), among many others.
11 If ζ < u < Ξ holds a.s., then it is su¢ cient to take u (ω) = F�1 (ω) for 0 < ω < 1, F

being the cumulative distribution function of u. If ζ = −∞ or Ξ =∞ then the analysis below
will remain true under appropriate modi�cations. For instance, if ζ =∞ the operator J below
should become

J (x) (t) =

∫ t

t0

x (u (s))u0 (s) ds =

∫ u(t)

u(t0)
x (r) dr,

where 0 < t0 < 1 must be �xed. Nevertheless, since u represents claims, 0 < u (and therefore
0 ≤ ζ) is natural and not at all restrictive, and Ξ <∞ may be justi�ed because global claims
cannot be larger than the value of the insured goods.
12Recal that the random variables v and w are said to be co-monotone if the probability of

the event (v (ω1)− v (ω2)) (w (ω1)− w (ω2)) ≥ 0 equals one.
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they are co-monotone but the insurer has no incentives to verify the absence
of fraud once u ≥ D holds, and therefore the reinsurer might be facing moral
hazard. In order to prevent this caveat Balbás et al (2015) proposed to deal
with the sensitivity (or �rst order derivative g′ = dur/du) of ur with respect to
u as the decision variable. We will follow this approach in this example, and
therefore we will consider the Lebesgue measure on (ζ,Ξ), the Banach space
L∞ (ζ,Ξ) and the linear and continuous operator

J : L∞ (ζ,Ξ) → L2 (0, 1)

x → J (x) (t) =
∫ t

0
x (u (s))u′ (s) ds.

Notice that with the change of variable r = u(s), dr = u′ (s) ds, J (x) may be
also given by

J (x) (t) =

∫ t

0

x (u (s))u′ (s) ds =

∫ u(t)

ζ

x (r) dr, (44)

and therefore the First Fundamental Theorem of Calculus guarantees that x =
d (J (x)) /du holds almost everywhere in (ζ,Ξ). In particular, if ur = J (x) is
the retained risk then x = dur/du holds almost everywhere, and therefore x
coincides with the decision variable proposed in Balbás et al (2015).
For the constant function x = 1 we have

J (1) (t) =

∫ u(t)

ζ

dr = u (t)− ζ, (45)

for 0 < t < 1.
Bearing in mind that L2 (0, 1) is its own dual space, if L∞ (ζ,Ξ)

∗ denotes
the dual space of L∞ (ζ,Ξ), the adjoint of J will be the linear and continuous
operator J∗ : L2 (0, 1)→ L∞ (ζ,Ξ)

∗ characterized by

〈J (x) , y〉 = 〈x, J∗ (y)〉 (46)

for every x ∈ L∞ (ζ,Ξ) and every y ∈ L2 (0, 1), 〈., .〉 denoting the classical
bilinear product. Obviously,

〈J (x) , y〉 =
∫ 1

0
J (x) (t) y (t) dt =

∫ 1

0
y (t)

(∫ t
0
x (u (s))u′ (s) ds

)
dt

=
∫ 1

0
x (u (s))u′ (s)

(∫ 1

s
y (t) dt

)
ds.

With the change of variable r = u (s), dr = u′ (s) ds, we get

〈J (x) , y〉 =

∫ Ξ

ζ

x (r)

(∫ 1

u−1(r)

y (t) dt

)
dr,

and (46) implies that

J∗ (y) (s) =

∫ 1

u−1(s)

y (t) dt (47)
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for ζ < s < Ξ. It is also possible to obtain a second expression for J∗. Indeed,

with the change of variable t = u−1 (r), dt =
dr

u′ (u−1 (r))
, Expression (47)

implies that

J∗ (y) (s) =

∫ Ξ

s

y
(
u−1 (r)

)
u′ (u−1 (r))

dr,

and therefore

J∗ (y) (s) =

∫ 1

u−1(s)

y (t) dt =

∫ Ξ

s

(
y
(
u−1 (t)

)
u′ (u−1 (t))

