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Abstract

In the context of Dynamic Factor Models, factors are unobserved latent variables of interest.

One of the most popular procedures for the factor extraction is Principal Components (PC).

Measuring the uncertainty associated to factor estimates should be part of interpreting these

estimates. Several procedures have been proposed in the context of PC factor extraction to

estimate this uncertainty. In this paper, we show that these methods are not adequate when

implemented to measure the uncertainty associated to the factor estimation. We propose an

alternative procedure and analyze its �nite sample properties. The results are illustrated in

the context of extracting the common factors of a large system of macroeconomic variables.

Keywords: Dynamic Factor Models, Principal Components, Extraction uncertainty, Boot-

strap.

1 Introduction

Currently, large systems of macroeconomic variables are easily accessible. Thus, the reduction of

the dimension and the consequent extraction of the underlying factors are important issues for

econometricians and policy decision makers. In this context, the Dynamic Factor Models (DFMs),

originally introduced by Geweke (1977) and Sargent and Sims (1977), have received a lot of atten-

tion; see Breitung and Eickmeier (2006), Bai and Ng (2008), Stock and Watson (2011), Breitung and

Choi (2013) and Bai and Wang (2016) for excellent surveys on DFMs. The main goal of DFMs is to

explain the dynamics of the system using a reduced number of unobservable common factors, which

determine the dynamics of the macroeconomic variables. The estimated latent factors are useful

∗We gratefully acknowledge the �nancial support from the Spanish Government, contract grant ECO2015-70331-

C2-2-R.
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instruments for a wide range of applications: i) to represent economic cycles, trends and structural

shocks; see Diebold and Rudebush (1996), Forni and Reichlin (1998), Kose et al. (2008), Arouba et

al. (2012), Camacho et al. (2012) and Breitung and Eickmeier (2016) among others; ii) to serve as

instrumental variables; see Favero et al. (2005), Bai and Ng (2010) and Kapetanios and Marcellino

(2010); iii) as regressors for the construction of Factor-Augmented Vector Autorregresive models

(FAVAR) or Factor-augmented Error Correction models (FECM); see, for example, Bernanke et al.

(2005), Banerjee et al. (2014), Abbate et al. (2016) and Bai et al. (2016) or iv) in the context of

factor-augmented predictive regressions, to improve the forecasting of the objective variable; see,

for example, Stock and Watson (1999, 2002a, 2002b and 2006), Marcellino et al. (2003), Bernanke

and Boivin (2003), Boivin and Ng (2005), Banerjee et al. (2008) and, more recently, Ando and Tsay

(2014) and Bräuning and Koopman (2014). Several methods have been proposed in the literature

for factor extraction. The most popular procedures for large data sets are still based on Principal

Components (PC) techniques; see, for example, Ludvigson and Ng (2007, 2009, 2010), Ando and

Tsay (2014), Gonçalves and Perron (2014) and Djogbenov et al (2015) for recent references. The

factors correspond to the �rst few principal components (arranged in decreasing order by their

eigenvalues) of the entire system of variables; see, for example, Stock and Watson (2002a) for an

excellent discussion on PC factor extraction. Consequently, PC factor extraction is computation-

ally simple and allows dealing with very large systems. However, it is crucial to obtain not only

accurate point estimates of the latent factors, but also of their associated uncertainty. Bai (2003)

remarks the importance of constructing con�dence intervals of the extracted factors in empirical

applications in which these represent economic indices. While Bai and Ng (2006) argue about the

importance of measuring correctly the uncertainty of the factor extraction in FAVAR models. More

recently, Jackson et al. (2016) argue that measures of factor uncertainty should always accompany

applied work in order to establish the statistical legitimacy of the results.

The asymptotic distribution of the factors extracted using PC is derived by Bai (2003) assuming

weak dependence in the idiosyncratic term while Bai and Ng (2006) deal with the asymptotic

distribution of the OLS estimator of a factor-augmented predictive regression model and propose

three di�erent estimators of the asymptotic covariance matrix of the factors depending on the

structure of the errors. More recently, Bai and Ng (2013) derive the limiting distribution of the

factors and its corresponding covariance matrix estimation for di�erent identi�cation restrictions.

However, results on the performance of the asymptotic distribution to approximate the �nite sample
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distribution of the estimated factors are scarce. As far as we are concerned, only Poncela and

Ruiz (2016) show that PC intervals based on the asymptotic distribution could underestimate

the uncertainty of the extracted factors 1. Alternatively, the �nite sample distribution of the

estimated factors can be obtained using resampling procedures that incorporate the parameter

uncertainty. Several authors propose using bootstrap in the context of DFMs with other objectives

than obtaining the distribution of the underlying factors. For example, Yamamoto (2012) obtains

bootstrap bands for impulse response functions in the context of FAVAR models. Ludvigson and

Ng (2007,2009 and 2010), Gospodinov and Ng (2013), Gonçalves and Perron (2014), Djogbenou

et al. (2015) and Jackson et al. (2016) implement bootstrap procedures to carry out inference on

the OLS estimator of the parameters of factor-augemented predictive regression models 2. More

recently, Shintani and Guo (2015) also propose using bootstrap to test about the autoregressive

parameter governing the dependence of the latent factor.

This paper has three main contributions. First, we provide extensive Monte Carlo experiments

in order to asses the conditions under which the asymptotic distribution of the factors extracted

using PC is a good approximation of the �nite sample distribution. In concordance with the results

in Poncela and Ruiz (2016), we show that in a wide range of scenarios, the asymptotic con�dence

intervals of the estimated factors are unrealistically tiny. The second contribution is to analyze

the performance of the available bootstrap methods when implemented to obtain con�dence bands

of the PC extracted factors. We show that these methods either obtain the marginal distribution

of the factors and, consequently, the corresponding intervals are too wide as to be informative or

they are based on independent extractions and, therefore, they are not appropriate to represent

the dynamic of the factors. The third contribution of this paper is to propose a new bootstrap

procedure designed to construct conditional con�dence bands for the estimated factors that take

into account the dynamic dependence in the system. The �nite sample performance of the proposed

procedure is analyzed.

The rest of the paper is organized as follow. Section 2 describes the PC factor extraction

procedure and its asymptotic distribution. Monte Carlo experiments are carried out to asses the

1In the context of inference for the OLS estimator of the parameters of factor-augmented predictive regression

models, Gonçalves and Perron (2014) show that the �nite sample properties of the asymptotic approach of Bai and

Ng (2006) can be poor, especially if N is not su�ciently large relative to T
2The procedure proposed by Corradi and Swanson (2014) does not allow to obtain bootstrap intervals for the

estimated factors and is not considered further in this paper
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adequacy of the asymptotic distribution to approximate the �nite sample distribution of the factors.

Section 3 describes available bootstrap procedures proposed for DFM and analyzes their �nite

sample performance. In Section 4, the new resampling procedure is proposed and its �nite sample

performance analyzed. Section 5 illustrates the results with an empirical application. Section 6

concludes.

