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Abstract

In this work we will focus on overhead air switches design problem. The design
of railway infrastructures is an important problem in the railway world, non-optimal
designs cause limitations in the train speed and, most important, malfunctions and
breakages. Most railway companies have regulations for the design of these elements.
Those regulations have been defined by the experience, but, as far as we know,
there are no computerized software tools that assist with the task of designing and
testing optimal solutions for overhead switches. The aim of this thesis is the design,
implementation, and evaluation of a simulator that that facilitates the exploration
of all possible solutions space, looking for the set of optimal solutions in the shortest
time and at the lowest possible cost.

Simulators are frequently used in the world of rail infrastructure. Many of them
only focus on simulated scenarios predefined by the users, analyzing the feasibility or
otherwise of the proposed design. Throughout this thesis, we will propose a frame-
work to design a complete simulator that be able to propose, simulate and evaluate
multiple solutions. This framework is based on four pillars: compromise between
simulation accuracy and complexity, automatic generation of possible solutions (au-
tomatic exploration of the solution space), consideration of all the actors involved in
the design process (standards, additional restrictions, etc.), and finally, the expert’s
knowledge and integration of optimization metrics.

Once we defined the framework different deployment proposes are presented, one
to be run in a single node, and one in a distributed system. In the first paradigm,
one thread per CPU available in the system is launched. All the simulators are
designed around this paradigm of parallelism. The second simulation approach will
be designed to be deploy in a cluster with several nodes, MPI will be used for that
purpose. Finally, after the implementation of each of the approaches, we will proceed
to evaluate the performance of each of them, carrying out a comparison of time and
cost. Two examples of real scenarios will be used.





Resumen

El diseño de agujas aéreas es una problema bastante complejo y crítico dentro
del proceso de diseño de sistemas ferroviarios. Un diseño no óptimo puede provo-
car limitaciones en el servicio, como menor velocidad de tránsito, y lo que es más
importante, puede ser la causa principal de accidentes y averías. La mayoría de las
compañías ferroviarias disponen de regulaciones para el diseño correcto de estas agu-
jas aéreas. Todas estas regulaciones han sido definidas bajo décadas de experiencia,
pero hasta donde sé, no existen aplicaciones software que ayuden en la tarea de dis-
eñar y probar soluciones óptimas. Es en este punto donde se centra el objetivo de
la tesis, el diseño, implementación y evaluación de un simulador capaz de explorar
todo el posible espacio de soluciones buscando el conjunto de soluciones óptimas en
el menor tiempo y con el menor coste posible.

Los simuladores son utilizados frecuentemente en el mundo de la infraestructura
ferroviaria. Muchos de ellos sólo se centran en la simulación de escenarios preestable-
cidos por el usuario, analizando la viabilidad o no del diseño propuesto. A lo largo
de esta tesis, se propondrá un framework que permita al simulador final ser capaz de
proponer, simular y evaluar múltiples soluciones. El framework se basa en 4 pilares
fundamentales, compromiso entre precisión en la simulación y la complejidad del sim-
ulador; generación automática de posibles soluciones (exploración automática del es-
pacio de soluciones), consideración de todos los agentes que intervienen en el proceso
de diseño (normativa, restricciones adicionales, etc.) y por último, el conocimiento
del experto y la integración de métricas de optimización.

Una vez definido el framework se presentarán varias opciones de implementación
del simulador, en la primera de ellas se diseñará e implementará una versión con hilos
pura. Se lanzará un hilo por cada CPU disponible en el sistema. Todo el simulador
se diseñará en torno a este paradigma de paralelismo. En un segundo simulador,
se aplicará un paradigma mucho más pensado para su despliegue en un cluster y
no en un único nodo (como el paradigma inicial), para ello se empleará MPI. Con
esta versión se podrá adaptar el simulador al cluster en el que se va a ejecutar.
Por último, se va a emplear un paradigma basado en cloud computing. Para ello,
según las necesidades del escenario a simular, se emplearván más o menos máquinas
virtuales.

Finalmente, tras la implementación de cada uno de los simuladores, se procederá
a evaluar el rendimiento de cada uno de ellos, realizando para ello una comparativa
de tiempo y coste. Se empleará para ello dos ejemplos de escenarios reales.
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Chapter 1

Introduction

Since the mid-twentieth century, railway companies tend to deploy overhead lines
(catenary) as a mechanism for supplying energy to electric locomotives, in detri-
ment of other supply forms [Gri56, Ros71]. The use of the catenary has significant
advantages over other kinds of traction. First, this approach has less impact on en-
vironment. Second it performs a higher power-to-weight ratio. Finally it is safer in
terms of accidental contacts (humans or animals [Cle72, Har08]). However, overhead
line systems have a complex infrastructure and require significant capital expen-
diture regarding the installation costs [Bro27, CW53, JOPLGC06]. Moreover, the
higher the speed of the train, the greater the costs of implementation and safety
measures [DI93].

As we can see in Figure 1.1, the percentage of railway passenger is lower than
air passenger or road passenger. However if we look at the transport rush hours in
major cities such as Madrid, Barcelona, etc., it can be seen as the train, metro or
tram occupy a much higher position in that comparison. This information is obtained
from Eurostat.

Since design and deployment tasks of overhead lines are a complex engineering
problem, many elements must be considered. The route and camber of tracks, the
pantograph geometry, the contact wires and messenger wires, the catenary support
poles and portal frames, and the cantilevers to hold the wires, must be laid out
so as to guarantee a correct electricity supply to the train (i.e., to ensure that the
pantograph never loses contact with any contact wire). Other parameters, such as
wind influence, pantograph, and contact wires wear, are also considered in the general
problem. The focus of this thesis will be on the design of the overhead switches. The
pantograph is an apparatus mounted on the roof of an electric train, tram or electric
bus[1] to collect power through contact with an overhead catenary wire.

1



2 Chapter 1. Introduction

Figure 1.1: Modal split of inland passenger transport, 2013.

1.1 Motivation

The design of complex railway portals is a very complex process that requires knowl-
edge and experience to ensure that the designed superstructure will not only be
economic and regulation compliant, but will also cater for all current load cases,
cable routing and supports, etc. Usually, most companies have a small database of
standardized portals that are used for all situations. Traditional Warren and Vieren-
deel designs are still the most cost effective solutions to long span portals design,
thus most of the solutions are based in those structures.

In addition, switches are critical elements in railway networks [RG95], as they
allow the trains to change their trajectory from one outgoing track to another in-
coming track. Although the functionality of a switch does not change, there may
be several kinds of switches with specific characteristics and geometries for different
track speeds, different configurations for the straight track, etc. These heterogeneity
results in the complex design task, since many mechanical aspects have their influ-
ence on the track change process. Wrong designs may lead to train derailments and
hazardous breakdowns, indeed.

When considering switches on electrified tracks, the overhead line air switches



1.2. Objectives 3

mechanism comes into play. It allows the pantograph to lose the contact with the
outgoing catenary of the straight track and to get contact with the incoming cate-
nary of the diverging track. Therefore, the pantograph has to change progressively
the catenary being rubbed against, always respecting the requirement of continuous
friction with the contact wire so as to avoid electricity supply notches. Overhead line
air switches tends to be considered a crucial issue in catenary-based railway systems.
They are common points of failure due to wrong designs, thus requiring a regular
maintenance. Those failures have an impact on security, reliability, quality of service,
and economical costs.

1.2 Objectives

The major objective of this thesis is to propose a methodology that facilitates the
design based parametric simulations in HPC environments. This methodology will
be applied to develop a simulator that allows to look a set of optimal configurations
in railway infrastructure.

Additionally, the thesis targets the following objectives:

O1 Designing a framework for railway simulations in HPC. It will be neces-
sary to design a generator of possible solutions that work with an initial design
and a set of variable parameters. In order to decide which solutions are best
and which are worse must be designed a set of evaluation rules.

O2 Designing an ontology that facilitate the design based parametric sim-
ulations To design a correct infrastructure is required rules to guide the se-
lection of elements. In the railway world a large number of valid designs would
be possible with the same initial scenario.

O3 Building the infrastructure simulator. Having defined the mathematical
model and ontology design, it will design and implement a simulator to find a
valid solution.

O4 Building the overhead air switch simulator. Having defined the mathemat-
ical model for a catenary simulator, it will design and implement a simulator
to find a set of valid solutions.

1.3 Document Structure

The thesis is structured as follows.

• Chapter 2 State of the art contains the state of the art related to this thesis.
This chapter provides an overview of the current situation in the field of railway
simulators, the principles of high performance computing are described. Chap-
ter is structured as follows, first the principles of high performance computing
are detailed, dividing the section between distributed computing and parallel
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computing paradigms. Then a small sample of main simulators in the field of
railways are summarized. Finally an overview of the world of railroads today
is exposed.

• Chapter 3 Railway Simulation Framework describes the generic structure of a
generic railway simulator.

• Chapter 4 Railway Simulator describes the design problem and the lack of
simulation. This is one of the main chapters of the thesis. The design of railway
infrastructures is a very complex task and requires careful because the trains
run at high speeds and an accident can be very dangerous. The basic principles
of design and calculation are set, and the ontology used in the design and
simulation of switches and structures is presented.Finally, describes in detail
the principles and considerations that have been followed for the design and
calculation to provide a complete design of structures. The necessary changes
that have been made on the general framework described.

• Chapter 5 Overhead Air Switches Design. This chapter describes the restric-
tions and considerations that have been taken throughout the design process.
The generation and evaluation algorithms of new possible solutions are de-
scribed. Finally the evaluation of this simulator is presented, two versions of
the simulator (mpi, and shared memory) will be developed for this evaluation.

• Chapter 6 Experimental Results reports performance results. The evaluation
has been defined in two distinct phases, first, each simulator has been evaluated
separately. Secondly several test scenarios have been defined and evaluated and
tested with the binding of both simulators.

• Chapter 7 Conclusions contains a summary of this thesis, and future plans.



Chapter 2

State of the Art

This chapter presents a State of the Art in Electric Railways and High Performance
Computing, which is one of the main trends used nowadays in the simulation. First,
current technologies and paradigms used in HPC are presented and described. Fi-
nally, a detailed analysis of electric railway and simulators in this area are also
provided.

2.1 High-Performance Computing

Many differences exist among HPC, High Throughput Computing (HTC) and Many
Task Computing (MTC). HTC is characterized by tasks that similarly to HPC,
require large amounts of computing power, but run for significantly longer periods of
time. HPC applications are measured in terms of FLOPS (floating point operations
per second).

There is not a standard definition of HPC, which depends on factors like the
environment in which is employed. A general definition for this term could be:

Computing model that uses all available resources and techniques for solving com-

plex problems with the lowest consumption of resources or in the shortest possible

time.

Given this definition, we can find HPC environments in Workstations, laptops,
smart-phones, Supercomputers, Clusters, Grids, Clouds, and any combination of the
above.

5
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– Cluster of Workstations (COWs)

– Cluster of SMPs (CLUMPs)

• Node Operating System. Linux, NT, Solaris, etc.

• Node Configuration. Heterogeneous or Homogeneous clusters.

• Levels of Clustering. Based on location of nodes and their count. According
to this category we can find:

– Group Cluster (Number of nodes: 2-99): Nodes are connected by SANs
like Myrinet and the are either stacked into a frame or exist within a
center.

– Departmental Cluster (Number of nodes: 10s to 100s).

– Organizational Cluster (Number of nodes: many 100s).

– National Metacomputers (Number of nodes: many departmental/organi-
zational clusters).

– International Metacomputers (Number of nodes: 1000s to many millions).

Grid

The term "the Grid" [FKT01, FKNT02, Fos04] was coined in the mid-1990s to
denote a proposed distributed computing infrastructure for advanced science and
engineering. Much progress has since been made in terms of infrastructures and on
its extension and application to commercial computing problems. While the term
"Grid" has also been occasions conflated to embrace everything from advanced net-
working and computing clusters to artificial intelligence, there has also emerged a
good understanding of the problems that Grid technologies address, and at least a
first set of applications for which they are suited.

Grid concepts and technologies were originally proposed to enable resource shar-
ing within scientific collaborations, first within early gigabit/sec testbeds [SC92] and
then on increasingly larger scales [BJB+00, BCF+98, JGN99, SWDC97]. Applica-
tions in this context included distributed computing for computationally demanding
data analyzes (pooling of compute power and storage), the federation of diverse dis-
tributed datasets, collaborative visualization of large scientific datasets (pooling of
expertise), and coupling of scientific instruments with remote computers and archives
(increasing functionality as well as availability).

Cloud Computing

We briefly describe the cloud service models and technologies to provide some foun-
dation for the discussion [Ter15, AFG+10]. As in the case of Cluster Computing,
there are several definitions of cloud computing. Some examples are:
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A Cloud is a type of parallel and distributed system consisting of a collection of

interconnected and virtualized computers that are dynamically provisioned and pre-

sented as one or more unified computing resources based on service-level agree-

ments established through negotiation between the service provider and consumers

[BYV08].

Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-

work access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and re-

leased with minimal management effort or service provider interaction. [MG10].

Therefore, the essential characteristics can be summarized into the rapid elas-
ticity, resource pooling, bread network access, on-demand self-service, and measured
service [MG10]. Cloud computing technologies and service models are attractive to
scientific computing users due to the ability to obtain on-demand access to resources
that can replace or supplement their existing systems, as well as, the ability to control
the software environment. Scientific computing users and resource providers servicing
these users are considering the impact of these new models and technologies.

Figure 2.2: The three cloud models [SGH15].

There are three principal services models regarding cloud computing: Infras-
tructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service
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(SaaS), and the principal deployment models (Private cloud, Public cloud, and Hy-
brid cloud) which are shown in Figure 2.2 [SGH15].

The NIST (National Institute of Standards and Technology) defines the different
service models as follows [Cay13]:

Figure 2.3: Inter-relations between cloud services [Cay13].

IaaS Infrastructure as a Service [SGH15, VGM+16, MG10] "The capability provided
to the consumer is to provision processing, storage, networks, and other fun-
damental computing resources where the consumer is able to deploy and run
arbitrary software, which can include operating systems and applications. The
consumer does not manage or control the underlying cloud infrastructure but
has control over operating systems, storage, and deployed applications; and pos-
sibly limited control of select networking components (e.g., host firewalls).".