)
dt (48)

for y ∈ L2 (0, 1) and ζ < s < Ξ.
Let us focus on some reinsurer conditions. First, in order to prevent her/his

moral hazard, the reinsurer will select a real number c ≥ 0, c < 1, indicating
the minimum allowed rate of retained risk. If the reinsurer accepts stop-loss
contracts or other ones whose rate may vanish then c = 0 may hold, and the
classical approach is included in this analysis. Otherwise, the reinsurer will
choose c > 0. The reinsurer will also select the premium principle Π. As said
above, this section only has illustrative purposes, so we will only deal with
the Expected Value Premium Principle. Consequently, Π (uc) = (1 + β) IE (uc),
β > 0 being the loading rate.
If x ∈ L∞ (ζ,Ξ) is the insurer decision variable and J (x) ∈ L2 (0, 1) is the

retained risk, then the ceded risk will be (see (45), and recall that J is linear)

uc (t) = u (t)− J (x) (t) = ζ + J (1) (t)− J (x) (t) = ζ + J (1− x) (t) .

If A is the premium paid by the insurer clients, the insurer random wealth at T
will be

W = A− J (x)−Π (uc) = A− J (x)− (1 + β) IE (uc)
= A− J (x)− (1 + β) ζ − (1 + β) IE (J (1− x)) .

Let us assume that the insurer objective is the simultaneous maximization of
the expected wealth IE (W ) and minimization of the risk ρ (W ), where ρ =
CV aR1−α or ρ = V aR1−α for some 0 < α < 1. Then the insurer will look for
Pareto solutions, and, according to Nakayama et al (1985), most of them can be
found by minimizing linear combinations −IE (W )+Uρ (W ), U

1+U > 0 being the
�relative weight�or �relative importance�of the risk ρ (W ) with respect to the
expected wealth IE (W ). Bearing in mind that both J and IE are linear and both
−IE and ρ are translation invariant and positively homogeneous (Rockafellar
and Uryasev, 2000), the minimization of −IE (W ) +Uρ (W ) is equivalent to the
minimization of ρ (−J (V x))− IE (J (x)) with V = U

β+U+βU ∈ (0, 1). Hence, the
insurer problem becomes

Min {ρ (−J (V x))− IE (J (x)) ; c ≤ x ≤ 1} .13 (49)

13Constraint x ≤ 1 must hold because u, ur and uc must be co-monotone.
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Proposition 15 Consider −∞ < µ0 < 0 and x ∈ L∞ (ζ,Ξ) with c ≤ x ≤ 1.
Denote by X(1−eµ0 ,1) the characteristic function of (1− eµ0 , 1) ⊂ (0, 1).

a) CV aR1−eµ0 (−J (x)) = e−µ0 IE
(
X(1−eµ0 ,1)J (x)

)
.

b) (−J (x) , p = 2, µ0) is regular (see De�nition 3).
c) If Jµ0 (x) ∈ IR denotes the value of J (x) (t) in (44) for t = 1− eµ0 , then

V aR1−eµ0 (−J (x)) = Jµ0 (x).

Proof. a) Expressions (4) and (5) trivially imply that CV aR1−eµ0 (−u) =
e−µ0 IE

(
uX(1−eµ0 ,1)

)
because u : (0, 1) → (ζ,Ξ) is a strictly increasing bijec-

tion. Since J (x) and u are co-monotone we have that J (x) : (0, 1) → (ζ,Ξ)
is non decreasing, and therefore (4) again leads to CV aR1−eµ0 (−J (x)) =
e−µ0 IE

(
X(1−eµ0 ,1)J (x)

)
.

b) We have to prove that (−∞, 0) 3 µ → IE (λµ) ∈ IR is continuous at µ0

if λM is the multiplier of (15) related to Constraint w ≤ e−µ and y = −J (x).
(16) indicates that the multipliers of (15) are the solutions of

IE (w) = 1
−J (x) = λm − λM − λ
wλm = (e−µ − w)λM = 0
0 ≤ w ≤ e−µ, 0 ≤ λm, 0 ≤ λM

(50)

it may be easily veri�ed that

w = e−µX(1−e−µ,1)

λ = Jµ (x)

λm =

{
−J (x) + Jµ (x) , (0, 1− eµ)
0 (1− eµ, 1)

}

λM =

{
0, (0, 1− eµ)
J (x)− Jµ (x) , (1− eµ, 1)