2 Factor extraction

In this section, we describe the DFM considered in this paper and introduce notation. We also

describe the asymptotic properties of the PC factor extraction procedure. Finally, we carry out

Monte Carlo experiments to asses the adequacy of the asymptotic distribution to approximate the

�nite sample distribution of the extracted factors.

2.1 The Dynamic Factor Model

We consider the following DFM in which the latent factors and the idiosyncratic components are

VAR(1) processes

Yt = PFt + εt, (1)

Ft = ΦFt−1 + ηt, (2)

εt = Γεt−1 + at (3)

where Yt = (y1t, ..., yNt)
′ is the N × 1 vector of observed variables at time t for t = 1, ..., T , P is the

N × r matrix of factor loadings, Ft = (f1t, ..., frt)
′ is the r × 1 matrix of unobservable factors and

εt = (ε1t, ..., εNt)
′ is the N × 1 vector of idiosyncratic noises. The disturbances ηt = (η1t, ..., ηrt)

′

and at = (a1t, ..., aNt)
′ are mutually independent Gaussian white noise vectors with �nite covariance

matrices Ση and Σa respectively. The matrices Φ and Γ are diagonal with their parameters restricted

so that Yt is stationary. The number of factors, r, is assumed to be known and �xed as the cross-

sectional and temporal dimensions, N and T , respectively, grow.

The DFM in equations (1) to (3) has been frequently used in the related literature; see, for

example, Jungbacker and Koopman (2015) and Alvarez et al. (2016) for recent references.

Next, we describe the PC procedure to extract the factors in DFMs.
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2.2 Principal Components Factor Extraction

The factor extraction PC procedure is very popular because of its computational simplicity even

in large data sets. The r × T matrix of extracted factors F̂ = (F̂1, ..., F̂t) is given by
√
T times

the eigenvectors corresponding to the largest eigenvalues of the T × T matrix Y ′Y where Y =

(Y1, ..., YT ). The estimated factor loadings matrix, P̂ , is estimated by P̂ = Y F̂ ′

T . This method only

identi�es the rotation of the factors and their loadings. For a unique identi�cation of the factors, a

normalization as, for example, F
′F
T = Ir is imposed; see Bai and Ng (2013) for a extensive discussion

on identi�cation issues. Connor and Korajczyk (1986) prove consistency for the PC factors when

N goes to in�nity and T is �xed. Stock and Watson (2002a) show that the space spanned by the

estimated factors is consistent when both N and T tend simultaneously to in�nity if the serial and

cross-sectional correlations of the idiosyncratic noises are weak and the factors are pervasive. Bai

(2003) shows that, for a consistent extraction of the factors in the case of large N but �xed T, it is

necessary to assume asymptotic orthogonality and homoscedasticity of the idiosyncratic term. Only

under large N and T , Bai (2003) establishes consistency in the presence of serial correlation and

heteroscedasticity. Furthermore, if
√
N
T → 0, Bai (2003) derives the following limiting distribution

assuming that the eigenvalues of the covariance matrix of the factors and loadings are distinct:

√
N(F̂t −H ′Ft)

d−→ N(0,Πt) (4)

where H is an invertible matrix such that F̂t is an estimator of H ′Ft. It is important to note that

F̂t is estimating a rotation of Ft. The asymptotic covariance matrix and therefore, the con�dence

bands, are constructed for this rotation and not for Ft. Bai and Ng (2006) propose the three fol-

lowing estimators of the covariance matrix, Πt, depending on the underlying assumptions regarding

the idiosyncratic noises:

1. Cross-sectionally uncorrelated but heteroscedastic noises:

Π̂t = V̂ −1

(
1

N

N∑
i=1

p̂i.p̂
′

i.ε̂
2
it

)
V̂ −1, (5)

where V̂ is the r x r diagonal matrix of the �rst r eigenvalues of Y Y ′/(TN) arranged in decreasing

order, p̂i. is the i − th row of the factor loading matrix P̂ and the residuals are given by ε̂it =

Yit − p̂
′

i.F̂t.
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2. Cross-sectionally uncorrelated and homoscedastic noises:

Π̂t = V̂ −1

(
σ̂2
ε

1

N

N∑
i=1

p̂
′

i.p̂i.

)
V̂ −1, (6)

where, according to Bai and Ng (2008), σ̂2
ε = 1

NT−r(T+N−r)
∑N
i=1

∑T
t=1 ε̂

2
it.

3. Cross-sectionally correlated noises:

Π̂t = V̂ −1

 1

N

N∑
i=1

N∑
j=1

p̂
′

i.p̂j.
1

T

T∑
t=1

ε̂itε̂jt

 V̂ −1. (7)

Bai and Ng (2006) propose estimating the asymptotic covariance matrix of the factors using ex-

pression (5) regardless of the properties of the idiosyncratic noises. They argue that, if the cross

correlation in the errors is small, assuming that they are zero could be convenient because the

sampling variability from their estimation could cause an e�ciency loss.

2.3 Finite sample distribution of factors

We carry out Monte Carlo experiments to analyze the adequacy of the asymptotic distribution

of the PC factors to approximate their �nite sample distribution and, consequently, to construct

con�dence bands. The Monte Carlo experiments are performed using DFM of increasing com-

plexity. The �rst model is the ubiquitous single factor model with temporal and cross-sectionally

independent idiosyncratic errors. Then, we consider the same model in which the idiosyncratic

term is either cross-correlated, temporally dependent or heteroscedastic. The data generating

process (DGP) is given by the DFM in equations (1)-(3) with N = 50, 100, 200 and 1000, and

T = 50, 100, 200 and 1000. The number of the Monte Carlo replications is R = 500. Consider the

�rst DGP given by the DFM in equations (1) to (3) in which r = 1 and the idiosyncratic noises

are homoscedastic and cross-sectionally uncorrelated white noises. The matrix of factor loadings,

P , is generated once from a uniform distribution in [0,1] with
∑50
i=1 p

2
i = 15.85,

∑100
i=1 p

2
i = 32.12,∑200

i=1 p
2
i = 65.56 and

∑1000
i=1 p2

i = 331.04 for N = 50, 100, 200 and 1000 respectively. In order to

analyze the e�ect of the temporal dependence of the factor on its accuracy, we consider several

values of the autorregresive parameter of the factor, Φ = 0.2, 0.5 and 0.9. In each case, the noise

in equation (2), ηt, has variance such that V ar (Ft) = 1. The covariance of the idiosyncratic noises

is given by Σa = q−1I. Given that V ar (Ft) = 1, the signal to noise ratio is given by q = V ar(Ft)
V ar(εt)

.

Breitung and Eickmeier (2016) point out that the accuracy of factor estimates can depend on the
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signal to noise ratio. Consequently, in our Monte Carlo experiments, we consider several values of

q, namely q = 5, 3, 2, 1, 0.5, 0.3 and 0.2.