PaaS Platform as a Service [XFPM14, MG10] . "The capability provided to the con-
sumer is to deploy onto the cloud infrastructure consumer-created or acquired
applications created using programming languages, libraries, services, and tools
supported by the provider. The consumer does not manage or control the un-
derlying cloud infrastructure including network, servers, operating systems, or
storage, but has control over the deployed applications and possibly configura-
tion settings for the application-hosting environment. "

SaaS Software as a Service [LZJ15, MG10] "The capability provided to the consumer
is to use the provider’s applications running on a cloud infrastructure. The ap-
plications are accessible from various client devices through either a thin client
interface, such as a web browser, or a program interface. The consumer does
not manage or control the underlying cloud infrastructure including network,
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applications which are going to be executed across multiple compute nodes.
Today, there are many implementations of MPI. Some of these as follows:
OpenMPI [GFB+04] and MPICH [GL96b, GL96a].

The principal advantages of using message passing include:

• Portability. MPI is implemented on most parallel platforms.

• Universality. The model makes minimal assumptions about underlying
parallel hardware.

• Simplicity. The model supports explicit control of memory references for
easier debugging.

Figure 2.6 shows the execution model of a basic MPI program.

Figure 2.6: MPI execution model.

Distributed Shared Memory

The most efficient, and widely used, programming paradigm on distributed memory
systems in message passing. A problem with this paradigm is that it is complex
and difficult to program compared to shared memory programming systems. Shared
memory systems offer a simple and general programming model, but they suffer from
scalability. An alternate cost-effective solution is to build a distributed shared mem-
ory system, which exhibits simple and general programming model and scalability
[BB99]. Figure 2.7 shows an example of distributed shared memory architecture. The
characteristics of software implemented for distributed shared memory systems are:

• Usually built as a separate layer on top of the communications interface.

• They take full advantage of the application characteristics.

• Virtual pages, objects, and language types are units of sharing.
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Figure 2.8: Evolution of architecture in HPC.

2.1.4 Supercomputers and Petascale Systems

The association of several supercomputers results in HPC clusters and grids. These
partnerships can be built on the same local network or across multiple distributed
systems. They can be homogeneous and heterogeneous, gathering CPU and GPU
nodes in the same cluster [KES+09, FQKYS04].

Current leading systems in the Top500 rank [DMS+97], which enumerates the
500 most powerful supercomputers, are GPU-based and capable of reporting over
one petaflop under the standardised Linpack benchmark [DL11]. Some examples of
the so-called petascale infrastructure are shown in Table 2.1, which includes the top
five rated systems in the Top500 ranking of June 2016 [DMS+97].

Table 2.1: Top five positions in the Top500 ranking of June of 2016.

System Cores Tflop/s KW Location

Sunway TaihuLight 10,649,600 93,014.6 15,371 China
Tianhe-2 3,120,000 33,862.7 17,808 China
Titan 560,640 17,590.0 8,209 USA
Sequoia 1,572,864 17,173.2 7,890 USA
K-Computer 705,024 10,510.0 12,660 Japan

This classification and measurement is not the only one, increasingly researchers
and end users seeking a measure that indicates the quality of the systems in real
situations, such as data analysis, 3D simulations, and in turn to minimize the energy
cost required.

Another important ranking is Graph500 [MWBA10]. Its goal is to evaluate
the performance of HPC systems to approach the complex data-intensive appli-
cations, measuring traversed edges per second (TEPS ). Current leaders in June
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2016 Graph500 [Top14] ranking positions are shown in Table 2.2. This rank includes
shared-memory, distributed memory and, cloud benchmarks.

Table 2.2: Top five positions in the Graph500 ranking of June of 2016.

System Cores Performance (GTEPS) Location

K computer 663,552 38,621.4 Japan
Sunway TaihuLight 10,599,680 23,755.7 China
Sequoia 1,572,864 23,751 USA
Mira 786,432 14,982 USA
JUQUEEN 262,144 5,848 Germany

Nowadays, sustainability and energy efficiency is key in the development and
evaluation of HPC infrastructures. Following the Top500 sense, the Green500 list
[FC07] is dedicated to rank supercomputers, but in terms of their efficiency, which
is measured in performance-per-Watt.

Table 2.3 shows that current leading positions in the rank do not match any
of the Top500 systems [Gre14]. and their overall power consumption is significantly
smaller than the shown by the latter. This indicates that there is still a lot of research
to be done in order to reduce the gap between performance and efficiency, especially
considering that supercomputers will keep increasing their target performance to
reach the Exascale goal [BWTWc13].

Table 2.3: Top five positions in the Green500 ranking of November of 2015.

System Performance (Mflops/W) Power (kW) Location

RIKEN 7,031.4 50.3 Japan
GSIC Center 5,331.5 51.1 Japan
GSI 5,272.1 57.2 Germany
IMP 4,778.5 65 China
Stanford 4,112.1 190 USA

Exascale systems will become the next generation of supercomputers, capable
of performing with at least one exaflop. Scientific simulations will likely benefit from
the upcoming Exascale infrastructures [ABC+10], however many challenges must be
overcome [BBC+08, GL09] including, processing speed [Cou13], data locality, and
power consumption. Among them, energy efficiency seems to be one of the most
limiting factor [Hem10].

Nowadays, cheaper and lower power alternatives are on research to overcome
such difficulties. For instance, low-end processors are being considered to build large
scale supercomputers. Besides, multiple efforts are currently under way in order to
reduce energy consumption without reducing compute power, from scaling dynami-
cally the number of compute cores [FL05], to deploy power-aware techniques in the
I/O subsystem [LBIC13].
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2.2 Electric Railway

Rail transport has become since its inception in the most important way of prov-
ing massive transport. Even to this day, rail transport remains one of the methods
most of the used to transport both people and goods. There are two major types of
railway traction systems, diesel and electric traction. It is shown that electric trac-
tion [Cle72], and in particular the use of the catenary has several advantages over
diesel and tractions, as it performs a higher power-to-weight ratio. This resuls in
a faster acceleration and a higher practical limit of power. Electric locomotives do
not depend on crude oil like fuel, so railway electrification systems have less impact
on the environment. As stated in [Ake11], specific greenhouse emissions concerning
propulsion and fuel production in electric trains will be lower than emissions from
other kinds of traction. If we focus our sights on urban transport, railway and its
alternative options (train, metro, tram) are considered the best option for several
reasons:

• Pollution. Although rail transport powered by electricity also depends on
fossil fuels, they are also being used in many countries, nuclear and clean energy
such as wind, geothermal, etc. Furthermore, this demonstrates that the use
of fossil fuels for electricity generation involves less consumption than other
alternative transport systems.

• Safety. Two factors are responsible of the low rates of accident. First it has
its own platform of movement, without interaction the with other means of
transport or persons, and absolute control of the movement by technological
means. It is true that in case of system failure specific accidents can occur
with high numbers of casualties, but fortunately these accidents are rare in
the total number of displaced persons. Hence, the International Association of
Public Transport claiming that traveling by train in Europe is between 20 and
25 times safer than road.

Electric traction can be classified by three main parameters: voltage, current,
and contact system. First of all, the permissible range of voltages allowed for the
standardized values is as stated in standards EN-50163. Second, direct current and
alternating current are the possible choices in current systems. Figure 2.9 shows the
distribution of the electrification systems in Europe. Finally, there are two major
alternatives in the contact systems, third rail and overhead lines. Overhead lines
have an additional advantage over other ground-level located systems for supplying
energy in the rail: the former mechanism is both safer in terms of accidental contacts
of people and animals, and have fewer voltage restrictions than the latter one, owing
to the elevation over the ground. These facts allow railway companies to use powerful
locomotives and to increase traffic over the tracks (see [Har08, MC07]).

In spite of the advantages of using overhead lines, their deployment along the
railway tracks is a very complex design task. This complexity can be analysed from
four different perspectives.
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Figure 2.9: Railway electrification systems of Europe.

Figure 2.10: Portal frames.

First, many elements have to be considered so as to electrify a track stretch
of several kilometres in length. The overhead contact line (also called catenary), is
assembled considering a range of spans of about 60 m in length, normally between 15
and 20 [MC07]. If each of them is supported by a pair of poles, more than 30 poles
per km in two-way standard tracks are needed. At railway stations, the number of
tracks is increased and the space is limited, so poles are replaced with portal frames,
allowing simultaneous support for multiple co-located catenaries through a single
structure. As an example, Figure 2.10 illustrates the high number of portal frames
in a railway station.
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Second, the deployment process involves several complex and critical tasks: plac-
ing structures along the track stretches. This may include a ground projection of the
elements and an analysis of geographical, climatic, and ground conditions.Designing
support elements, such as poles and portal frames, in order to withstand the main
catenary infrastructure components (wires and cantilevers). Moreover, these sup-
porting elements must deal with extreme conditions, such as strong winds and ice
overload.

Third, there are many experts that take part in the design process [DBV09].
Every previously mentioned task requires knowledge from different fields, such as
topography, architecture, structural calculus, and drawing. Moreover, technical se-
curity and legal normative have to be considered during all the process. Therefore,
every task is assigned to a different expert of each field. From this point of view,
the complexity of the design process lies in the variety of knowledge sources and it
becomes worse due to the difficulty and slowness of communication among all the
experts.

Fourthly, as the experts taking part in the process can belong to different compa-
nies, the railway company must deal with several outsourced enterprises within a rail
work project. This fact results in a hard communication among them, because every
company has its own organization, interoperability protocols, and interfaces [PM08].
Moreover, when concerning a cross country project, several railway companies get
involved in it, so compatibility issues must be take into account [MT08].

The complexity and the duration of the design process have widespread reper-
cussions in the costs of deploying overhead lines on a rail work project. As discused in
[CDR08], a very large proportion of the electrification cost in a railway construction
project is spent on the deployment of overhead equipment, such as wires, cantilevers,
poles, foundations, and portal frames. H. Brown [Bro27] describes the high number
of elements involved in overhead infrastructure installations. Currently, railway com-
panies are still deploying such elements.

Every supporting element has its own specific characteristics and constraints,
such as regard the track route, the number of catenaries to be held, and the con-
struction regulations. As there may be several hundreds of one-of-a-kind catenary
support structures per project, it is needed a substantial effort for the railway com-
panies and for the others experts part [TCY00]. Working together, they must carry
out a laborious process in order to obtain a valid design for each supporting element,
including railway inventory management, CAD drawing, structural design and cal-
culus, verification of standards and regulations, and cost analysis.

Railway companies and engineers have been trying to enhance and to regulate
their design methods for electrification infrastructure for many years now. Several
normatives have been adopted for such aim [UIC81, AEN09]. Computers have played
an important role on this effort, as railway and engineering companies have developed
several tools to make possible an automation of the tasks, thus reducing the time
and costs invested in the design process [VOL+11].

Concerning structural calculus, Finite Element Methods (FEM) [Ode91], pre-
sented by [Cou43], is mainly used to carry out the task of calculating support struc-
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tures, obtaining efforts and displacements at any point. Direct Stiffness Method
(DSM), defined by [Tur59], is the most common implementation of FEM. Both FEM
and DSM have been included in a lot of software tools in order to automate structural
calculus, avoiding errors due to hand-calculation. For example, S. Kanagasundaram
and B. Karihaloo [KK90] provides a Fortran 77 code to design minimum-weight
frames considering multiple loads. O. Ural [Ura73] proposes an integrated system
approach to design housing projects in an urban area and the author enumerates
some software tools that perform structural analysis through either DSM or FEM.
Regarding structural design, tools like AutoCAD or 3D CAD [Vee06] are used to
model railway infrastructure as well.

We have identified some flaws in the previously cited works. First, they lack the
vision of an integrated approach, being necessary to use independent tools for the
experts part to accomplish designing and calculating a structure tasks. For instance,
AutoCAD is used for structural design and CESPLA [Cel03] is used for structural
calculus. Second, those tools including that integrated approach [CYP10, Con12],
tend to not include railway domain knowledge in the process, which may lead to
inadequate designs that are failure-prone or difficult to maintain. Third, those tools
that do include specific knowledge about railway domain are shortly versatile, as they
do not cover the whole process or all the possible elements. For instance, CALPE
[ABA+08] allows to design overhead wires, but it does not consider the structures
for supporting wires. In the work presented in [KPSS09], the authors do include
the design and the calculation of overhead lines, only considering poles as support
structures, leaving out portal frames, that are frequently used at railway stations.

2.3 Railway Simulators

Application areas for simulation are numerous and diverse. For example, designing an
analyzing manufacturing systems, determining hardware and software requirements,
designing and optimizing transportation systems, and analyzing financial or economic
systems. Law and Kelton [LKK91] categorize systems into two types, discrete and
continuous systems. A discrete system is one for which the state variables change
instantaneously at separated points in time. Conversely, a continuous system is one
for which the state variables change continuously with respect to time.

Simulators are excellent tools to face new engineering problems, testing different
prototypes to develop optimal designs in an easy, fast and economic manner. Simu-
lators have been widely used in railways since the past century [BCM+98, GSH98].
However they have traditionally adopted the role of solvers or testers, calculating the
physical, chemical or mathematical equations associated to a particular engineering
problem (e.g. FEM, CFD), which usually are set by the user. One of the major func-
tions of the simulators in the railway sector has always been the traffic simulation
These simulators are employed to evaluate and establish timetables and traffic on a
particular route, with these schedules the power consumption can be calculated.

We state that new generation simulators should be capable of, starting from
a range of possible parameters, proposing and evaluating new designs. Additionally,
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Table 2.4: Assessment of the issues covered by representative simulators in the field
of railway infrastructure design.

Simulator Field Issues Analysis

Nejlaoui et al. Railway dynamics

Issue 1 Uncharted
Issue 2 Yes, it uses artificial intelligence techniques to generate different solutions
Issue 3 Yes, safety and comfort criteria have been considered in the evaluation
Issue 4 Yes, it uses artificial intelligence techniques to find the optimal solution

SiCat Master Overhead contact line design

Issue 1 Uncharted
Issue 2 No, SiCat Master generates one single design of the span
Issue 3 Yes, the railway company inventory and the normative EN-50318 have been considered
Issue 4 Limited, SiCat Master uses algorithms for longitudinal span length optimization

SiCat Dynamic Pantograph-catenary interaction

Issue 1 Uncharted
Issue 2 No, it simulates only the user-provided solution
Issue 3 Yes, the railway company inventory and the normative EN-50318 have been considered
Issue 4 No, SiCat does not generate different solutions and does not evaluate optimization metrics

Calpe Pantograph-catenary interaction

Issue 1 Less than 1 hour, to simulate 33 candidate solutions
Issue 2 Yes, the user provides maximum and minimum values of some parameters.
Issue 3 No, it neither references any normative nor refers to constructive pieces or company inventory
Issue 4 No, the tool does not look for an optimal solution, and does not relay on the expert’s knowledge

Chang Han Bae Power provisioning

Issue 1 Uncharted
Issue 2 Yes, it evaluates the bulk of space solution
Issue 3 Yes, the international standard IE60146 has been considered
Issue 4 No, optimization metrics, heuristics, or expert knowledge are not used

they should consider all issues that can affect to the final solution as part of its scope.
Examples of such aspects are physical optimizations, normative, cost analysis, etc.
This approach can be resume in for main issues:

1.- Trade-off between accuracy and complexity. The simulator must evaluate a
possible solution in the lowest time. The results obtained must be applicable
to real world.