}
(51)

solves the system above if Jµ (x) ∈ IR denotes the value of J (x) (t) in (44) for
t = 1 − eµ. Hence, we only have to see that (−∞, 0) 3 µ →

∫ 1

1−eµ J (x) dt −
eµJµ (x) ∈ IR is continuous at µ0, which is an obvious property.

c) The regularity of (−J (x) , 2, µ0) , Lemma 4 and (18) imply that

−e−µ0 IE (λM ) =
dCV aR1−eµ (−J (x))

dµ

∣∣
µ=µ0 (52)

holds if (w, λ, λm, λM ) ∈ L∞ (ζ,Ξ)×L∞ (0, 1)× IR×L2 (0, 1)×L2 (0, 1) satisfy
(50) and µ = µ0. Then, (51) with µ = µ0, and (52) lead to

dCV aR1−eµ0 (−J (x))

dµ

∣∣
µ=µ0 = −e−µ0 IE

(
X(1−eµ0 ,1)

(
J (x)− Jµ0 (x)

))
. (53)
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Hence, Statement a) and Lemma 1 imply that

V aR1−eµ0 (−J (x)) =
e−µ0 IE

(
X(1−eµ0 ,1)J (x)

)
− e−µ0 IE

(
X(1−eµ0 ,1)

(
J (x)− Jµ0 (x)

))
,

and c) holds. �

Remark 16 (Optimal reinsurance if ρ = CV aR1−eµ0 ) Let us suppose that ρ =
CV aR1−eµ0 . Proposition 15a implies that the objective function of (49) equals

V e−µ0 IE
(
X(1−eµ0 ,1)J (x)

)
− IE (J (x)) = IE

((
V e−µ0X(1−eµ0 ,1) − 1

)
J (x)

)
.

Consequently, (46) leads to the objective function〈
x, J∗

(
V e−µ0X(1−eµ0 ,1) − 1

)〉
= V e−µ0

〈
x, J∗

(
X(1−eµ0 ,1)

)〉
− 〈x, J∗ (1)〉 . (54)

(48) trivially implies that

J∗ (1) (s) = 1− u−1 (s) (55)

and

J∗
(
X(1−eµ0 ,1)

)
(s) =

{
eµ0 , s ≤ u (1− eµ0)
1− u−1 (s) , s ≥ u (1− eµ0) (56)

for ζ < s < Ξ. Hence, the objective function in (54) becomes

ρ (−J (V x))− IE (J (x)) = V
∫ u(1−eµ0 )

ζ
x (s) ds+

V e−µ0
∫ Ξ

u(1−eµ0 )
x (s)

(
1− u−1 (s)

)
−
∫ Ξ

ζ
x (s)

(
1− u−1 (s)

)
ds

=
∫ Ξ

ζ
K (s)x (s) ds

with

K (s) =

{
u−1 (s) + V − 1, s < u (1− eµ0)(
1− u−1 (s)

)
(V e−µ0 − 1) , s > u (1− eµ0) (57)

for ζ < s < Ξ.14 Hence, Problem (49) becomes

Min

{∫ Ξ

ζ

K (s)x (s) ds; c ≤ x ≤ 1

}
. (58)

Since c ≥ 0, the obvious solution of (58) (and the solution of (49)) will be

X∗ =

{
1, K (s) ≤ 0
c, K (s) > 0

(59)

for ζ < s < Ξ.

14Notice that the imposed assumptions imply that 1− u�1 ∈ L1 (ζ,Ξ).
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Proposition 15a will allow us to compute easily the retained optimal CV aR
given by e−µ0 IE

(
X(1−eµ0 ,1)J (X∗)

)
. Proceeding as in the proof of Propositions

15b and 15c we have that (51) and (53) for µ = µ0 yield the marginal CV aR
of the retained claims −J (X∗) with respect to µ at µ0. Moreover, Proposition
15c will provide us with the retained V aR, i.e., V aR1−eµ0 (−J (X∗)). Lastly,
if the required conditions hold, the second order di¤erential equation (39) will
yield the marginal V aR of the retained claims −J (X∗) with respect to µ at
µ0, and the methodology proposed in Section 6.3 will yield the evolution of both
CV aR1−eµ (−J (X∗)) and V aR1−eµ (−J (X∗)) as µ is modi�ed. An illustrative
numerical example will be shown in Remark 19. �

Remark 17 (Optimal reinsurance if ρ = V aR1−eµ0 ) Proposition 15c implies
that for ρ = V aR1−eµ0 the objective function of (49) equals

V Jµ0 (x)− IE (J (x)) = V Jµ0 (x)− 〈J (x) , 1〉 = V Jµ0 (x)− 〈x, J∗ (1)〉 .