For each Monte Carlo replicate, i = 1, ..., R, we compute i) the Root Mean Squared Er-

ror of the factor computed as RMSE(i) =

√
1
T

∑T
t=1

(
F

(i)
t − F̂

(i)
t

)2

, ii) the Asymptotic Root

Mean Squared Error computed as RMSEA(i) =
√

1
T

∑T
t=1

Π̂
(i)
t /N, and iii) the empirical cov-

erages computed as C(i) = 1
T

∑T
t=1 I

(
F

(i)
t ∈ CI

(i)
t

)
where I(·) is the indicator function and

CI
(i)
t =

[
F̂

(i)
t ± zα/2

√
Π̂

(i)
t /N

]
with zα/2 being the α/2 quantile of a standard normal distribu-

tion. Table 1 reports the Monte Carlo averages of these measures for di�erent temporal and cross-

sectional dimensions. Observe that, regardless the sample dimensions, N and T , the signal to noise

ratio, q, and the serial dependence of the factor, Φ, the RMSEA underestimates the sample RMSE

producing coverages well below the nominal. Furthermore, the sample RMSE increases with Φ

while the asymptotic RMSEA is stable, leading to larger undercoverages as the persistence of the

factor increases. For example, when q = 5, Φ = 0.8, T = 100 and N = 1000, the sample coverage

is 44% when the nominal is 95%.

In addition, as N increases with a �xed T , both the RMSE and RMSEA decrease. However,

the RMSEA does it at a much faster rate, leading to tiny coverages when T = 100 and N = 1000.

On the other hand, when N remains �xed as T increases, the RMSE reduces again but the RMSEA

remains stable. This causes an improvement in the coverages, as expected since
√
N
T → 0 as assumed

by Bai (2003) when deriving the asymptotic distribution.

In order to have a better understanding of the �nite sample properties of the PC estimator when

data has a more realistic structure, we also generate the idiosyncratic errors by equation (3) with

Γ = γIN and γ = 0.2, 0.5 and 0.8. When γ = 0, cross-sectionally correlated errors and cross-section

heteroscedastic errors are also generated such that Σe is a Toeplitz matrix with parameter 0.5 and

Σa = diag
[
σ2
aU (a, b)

]
, respectively. When the errors are heteroscedastic, σ2

a = 0.1, 1, 2 and 10,

a = 0.1, 0.5 and 0.9 and b = 2, 1.5 and 1.1.

Table 2 provides the Monte Carlo averages when there is serial or cross-sectional dependence

in the idiosyncratic term (γ = 0.5) and also in the presence of cross-sectional heteroscedasticity.

When the factors are dominant, the signal to noise ratio is large (q=5), introducing temporal

dependence in the idiosyncratic noise does not a�ect the RMSE and only has a marginal e�ect

on the coverages. However, in all other cases, the RMSE increase considerably while the RMSEA
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remains almost stable. Consequently, the e�ect of introducing serial correlation in the idiosyncratic

term will be dramatic with extremely low sample coverages. Furthermore, as N increases, the

coverages decrease. This is consistent with Bai (2003) who point out that for a �xed T, it is not

possible to obtain a consistent estimation in presence of serial correlation.

Something similar occurs when there is cross-correlation. If q is not large, q = 0.2, the e�ect

of introducing correlation is remarkable. This is also consistent with Boivin and Ng (2006) who

argue that more data is not always desirable when q is not large and the errors are cross-correlated.

Results when the idiosyncratic terms are heteroscedastic are quite similar to the cross-correlation

scenario.3

3 Extant bootstrap procedures for PC factors

Several authors propose implementing resampling techniques in order to construct con�dence in-

tervals in the context of PC; see, for example, Beran and Srivastra (1985), Stau�er et al. (1985),

Timmerman et al. (2007), Babamoradi et al. (2013), Van Aelst et al. (2013) and Fisher et al.

(2015). However, these procedures assume iid observations and, consequently, they are not ap-

propiate for DFM. In recent years, several resampling methods have been proposed in the context

of DFMs with other objectives than constructing con�dence bands for the extracted factors. These

procedures allow the construction of bootstrap bands of the factors as a subproduct. In this section,

we describe these extant resampling algorithms and carry out Monte Carlo experiments to assess

their adequacy to construct con�dence bands for the extracted PC factors. The extant algorithms

can be classi�ed into two main classes: i) Block bootstrap algorithms and ii) residual algorithms.

3.1 Block bootstrap algorithms

Gospodinov and Ng (2013) propose a moving block bootstrap of the original vector of observations.

The algorithm adapted to obtain the bootstrap distribution of the factors is as follows:

1. Denote by Bt,m = (Yt, Yt+1, ..., Yt+m−1) a block of m (1 ≤ m < T ) consecutive observations

of Yt. Obtain bootstrap replicates of Y
∗(b)
t drawing with replacement K = T/m blocks from

(B1,m, B2,m, ..., BT−m+1,m).

3Results for di�erent sample sizes and di�erent idiosyncratic structures are available from the authors from request.

8



2. Using Y ∗t
(b), obtain PC estimates F̂ ∗t

(b)
.

3. Repeat steps 1 and 2 for b = 1, ..., B.

The block size m is allow to grow but in a slower rate than T.4 Denote by Ĝ∗Ft(x) the empirical

distribution of F̂
(b)
t given by

Ĝ∗Ft (x) = #
(
F̂∗t

(b)≤x
)
/B. (8)

Then, (1− α) % con�dence bands for the extracted factors can be constructed as(
q∗α/2, q

∗
1−α/2

)
(9)

where q∗α/2 and q
∗
1−α/2 are the

α/2 and 1−α/2 empirical quantiles of Ĝ∗Ft (x) respectively. Alternatively,

it is possible to compute the bootstrap RMSE, as follows

RMSEB =

√√√√ 1

B

B∑
b=1

(
F̂ ∗t

(b)
− 1

B

B∑
b=1

F̂ ∗t
(b)

)2

(10)

Then assuming normality of the factors the (1− α)% con�dence intervals are given by

F̂t ± Zα/2RMSEB (11)

It is important to note that the con�dence bands constructed as in (9) are marginal. Obtaining the

marginal distribution of the factors could be appropriate in the context of carrying out inference

on the parameter estimates of the factor-augmented regression model as it is the objective of

Gospodinov and Ng(2013). However, they are not appropriate for the extracted factors because

the marginal bands are not informative. As a illustration, the second row of Figure 1 plots a factor

generated by the DFM described in the previous section with r = 1 and white noise and cross-

sectionally uncorrelated and homoscedastic idiosyncratic errors. The bands are constructed as in

expressions (9) and (11) with B = 1000 bootstrap replicates; see Gonçalves and Perron (2014) who

consider B = 399 while Ludvigson and Ng (2007, 2009, 2010) consider B = 1000. Therefore, we

expect the corresponding bands to be too wide having coverages well above the nominal.