2.- Automatic generation and simulation of possible solutions. A simulator must
be capable of proposing and evaluating new solutions, exploring the search
space.

3.- Other actors taking part in the design process (e.g. legislation and normative)
must be taken into account to incorporate them into the simulator insofar as
they influence the validity of the solutions.

4.- Expert’s domain knowledge, useful to find the best solutions, must be also
integrated into the simulator, as well as optimization metrics.

These issues have a great impact on the complexity and usability of the simu-
lators, and should be considered carefully. For the evaluating of the issues described
previously, a representative group of simulators in the field of railway infrastructure
design have been chosen. These can be classified in four categories, depending of the
action area: railway dynamics, pantograph-catenary interaction, overhead contact
line design, and power provisioning. We analyze these simulators stating whether
each issue is fulfilled or not. A summary of this analysis is presented in Table 2.4.

In railway dynamics, a simulator to optimize the design of rail vehicle in a short
radius curved scenario has been chosen [NHAR13]. The authors propose a combina-
tion between a Monte Carlo simulation and genetic programming. The evaluation of
the different solutions is performed according to safety and comfort criteria. The first
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issue can not be analysed because in this approach, the time required to simulate
and evaluate a solution is not indicated.

In the field of overhead contact line design, Sicat Master [KPSS09] has been
selected. Sicat Master aims to design and calculate catenary spans, including wire
positions, pole locations, and cantilever designs. The railway company inventory is
taken into account during the design step and the normative EN-50318 [AEN03] is
considered in the calculus step. Due to this, the application satisfies the issue 3.
Although SiCat Master uses algorithms for longitudinal span length optimization, it
lacks multiple solutions.

In the field of pantograph-catenary interaction two simulators have been chosen.
These simulators evaluate the mechanical behaviour of the catenary when the pan-
tograph of the train is running along. The first simulator is SiCat Dynamic, which
is compatible with the suite SiCat Master. SiCat Dynamic evaluates dynamic be-
haviour of the catenary designs obtained with SiCat Master. The second issue is
poorly covered because the tool just simulates the solution introduced by the user
(inherited of Sicat Master) and it does not generate new solutions in an automatic
fashion. However, as SiCat Master, the inventory and normative EN-50318 are con-
sidered in the simulation process. The second simulator is Calpe [ABA+08]. This
simulator starts from maximum and minimum values of several parameters and iter-
ates over them generating the solutions, so issue 2 is covered. However, the simulator
provides a set of valid solutions, but does not evaluate which is the best solution.
So issue 4 is not covered. The paper does not refer to any other part in the design
process, neither normative, nor constructive pieces, nor company inventory, etc.

In the field of power provisioning, the simulator described in [Bae09] has been
chosen. In this work, the author proposes an algorithm to study the installation
locations and capacity of regenerative inverters in electric railways. To determinate
the capacity of regenerative inverters, the international standard IE60146 [IEC09] has
been considered. In order to find a solution, the author evaluates the bulk of solution
space. Optimization metrics, heuristics, or expert knowledge are not considered.

From a global point of view, the simulator that best fits the enhanced structure is
[NHAR13]. Issues 2, 3, and 4 are covered, thus allowing a high degree of productivity.
Issue 1 can not be analysed because time requirements are not mentioned. However,
the use of genetic algorithms implies a higher number of candidate solutions, so the
time required to evaluate one single candidate should be necessary small.

Although individually lack on fulfil some issues, Sicat Master and Sicat Dynamic
are part of a full suite of programs. From the point of view of the whole design pro-
cess of designing and calculating railway catenary, both simulators working together
are which best cover the issue 3, taking into account railway normative, inventory,
economic aspects, outputs to the construction phase, etc.

2.4 Summary

In this chapter we have presented a complete vision of high performance computing,
including parallel platforms, parallel programming models, and performance metrics.
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An overview of electric railway has been introduced. Finally, a recapitulation of the
principal railway simulators has been presented.



Chapter 3

Railway Simulation Framework

3.1 Introduction

In this chapter we propose a generic simulation framework focused on the railway
sector. This simulation framework aims to present our proposal for enhance func-
tionality and productivity of simulators in the field of railway infrastructure design.

This framework is based on four pillars: compromise between simulation accu-
racy and complexity; Automatic generation of possible solutions or infrastructure
scenarios (automatic exploration of the solution space); Consideration of all the ac-
tors involved in the design process (standards, additional restrictions, etc.); And
finally, the expert’s knowledge and integration of optimization metrics.

3.2 Railway Simulator Structure

Railway infrastructures are considered critical systems, with requirements of effi-
ciency, security and safety, and hence they should be optimized. Nevertheless, per-
forming a high number of experiments with real systems (tracks, locomotives, electric
installations, etc.) is unfeasible in terms of time and cost. The main goal of a simula-
tor, in the field of railway infrastructure design, is to simulate candidate solutions for
the infrastructure (typically experimental designs or prototypes) to evaluate if they
are acceptable or not, or to provide a degree of fitness. This procedure is composed of
several tasks. First, a candidate solution must be selected, either being provided by
the user or being generated by the simulator itself. Then, the simulation is carried
out and the results are analysed. The candidate solution is scored and a decision
to accept is taken. This procedure is repeated across multiple fields in this area.
In railway dynamics, rail-vehicle interaction is analysed, aiming to get new designs
of rails and bogies which may reduce wear and breakdowns. In overhead contact
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line designs, structural behavior [NHAR13] of poles and portal frames are evaluated,
checking their feasibility. In the field of energy provisioning, a proposal of electric
installation locations may be simulated checking whether energy is available to all
planned trains [Abr].

Although this general structure is present in most railway infrastructure simula-
tors, it may not be sufficient to grant an acceptable degree of productivity and should
be enhanced. Moreover, a simulator in railway infrastructure design should not be
restricted to evaluate solutions provided by the user, but also it should find accept-
able solutions by itself, with a high degree of fitness and in a reasonable amount of
time.

3.3 Railway Catenary Infrastructure Design Process

The design and calculation of the railway catenary infrastructure is a very complex
process, as discussed in [KPSS09]. It involves several stages that need to be accom-
plished in order to obtain a valid solution. Every stage of the process requires specific
knowledge from different fields, so that different experts have to take part in it. These
experts usually belong to different outsourced companies, which must deal with the
railway company in order to fulfill the requirements such as costs, quality, security
and technical aspects, and legal issues.

In this chapter, we present the stages of this design process with further detail,
based on three sources: railway company experts, the design planning process de-
scribed in [KPSS09], and previous works [CPGC+03]. Figure 3.1 shows all the steps
as they are carried out currently, and the experts involved in each one. As may be
seen, several rapports have to be established between the different experts.

The main steps for a complete design are described bellow:

• The manager of a rail work project demands the design of the railway catenary
infrastructure. He must define several requirements such as the ground features,
the height of the catenary points, and how and where the catenaries are held.
This definition is sent to the design engineer.

• The design engineer provides a possible design solution for every structure
within the project. Each one must be valid from a geometrical point of view.
At this stage, many elements belonging to the railway inventory (foundations,
poles, lintels, cantilevers, wires, etc.) have to be considered in order to generate
possible combinations that fit the requirements specified by the project man-
ager. When consulting the inventory through the railway company, the aim is
to provide minimum cost design solutions. Costs are defined by weight, type
of material, and manufacturing efforts. All the combinations that can be pro-
posed make the process more complex and more expensive given that specific
knowledge for the design experts part is needed.

• At this point, a rapport between the railway company and the design out-
sourced company is established. The solutions provided by the design engineer
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Figure 3.1: The process of designing and calculating railway catenary infrastructure
and its actors.

must be checked. For example existing railway regulations and security and
technical aspects must be fulfilled. Therefore, if a design solution for a struc-
ture is incorrect, it is discarded and another one must be adopted following the
premise of minimum cost design.

• Once every valid design solution, compounded of specific components from the
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railway inventory, has been provided, the railway catenary infrastructure is
analysed from a structural perspective by the structural engineer. Efforts and
displacements are calculated in order to check the resistance of the materials,
i.e., the structural feasibility of the whole structure. The task of calculating a
railway catenary support structure usually relies on Direct Stiffness Method
(DSM) to obtain its structural behaviour. Therefore, a model consisting of a
set of bars interconnected at nodes is necessary, where all the loads affecting
the structure are included.

• At this stage, a rapport between the railway company and the outsourced com-
pany responsible for the structural calculus is necessary. On the one hand, the
former one is in charge of defining the different load cases that affect structural
calculus, such as ice, wind, snow, variations of temperature, etc. On the other
hand, the calculus must take into account, considering the structural normative
adopted by the railway company. Thereby, if the calculation of a structure is
incorrect, it is discarded and, as previously mentioned, a new minimum cost
design solution should be adopted by the design engineer.

• When the design process finishes, the project manager can order the construc-
tion of the infrastructure.

3.4 Railway Simulator Framework Enhancements

To achieve those targets in this thesis we propose to enhance existing simulators in
order to increase the output of simulators by covering more capabilities than the
main procedure described before.

Our enhancements are focused on four main issues addressed below. The sources
of this approach are: railway company experts, railway infrastructure design, and
planning processes described in [KPSS09].

First of all, a trade-off between accuracy and complexity is required when de-
signing a simulator. Productivity issues in railway industry require not to expend so
much time when evaluating a single solution, as the design process may require to
evaluate a lot of candidate solutions. There is a relation between the accuracy of the
model and the complexity of the simulation. On the one hand, accurate models are
usually hard to simulate and require more and more operations so the more accu-
rate is the model, the more complex it is, and the more time is needed to reach the
solution. On the other hand, accurate models are likely to reproduce real results. Op-
timal balance between accuracy and simulation may be different in different design
processes. However we state that an efficient simulator should simulate and evaluate
a single candidate solution in the lowest possible time. We state that an acceptable
threshold to be productive is to simulate and evaluate a candidate solution in less
than one hour.

In the second place, automatic generation and simulation of solutions falls out-
side the scope of most of the simulators. Therefore, users must feed the simulator
providing new possible solutions, which leads to productivity losses. Moreover, the
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capacity of finding good (maybe optimal) solutions is tied to the user and her own
ability to explore the problem’s search space. We state that an efficient simulator
should evaluate and simulate a set of solutions with a minimal user involvement.
To achieve that: a) the user should provide the simulation parameters as a set of
possible values (e.g. [minimum, maximum, increment]) and the simulator should use
them to generate candidate solutions; b) the simulator should be able to generate
new solutions starting from an initial database (e.g. an inventory or catalogue).

Thirdly, there are many stakeholders taking part in the design process which
usually fall out of the scope of the simulation models. These parts can influence,
or even determine, the final acceptance of the candidate solutions [NHC13]. For in-
stance, the set of possible solutions when looking for a valid design of a railway portal
frame can be limited by the availability of constructive pieces in the company’s in-
ventory. Once found, a portal frame could not be in compliance with legal normative
in certain countries [BE09b]. All issues that have to be considered throughout the
design process, but fall out the scope of the simulation model should be also taken
into account when simulators generate and evaluate candidate solutions. This cate-
gory includes provider specifications, client requirements, technical security, and legal
normative. Different ways to include such restrictions out of the simulation model
are: a) restrictions to generate candidate solutions: the simulator only generates can-
didate solutions that fulfill with these initial restrictions; b) restrictions to evaluate
a candidate solution, so that the simulator evaluates these restrictions as well as any
others conditioned by the simulation model.

Finally, expert’s domain knowledge is a fundamental part in the engineering
design process [Ade03]. Expert’s knowledge defines heuristics that allow to speed
up the search process and to achieve the best solutions in the problem’s search
space. Therefore it should be included as a part of the simulation, particularly in
those simulators that include automatic generation of candidate solutions (described
as the second issue). In a similar way to other participants in the design process,
expert’s knowledge can be included when generating candidate solutions in the form
of decision rules. Those rules guide the search process to generate better candidate
solutions. They can also be included to evaluate a candidate solution in the form of
optimization metrics, which can be used to score the solution and to compare it with
others, thus choosing the best one.
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3.5.1 Railway Infrastructure Design Simulation

In the previous section, we have introduced the railway infrastructure design process.
An automation of this process would reduce the time invested in achieving a valid and
optimal solution. The Algorithm 3.1 shows our proposal to automate and optimize
the design process. First we must determine if there are some overhead air switch
(see line 2). The overhead air switches are the most critial aspect in the catenary
design process. If there are some switch under the structure, we simulate and evaluate
the overhead air switch first (see lines 5 to 7). This step modifies the design of the
catenary and the structure characteristics. At the end, we simulate all the structures
of the global project (see line 9).

Algorithm 3.1 ResolveProject.
Input: S, c
Output: S
1: for all si ∈ S do

2: hasOverhead← evaluateCatenary(si)
3: if hasOverhead then

4: overheadSwitches← getOverheads(si)
5: for all oi ∈ overheadSwitches do

6: si ← simulateSwitch(si, oi)
7: end for

8: end if

9: si ← simulateStructure(si, c)
10: end for

3.6 Summary

In this chapter we have presented a generic simulation framework with the aim of
enhancing functionality and productivity of simulators in the field of railway in-
frastructure design. This approach is focused on four main issues: trade-off between
accuracy and complexity, automatic generation and simulation of possible solutions,
taking into account other participants in the design process, and integrate expert’s
domain knowledge and optimization metrics. This structure improves the efficiency
of the simulators by giving them the ability of searching for the best solutions in the
problem space. Also, obtained solutions will be fully-integrated with the different
actors of the design process.

In the following chapters, we will present RDIS to simulate railway structure,
and OCLS to simulate overhead air switches.





Chapter 4

Railway Simulator

4.1 Introduction

The goal of this chapter is double: first of all, a railway infrastructure ontology for
the railway portal design process is defined; secondly, we introduce a new complete
simualtor (RDIS) to design and calculate railway catenary infrastructure. RDIS has
three principals parts: track design, catenary design over the track, and infrastructure
design. All these parts are tightly coupled.