Therefore, (44) and (55) lead to the objective function

V

∫ u(1−eµ0 )

ζ

x (s) ds−
∫ Ξ

ζ

x (s)
(
1− u−1 (s)

)
ds =

∫ Ξ

ζ

k (s)x (s) ds

with

k (s) =

{
u−1 (s) + V − 1, s < u (1− eµ0)
u−1 (s)− 1, s > u (1− eµ0) (60)

for ζ < s < Ξ. The solution of (49) for ρ = V aR1−eµ0 becomes

x∗ =

{
1, k (s) ≤ 0
c, k (s) > 0

(61)

for ζ < s < Ξ.
As in Remark 16, Propositions 15a and 15c give the V aR and CV aR of the

retained claims −J (x∗), and Di¤erential Equations (12) and (39) will provide
us with marginal values and potential evolutions as the level of con�dence evolves
too. �

Remark 18 Suppose that ρ = V aR1−eµ0 . Proposition 15 and Remark 17 il-
lustrate that Theorem 10 is not the unique way to apply Lemmas 1 and 4 (or
Theorem 8) in V aR optimization. As shown in Remark 17, Proposition 15
allows us to solve (49) without using the equivalent di¤erentiable optimization
problem (32). Nevertheless, needless to say that Theorem 10 is general and
also applies to solve (49). Though we will not address this question in order to
shorten the exposition, at least we will indicate that the arguments of Theorem
10 will imply the equivalence between the non-di¤erentiable problem (49) and
the di¤erentiable one Min V λ− IE (J (x))

−J (x) = λm − λM − λ
λ ∈ IR, c ≤ x ≤ 1, (w, λm, λM ) ∈ δeµ
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(x,w, λ, λm, λM ) ∈ L∞ (ζ,Ξ) × L∞ (0, 1) × IR × L2 (0, 1) × L2 (0, 1) being the
decision variable. �

Remark 19 (Numerical experiment) Let us deal with a simple and illustrative
numerical example. Suppose that ζ = 0, Ξ = 100 and u (t) = 100t2 for 0 < t <
1. Obviously,

u−1 (s) =

√
s

10
(62)

for 0 < s < 100 is the cumulative distribution function of the total risk u, and

its derivative
(
u−1

)′
(s) =

1

20
√
s
for 0 < s < 100 is the density function of u.

Suppose that c =
1

2
, i.e., the reinsurer will never accept to pay more than 50%

per claim. If −∞ < µ < 0, the kernels (57) and (60) become

0 < s ≤ u (1− eµ) =⇒
{
K (s) = k (s) =

√
s

10
+ V − 1

u (1− eµ) < s < 100 =⇒


K (s) =

(
1−
√
s

10

)
(V e−µ − 1)

k (s) = −
(

1−
√
s

10

)

Thus, bearing in mind that 1−
√
s

10
> 0 for 0 < s < 100, (59) and (61) lead to

the optimal solutions 0 < s < u (1− eµ)√
s

10
+ V < 1

=⇒ X∗ = x∗ = 1

 0 < s < u (1− eµ)√
s

10
+ V > 1

=⇒ X∗ = x∗ =
1

2{
u (1− eµ) < s < 100
V e−µ < 1

=⇒ X∗ = 1{
u (1− eµ) < s < 100
V e−µ > 1

=⇒ X∗ =
1

2

u (1− eµ) < s < 100 =⇒ x∗ = 1

For instance, if V = 1/2 and the level of con�dence is 80% (i.e., 1 − eµ =
0.8 =⇒ µ = Log(0.2) ' −1.60944) then we get

X∗ =

{
1/2, 25 < s < 100
1, 0 < s < 25

and x∗ =

{
1/2, 25 < s < 64
1, otherwise

(63)

and, bearing in mind that IE (u) = 100/3 ' 33.33333, for both risk measures the
insurer will retain all the risk up to a given threshold lower than the expected
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claim, and he/she will cede 50% of every claim beyond that threshold, though
for ρ = V aR he/she will recover the full rate beyond a second threshold almost
equaling two times the global expected claim.
Next let us focus on x∗ and illustrate the method proposed in Section 6.3.