4Gospodinov and Ng (2013) consider m = 4 for forecasting purposes. The authors obtain similar results for other

block sizes while m ∈ [4, 24].
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3.2 Residual bootstrap algorithms

There are two main algorithms proposed in the literature. First, Gonçalves and Perron (2014)

propose a residual-based bootstrap for inference about the OLS estimator in a factor-augmented

predictive regression model. The algorithm to obtain bootstrap replicates of the factors is as follows:

5

1. Estimate P̂ and F̂t using PC. Obtain the residuals ε̂t = Yt−P̂ F̂t and its empirical distribution

Ĝε.

2. Obtain the bootstrap replicates of Yt as follows

Y ∗t
(b) = P̂ F̂t + ε∗t

(b) (12)

where ε∗t are random extractions from Ĝε.

3. Using Y ∗t
(b), obtain PC estimates of the factors, F̂ ∗t

(b)
.

4. Repeat steps 2 and 3 for b = 1, ..., B.

The bootstrap replicates of Yt obtained as in equation (12) are centered in the estimated common

factor P̂ F̂t and incorporate uncertainty about the idiosyncratic noise. However, they do not add the

uncertainty associated with the estimation of the common factor. As a consequence, the con�dence

bans are conditional but narrower than they should be. This procedure has also been proposed by

Ludvigson and Ng (2007, 2009, 2010). The third row of Figure 1 illustrates this procedure with the

same factor as used for the Gospodinov and Ng (2013) algorithm.

The second residual bootstrap in the literature is due to Yamamoto (2002). This procedure is a

residual-based bootstrap intended to carry out inference for impulse response functions in structural

FAVARs models. The algorithm adapted to measure the uncertainty of the factor extraction is as

follow:

1. Estimate P̂ and F̂t using PC. Regress F̂t on F̂t−1 and estimate Φ̂ by Least Squares (LS).

Obtain the corresponding residuals ût = F̂t − Φ̂F̂t−1 and ε̂t = Yt − P̂ F̂t
6. Obtain the

empirical distribution functions Ĝu and Ĝε of the centered residuals ût and ε̂t, respectively.

5Gonçalves and Perron (2014) propose a wild bootstrap algorithm to obtain replicates of ε∗t
(b)

6Note that this procedure is similar to the �rst step of the factor extraction procedure proposed by Doz et al.

(2011).
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2. For t = 2, ..., T , obtain bootstrap replicates of Yt that mimic the dynamic characteristics of

the original system as follows

F ∗t
(b) = Φ̂F ∗t−1

(b) + u∗t
(b) (13)

Y ∗t
(b) = P̂F ∗t

(b) + ε∗t
(b) (14)

where F ∗1
(b) = F̂1 and η∗t and ε∗t are random extractions from Ĝη and Ĝε respectively.

3. Using Y ∗t
(b), obtain PC estimates of the factors, F̂ ∗t

(b)
.

4. Repeat steps 2 and 3 for b = 1, ..., B.

The bands constructed using this procedure are either marginal or based on the marginal RMSE

as, at each moment of time, they are based on bootstrap replicates of the factors which are not

based on the available information set. Therefore, we expect a similar behaviour as that of the

bands constructed using Gospodinov and Ng (2013) algorithm; see the fourth row of Figure 1.

Shintani and Guo (2015) propose a slight modi�cation of the above algorithm in order to ap-

proximate the distribution of Φ̂. Next we describe the procedure when implemented to obtain

bootstrap replicates of the factors7:

1. Estimate P̂ and F̂t using PC. Regress F̂t on F̂t−1 and estimate Φ̂ by Least Squares (LS).

Obtain the corresponding residuals η̂t = F̂t − Φ̂F̂t−1 and ε̂t = Yt − P̂ F̂t . Denote Ĝη the

empirical bootstrap distribution of the centered residuals η̂t.

2. Obtain bootstrap replicates of the factor F
∗(b)
t = Φ̂F

∗(b)
t−1 + η

∗(b)
t where η∗t are random extrac-

tions with replacement from Ĝη.

3. Obtain bootstrap replicates of Yt with y
∗(b)
1t = p̂

∗(b)
1r f̂

′∗(b)
tr + ε

∗(b)
1t by drawing pairs

(
p̂
∗(b)
1r , ε

∗(b)
1t

)
from

(
p̂
∗(b)
ir , ε

∗(b)
it

)
. Repeat the same procedure N times to generate all y

∗(b)
it for i = 1, ..., N .

4. Apply PC to Y
∗(b)
t and extract the factors F̂

∗(b)
t .

5. Repeat steps 2 and 3 for b = 1, ..., B.

7The authors describe the procedure for r = 1 factors.
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As explained before, the con�dence bands of the extracted factors can also be constructed using

the corresponding percentiles of Ĝ∗Ft (x) or with Gaussian approximations. It is important to point

out that the con�dence bands are also marginal as they are based on bootstrap replicates of the

factors generated as in (13). As a consequence, we expect these bands to be wider than if the

conditional bands were obtained. 8

3.3 Finite sample performance

We carry out Monte Carlo experiments to analyze the �nite sample performance of the resampling

methods described in the previous subsection. The design is the same as that considered in subsec-

tion 2.3. The reported coverages are the corresponding ones to the con�dence bands constructed

using the appropriate percentile of the bootstrap distribution of the extracted factors or through

the Gaussian approximation.

Tables 3, 4 and 5 report Monte Carlo averages of the resampling procedures based on Gospodinov

and Ng(2013), Yamamoto (2012) and of the second procedure proposed by Shintani and Guo

(2015) respectively. As already pointed out, with these procedures the marginal distributions of

the extracted factors are obtained. Consequently, in these three tables and for all models considered,

the RMSEB are very close to one, the true value of the marginal variance. Thus, the coverages

when the con�dence bands are computed with Gaussian approximations are almost always 100%.

However, since both procedures are designed to obtain the uncertainty associated with the marginal

distribution, the quantile con�dence bands are parallel and uninformative lines that do not re�ect

any kind of temporal dynamic. This leads to coverages below 100% in both cases.

Table 6 reports the Monte Carlo averages corresponding to the Gonçalves and Perron (2014)

bootstrap procedure. Comparing the results in table 7 with those reported in table 2 corresponding

to the asymptotic intervals, we can observe that, if the signal to noise ratio, q, is large, the average

coverages obtained using the asymptotic approximation and the bootstrap procedure are pretty

similar and bellow the nominal coverage. When q is small, the bootstrap gets a considerable

underestimation of the uncertainty, leading to tiny coverages. Recall that the procedure proposed

by Gonçalves and Perron (2014) only consider the idiosyncratic uncertainty and does not incorporate

the estimation one and, therefore, the RMSEB is smaller than the empirical RMSE specially when

8The �rst algorithm proposed by Shintani and Guo (2015) is valid under the assumption of independence of Yt

given that the cross-sectional dimension is being bootstrapped.
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the idiosyncratic term is not relevant.

Therefore, we can conclude that none of the bootstrap procedures already proposed in the

context of PC factor extraction in DFM, are valid to measure the uncertainty of the factor, However,

it is important to mention that none of these methods was designed with this purpose.

4 New Procedure

In this section, we propose a new resampling strategy to measure uncertainty and to construct

con�dence bands for PC factors extraction which takes into account the speci�c problem at hand.