4.2 RDIS Railway Simulator

Since there is a lot of expert knowledge involved in each stage of the process, the
communication among the experts is usually slow. Besides, if a proposed solution for
a single support structure is incorrect, some steps have to be repeated until either
a valid one is found, or all possible solutions have been tested. This means that the
process of designing and calculating the railway catenary infrastructure is desired to
be shortened in time in order to increase its efficiency and to reduce costs. Regarding
the input requirements such as the geometric feasibility and the structural strength,
it is important to point out that there may be several valid solutions for a railway
catenary infrastructure in compliance with current railway legislation and regulation.
However, the minimum cost solution should be provided.

In order to automate the design process of a complex railway portal, we have
to be able to fulfill all the steps from the catenary points specified by the railway
electrification engineers (shown in Figure 4.1) to the final structure (shown in Figure
4.2) that is geometrically and structurally feasible and cost-effective.

The proposed architecture includes several features to cope with the complexity
of railway infrastructure design problem that make it novelty:
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Figure 4.1: Initial data for railway portal design.

Figure 4.2: Result of the intelligent design for the former problem.

1.- A comprehensive database of standardized materials. Initially, those used in
Spanish railways, but any material can be included using a graphic interface.
This database includes catenaries and electrification system materials, and dif-
ferent railway elements such as switches and crossings.

2.- A powerful and intuitive graphic interface specifically adapted to the railway.
This tool provides a computer-aided track design that allows users to design
different elements of the tracks: curves, transition curves, switches, and cross-
ings.

3.- A complete geometric and structural calculus library to make, not only graphic
design, but also structural validation of systems, according to railway stan-
dards.

4.- A simulation system that, once a project is designed, can simulate train cir-
culations along the infrastructure to test components as rails, switches, or the
interaction between the pantograph and the contact wire.

5.- An ontology, knowledge rules-based system, and a rule engine that automati-
cally chooses the best design options for every situation. The production rules
include normative and the knowledge of railway company and railway design
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experts in several fields (i.e. tracks, electrification, signals). The knowledge base
and the ontology can be expanded to other railway systems.

4.2.1 Ontology Definition

One of the most important topics of intelligent systems is the knowledge represen-
tation on the problem domain. Thus, an important design decision is to choose the
techniques for representing the knowledge of the application to be developed. In our
case, we use techniques that can capture knowledge about railway infrastructure in
the best way.

Several knowledge representation techniques can be used: semantic networks,
frames, uncertain reasoning, ontology and rules, etc. [GYO+05, GHS05, Dut96,
NEGED10, Sch00]. For complex systems, as railway infrastructure, simple mech-
anisms as semantic networks or frames are not appropriate, as they only let to use
declarative statements that are true or false. The same applies to uncertainty reason-
ing [KC07], which provides solutions for situations whether a true or false cannot be
got, leading to conflicts with railway regulations. Nowadays, the trend for representig
railway infrastructure knowledge is to use ontologies and rules [MA11]. Ontologies
allow to structure information integrating different unstructured information sources
and providing an unified terminology. The definition of the ontology concept changes
among the users of the AI field, but the definition of an ontology as a specification
of conceptualization [Gru93] is generally accepted nowadays [NM01], but adding to
each object of the ontology a set of properties that represent its features. However,
the ontology itself is not enough. To design real-life structures, it must be integrated
with a set of well-defined rules that can manage information and apply heuristics
to represent regulations, structural constraints, and calculus, etc. [Joh02, RC03]. A
hybrid approach has been adopted in RDIS: the ontology of the railway infrastruc-
ture and a rule-based representation technique, as the railway infrastructure can be
captured using ontologies and rule-based representation techniques can be used to
solve the process.

The first challenge to build a railway ontology for the simulator was the knowl-
edge identification, which was achieved through an extensive literature review, in-
cluding railway books [MC07] and journal papers [Hol86, MM99, SKS00, QJ10],
study of existing ontologies, consultation to experts and railway company managers,
regulation and legislative documents, and personal experience of the authors, were
used as sources of knowledge. Along this process, concepts, attributes, and relations
of the railway infrastructure ontology were established.

The second challenge was the knowledge specification of the railway infrastruc-
ture model. A two-step approach has been applied: semiformal modeling of the ontol-
ogy using Unified Modeling Language (UML) to represent objects, classes, relations
and properties; and representation using a Web Ontology Language (OWL) via the
use of the ontology editor Protege [Sta11]. Protege is an open-source integrated and
platform independent ontology editing tool. One major advantage is supporting the
SWRLTab, a plug-ing to edit Semantic Web Rule Languages (SWRL) rules.

Figure 4.3 presents the UML semiformal model implemented in Protege for the
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example, Mast_MaxTorque is 938.25, and Mast_Height is 9.75 meters for this el-
ement. As may be seen, an object has several properties. All of them are used by
the rule system to get a solution to the design problem. Object properties remain
unchanged in the translation process to Protege, as data properties changed to start
with has (for example hasCantilever). This practice conforms to the ontology knowl-
edge model in Protege and it is common in ontologies to facilitate readability. Axioms
and annotation properties are also used in the Protg ontology to define operations
among properties. Inheritance, for example, is defined as a belongsTo relation to de-
fine a taxonomical relationship among concepts and subconcepts, with subconcepts
inheriting the concept properties. For example, Lintel_PRC is a type of Lintel. The
relation IsIn shows a constructive relation and it is related to the set of elements
belonging to the domain of a railway portal. There are several IsIn relations depend-
ing on the object (cantilever, track, ). We have other names, as IsUnder, for similar
properties. Those names are used to have a more readable model and ontology.

Figure 4.4: A reduced view of the railway portal process ontology.

4.2.2 Rule System Development

To accomplish all the design process, our simulator uses production rules that guide
the design process itself depending on the ontology objects and their properties (ter-
rain quality, portal length, number of tracks under the portal, number of catenaries,
weight and wires tension, track shape, etc.). A top-down approach is used to choose
all the feasible elements applying the knowledge rules of the system. Figure 4.5
shows some rules and queries belonging to the railway portal design process. After
choosing all the elements, constructive feasibility must be assessed. Thus, the sim-
ulator geometrically builds the railway portal to check whether all components can
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Figure 4.5: Example of rules and queries for railway portal process ontology.

fit the spatial restrictions of the infrastructure (track values and catenary points,
basically). If they do, the structural feasibility of the portal is assessed by applying
different computing methods like direct stiffness method, Sulzberger, etc. If some-
thing is wrong, a new composition is tested, and the process continues until getting
a feasible configuration or an error. As this calculation process is CPU intensive, it
is important to apply optimizations [Esc03]. RDIS methods have been optimized to
compute the entire tested configurations in seconds or a few minutes. Several algo-
rithm optimizations have been applied and parallel computing techniques have been
used to provide a very fast answer to the designer, as show in the final section of this
chapter.

Rules allow to go beyond the structural relations provided by the ontology.
Protg provides SWRL, to extend weak forms of OWL systems with first-order rules
[Wal07]. SWRL provides a Jess rule engine, knowledge base populated with rule
instances, user interface SWRL-Tab, and the rule engine bridge SWRL-REB. Rule
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knowledge base is an extension of the ontology knowledge base and the queries on
the ontology can be executed using Queries-Tab plugin. Queries on the rule base can
be made using SWRLTab. The rule knowledge base contents information captured
from railway experts, books, journals, regulations, and standards and it has been
tested by experts of a railway company. The rules knowledge base was developed
by constructing a decision tree analysis. The decision tree revealed a minimum of
136 possible outcomes. However, the system could increase to thousands of rules by
adding more complexity, details, and variety to RDIS. The decision tree was very
useful to accomplish process optimization to get outcomes as fast as possible, and to
compare the decisions of RDIS to those taken by the experts.

All rules in the knowledge base follows the format:

A1, A2, . . . , An → B (4.1)

Where Ai and B are atomic formulas depicting conditions (Ai) and the resulting
action (B) executed when the conditions are fulfilled. Figure 4.5 shows a rule of RDIS,
specifically rule number 5, to choose a mast with enough height to maintain the lintel
over wire support structures. The rule is written using the SWRL syntax, which only
provides the conjunction symbol (∧) and the implication symbol (→), rule variables,
and syntax for components, classes, property atoms, and data valued atoms. The rule
variables are represented by the interrogation symbol (?) (e.g. ?m). The class atoms
are constructed from an OWL class name followed by one variable or component
name (e.g. Mast(?m)). As may been seen, deciding if the mast is tall enough for
the portal depends on all the elements of the portal, like foundations, contact wire
height, catenary, etc. The final result is equivalent to an if then sentence with several
conditions:

If « Mast height is taller than
the maximum height of contact wire points +
the height of the cantilever used to hold the contact wire +
the height of the mast foundation »

Then « Mast_IsHeightValid is true for that portal »

This is only one of the premises to be tested before choosing a mast and it is
a step of the portal design phase. After that, structural constraints must be tested,
which also have several conditions to be satisfied. For example:

If « Mast_MaxTorque is higher than current mast torque ∧
Mast_MaxEffort is higher than current mast effort ∧
Mast_MaxAxleLoad is higher than current axle load »

Then « Mast_IsStructuralValid is true for that portal »

Some of the former conditions result from complex calculus and they must be
computed dynamically for each possible solution, as they do not depend on the prop-
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erties of the object itself, but on the forces and restrictions resulting in the design.
For example, to test the current mast torque, the following equation is applied:

fct ∗
Mzk

WyUPN

+
Nk

AUPN

<
σe
γm0

(4.2)

being N axial efforts, A the area of the mast, W the rigidity of the mast, and σ,
γ, and fct several safety coefficients defined by the regulations.

Several masts from the ontology could satisfy the former conditions, thus a set
of valid solutions is obtained to build the portal. The same situation is possible for all
the components like foundations, cantilevers, etc. leading to a combinatory explosion
of possibilities that must be considered.

4.3 Generating and Calculating Portal Frames

In the previous section, we have presented the process proposed to design and cal-
culate railway catenary infrastructures. An automation of this process would reduce
the time invested in achieving a valid solution. Regarding the elements of the railway
inventory that are used in the process, the aim is to find:

• A valid design for all the cantilevers, poles and lintels, catering for the geometric
configuration of the catenaries held by the structure.

• A feasible bar assembly of poles and lintels after calculating their structural
behaviour through DSM.

• A valid calculus for all the hypothesis.

• A valid choice for every foundation, considering its overturning and subsidence
resistance.

Three main problems arise from this design and calculation process.

First, the designed structures are very heterogeneous, i.e., they have their own
characteristics and constraints, with regard to the track route, the catenaries to be
held, the hypothesis of load cases that are used, or the construction regulations. This
problem prevents design and structural engineers from developing a single common
solution.

Second, applying DSM is a time-consuming task due to it requires a large number
of operations. In our proposal, we have to apply one DSM per hypothesis, H =
h1, h2, ..., hn, where h is a hypothesis defined for the user. On the one hand, the
catenary support structure must be modelled as a set of bars interconnected at nodes.
The way to obtain efforts and displacements at any point of the structure consists
of resolving a set of equations, generated from the stiffness matrices of the bars, and
the loads affecting the structure. On the other hand, feasibility verification formulas
with safety coefficients specified by the railway company must be also considered in
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order to resolve the whole structure. Finally, the more complex the structure, the
more operations must be performed.

Third, depending on the inventory size which the system is linked to, the set of
combinations where a feasible solution can be found may be large. Let I the inventory
that contains the constructive elements used to assemble a structure. I = {L | P |
F | C}, where L = {l1, l2, ..., lm} is the set of lintels included in the inventory,
P = {p1, p2, ..., pn} is the set of poles included in the inventory, F = {f1, f2, ..., fp}
is the set of foundations included in the inventory, and C = {c1, c2, ..., cr} is the
set of cantilevers included in the inventory. Let W the planned project. W contains
a number of structures, W = {s1, s2, ...., ss}. A single structure is defined by si =
{nil, nip, nic}, where nil is the number of lintels in the structure, nip is the number
of poles in the structure, and also the number of foundations, and nic is the number
of cantilevers that support the overhead lines attached to the structure. The number
of possible assemblies for all the cantilevers, poles, and lintels in si, is

Nai = ‖C‖
nic · ‖P‖nip · ‖L‖nil (4.3)

For the first assembly in Nai that is considered to be feasible during the process, the
number of possible choices for all the foundations in si, is

Nfi = ‖F‖
nip (4.4)

For example, having 6 lintels, 23 poles, 25 foundations, and 7 cantilevers cat-
alogued in the inventory, the number of possible assemblies for a standard portal
frame (a lintel, two poles, and 4 cantilevers) is 7,620,774. The number of choices for
the foundations once a feasible assembly is found is 625.

Let tdavg the average time in obtaining a valid design for a single assembly1, tcavg
the average time in performing the structural calculus of that assembly, and tfavg the
average time in choosing a valid foundation2. Maximum time spent on computing all
structures in the project W , is

ttot =

‖W‖
∑

i=1

(

tdavg ·Nai

)

+
(

tcavg ·Nai

)

+
(

tfavg ·Nfi

)

(4.5)

Considering these three issues, a hand-design and a hand-calculation of the
structure might result in human mistakes, besides being unfeasible in terms of time
and effort invested.

We provide an algorithm, named ResolveStructure, that is in charge of automat-
ing the process. From the inventory I and the structure si, the algorithm carries out
the step sequence described in Algorithm 4.1. As may be seen, the main actions are:

1.- A specific assembly design is set for a structure si by using the components
existing in C, L, and P , that belong to the inventory I. For example, let a

1
tdavg ≪ tcavg

2
tfavg ≪ tcavg
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Algorithm 4.1 ResolveStructure.
Input: si, L, P, F,C,H
Output: si, feasibleSolution
1: feasibleSolution← false
2: moreOptions← true
3: hypothesis← GetMoreRestrictiveHypothesis(H)
4: while !feasibleSolution&moreOptions do

5: if (CheckAssemblyDesign(si.assembly)) then

6: barsSet← ∅;
7: for all lintel ∈ si.assembly do

8: lintelBars← GenerateLintelBarModel(lintel)
9: barsSet← [barsSet, lintelBars]

10: end for

11: for all pole ∈ si.assembly do

12: posteBars← GeneratePoleBarModel(pole)
13: barsSet← [barsXplane, posteBars]
14: end for

15: for all hypothesis ∈ H do

16: feasibleSolution← RegulatedCalculus(barSet, hypothesis)&feasibleSolution
17: end for

18: end if

19: end while

20: for all foundation ∈ si do

21: foundationFeasibility ← FALSE
22: si.foundation.value← GetNextFoundation(si, F )
23: while !foundationFeasibilityandsi.foundation.value 6= ∅) do

24: subsidence← CheckSubsidence(si.foundation.value)
25: foundationFeasibility ← CheckOverturning(si.foundation.value)
26: foundationFeasibility ← foundationFeasibility&subsidence
27: end while

28: feasibleSolution← foundationFeasibilityandfeasibleSolution
29: end for

20-metres-span portal frame. A possible design to be calculated might be a
truss lintel and two I-beam-poles with 106 cm2 cross-section each. This step is
executed every time a new design solution is requested (see line 2 in Algorithm
4.1).