Consider the functions h and H of (10) for y = −J (x∗). Proposition 15 (46)
and (56) imply that for µ0 = Log(0.2) we have

H (µ0) = CV aR80% (−J (x∗)) = e−µ0 IE
(
X(1−eµ0 ,1)J (x∗)

)
= 5IE

(
X(0.8,1)J (x∗)

)
= 5

〈
x∗, J∗

(
X(0.8,1)

)〉
' 61.83333,

and
h (µ0) = V aR80% (−J (x∗)) = Jµ0 (x∗) = 44.5.

Lemma 1 implies that

H ′ (µ0) = 44.5− 61.83333 ' −17.33333.

Bearing in mind (62) and (63), straightforward manipulations enable us to ob-
tain

f (s) =



1

20
√
−s− 19.5

, −80.5 < s < −44.5

√
2

40
√

25− s
, −44.5 < s < −25

1

20
√
−s

, −25 < s < 0

0 otherwise

as the density function of −J (x∗). Thus bearing in mind (39) and (40), we
have that the vector (CV aR,M arg inal_CV aR, V aR,M arg inal_V aR), rep-
resented by

~H = (H1 = H,H2 = H ′, H3 = h,H4 = h′)

satisfy the initial conditions

H1 (µ0) = 61.83333
H2 (µ0) = −17.33333

along with the system

H ′1 = H2

H ′2 = −H2 −
eµ

f (−H1 −H2)

H3 = H1 +H2

H4 = − eµ

f (−H1 −H2)
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Solving this system with the Eüler method and the step δ = −10−6 for the
increment of α = eµ, we have obtained the approximated evolution of ~H as a
function of α. A brief summary of the results is reported in the matrix below

α = eµ, H1, H2, H3, H4

0.2 61.83333 −17.33333 44.5 −32
0.15 66.25 −13.5 52.75 −25.5
0.1 70.83333 −9.333333 61.5 −18
0.05 75.58333 −4.833333 70.75 −9.5
0.03 77.53 −2.94 74.59 −5.82
0.02 78.51333 −1.973333 76.54 −3.92
0.01 79.50333 −0.993333 78.51 −1.98


In particular, though the optimal reinsurance x∗ shows a very stable CV aR, the
V aR stability seems to be lower, and this information could be interesting to the
insurer before making the reinsurance purchase decision. This is a simple but
illustrative application of Section 6.3. �

8 Conclusion

It has been shown that V aR and CV aR are related by a �rst order linear dif-
ferential equation with constant coe¢ cients. This di¤erential equation holds
when the independent variable is the level of con�dence of both risk measures.
Besides, since the CV aR Representation Theorem establishes that the CV aR
is the optimal value of a linear optimization problem, standard results in Math-
ematical Programming guarantee that the �rst derivative of the CV aR with
respect to the level of con�dence is given by the Lagrange multiplier associated
with the CV aR representation. A new representation of V aR is proved by com-
bining both the di¤erential equation and the Lagrange multiplier interpretation;
V aR equals CV aR plus the cited Lagrange multiplier.
There are many analytical properties holding for CV aR and failing for V aR,

which implies that there are many interesting consequences of the V aR repre-
sentation above, because several problems involving V aR may be solved with
the help of the CV aR properties. Some of these consequences have been pointed
out in this paper. In particular, optimization problems involving V aR and/or
probabilistic constraints always have an equivalent di¤erentiable optimization
problem, and this allows us to provide V aR−linked (or probabilistic constraints-
linked) optimization problems with Karush-Kuhn-Tucker-like and Fritz John-
like necessary optimality conditions, despite the fact that V aR is neither contin-
uous nor di¤erentiable. Furthermore, under appropriate (but general) assump-
tions, a second order di¤erential equation also relates V aR and CV aR, and
this enables us to establish new methods in risk and marginal risk estimates.
Practical illustrative examples have been presented.
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