4.1 Bootstrap Procedure

The proposed procedure builds on ideas of Pascual et al.(2004) to obtain conditional densities of

the unobserved factors that incorporates the estimation uncertainty. The algorithm is as follows:

1. Estimate P̂ and F̂t using PC. Regress F̂t on F̂t−1 and estimate Φ̂ by Least Squares (LS).

Obtain the corresponding residuals η̂t = F̂t − Φ̂F̂t−1 and ε̂it = Yit − P̂irF̂rt for i = 1 to N .

Denote Ĝη and Ĝε the empirical distribution functions of η̂t and ε̂it, respectively.

2. For t = 1, ..., T obtain bootstrap replicates F ∗t = Φ̂F ∗t−1 + û∗t and Y
∗
t = P̂F ∗t + ε∗t , being û

∗
t

random extractions with replacement from the empirical distribution functions of ût and ε
∗
t

are random extractions with replacement from Ĝε. Based on Pascual et al. (2004) obtain Φ̂∗

and P̂ ∗.

3. Obtain bootstrap replicates of Yt that mimic the dynamic of the original system as follows:

F
∗(b)
t = Φ̂∗(b)F̂t−1 + η̂t (15)

Y ∗t
(b) = P̂ ∗(b)F ∗t

(b) + ε∗t
(b) (16)

4. Using Y ∗t
(b), obtain PC estimates F̂ ∗t

(b)
.

5. Repeat steps 2,3 and 4 for b = 1, ..., B.

It is important to note that the pseudo-factors F̂ ∗t have to be normalized for identi�cation purposes.

The con�dence bands are constructed as in equations (9) and (11) for r = 1 extracted factors.
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4.2 Finite Sample Performance

We also carry out extensive Monte Carlo experiments to analyze the �nite sample performance of

the new bootstrap procedure introduced in the previous section. The structure of the experiment

is the same as the one considered in sections 2.3 and 3.3. The RMSE, the RMSEB computed as

in equation (10) are reported. In the same way, the coverages related to the con�dence bands

constructed using the appropriate percentile of the bootstrap distribution of the extracted factors

or through Gaussian approximation are also presented.

In order to have a broad view of the �nite sample performance of this new procedure, we present

its behavior in scenarios of di�erent nature. Table 7 shows the results for a wide range of signal to

noise ratios. Table 8 reports the performance of the proposed procedure for di�erent sample sizes

and, �nally, the outcomes for di�erent structures in the idiosyncratic term are presented in Table

9.

It is noticeable that, for all the signal to noise ratios, the new algorithm measures considerably

well the uncertainty associated with the factor extraction. The RMSEB and RMSE are almost

identical in almost all cases and the coverages are very close to the nominal ones. The averages of

the RMSE and the RMSEB of the new procedure are equal; 0.18, with a mean coverage of 0.92.

Although it is very close to the nominal, this small di�erence could be a sign of non-gaussianity in

the behavior of the factors extracted by PC or of correlation between residuals and the idiosyncratic

term. If the results of the proposed procedure are compared to the asymptotic approach for the

same signal to noise ratios, it can also be seen that the average of the RMSEA is 0.14 instead of

0.18, well bellow the real one, and the mean coverage is 0.83 instead of 0.92.

Moreover, looking the results reported in Table 7, the bootstrap algorithm leads to almost the

same results no matter the sample size. The averages of the RMSE and the RMSEB of the new

procedure for the di�erent sample sizes that appear in Table 7 are equal; 0.21, with a mean coverage

of 0.91. However, the average of the RMSEA for the same sample sizes is 0.13 with a mean coverage

of 0.77. Once again the new procedure outperform the asymptotic approach.

In addition, regardless the idiosyncratic structures associated with the data, the resampling

procedure behaves also properly. Only when the signal to noise ratio is small and the there is

serial dependence in the idiosyncratic term, the coverages are considerably bellow the nominal.

The averages of the RMSE and the RMSEB of the new procedure for the di�erent idiosyncratic
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structures are also equal; 0.18, with a mean coverage of 0.91. However, the average of the RMSEA

for the same structures is 0.15 with a mean coverage of 0.82. Again, the �nite sample performance

of the algorithm proposed is better than the asymptotic one.

Therefore, the new procedure outperform considerably the asymptotic approach, measuring

better the uncertainty in all the cases. Only when there is a strong serial dependence in the factors

or in the idiosyncratic term, the results of the new procedure worsen. Nevertheless, the results

are still considerably better than those obtained for the asymptotic covariance matrix. This small

inconvenience is probably due to the correlation between residual and the idiosyncratic components

when the scenarios are close to non-stationarity.

5 Empirical Analysis

In this section, we exemplify the importance of a proper measurement of the uncertainty associated

with the factors extracted by PC. For this purpose we analyze the quarterly series belonging to the

database of the Treasury Department of Spain, which consists of a panel of 75 Spanish macroeco-

nomic variables observed quarterly from the �rst quarter of 1980 to the last of 2014. The variables

have been seasonally adjusted and converted to stationary. Moreover, they have been standardized

to have zero mean and unite variance. Therefore, the total panel of data consists of N=75 vari-

ables and T=140 observations. We start the analysis estimating the number of factors to extract.

More specially, we consider the information criteria of Bai and Ng (2002), the edge distribution of

Onatski (2010) and the ratios of eigenvalues proposed by Ahn and Horenstein (2013). The number

of factors to compute is one. The factors are extracted by PC and the con�dence intervals are

constructed following the procedures described above. The sum of the weights is
∑N
i=1 pi = 12.21

with estimated weights larger than 0.8 in absolute value corresponding to: Gross capital formation,

capital stock, imports, unemployment rate, rest of the word clients' GDP, total resources of pub-

lic administrations. Φ̂ = 0.7, σ̂2
a = [−0.93, 0.86] with the mode around 0, and serial dependence

γ̂ = [−0.74, 0.97] distributed uniformly in this interval. Figure 2 plots the results of this analysis. It

can be observed that the asymptotic con�dence intervals are considerably narrower than the ones

constructed following the procedure proposed in the previous section. The amplitude of the asymp-

totic con�dence intervals correspond only to a 62% of the proposed amplitude of the intervals.

Moreover, the 95% asymptotic con�dence intervals are almost equivalent to the 75% con�dence
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intervals constructed using our procedure which, through an intense Monte Carlo experiment, has

proven to be a better approach for measuring the uncertainty of factor extraction with PC in this

kind of scenario. In other words, it is important to point out the importance of measuring the

uncertainty of the factors correctly. If practitioners and policy decision makers use the asymptotic

covariance matrix for measuring the uncertainty or for constructing con�dence bands for the latent

factors, could lead to a wrong interpretation of the economic reality -cycles and recessions- and to

an incorrect density forecast in the context of di�usion indexes.