2.- The assembly design is checked with railway regulations. Since the elements in
C, L, and P , are mutually combinable, the railway companies are required to
filter the assemblies that can be designed, but are not considered to be suitable
in terms of best practices. Therefore, if the assembly is not accepted, a request
for a new design solution is ordered (see line 3 in Algorithm 4.1).

3.- The set of bars representing the assembled structure is generated from the el-
ements of the inventory that were selected in step 1. This inventory of those
elements, as well as their constituent profiles. Every profile has its own prop-
erties (dimensions, section, weight per metre, thickness, moment of inertia,
section modulus, and Young’s elasticity modulus), that determine the behav-
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ior of the different bars that are generated in the model. The inventory also
contains other properties of the elements, like the length, or the kind of joint
to the rest of the elements within the structure (see lines 4 to 12 in Algorithm
4.1).

4.- The calculation of efforts and displacements at any point of the bars is per-
formed by applying DSM to the generated model (see line 3 in Algorithm 4.2).
We apply one DSM per hypothesis (see lines 13 to 15 in Algorithm 4.1).

5.- The structure is verified by applying the structural feasibility conditions pro-
posed by the railway companies. This step consists of analyzing how the cal-
culated efforts affect the resistance of the bars from a structural point of view.
All the bars belonging to the model must be checked, so that it may be known
where the structure collapses. The deflection of lintels must also be analyzed to
verify whether they fit the railway company normative or not. If the assembly
design is not feasible, the process goes to step 1 again, i.e., as many assemblies
as necessary will be proposed until finding the feasible one (see lines 6 to 12 in
Algorithm 4.2).

Algorithm 4.2 RegulatedCalculus.
Input: barsSet, hypothesis
Output: feasibleCalculus
1: conditions← GetConditions(hypothesis)
2: barSet← ApplyConditions(barSet, conditions)
3: DSM(barsSet)
4: barsFeasibility ← TRUE
5: lintelFeasibility ← TRUE
6: for all bar ∈ barsSet do

7: barsFeasibility ← CheckStructuralFeasibility(bar)&barsFeasibility
8: end for

9: for all lintel ∈ si.assembly do

10: lintelFeasibility ← CheckDeflection(lintel)&lintelFeasibility
11: end for

12: feasibleCalculus← barsFeasibility&lintelsFeasibility

6.- When a feasible assembly design is found, a specific and valid component of F
is assigned to every foundation and anchor foundation. This step is executed
once per each structure si because in DSM the poles are considered to be fixed
in their base, i.e., the structural calculus may be carried out regardless of the
foundations. So, once the forces generated on the base of the poles are known
by applying DSM, foundations are analyzed through Sulzberger method [Sul45]
in order to check their overturning and subsidence resistance (see lines 18 to
24 in Algorithm 4.1).

The algorithm finishes when either a valid assembly (regarding the design and
structural feasibility) is found or when all the combinations have been tested and
none of them resulted in a feasible solution.
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Table 4.1: Selection order example of various poles with different heights and steel
profiles.

Steel profile Height (m) Weight (kg) Inertia moment (cm4) Order

HEB 240 9.75 811 11 259 1
HEB 400 11.65 1 805 57 680 2
HEB 550 14.00 2 796 136 691 3

Figure 4.6: Planned portal frames and poles within a railway project.

The proposed algorithms are computationally complex mainly due to two fac-
tors. First, generating a feasible solution entails the combination with repetition of
the inventory components per each element existing in the structure (lintels, poles,
foundations, and cantilevers). The criteria used to choose these component combina-
tions are based, not only on height restrictions of the catenaries situated under the
portal frame, but also on a cost-optimization approach in terms of minimum weight
design. According to this approach, the components are selected from the lowest to
the highest weight until the whole structure is feasible. Table 4.1 represents an exam-
ple of different poles, showing their steel profile, height, weight, moment of inertia,
and selection order in Algorithms 4.1 and 4.2. The same criteria is analogously used
for the rest of existing railway elements (lintels, cantilevers, and foundations). The
second factor is that DSM consists of resolving a set of equations through matrix
algebra. Hence, a high use of memory and processing resources is needed [FSSC11].

4.4 Tool Description

In the previous section, the process of designing and calculating a single catenary
support structure has been presented. Nevertheless, when designing a real rail work
project, such as planning the infrastructure of a railway station, or allocating all the
poles along a 50 km track stretch, a high number of these structures may be needed.
Figure 4.6 shows an example of a planned project containing rail tracks, portal
frames, and single poles. All things considered, if all the structures within a project
are desired to be calculated, the computational effort would increase enormously.

Our proposal automates the process of designing and calculating railway cate-
nary support structures. RDIS is oriented to the computer-aided design of railway
infrastructures. Through a user-friendly interface, users are able to design real rail
work projects in detail, defining and modifying the elements that are planned (length
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Figure 4.7: Assembled portal designed and calculated by the tool.

and direction of track stretches, type and mechanical tension of overhead wires, cate-
nary height, cantilevers, poles and portal frames and their location along the tracks,
etc.). Then, our tool gathers all the information related to each catenary support
structure in the project and it is able to perform its design and calculation, allowing
for structural constraints and normative regulations. Structural calculus is carried
out through DSM, which is implemented within our tool. Moreover, it works with
the railway inventory, so the components and materials of its stock list are included
and considered.

Since RDIS is desired to be interactive, users are always informed about the
results obtained, whether a feasible solution is achieved or not. On the one hand,
if a feasible solution is achieved, the assembled structure is presented showing the
following information:

• A CAD drawing, including the elements that compound the structure. Figure
4.7 shows an example of a truss portal frame that leans on two beam poles.
The user is able to identify the specific components per element that were
used in the solution obtained. Besides, since real components are used and a
well-designed structure with real measurements is provided.

• Numerical results of the calculation process are also presented. Users can access
detailed information at any point of the modelled bars: axial and shear stresses,
bending moments, and displacements. Their maximum and minimum values
are also obtained and located at specific points in the assembled structure, so
that users can analyze its structural behaviour. Besides, different diagrams are
also used to represent graphically these numerical values, as may be seen in
Figures. 4.8, 4.9, 4.10, and 4.11.

• Overturning moments and compression forces of foundations where poles are
embedded in.
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Figure 4.8: Portal frame bending moment obtained by the tool.

Figure 4.9: Portal frame axial moment obtained by the tool.

Figure 4.10: Portal frame cutting effort obtained by the tool.

Figure 4.11: Portal frame deflection (magnified) calculated by the tool.
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• Tension of the wires used to hold the lintels under a feasible deflection. Their
locations along the lintel are also provided.

On the other hand, if RDIS is not able to find a feasible solution, the user is
informed about the reasons why the structure is not valid: lintel over-deflection, bar
collapse, foundation subsidence, etc. RDIS also shows graphic information, as will
for a feasible solution. Invalid elements are identified with a different colour, so that
users can analyze where and why the structure is collapsing.

4.5 Enhancements

To achieve this, we have divided the problem in two parts. Firstly we tackle the
several hypotheses per planned structure. Secondly, we propose an optimization to
calculate a real project with thousands planned structures. All the improvements
proposed will be evaluated in the Chapter 6.

4.5.1 Single Structure

In the Algorithm 4.1 we could see the process for calculating a structure. The algo-
rithm takes all possibles solutions, one by one from minimum to maximum cost, and
calculates for all hypothesis. In the worst case, the total number of calculations, or
RegulatedCalculus calls, can become equal to

Cmax = Nai ·NH (4.6)

where Nai is the number of possible sets, previously described in Equation 4.3,
and NH is the number of hypotheses to satisfy. In the example described above, with
6 lintels, 23 poles, 25 bases, overhangs 7, and 13 different hypotheses, the maximum
number of calculations is 99,070,062.

We confront the challenge of improving the calculus of a single structure from
two perspectives. First, we propose a parallel approach. Each hypothesis will be cal-
culated in a different thread. Second, we suggest a heuristic approach in collaboration
with the expert’s knowledge.

Parallel approach

Figure 4.12 shows the proposed architecture. In this approach we propose divide
the calculus of each hypotheses into threads. The hypotheses calculate the same
structure and all their characteristics must be shared as we can see in the Algorithm
4.3, lines 14 to 17. Between lines 4 to 13, we build the barsSet to all the hypotheses.
The principal advantage of this solution is that we only have to check a common
structure.
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Heuristic approach

After assessments of sequential approach, we identify a major problem as the order
of calculation of the hypotheses greatly affects the resolution time of the structure.
Unnecessary calculations, if the design process begins with a less restrictive hypoth-
esis, it is possible that the results are not valid for the most restrictive hypothesis; all
the above calculation should be discarded, and it needs to start with a new option
from the beginning. In order to solve this problem, the Algorithm 4.4 is presented.

As may be seen, major actions are:

1.- The most restrictive hypothesis is obtained in line 3. This hypothesis is selected
according to the criteria established by the expert, and the description of the
hypothesis given by the user.

2.- The calculation and design for this hypothesis is performed as if it were the
only one in the system (see lines 7 to 23 in Algorithm 4.4).

3.- When a viable solution for the more restrictive hypothesis is obtained, the
remaining hypotheses are calculated as in the sequential algorithm (see lines
25 to 38 in Algorithm 4.4).

Heuristic parallel approach

Finally, we have decided to combine the two principal approaches, parallel and heuris-
tic. The Algorithm 4.5 describes the sequence to calculate with this approach.

The major contributions of this algorithm is when a feasible solution for the
most restrictive hypothesis is obtained, the remaining hypotheses are calculated in
different threads (see lines 35 to 38 in Algorithm 4.5).
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Algorithm 4.4 ResolveStructureHeuristic.
Input: si, L, P, F,C,H
Output: si, feasibleSolution
1: feasibleSolution← false
2: moreOptions← true
3: hypothesis← GetMoreRestrictiveHypothesis(H)
4: while !feasibleSolution&moreOptions do

5: feasibleF irstHypothesis← false
6: si.assembly ← GetNextMinimumCostAssemblyDesign(si, L, P, C)
7: while !feasibleF irstHypothesis&(si.assembly 6= ∅) do

8: if (CheckAssemblyDesign(si.assembly)) then

9: barsSet← ∅;
10: for all lintel ∈ si.assembly do

11: lintelBars← GenerateLintelBarModel(lintel)
12: barsSet← [barsSet, lintelBars]
13: end for

14: for all pole ∈ si.assembly do

15: posteBars← GeneratePoleBarModel(pole)
16: barsSet← [barsXplane, posteBars]
17: end for

18: feasibleF irstHypothesis← RegulatedCalculus(barSet, hypothesis)
19: if !feasibleF irstHypothesis then

20: si.assembly ← GetNextMinimumCostAssemblyDesign(si, L, P, C)
21: end if

22: end if

23: end while

24: if feasibleF irstHypothesis then

25: hypothesis← GetNextHypothesis(H)
26: while hypothesis do

27: barsSet← ∅;
28: for all lintel ∈ si.assembly do

29: lintelBars← GenerateLintelBarModel(lintel)
30: barsSet← [barsSet, lintelBars]
31: end for

32: for all pole ∈ si.assembly do

33: posteBars← GeneratePoleBarModel(pole)
34: barsSet← [barsXplane, posteBars]
35: end for

36: feasibleSolution← RegulatedCalculus(barSet, hypothesis)
37: hypothesis← GetNextHypothesis(H)
38: end while

39: else

40: if si.assembly = ∅ then

41: moreOptions← true
42: end if

43: end if

44: end while
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Algorithm 4.5 ResolveStructureHeuristicParallel.
Input: si, L, P, F,C,H
Output: si, feasibleSolution
1: feasibleSolution← FALSE
2: moreOptions← TRUE
3: while !feasibleSolution&moreOptions do

4: feasibleF irstHypothesis← false
5: si.assembly ← GetNextMinimumCostAssemblyDesign(si, L, P, C)
6: while !feasibleF irstHypothesis&(si.assembly 6= ∅) do

7: if (CheckAssemblyDesign(si.assembly)) then

8: barsSet← ∅;
9: for all lintel ∈ si.assembly do

10: lintelBars← GenerateLintelBarModel(lintel)
11: barsSet← [barsSet, lintelBars]
12: end for

13: for all pole ∈ si.assembly do

14: posteBars← GeneratePoleBarModel(pole)
15: barsSet← [barsXplane, posteBars]
16: end for

17: hypothesis← GetMoreRestrictiveHypothesis(H)
18: feasibleF irstHypothesis← RegulatedCalculus(barSet, hypothesis)
19: if !feasibleF irstHypothesis then

20: si.assembly ← GetNextMinimumCostAssemblyDesign(si, L, P, C)
21: end if

22: end if

23: end while

24: if feasibleF irstHypothesis then

25: barsSet← ∅;
26: for all lintel ∈ si.assembly do

27: lintelBars← GenerateLintelBarModel(lintel)
28: barsSet← [barsSet, lintelBars]
29: end for

30: for all pole ∈ si.assembly do

31: posteBars← GeneratePoleBarModel(pole)
32: barsSet← [barsXplane, posteBars]
33: end for

34: hypothesis← GetNextHypothesis(H)
35: while hypothesis do

36: WaitForIdleCore()
37: StartThreadRegulatedCalculusParallel(barSet, hypothesis, feasibleSolution)
38: hypothesis← GetNextHypothesis(H)
39: end while

40: else

41: if si.assembly = ∅ then

42: moreOptions← TRUE
43: end if

44: end if

45: end while
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dispatch each thread to a core when using multi-core computing, that the tasks can
run concurrently. Threads are dispatched in an orderly fashion, so as not to satu-
rate the processor. Initially, the algorithm starts with a determined number of tasks,
corresponding with the number of available processor cores. Then, it waits for the
termination of an executing task to dispatch the next one to the core which has just
become available. In this way, the maximum number of executed concurrent tasks
is equal to the number of processor cores, allowing to exploit the maximum degree
of parallelism without saturating the computer. The railway inventory is the only
element shared among all the tasks. Inventory data are fetched from disk to memory
at the beginning of the algorithm, avoiding disk use overhead. During the process,
these data are accessed by the threads in a read-only manner, so simultaneous ac-
cesses can be performed with no integrity problems. The use of threads modifies the
pseudo code shown in Algorithm 4.6 to the stated in Algorithm 4.7.