6 Conclusions

This paper explores di�erent methods for improving the computation of the uncertainty associated

to factor extraction using PC in DFM. By means of an intense Monte Carlo exercise, the �nite

sample performance of the asymptotic covariance matrix proposed by Bai and Ng (2006) is in-

vestigated, we see that this estimation underestimates the uncertainty of the PC factors, causing

narrower gaussian con�dence bands than desired. Moreover, it has been shown that the existing

resampling procedures in the context of PC in DFM are not capable of measuring the uncertainty

associated to the factor extraction correctly. Partly because some of them compute the marginal

variance instead of the conditional one, or because they do not take into account the parameter

uncertainty of the DFM. Finally, a bootstrap algorithm to compute the uncertainty of PC factors

and to construct con�dence intervals is presented. This algorithm has proven to have a better

�nite sample performance than the existing methods for a wide range of scenarios of very di�erent

nature. Many topics remain to be developed. First of all, it is desirable to expand the algorithm

for the cases in which more than one factor is extracted and also, it is necessary to improve the

performance of the procedure when strong serial dependence exists both in the factors and in the

idiosyncratic term. A second interesting area of research would be to study the importance of a

correct measurement of the factor extraction uncertainty in density forecast using di�usion indexes

and, moreover, to study the e�ect of a non-Gaussian idiosyncratic term. Another important exten-

sion would be to apply the procedure to empirical cases with the objective of constructing a stress

indicator and warning signals for economic recessions.
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Table 1: Monte Carlo results of the asymptotic approximation when the idiosyncratic component is

homoscedastic and serial and cross-sectionally uncorrelated.

T=50; N=100 T=50; N=200

q Φ RMSE RMSEA 95% RMSE RMSEA 95%

5 0.2 0.13 0.08 0.79 0.11 0.05 0.73

5 0.5 0.15 0.08 0.77 0.13 0.05 0.68

5 0.8 0.19 0.08 0.65 0.18 0.06 0.58

1 0.2 0.19 0.16 0.88 0.18 0.12 0.85

1 0.5 0.23 0.16 0.86 0.18 0.12 0.83

1 0.8 0.26 0.18 0.83 0.22 0.12 0.75

0.2 0.2 0.44 0.32 0.82 0.33 0.24 0.83

0.2 0.5 0.46 0.32 0.82 0.37 0.25 0.81

0.2 0.8 0.49 0.33 0.79 0.36 0.23 0.79

T=100; N=200 T=100; N=1000

q Φ RMSE RMSEA 95% RMSE RMSEA 95%

5 0.2 0.08 0.05 0.79 0.06 0.02 0.63

5 0.5 0.10 0.05 0.76 0.08 0.03 0.58

5 0.8 0.13 0.05 0.63 0.12 0.03 0.44

1 0.2 0.13 0.11 0.89 0.09 0.05 0.78

1 0.5 0.15 0.12 0.88 0.10 0.05 0.75

1 0.8 0.18 0.12 0.82 0.13 0.05 0.66

0.2 0.2 0.30 0.25 0.89 0.15 0.11 0.87

0.2 0.5 0.29 0.24 0.89 0.15 0.11 0.85

0.2 0.8 0.33 0.25 0.87 0.19 0.12 0.78
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Table 2: Monte Carlo results of the asymptotic approximation for di�erent idiosyncratic structures

with T=100 and N=200.

Independecy Serial Dependency

q Φ RMSE RMSEA 95% RMSE RMSEA 95%

5 0.2 0.08 0.05 0.80 0.10 0.05 0.78

5 0.5 0.10 0.05 0.75 0.10 0.06 0.76

5 0.8 0.14 0.06 0.65 0.14 0.06 0.65

1 0.2 0.14 0.12 0.90 0.15 0.12 0.88

1 0.5 0.15 0.12 0.87 0.15 0.12 0.86

1 0.8 0.18 0.13 0.84 0.18 0.12 0.80

0.2 0.2 0.29 0.25 0.89 0.38 0.25 0.79

0.2 0.5 0.30 0.25 0.89 0.34 0.23 0.80

0.2 0.8 0.32 0.25 0.87 0.36 0.23 0.80

Heteroscedasticity Cross-section Dependency

q Φ RMSE RMSEA 95% RMSE RMSEA 95%

5 0.2 0.10 0.06 0.80 0.08 0.05 0.79

5 0.5 0.10 0.06 0.75 0.10 0.05 0.75

5 0.8 0.14 0.05 0.62 0.14 0.06 0.65

1 0.2 0.15 0.13 0.89 0.15 0.12 0.87

1 0.5 0.15 0.12 0.87 0.16 0.12 0.84

1 0.8 0.19 0.13 0.82 0.19 0.13 0.82

0.2 0.2 0.32 0.25 0.87 - - -

0.2 0.5 0.33 0.26 0.86 - - -

0.2 0.8 0.35 0.26 0.84 - - -

Note: When the signal to noise ratio is small (q=0.2),

the covariance matrix of the data is not positive de�nite.
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Table 3: Finite sample performance of the marginal block bootstrap in a DFM with T=100 and

N=200 and idiosyncratic noises with di�erent properties; a) homoscedastic and serial and cross-

sectionally uncorrelated; b) serially dependent; c) heteroscedastic amd d)cross-sectionally dependent.

Independency Serial Dependency

q Φ RMSE RMSEB Gaussian 95% Quantile 95% RMSE RMSEB Gaussian 95% Quantile 95%

5 0.2 0.08 1.00 1.00 0.95 0.08 0.99 1.00 0.95

5 0.5 0.10 0.99 1.00 0.96 0.10 0.99 1.00 0.96

5 0.8 0.14 1.00 1.00 0.96 0.14 0.99 1.00 0.96

1 0.2 0.15 1.00 1.00 0.96 0.16 0.99 1.00 0.96

1 0.5 0.15 1.00 1.00 0.96 0.16 0.99 1.00 0.96

1 0.8 0.19 0.99 1.00 0.96 0.19 0.99 1.00 0.96

0.2 0.2 0.29 1.00 1.00 0.95 0.34 0.99 1.00 0.95

0.2 0.5 0.32 1.00 1.00 0.96 0.38 0.99 1.00 0.96

0.2 0.8 0.32 1.00 1.00 0.96 0.34 0.99 1.00 0.96

Heteroscedasticity Cross-section Dependency

q Φ RMSE RMSEB Gaussian 95% Quantile 95% RMSE RMSEB Gaussian 95% Quantile 95%

5 0.2 0.09 1.00 1.00 0.96 0.09 1.00 1.00 0.96

5 0.5 0.10 1.00 1.00 0.96 0.10 1.00 1.00 0.95

5 0.8 0.14 1.00 1.00 0.97 0.14 1.00 1.00 0.96

1 0.2 0.15 1.00 1.00 0.96 0.16 1.00 1.00 0.96

1 0.5 0.16 1.00 1.00 0.96 0.16 0.99 1.00 0.95

1 0.8 0.18 0.99 1.00 0.96 0.18 0.99 1.00 0.96

0.2 0.2 0.30 1.00 1.00 0.97 - - - -

0.2 0.5 0.34 1.00 1.00 0.96 - - - -

0.2 0.8 0.35 0.99 1.00 0.97 - - - -

25



Table 4: Finite sample performance of the marginal residual bootstrap proposed by Yamamoto

(2012) in a DFM with T=100 and N=200 and idiosyncratic noises with di�erent properties; a)

homoscedastic and serial and cross-sectionally uncorrelated; b) serially dependent; c) heteroscedastic

and d) cross-sectionally dependent.