Algorithm 4.7 ResolveNStructures.
Input: W,L, P, F,C,H
1: for all (si ∈W ) do

2: WaitForIdleCore()
3: StartThread{ResolveStructure(si, L, P, F,C,H)}
4: end for

4.6 Summary

We have presented an intelligent computer-aided design tool, named RDIS, that
helps railway infrastructure designers to create and calculate safer and more efficient
complex structures for railway electrification systems, especially overhead wire sup-
port structures such as cantilevers and frame portals. The final goal of that tool is
to help designers to build infrastructure for the electric railway transport that are
compliant with the existing normative and safe from the circulation and structural
point of view to avoid dangerous situations that arise currently due to mistakes in de-
sign. RDIS follows a holistic approach to design, including facilities to automatically
build from scratch detailed structures, including platforms, tracks, complex railway
portals, catenaries and electrification systems. Our tool delivers an analysis of three-
dimensional structures, detailed component calculations, election of minimum cost
and minimum weight designs, and constructive plans adjusted to the millimeter of the
optimal solution. The final result is the project documentation that can be provided
to the building company.

The novelty of this research is the holistic approach of including all railway sys-
tems, with the intention of creating a knowledge system to incorporate automatically
experts knowledge by using a rules engine, and the possibility of making automati-
cally infrastructure design choosing optimal solutions, which will enhance the system
efficiency and safety.

A dependency between RDIS and the position of the catenary has been de-
tected. After several studies and after consultation with experts, we have come to
the conclusion that the major problem stated in the catenary design was the design



52 Chapter 4. Railway Simulator

of overhead air switches. In this situation, two or more differnt catenaries are needed
to garantee the power supply to both tracks. A bad design could result in an accident
or incident with an important economic impact due to stop of service temporarily.



Chapter 5

Overhead Air Switches Design

5.1 Introduction

This chapter introduces the adaptation of the general framework described in the
previous chapter to the design of overhead air switches (OCLS). In the design of
overhead air switches we must consider the following aspects. The different types of
switches, tangent and cross air switches, regulation normative, the different types of
catenaries and scenarios, and metrics to find the optimal solution or set.

Finally, two versions of OCLS are introduced.

5.2 Overhead Air Switches

Catenaries are deployed along several spans of different lengths.They are composed
of a messenger wire holding a contact wire that supplies the electric power to the
pantograph of the train. Both wires are hung at a specific tension and are attached
to each other at regular intervals by drop wires. These droppers are responsible for
maintaining the contact wire hung at a constant height with a slight deflection. Hence
an uniform contact between the pantograph and the wire as the train travels along
the track is possible, avoiding any notches due to the pantograph thrust force. In
addition, contact wires must be zigzagged slightly to the left and to the right of track
axis so that the pantograph wears evenly its friction surface. This stagger is a critical
issue to be analyzed in the problem presented.

In this chapter we focus on the critical study case of railway switches, where
a train travelling along the straight track has to change to the diverging track. In
this situation, two different catenaries are needed to guarantee the electricity supply
to both tracks. Therefore, there will be overlapped spans along the switch stretch
length. There are two major models of overhead air switches, tangent, and cross.
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to achieve the optimal solution set from a technical point of view. We define
several metrics to compare the merits of each solution and to find the optimal
set. For each solution, the value of each metric is computed and stored into a
vector. Then, a weighted equation is used to get the solution score (Algorithm
5.1 line 20). The optimal solution will be the highest scored. All the process is
also described in detail in subsection 5.6.2.

Algorithm 5.1 Overhead air switch simulation algorithm.
Input: si {switchInfrastructure}
Input: ci {catenaryInfrastructure}
Input: cif {catenaryInstallationFeatures}
Input: sc {simulationConditions}
Output: optimumDesign

{Let E the set of scenarios to be simulated}
1: E ← ∅
2: E ← BuildSimulationScenarios(si, ci, cif, sc)

{Let S the set of possible solutions}
3: S ← ∅
4: for all (ei ∈ E) do

5: in parallel

6: S ← [S, simulateScenario(ei)]
7: end for

{Let F the set of feasible solutions}
8: F ← ∅
9: for all (si ∈ S) do

10: in parallel

11: if isFeasible(si) then

12: F ← [F, si]
13: else

14: discard(si)
15: end if

16: end for

{Let O the vector of optimality of the scenarios}
17: O ← ∅
18: for all (fi ∈ F ) do

19: in parallel

20: O ← [O, computeScenarioOptimality(fi)]
21: end for

22: optimumDesign← getOptimumDesign(O) {Gets the best scored solution}
23: return optimumDesign

5.4 Analysis of the Simulation Space

The simulation algorithm proposed has several data inputs, that may be gathered
into four groups: switch infrastructure, simulation conditions, catenary geometry,
and catenary installation features. Their details are stated below.

• Switch infrastructure data (si). Data related to railway infrastructure are shown
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configuration. Therefore, several catenary parameters are defined as an interval
of test values, specified by a maximum, minimum, and a delta variation.

Catenary infrastructure geometry parameters are stated below, including those
that are interval parameters:

– El. Elevation span length of the catenaries of both the straight and the
diverging track.

– Sl. Switching span length of the catenaries of both the straight and the
diverging track.

– Jp = {Jpmin, Jpmax,∆Jp}. Junction point where the main pole of the
system is located. Its value is the distance at right angles from the straight
track to the diverging one.

– Cp = {Cpmin, Cpmax,∆Cp}. Characteristic point where the heights of
both catenaries match. It is always located at any point of the elevation
span.

– e = {emin, emax,∆e}. Elevation of the diverging track catenary at its
starting point.

– h = {hmin, hmax,∆h}. Elevation of the diverging track catenary at its
ending point.

– s1, s2, s3; s = {smin, smax,∆s}. Staggers at the three main supporting
points of the straight track catenary. Due to the catenary zigzagging,
s1 = s3 = −s2.

– S1, S2, S3;S = {Smin, Smax,∆S}. Staggers at the three main supporting
points of the diverging track catenary. As mentioned above, S1 = S3 =
−S2.

– H. Height of the straight track contact wire.

• Catenary installation mechanical features (cif). In addition to geometry data,
it is necessary to consider some extra parameters in order to simulate a re-
alistic behavior of the catenary installation features and pantograph-catenary
interaction.

– Kmax. Catenary stiffness at the supporting point, i.e., where the catenary
is stiffer.

– Kmin. Catenary stiffness in the middle of the span, where the catenary is
more flexible.

– Dmax. Contact wire deflection in the middle of the span. It refers to the
gap under the height set for this wire.

– d. Distance to the first dropper. No contact wire deflection is applied along
this distance.

– N . Number of contact wires belonging to the catenary. There may be one
or two contact wires.
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Algorithm 5.2 Procedure simulateScenario(e) to simulate all scenarios.

Input: e {Scenario}
Output: S {Scenario simulated}

1: n← kjinit−kjend

δj

2: ki ← kjinit
3: while ki < kjend do

4: pos← ComputePantographPosition(ki)
5: Y ← ComputeContactWiresPosiotions(pos)
6: for all y ∈ Y do

7: stagger ← ComputeStagger(y)
8: y ← CalculateLateralDisplacement(y)
9: stagger ← CalculateV erticalDisplacement(stagger)

10: end for

11: hinitial ← CalculateHeight(Y, pos)
12: pos← LateralDisplacempentPanto(pos, hinitial)
13: hi ← CalculateHeight(Y, pos)
14: ei ← ETI(cif, Ts)
15: applyElevationContact(Y, hi)
16: write results
17: ki ← ki + δj
18: end while

i of the simulation scenario j. For the sake of simplicity, only main equations are
stated.

First, the pantograph position ki is computed for each simulation step
i by increasing the former pantograph position in the track with the pantograph
displacement defined (see Equation 5.3). For the first step, the initial position is set
to the position of the first pole of the switch infrastructure kjinit.

ki = ki−1 + δj (5.3)

Second step is computing contact wires position. This step is in charge of
calculating the position of the contact wires accurately for the pantograph position at
this simulation step. For the straight track, the position of the contact wire is modeled
depending on the positions of the first and the last droppers, and the maximum
deflection defined as input data. The wire has a constant height H between the
beggining of the span to the first dropper, and between the last dropper to the end
of the span. However, this base value must be modified, because we must respect
the deflection in the middle of the catenary span, between the first and the last
droppers. Equation 5.4 is applied along the span to compute the base wire height for
that point.

yi(ki) =







H ki < d
H − deflection(ki) d ≤ ki < l − d
H ki ≥ l − d

(5.4)

where d is the distance from the beggining of the span to the first dropper, and
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l is El or Sl, depending on whether the current span is the elevation span or the
switching span.

Thus, the deflection of the contact wire due to the messenger wire tension must
be considered in this step. Since there are droppers linking the messenger wire to
the contact wire, the contact wire height never has a deflection larger than the limit
defined Dmax. Equation 5.5 is used to compute wire deflection at each point.

deflection(ki) =

(

4 ·
Dmax

(l − d)2

)

·
(

(l − d) · (ki − d)− (ki − d)2
)

(5.5)

Equation 5.5 is derived from Equation 5.6, a more general expression of wires
deflection used in railway domain.

y =
p · x2

2 · T
(5.6)

where p is the weight per meter of the wire, T is the wire tension, and x is the
distance between the calculated point and the closest support.

Equations 5.4 and 5.5 are applied in every span except in the diverging track
elevation span. Contact wire deflection of the latter span is not considered, and
contact wire height is obtained by applying trigonometry in the scheme of the right
side of Figure 3.1.

Next, we have to compute wire stagger for the wires being rubbed by the
pantograph. The stagger of each contact wire sti at this kilometric point is computed
as the distance from the wire to the pantograph axis. This distance is measured at
right angles to the track axis. This parameter is also very important in order to find
an optimal solution.

Fourth, we must apply environmental conditions. Depending on the sim-
ulation conditions defined by the input parameters, wire stagger could be modified
due to several environmental aspects.

Equation 5.7 is used in the proposed simulator to include the transversal wind
force. The equation follows the standard EN 50119 [BE09b] to compute the horizontal
displacement of the contact wire due to that wind in standard conditions (15 degrees
and 600 meters over the sea).

Wc = PvContWire + PvMesWire (5.7)

where

Pv = qk ·Gc · dWire being qk =
1

2
Gq ·Gt · ρWs2 (5.8)

Gq reflects the wind burst, with a value of 2.05, as defined by the standard ENV
1991-2-4:1995 (see page 42 in [BE09b]), Gt is a terrain factor, Ws is the wind speed,
ρ is a factor equal to 1.225 kg

m3 , and dWire is the diameter of the wire, obtained from
its section area A.
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Equation 5.9 is applied to calculate wire contact horizontal displacement:

wi(ki) =

(

Wc

T

)

·

(

k2i
2

)

(5.9)

where Wc is the resulting wind force and T is the tension due to the catenary.
The result is a quadratic curve, similar to the wire deflection.

Fifth step consists of determining pantograph height ei. Once calculated the
contact wire positions, the pantograph height must be computed for this simulation
step as follows. Since there are two catenaries, for the main and the diverging tracks,
the pantograph height will be the minimum height of the wires that are within the
projection of its friction surface, i.e., the rubbing contact wire will be the lower one.
If both wires are out of the friction surface projection, then the pantograph height
will be considered as ∞ to indicate an error.

The result of this step allows to divide the simulation space in three areas that
are very important to find an optimal design solution in subsection 5.6.2:

1.- Cs pantograph interaction. All the simulation steps where the pantograph
makes contact with the contact wire of the straight track.

2.- Cd pantograph interaction. All the simulation steps where the pantograph
makes contact with the contact wire of the diverging track.

3.- Cs∧Cd pantograph interaction. All the simulation steps where the pantograph
makes contact with both contact wires of the straight and the diverging track.

The sixth step consists of modifying contact wire elevation and angle due
to the pantograph interaction. Some parameters needed, such as elasticity in the
center of the catenary spans and in the cantilevers, are received as input parameters
in the catenary installation features cif . Train speed Ts, contained in sc, has also to
be considered. In order to know the elevation, the pantograph pressure over the wires
must be computed, as shown in Equation 5.10 that follows ETI regulation [ETI08].

Fm =







0.00097 · Ts2 + 70 Ccs is A.C.
0.00097 · Ts2 + 110 Ccs is D.C. 3.0 kV
0.00228 · Ts2 + 90 Ccs is D.C. 1.5 kV

(5.10)

Next, the elasticity is computed for the catenary point using Equation 5.11,
where the denominator is the stiffness at that point. This equation is detailed in
[BBLS00, KCP+07, WB99].

E(ki) =
1

K0

(

1− α cos
(

2πki
l

)) (5.11)

where

K0 =
Kmax +Kmin

2
and α =

Kmax −Kmin

Kmax +Kmin
(5.12)
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The elevation of the contact wire due to the pantograph is obtained using Equa-
tion 5.13.

e(ki) = E(ki) · Fm (5.13)

After determining the elevation produced by the pantograph, the definitive con-
tact wire height must be computed as expressed in Equation 5.14.

yi(ki) = yi(ki) + e(ki) (5.14)

Thus, the contact wire position at a kilometric point ki can be defined as the
following equation:

Wpi(ki) = (sti(ki) + wi(ki), yi(ki)) (5.15)

Seventh step is computing switching distance in ki. Since this distance,
measured from the straight track axis to the diverging track one, increases as moving
forward along the switch, its value is a crucial issue to find an optimal solution.

Eighth step is applying the lateral displacements depending of the position
in the track and the height.

Last step consists of storing the results to file. Once computed all the sig-
nificant parameters, the target output data of the simulation step are written to the
simulation scenario log file. Output data were defined in Section 5.4.

5.6 Choosing Optimal Solution Set

After computing all possible scenarios, we have to select the optimal solution. The
selection of the choosing optimal set has been divided in two phases. In the first
phase, all the possible solutions are classified between feasible solutions and unfeasible
solutions during simulation. Next, the feasible set is analyzed to discover the optimal
solution set.

5.6.1 Set of Feasible Solutions

The final goal of our simulator is to propose an optimal design solution for the over-
head air switch design problem. Currently, most of the railway regulations propose
a junction point value of 90 to install the junction pole in the tangent air switch
and 55 in the cross air switch. As we said before, better solutions might exist in
the interval (80, 100) for tangent, and (40, 75) for cross. We propose to analyze the
results of the former simulations of each scenario and compute metrics to propose
an optimal solution.

However, not all the executed simulation scenarios for a single installation gener-
ate feasible solutions as there may be constructive errors or output data not allowed
by the railway regulations. As we have to cope with hundreds of thousands of possible
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Algorithm 5.3 Procedure isFeasible(s) to filter out unfeasible solutions.