Independency Serial Dependency

q Φ RMSE RMSEB Gaussian 95% Quantile 95% RMSE RMSEB Gaussian 95% Quantile 95%

5 0.2 0.09 0.99 1.00 0.95 0.09 0.99 1.00 0.95

5 0.5 0.10 0.99 1.00 0.95 0.10 0.99 1.00 0.95

5 0.8 0.13 0.97 1.00 0.96 0.13 0.97 1.00 0.96

1 0.2 0.14 1.00 1.00 0.95 0.15 1.00 1.00 0.95

1 0.5 0.15 0.99 1.00 0.96 0.16 0.99 1.00 0.96

1 0.8 0.18 0.97 1.00 0.96 0.19 0.97 1.00 0.96

0.2 0.2 0.30 1.00 1.00 0.95 0.36 0.99 1.00 0.96

0.2 0.5 0.30 0.99 1.00 0.96 0.35 0.99 1.00 0.96

0.2 0.8 0.33 0.97 1.00 0.96 0.35 0.96 1.00 0.96

Heteroscedasticity Cross-Section Dependency

q Φ RMSE RMSEB Gaussian 95% Quantile 95% RMSE RMSEB Gaussian 95% Quantile 95%

5 0.2 0.09 1.00 1.00 0.95 0.09 1.00 1.00 0.95

5 0.5 0.10 0.99 1.00 0.95 0.10 0.99 1.00 0.95

5 0.8 0.13 0.97 1.00 0.95 0.13 0.97 1.00 0.95

1 0.2 0.15 1.00 1.00 0.95 0.15 1.00 1.00 0.95

1 0.5 0.16 0.99 1.00 0.95 0.16 0.99 1.00 0.95

1 0.8 0.20 0.97 1.00 0.96 0.20 0.97 1.00 0.96

0.2 0.2 0.28 1.00 1.00 0.95 - - - -

0.2 0.5 0.34 0.99 1.00 0.96 - - - -

0.2 0.8 0.34 0.98 1.00 0.97 - - - -
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Table 5: Finite sample performance of the marginal second residual bootstrap proposed by Shin-

tani and Guo (2015) in a DFM with T=100 and N=200 and idiosyncratic noises with di�erent

properties; a) homoscedastic and serial and cross-sectionally uncorrelated; b) serially dependent; c)

heteroscedastic and d) cross-sectionally dependent.

Independency Serial Dependency

q Φ RMSE RMSEB Gaussian 95% Quantile 95% RMSE RMSEB Gaussian 95% Quantile 95%

5.00 0.20 0.09 1.00 1.00 0.95 0.09 1.00 1.00 0.95

5.00 0.50 0.10 0.99 1.00 0.95 0.10 0.99 1.00 0.95

5.00 0.80 0.14 0.97 1.00 0.96 0.14 0.97 1.00 0.96

1.00 0.20 0.15 1.00 1.00 0.95 0.15 1.00 1.00 0.95

1.00 0.50 0.15 0.99 1.00 0.95 0.16 0.99 1.00 0.95

1.00 0.80 0.18 0.97 1.00 0.96 0.18 0.97 1.00 0.96

0.20 0.20 0.29 1.00 1.00 0.95 0.35 0.99 1.00 0.94

0.20 0.50 0.29 0.99 1.00 0.95 0.34 0.99 1.00 0.95

0.20 0.80 0.32 0.98 1.00 0.96 0.35 0.97 1.00 0.95

Heteroscedasticity Cross-Section Dependency

q Φ RMSE RMSEB Gaussian 95% Quantile 95% RMSE RMSEB Gaussian 95% Quantile 95%

5.00 0.20 0.09 1.00 1.00 0.95 0.08 0.99 1.00 0.95

5.00 0.50 0.10 0.99 1.00 0.95 0.10 0.99 1.00 0.95

5.00 0.80 0.14 0.97 1.00 0.95 0.15 0.96 1.00 0.96

1.00 0.20 0.14 0.99 1.00 0.95 0.15 1.00 1.00 0.95

1.00 0.50 0.15 0.99 1.00 0.95 0.15 0.99 1.00 0.95

1.00 0.80 0.18 0.96 1.00 0.96 0.19 0.97 1.00 0.96

0.20 0.20 0.31 1.00 1.00 0.94 - - - -

0.20 0.50 0.33 0.99 1.00 0.95 - - - -

0.20 0.80 0.35 0.98 1.00 0.95 - - - -
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Table 6: Finite sample performance of the idiosyncratic bootstrap in a DFM with T=100 and N=200

and idiosyncratic noises with di�erent properties; a) homoscedastic and serial and cross-sectionally

uncorrelated; b) serially dependent; c) heteroscedastic and d)cross-sectionally dependent.

Independency Serial Dependency

q Φ RMSE RMSEB Gaussian 95% Quantile 95% RMSE RMSEB Gaussian 95% Quantile 95%

5 0.2 0.08 0.01 0.17 0.17 0.08 0.01 0.19 0.19

5 0.5 0.10 0.01 0.15 0.15 0.10 0.01 0.17 0.17

5 0.8 0.13 0.01 0.12 0.11 0.13 0.01 0.13 0.13

1 0.2 0.14 0.04 0.39 0.40 0.15 0.04 0.45 0.45

1 0.5 0.15 0.04 0.38 0.39 0.15 0.04 0.44 0.43

1 0.8 0.18 0.04 0.33 0.34 0.18 0.04 0.38 0.38

0.2 0.2 0.28 0.18 0.78 0.78 0.33 0.24 0.83 0.80

0.2 0.5 0.30 0.21 0.80 0.81 0.35 0.26 0.83 0.80

0.2 0.8 0.32 0.23 0.80 0.80 0.34 0.25 0.82 0.79

Heteroscedasticity Cross-Section Dependency

q Φ RMSE RMSEB Gaussian 95% Quantile 95% RMSE RMSEB Gaussian 95% Quantile 95%

5 0.2 0.09 0.01 0.18 0.18 0.09 0.01 0.15 0.16

5 0.5 0.10 0.01 0.17 0.17 0.10 0.01 0.14 0.15

5 0.8 0.14 0.01 0.14 0.14 0.14 0.01 0.12 0.12

1 0.2 0.14 0.04 0.43 0.44 0.14 0.03 0.36 0.37

1 0.5 0.15 0.04 0.46 0.46 0.16 0.04 0.38 0.38

1 0.8 0.18 0.05 0.40 0.40 0.19 0.04 0.35 0.35

0.2 0.2 0.32 0.34 0.93 0.91 - - - -

0.2 0.5 0.30 0.27 0.88 0.87 - - - -

0.2 0.8 0.34 0.32 0.87 0.86 - - - -
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Table 7: Finite sample performance of the new bootstrap procedure in a DFM with T=100 and