Input: s {Scenario simulation solution}
Output: feasible {Boolean result indicating feasible or unfeasible solution}
1: feasible← TRUE
2: j ← 0
3: sj ← 0 {Structure to log results from a step of the simulation}
4: read sj from s.logfile
5: while (sj 6= 0) ∧ feasible do

6: if (pj = ∞) ∨ (|straight.stj | > epl
2
) ∨ (|diverging.stj | > epl

2
) ∨

intersect(straight.Wpj , diverging.Wpj) then

7: feasible← FALSE
8: write s and failure cause to unfeasibles.logfile
9: end if

10: j ← j + 1
11: read sj from s.logfile
12: end while

13: return feasible

scenarios, the first operation accomplished by the simulator is to discard unfeasible
solutions from all the scenarios existing in E in order to reduce the optimization
problem size. Unfeasible solutions are due to three major causes:

1.- The contact wires do not interact with the pantograph. That means that pan-
tograph height ei is set to ∞ at any point of the scenario.

2.- The stagger sti of any of the wires interacting with the pantograph is larger
than the maximum stagger allowed by the railway regulations. By default, the
maximum is half of the pantograph friction surface.

3.- Contact wires of straight and diverging tracks intersect. This fact can be de-
duced from the output data as we have the contact wire position Wpi for each
wire and at every simulation step i. (Only in tangent air switches)

Algorithm 5.3 shows the proposed procedure defined to identify unfeasible solu-
tions. This procedure is carried out to analyze the log file of every solution provided
by the simulation of all the scenarios. After the execution of this step of the simulator,
unfeasible solutions are discarded and the set of feasible solutions F is created.

5.6.2 Finding Optimal Solutions

Once the set of feasible solutions F has been created, the simulator can advance to the
next phase: obtaining optimal solutions. Thus, for each feasible scenario simulated
ei ∈ F , several metrics must be calculated to choose an optimal solution. However,
the issue of getting such a solution for the overhead air switch design problem is
not defined by any regulation, i.e., it is still an open research topic. We have closely
cooperated with railway experts to define the metrics to be used in both types.

According to pantograph-catenary interaction, the simulation space is divided
into three zones:
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• STI. Straight track pantograph-catenary interaction.

• DTI. Diverging track pantograph-catenary interaction.

• BTI. Both tracks pantograph-catenary interaction.

BTI zone is the critical area to find the optimal solution, but the transition from
the other two zones to BTI zone is also important because the contact wire must
respect a certain angle when starts rubbing with the pantograph.

An optimal solution for tangent air switch is the one that satisfies the following
conditions:

1.- Maximizing the average distance between contact wires of straight and di-
verging tracks, defined as metric M1. It forces the wires to be as far apart
as possible. This will avoid potential problems due to high electrical voltages
flowing through the wires.

2.- Minimizing the variance of stagger of the diverging track contact wire, defined
as metric M2. This metric is intended to avoid too many sudden changes of
position of the contact wire on the pantograph.

3.- Minimizing the average symmetry between contact wires of straight and di-
verging tracks, defined as metric M3. It measures the difference between the
stagger of both contact wires, which are sought to be as symmetrical as possi-
ble to the axis of the pantograph, thus avoiding a pantograph tilt towards one
of the sides.

4.- Minimizing the input angle of the diverging track contact wire in the pan-
tograph along the transitions STI-BTI, defined as metric M4. This angle is
intended to be as low as possible, thus avoiding a sharp blow on the panto-
graph. By smoothing the entry of the contact wire in the pantograph, damages
and premature wear of the wire can be decreased.

5.- Minimizing the output angle of the straight track contact wire out of the pan-
tograph along the transitions BTI-DTI, defined as metric M5. This angle is
desired to be as low as possible, thus avoiding a sharp blow on the pantograph.
This metric is particularly important when simulating a train the other way
around, i.e., from the diverging track to the straight track.

6.- Minimizing the average of stagger of the diverging track contact wire, defined
as metric M6. This metric ensures that the diverging track contact wire is as
focused as possible to the axis of the pantograph, thus avoiding the approxima-
tion of the thread to the edges of the pantograph and ensures that the contact
wire is always going to enter a valid area.

Algorithm 5.4 shows the simulator procedures in charge of computing the metrics
for a single feasible scenario simulated ei. In the algorithm, we can observe that the
final value of each scenario is the sum of all the metrics. Since the values of the
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Algorithm 5.4 Procedure computeScenarioOptimality(f) to calculate optimal so-
lution.
Input: f {Scenario simulation solution (feasible)}
Output: o {Solution score}
1: o← 0
2: M1← computeMetricM1(f)
3: M2← computeMetricM2(f)
4: M3← computeMetricM3(f)
5: M4← computeMetricM4(f)
6: M5← computeMetricM5(f)
7: M6← computeMetricM6(f)
8: o← (WM1 ·M1)+(WM2 ·M2)+(WM3 ·M3)+(WM4 ·M4)+(WM5 ·M5)+(WM6 ·M6)
9: return o

metrics are very different, they have to be normalized. As seen before, the metric
M1 is maximized, but the overall function, that includes all the metrics, must be
minimized. To resolve this conflict, we change the sign of the M1 metric value so as
to normalize the result. In order to compute the overall function, we use a specific
weight to confer greater or lesser importance on each metric.

At the end, the optimal scenario is the one that minimizes the overall function
value. This algorithm is only applied to the set of feasible solutions. Since there are
metrics inversely correlated, it is impossible to find a scenario having the best value
per metric, being possible to have a scenario better in some metrics and worse in
other ones. According to this fact, the algorithm finds the best scenario considering
an overall function of all metrics.

5.7 Matching OCLS to Generic Framework

The simulation model is composed of the simulation and evaluation components. A
generation engine produces different scenarios to be tested, dispatching simulations
concurrently to any CPU available. Data proceeding from other actors and expert
knowledge feed both generation and evaluation engines, in order to reduce the amount
of generated scenarios, filter the number of feasible scenarios, and calculate the degree
of goodness in order to obtain the best ones.

In this section we show that our simulator framework also matches OCLS.

5.7.1 Layer 1: Trade-off Between Accuracy and Complexity

Time spent on simulating one single scenario is a critical issue with regard to simula-
tor’s usability and productivity. Furthermore, the more accurate a simulation is, the
longer the time required to carry on with it will be. When simulating overhead air
switches, step size determines the detail level of the simulation. In order to obtain
results as real as possible, simulations have to be carried out by millimetre-steps. By
this way, pantograph and wires output data are more accurate. On the other hand,
more steps imply more computing resources, performing more calculations in order
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to obtain a larger amount of output data.

For each simulation step, the processor has to solve the equations shown before.
Modern CPU cores can perform millions of operations per seconds, which implies
no more than a millisecond spent on solving simulation steps and writing output
data to files. The problem is that the largest railway switches may have a length
up to 1000 metres. This implies that a scenario may require about one second to be
simulated (using steps of one millimetre). This amount of time is acceptable when
dealing with just one single scenario, but when dealing with thousands or millions
of scenarios (see further sections) high-performance techniques are necessary to run
different simulations concurrently, taking advantage of multi-core or multi-processor
systems.

5.7.2 Layer 2: Generation and Evaluation of Possible Solutions

As previously mentioned, we state that an efficient simulator should evaluate and
simulate a set of solutions with a minimal user involvement. New generation simu-
lators should be capable of, starting from a range of possible parameters, proposing
and evaluating new designs. The proposed framework aims this objective through
introducing a new component in the simulator.

This component is a scenario generator, which wraps the simulation model (sim-
ulation and evaluation of one single scenario) generating different solutions to be
evaluated. It generates new scenarios through variations on the input data, allow-
ing experimentation with different simulation parameters, different components, or
different domain restrictions. Those scenarios are provided to the simulation engine,
which carries on with the simulation as described in the previous section.

Generating and evaluating multiple scenarios automatically allows the simulator
to test different solutions, thus providing a faster way of exploring the solution space.
Rather than obtaining one single solution, by this way a set of feasible solutions is
obtained, and the user can select the best one. Moreover, as we describe in subsection
5.7.4, enhancing the simulator with optimization metrics or some expert’s knowledge
brings the opportunity of performing an automatic guided search of the solution
space.

In order to cope with this issue, our simulator implements a new module, ac-
countable for generating multiple scenarios. In order to result this, we change the
input data definition. With regard to the simulation model, input parameters are
transformed from scalar values (e.g. train speed Ts = 220 km/h) to an interval
of test values defined by the user, who specifies a maximum, a minimum, and a
delta variation. Let P an interval parameter, P = {Pj/Pmin ≤ Pj ≤ Pmax;Pj =
Pmin + j ·∆P ; j ∈ N

∗}. By this way we define a complete set different values, and
different simulations each one using a different value of this parameter have to be
performed.

Of course, introducing variations in several parameters at the same time in-
creases the number of scenarios exponentially, since we have to perform combina-
tions with elements of the two (or more) sets. An advantage of this explosion is that
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the solution space is rapidly explored, evaluating a huge number of solutions from
the problem space. As a drawback, a large amount of computing power is required
to perform a large number of simulations, so the trade-off between accuracy and
complexity previously mentioned has great significance. In this particular case, the
number of combinations of catenary configuration parameters can reach over one
million. Each one of these combinations is a possible solution of the design problem.
In order to carry out the search efficiently, multiple scenarios can be simulated con-
currently, dispatching simulation kernels performing different scenarios to different
CPUs. In Chapter 6, an illustrative example will be evaluated, indicating input pa-
rameters variation, number of scenarios generated, evaluated, and time consumed in
simulation.

5.7.3 Layer 3: Other Actors

The amount of scenarios outputted from the previous layer would be unmanageable
by the user if no more filtering is applied apart from the physical domain restric-
tions. In order to increase the functionality and productivity of the simulator, we
have to take into account the different stakeholders which take part in the design
process. Different determining factors may fall into this category: legislation and nor-
mative, cost limitations, provider or client restrictions, available stock, and so on.
There are two ways of considering such participants. The first is enhancing the set
of evaluation rules, checking not only physical domain restrictions, but also specific
restrictions from different sources. The second is restricting values of the input pa-
rameters, limiting the generation of new scenarios to only those which may comply
with those restrictions.

Our simulator may take into account different normative currently in force. So
additional evaluation rules have been implemented in order to check if a solution is
feasible or not, counting:

• Normative EN-50119 [BE09b]. This normative stipulates different restrictions
with regard to overhead line deployment (minimum and maximum height, drop-
pers configuration, etc.). Moreover, it stipulates different restrictions about the
way the pantograph makes contact with the wires.

• Normative EN-15273 [BE09a]. This normative stipulates maximum width and
headroom in railway lines, stating that certain area around the rails have to be
free of obstacles. This restriction has effect in the way the overhead lines are
deployed.

5.7.4 Layer 4: Expert’s Knowledge

Even if additional restrictions from other actors are considered to filter the number of
feasible solutions, the resulting set might be too large to be useful. Besides, the user
doesn’t know what solutions are better than the others. Expert’s knowledge can be
applied in order to discriminate, from the set of feasible solutions, what are the best
ones. In order to accomplish this, first of all we have to declare what optimization
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metrics are going to be followed, i.e. the criteria that determines if a solution is
better than other. Then, that criteria can be applied by two ways: the first is an
enhancing of the set of evaluation rules with a new set of rules which don’t check
the feasibility of the solution, but score the solution following the proposed criteria;
the second is modifying again the generation of new scenarios trying to seek those
scenarios that best fit with the proposed criteria, in the same way as MOEAs try to
reach the optimal solution. The first approach may lead to an exhaustive search in
the solutions space, but as drawback, all solutions must be simulated. The second
approach saves time by driving a guided search, but a number of solutions can remain
"untested".

With regard to our overhead air switch simulator, several optimization metrics
have been chosen and described before. The first metric is maximized, but the overall
function, that includes all the metrics, must be minimized. To resolve this conflict,
we change the sign of the first metric value so as to normalize the result. In order
to compute the overall function, we use a specific weight to confer greater or lesser
importance on each metric. At the end, the optimal scenario is the one that minimizes
the overall function value. Since there are metrics inversely correlated, it is impossible
to find a scenario having the best value per metric, being possible to have a scenario
better in some metrics and worse in other ones. According to this fact, the framework
finds best scenarios considering an overall function of all metrics, following a Pareto
front.

5.8 Shared Memory Implementation

This version of the simulator is composed of three principal steps: generation, simu-
lation, and evaluation. In the first step (Figure 5.8), the Generator reads the initial
scenario and all the parameters of the simulation. Next, all the possible solutions are
generated in function of the local inventory and the expert’s knowledge. The inven-
tory can change depending of the country. A set of possible solutions are generated as
a result of this step. Each possible solution is represented in a small file that contains
all the data needed to simulate in the next step. We can generate a massive number
of this files. An extreme and a medium example are showed in Table 5.1.

Figure 5.9 represents the second step of the simulator. First, a set of threads
is created to simulate and the possible solutions are distributed fairly, the number
of threads is configurable and depends on the workstation. Each thread executes
Algorithm 5.2 and Algorithm 5.3 per possible solution. If we detect troubles with
the generated solution, the simulation stops immediately and the possible solution
is labeled as unfeasible solution. All unfeasible solutions and their simulation files
are erased from the system. If a simulation finishes correctly, the thread writes the
name of the feasible solution to a common index, and it keeps the simulation file to
be evaluated later.
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traffic interruptions. The final goal of our simulator is to help designers to find and
optimal solution compliant with the existing normative and safe from a circulation
and a structural point of view. Dangerous situations and speed limitations that arise
currently due to design mistakes, can be avoided. The novelty of this research is the
possibility of making automatically overhead air switches designs, choosing optimal
solutions, which will enhance the system efficiency and safety. Even when most rail-
way companies have regulations for the design of overhead air switches, as far as we
know, there are no computerized software tools to help with the task of designing
and testing optimal solutions.

The simulator starts from a model based on the description of the problem that
includes all the significant elements that may affect the design process, in order to
find an optimal solution in terms of reliability and safety. The obtained designs will
be the more reliable to face failures, such as excessive wire and pantograph wears,
wrong geometry configurations of the catenary, and electricity supply notches. The
simulator also allows to evaluate current designs and to prove their possible flaws.





Chapter 6

Experimental Results

6.1 Introduction

The goal of this chapter is to demonstrate the feasibility of the framework and sim-
ulator proposed in this Ph.D. work. We have carried out an experimental evaluation
of the simulators proposed in this thesis. The chapter is divided into two sections
corresponding to the experimental evaluation of the simulators presented in previous
chapters.