N=200 and di�erent signal to noise ratios.

q Φ RMSE RMSEB Gaussian 95% Quantile 95%

5.00 0.2 0.09 0.11 0.92 0.91

5.00 0.5 0.10 0.11 0.90 0.87

5.00 0.8 0.13 0.12 0.86 0.85

4.00 0.2 0.09 0.11 0.93 0.92

4.00 0.5 0.10 0.12 0.90 0.89

4.00 0.8 0.14 0.12 0.85 0.85

3.00 0.2 0.09 0.12 0.94 0.93

3.00 0.5 0.11 0.12 0.91 0.89

3.00 0.8 0.15 0.13 0.87 0.85

2.00 0.2 0.11 0.12 0.95 0.93

2.00 0.5 0.12 0.13 0.92 0.91

2.00 0.8 0.16 0.15 0.87 0.87

1.00 0.2 0.14 0.14 0.94 0.93

1.00 0.5 0.15 0.16 0.94 0.92

1.00 0.8 0.19 0.18 0.90 0.89

0.50 0.2 0.19 0.20 0.95 0.94

0.50 0.5 0.20 0.20 0.94 0.93

0.50 0.8 0.21 0.21 0.92 0.90

0.30 0.2 0.23 0.24 0.95 0.94

0.30 0.5 0.24 0.24 0.94 0.92

0.30 0.8 0.27 0.26 0.93 0.90

0.25 0.2 0.27 0.27 0.94 0.94

0.25 0.5 0.28 0.28 0.94 0.93

0.25 0.8 0.30 0.29 0.93 0.90

0.20 0.2 0.28 0.28 0.94 0.94

0.20 0.5 0.29 0.28 0.93 0.92

0.20 0.8 0.33 0.32 0.92 0.90
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Table 8: Monte Carlo results of the new procedure for di�erent sample sizes when the idiosyncratic

component is homoscedastic and serial and cross-sectionally uncorrelated.

T=50; N=100 T=50; N=200

q Φ RMSE RMSEB Gaussian 95% Quantile 95% RMSE RMSEB Gaussian 95% Quantile 95%

5 0.2 0.13 0.16 0.93 0.92 0.11 0.14 0.92 0.91

5 0.5 0.15 0.17 0.91 0.89 0.13 0.16 0.87 0.86

5 0.8 0.19 0.19 0.87 0.87 0.18 0.17 0.82 0.81

1 0.2 0.20 0.22 0.95 0.94 0.18 0.20 0.95 0.94

1 0.5 0.23 0.24 0.94 0.92 0.18 0.20 0.93 0.92

1 0.8 0.26 0.26 0.91 0.90 0.22 0.22 0.89 0.88

0.2 0.2 0.41 0.39 0.92 0.93 0.31 0.31 0.93 0.94

0.2 0.5 0.45 0.42 0.90 0.91 0.32 0.32 0.93 0.93

0.2 0.8 0.46 0.43 0.91 0.89 0.38 0.36 0.91 0.90

T=100; N=200 T=100; N=1000

q Φ RMSE RMSEB Gaussian 95% Quantile 95% RMSE RMSEB Gaussian 95% Quantile 95%

5 0.2 0.09 0.11 0.92 0.91 0.06 0.10 0.96 0.99

5 0.5 0.10 0.11 0.90 0.87 0.08 0.10 0.95 0.97

5 0.8 0.13 0.12 0.86 0.85 0.17 0.16 0.85 0.84

1 0.2 0.14 0.14 0.94 0.93 0.10 0.12 0.89 0.84

1 0.5 0.15 0.16 0.94 0.92 0.11 0.12 0.89 0.89

1 0.8 0.19 0.18 0.90 0.89 0.13 0.13 0.91 0.91

0.2 0.2 0.28 0.28 0.94 0.94 0.16 0.16 0.90 0.88

0.2 0.5 0.29 0.28 0.93 0.92 0.16 0.16 0.93 0.90

0.2 0.8 0.33 0.32 0.92 0.90 0.26 0.23 0.84 0.84
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Table 9: Finite sample performance of the new procedure in a DFM with T=100 and N=200 and

idiosyncratic noises with di�erent properties; a) homoscedastic and serial and cross-sectionally un-

correlated; b) serially dependent; c) heteroscedastic and d)cross-sectionally dependent.

Independency Serial Dependency

q Φ RMSE RMSEB Gaussian 95% Quantile 95% RMSE RMSEB Gaussian 95% Quantile 95%

5 0.2 0.09 0.11 0.92 0.91 0.1 0.11 0.93 0.92

5 0.5 0.10 0.11 0.9 0.87 0.1 0.11 0.89 0.90

5 0.8 0.13 0.12 0.86 0.85 0.13 0.12 0.89 0.89

1 0.2 0.14 0.14 0.94 0.93 0.14 0.16 0.94 0.93

1 0.5 0.15 0.16 0.94 0.92 0.16 0.16 0.92 0.91

1 0.8 0.19 0.18 0.90 0.89 0.19 0.17 0.89 0.89

0.2 0.2 0.28 0.28 0.94 0.94 0.36 0.29 0.88 0.88

0.2 0.5 0.29 0.28 0.93 0.92 0.35 0.28 0.89 0.90

0.2 0.8 0.33 0.32 0.92 0.9 0.34 0.28 0.89 0.90

Heteroscedasticity Cross-Section Dependency

q Φ RMSE RMSEB Gaussian 95% Quantile 95% RMSE RMSEB Gaussian 95% Quantile 95%

5 0.2 0.1 0.11 0.92 0.90 0.09 0.11 0.92 0.90

5 0.5 0.1 0.12 0.9 0.89 0.10 0.12 0.89 0.88

5 0.8 0.13 0.13 0.85 0.84 0.13 0.12 0.85 0.85

1 0.2 0.14 0.16 0.94 0.93 0.15 0.16 0.93 0.91

1 0.5 0.16 0.16 0.93 0.92 0.16 0.16 0.92 0.90

1 0.8 0.19 0.18 0.90 0.90 0.19 0.18 0.9 0.89

0.2 0.2 0.30 0.29 0.93 0.93 - - - -

0.2 0.5 0.32 0.31 0.92 0.91 - - - -

0.2 0.8 0.36 0.33 0.92 0.89 - - - -
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Figure 1: Illustration of 95% con�dence bands constructed using di�erent methods. asymptotic

approximation(�rst row), block bootstrap (second row), idiosyncratic residual bootstrap (third row)

and the marginal distribution bootstrap (fourth row). The �rst column is based on Gaussian bands

with bootstrap RMSEs while the second column plots the bands constructed from the bootstrap

densities
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Figure 2: Asymptotic (blue lines) and Bootstrap intervals (red lines) for the economic cycle in Spain

(black line).
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