The first section presents a complete evaluation of the simulator RDIS described
in Chapter 4. First of all, we present a real portal frame and we propose a design to
evaluate the framework and the ontology introduced in Chapter 4. Then we evaluate
the performance of the simulator taking into acount the performance of a simple
portal frame with several hypothesis. Finally, we present the speedup obtained with
a different number of portal frames, from 4 to 2,048.

In the case of the simulator OCLS, we present the performance results for both
shared and distributed memory platforms. The results are obtained employing five
study cases with real data: four non high-speed tangent switch and one high-speed.

6.2 RDIS Evaluation

The evaluation of RDIS is divided into two parts. First, the performance improvement
obtained with the different optimizations are measured. On the one hand, we analyze
the improvement between sequential and heuristic proposed version. We will select
a set of structures from low to high level difficulty to study the effect of complexity
in the calculation. We selected an existing railway portal frame in order to calculate
the speedup between sequential, parallel, heuristic, and heuristic parallel versions.

Second, we verify the scalability of the proposed algorithm. To achieve this,
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a massively number of portal frames will be calculated at the same time, as in a
real railway project. They must be calculated independently of each other. A single
common solution can not be developed because the portal frames are different from
each other.

The RDIS simulator version employed has been implemented in C# and com-
piled with .Net Framework 4.5 and for 64-bit processors. The experiments have been
carried out in the following platforms:

Workstation 1 (WS1). Intel Core i5 760 2800 MHz, 4 Cores, 4 Threads, and 24
GB of RAM.

Workstation 2 (WS2). Intel Core i7 920 2660 MHz, 4 Cores, 8 Threads, and 12
GB of RAM.

6.2.1 Evaluation of Enhancements

We have designed a single portal frame to evaluate the performance of RDIS when
making multiple calculation of hypothesis for each structure. We have followed the
norm EN-50119 [BE09b], where six hypotheses must be evaluated per structure:

• Minimum Temperature. It should take into account the permanent loads
and the traction forces of the conductor to the minimum temperature and the
target room temperature. Two hypothesis, minimun and target temperature.

• Wind. Permanent loads, traction forces of the conductor must be increased
by the action of wind. Figure 6.1 shows an example of application of the wind
loads.

Figure 6.1: Wind loads in the portal frame.

• Frost. Permanent loads, traction forces of the conductor must be increased by
the action of frost.

• Wind and Frost. Permanent loads, traction forces of the conductor must be
increased by the action of wind and frost.

• Maintenance. It should take into account a force of 1.000kg in the middle of
the lintel (see Figure 6.2).
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Figure 6.2: Maintenance.

• Accident. It should take into account a force equivalent to break a catenary
in the worst case (see Figure 6.3).

Figure 6.3: Accident.

Figure 6.4 represents all the views of the portal frame design proposed by RDIS.
It has seven catenaries and it is 32 meters long, with a PRC lintel and a PG pole.

Figure 6.4: Portal Frame for the evaluation.

Figure 6.5 shows the comparison between sequential and sequential heuristic-
optimized version of the proposed algorithm. As can be seen, an improvement of 80%
is obtained at WS1 and 76% in WS2. The most restrictive hypothesis in the evaluated
normative, wind and frost, is computed first as a heuristic rule, thus reducing the total
number of calculations by almost 30%. This is because we do not try to calculate the
least restrictive hypothesis until the most restrictive hypothesis have been calculated.
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Table 6.3: Input parameters and results of the study cases.

Parameters Study case

1 2 3 4 5

si

α 0.11 0.09 0.075 0.09 0.042
a 13662.92 13435.31 18692.47 22417.16 31468.61
r 250000 300000 500000 500000 1500000
b 13662.92 13435.31 18692.47 22417.16 61468.61
d 6145 0 9165 0 16193
l 33470 26870.63 46549.95 44834.33 79130.23

ci

El 40 55
Sl 40 55
(Jpmin, Jpmax,∆Jp) (80, 100, 5) (70, 110, 5)
(Cpmin, Cpmax,∆Cp) (10, 40, 5) (10, 40, 5)
(emin, emax,∆e) (250, 600, 100) (250, 600, 100)
(hmin, hmax,∆h) (10, 50, 10) (10, 50, 10)
(smin, smax,∆s) (50, 250, 50) (50, 300, 50)
(Smin, Smax,∆S) (-250, -50, 50) (-300, -50, 50)
H 5300 5300

cif

Kmax 3.125 2
Kmin 1.538 1.66
D 30 36
d 5.79 5.79
N 2 2
T 1000 1530
A 153 120
Ccs D.C. 3kV A.C.
epl 800 800

sc

Ts 60 100
Ws 0 0
Wd - -

We have executed experiments to analyze two kinds of results: optimal scenario
obtained in every study case, and performance analysis for study case 5 in terms
of computational efficiency. By way of illustration, the former analysis will be only
described in detail for study case 1.

6.3.1 Optimal Switching Point Analysis

Table 6.4 shows the values of one of the optimal designs obtained by the simulator
for the case study. These results indicate that the best value of the junction point for
these non high-speed railway switches with the given catenary configuration is 80. In
Spanish railways junction point 90 is considered to be the best value [MC07], though.
Our research in this area concludes that there may be better overhead air switch
designs with a lower junction point value. Those, as a conclusion of this thesis, we
propose to place the junction point at 80 cm, rather than 90 cm, allowing to maximize
the average distance between straight and diverging track contact wires (metric M1 ),
thus avoiding potential problems due to electric voltages flowing through the wires.

Characteristic point Cp is another relevant outcome of these simulations. Cur-
rently, common Cp values used in Spain are about 25, while our simulator proposes
lower values. A lower Cp value reduces the input angle of the diverging track con-
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specifications currently in use.

All in all, we can conclude that the simulators proposed allow to save time and
money in the process design, while ensuring correctness of the solutions in relation
to normative, which may result in safer infrastructure and less accidents.





Chapter 7

Conclusions

This chapter contains the summary, major contributions and major conclusion ob-
tained from this thesis work. First, the main contributions of the thesis are reviewed.
Second, the thesis results are presented. Finally, we analyze the possible future work
of this Ph.D. thesis work.

The thesis has properly fulfilled all the primary objectives indicated in Section
1.2,

O1 Designing a framework for railway simulations in HPC. In Chapter 3 we have
proposed a generic simulation framework with the aim of enhancing functional-
ity and productivity of simulators in the field of railway infrastructure design.
This structure improves the efficiency of the simulators by giving them the
ability of searching for the best solutions in the problem space. In Chapter 4
and 5 we described some improvements of RDIS and OCLS in order to exploit
the advantages of the HPC environment. Measures and evaluations are con-
ducted in Chapter 6.

O2 Designing an ontology that facilitate the design based parametric simulations. In
Section 4.2.1 we propose a knowledge representation on the domain of railway.
A hybrid approach has been adopted: the railway infrastructure can be cap-
tured using ontologies and rule-based representation techniques can be used to
solve the process.

O3 Building the infrastructure simulator. In Chapter 4 we have described a complete
simulator to design and calculate complex railway infrastructure, RDIS. Two
levels of parallelism have been introduced, for a multiple hypotheses, and for
a several structures. All of them have been implemented in C# and evaluated
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in Chapter 6.

O4 Building the overhead air switch simulator. In Chapter 5 we have introduced an
overhead air switch simulator, OCLS. The inputs, output and problem space
is described. We apply a shared memory optimization with threads, and a dis-
tributed memory using MPI. Both have been implemented in C, and evaluated
in Chapter 6.

7.1 Contributions

This thesis makes the following contributions:

C1 Generic Simulator Framework. The framework is focused on four main is-
sues: trade-off between accuracy and complexity, automatic generation and
simulation of possible solutions, taking into account other participants in the
design process, and integrate expert’s domain knowledge and optimization met-
rics. This structure improves the efficiency of the simulators by giving them the
ability of searching for the best solutions in the problem space. Also, obtained
solutions will be fully-integrated with the different actors of the design process.

C2 Railway Infrastructure Design Simulator (RDIS) can help to reduce de-
sign costs, by decreasing the design time and getting better solutions, by short-
ening the time for the infrastructure project to be available, and by reducing
traffic interruptions due to failures. We have estimated that the design time
for a portal could be reduced by two magnitude orders. The track and electrifi-
cation infrastructure produced with RDIS includes only normalized equipment
and strongly reduces the catalog of systems installed, which also generates cost
reductions in maintenance and stock for components. As a result, maintenance
teams may achieve a shorter answer and repair time to failures and they can
be more skilled in the system to maintain.

C3 Overhead Contact Line Switch Simulator (OCLS), which impact may be
important in the railway business, as it may allow to railway and engineering
companies to make faster and safer designs, avoiding also expenses due to
oversized systems or failures caused by erroneous designs.

7.2 Thesis Results

The work made during this Ph.D. Thesis has allowed to produce the following results
in the form of publications, grants, participation in projects or derived bachelor
thesis:
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• JCR-indexed Journal Articles

1.- Rubén Saa, Alberto García, Carlos Gómez, Jesús Carretero, Felix García-
Carballeira. An ontology-driven decision support system for high-performance
and cost-optimized design of complex railway portal frames. Expert Sys-
tems With Applications. August 2012. Elsevier 0957-4174. Impact Factor:
2.203 (2012). Q1

2.- Carlos Gómez, Rubén Saa, Alberto García, Felix García-Carballeira, Jesús
Carretero. A model to obtain optimal designs of railway overhead knuckle
junctions using simulation. Simulation Modelling Practice and Theory.
August 2012. Elsevier 1569-190X. Impact Factor: 0.969 (2012). Q2

3.- Alberto García, Carlos Gómez, Rubén Saa, Felix García-Carballeira, Jesús
Carretero. Optimizing the process of designing and calculating railway
catenary support infrastructure using a high-productivity computational
tool. Transportation Research Part C: Emerging Technologies. March 2013.
Elsevier 0968-090X. Impact factor 1957 (2013). Q1

• International Conferences.

1.- Rubén Saa, Alberto García, Carlos Gómez, Felix García-Carballeira, Jesús
Carretero. A High-productivity Computational Tool to Model and Cal-
culate Railway Catenary Support Structures, in The 2012 International
Conference of Computer Science and Engineering, London, United King-
dom, July 2012. ISBN 978-988-19251, 2078-0966. Best Student Paper
Award.

2.- Alberto García, Carlos Gómez, Felix García-Carballeira, Jesús Carretero.
Enhancing the structure of railway infrastructure simulators, in OPT-i
2014. The 2014 International conference on Engineering and Applied Sci-
ences Optimization, Kos, Greece, June 2014.

3.- Jesús Carretero, Carlos Gómez, Rubén Saa, Alberto García, Felix García-
Carballeira. A Holistic approach to railway engineering design using a
simulation framework, in Simultech 2014, Vienna, Austria, August 2014.

• Grants

– Convocatoria PIF UC3M 01-11112 de Personal Investigador en Forma-
ción, PhD fully granted (4 years), 2011, Universidad Carlos III de Madrid
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• Participation in projects

– Administrador de Infraestructuras Ferroviarias (ADIF), Estudio y real-
ización de programas de cálculo de pórticos rígidos de catenaria y de sis-
tema de simulación de montaje de agujas aéreas. JM/RS 3.6/4100.0685-
9/00100

– Administrador de Infraestructuras Ferroviarias (ADIF), Proyecto para
la Investigación sobre la aplicación de las TIC a la innovación de las
diferentes infraestructuras correspondientes a las instalaciones de electri-
ficación y suministro de energía. JM/RS 3.9/1500.0009/0-00000

– Telice S.A., Colaboración en el diseño, desarrollo, modelización y vali-
dación de una herramienta para cálculo de catenaria.

– Spanish Ministry of Education, Scalable Input/Output techniques for
high-performance distributed and parallel computing environments, TIN2010-
16497

– Spanish Ministry of Economics and Competitiveness, Téecnicas de gestión
escalable de datos para high-end computing systems, TIN2013-41350-P

– European Union, COST Action IC1305, "Network for Sustainable Ultra-
scale Computing Platforms" (NESUS)

– Spanish Ministry of Science and Tecnology, Computación de Altas Presta-
ciones sobre plataformas heterogéneas, TIN2014-53522-REDT

7.3 Future Work

The work described in this Ph.D. Thesis could be further extended in many different
aspects, related both to the computing capabilities and the simulation features of
the tool provided. Below, some or then are pointed out:

• Moving both simulators to the cloud to offer it as a service. Offering simulation
services through the Web could be an important point to increase the impact
of the solutions, spcially for small and medium enterprise that cannot afford
their own developments. It would also make maintenance and coherence easier
than now. To achieve that, both simulators should be moved to the cloud to
provide the scalability needed to cope with the possible demand.

• There are still some enhancements that could be included in RDIS. The major
challenge here is to obtain a better performance through strong parallelism.
We have already achieved a good performance by adopting a coarse-grained
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parallelism approach, i.e., a thread is in charge of resolving one structure.
Implementing the tool as a multi-process distributed application (instead of
a multi-core application), could enhance the system performance, allowing its
execution in high-performance distributed computers. By this way, the number
of structures being calculated concurrently may be increased several orders of
magnitude: from 8 (common number of CPU cores in a computer) to hundreds
or thousands (common number of CPU cores in a distributed supercomputer).
Our work will also be focused on studying the use of new techniques of seeking
for possible design assemblies, like the bisection method. The aim is to achieve
a better performance in the design task. Another guideline could be to include
different search criteria instead of the minimum weight design criteria currently
used. Another future work will be focused on extending the railway design
model to other railway components, like tracks and power.

• Separating the structural calculus inside the tool of the .NET virtual machine
by implementing the algorithms in C / C ++ libraries. It should alleviate to
reduce the maemory management problem in the .NET framework, which is
not optimum currently and does not allow control by the application.

• OCLS is already a functional tool, but there are still many enhancements and
functionalities that we would like to include. Using bio-inspired genetic algo-
rithms to compute the optimal of the different metrics is our next goal. The
major challenge here is to find a fitness function to evaluate the set of feasible
solutions. Another field for future work is to provide a better visualization for
the results of the simulator to allow the users to study the many parameters
of the solution to make their own elections. One shortcoming of our work is
that each railway company or authority has different infrastructure informa-
tion, catalog, and regulations. Thus, another future work would be to adapt
our simulator following the European initiatives for railway interoperability.

• One shortcoming of our work is the difficulty to get infrastructure information
from the railway companies to feed databases. Usually they have their own
catalog and inventory, and they are not very collaborative among companies.
The European level initiative for railway interoperability could be an important
step in this address. Achieving the collaboration of manufacturers of railway
components could be another one. More effort will be devoted to both groups
in a near future.
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