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Abstract

Securing information has been a concern throughout history. Espe-
cially nowadays since many user applications such as smart cards
or Internet connections deal with sensible data. To protect this
information different cryptography protocols are used. These are
algorithms that encapsulate the data by ciphering it. However, this
is done by programming an application to run a digital mathemati-
cal function. This means that it is also possible to program malign
applications to decode the cipher. In order to avoid this it is neces-
sary to add unpredictability or randomness to the encoding process
which can be done by employing a Random Number Generator.

A RNG can be implemented in both software and hardware; how-
ever, a truly unpredictable sequence is not achieved through a dig-
ital process governed by mathematical formulae. This results in
most RNGs producing a form of pseudo-randomness. A True Ran-
dom Number Generator must be implemented on a technology that
allows it to harvest entropy from an unpredictable or even chaotic
physical process. This is why TRNGs are designed and implemented
for hardware. In fact, it is possible to gather entropy through inte-
grated circuits like ASICs or FPGAs. The objective of this project
is to design and implement a TRNG on FPGA technology because
its pre-defined logic blocks that only require a small amount of re-
sources make it an appealing solution.

First, an analysis of typical RNG designs is presented to under-
stand the between a pseudo-RNG and a TRNG. Once this is stab-
lished, the specific ways of designing TRNGs for integrated circuits
are delved into. Moreover, the need for evaluation of the quality of
randomness is also stated. This is ensured by a battery of tests that
study the statistical properties of the output of a RNG.

Secondly, the TRNG design proposals by Böhl on which this
project is based on are introduced and analyzed before creating the
design and implementation. Afterwards, the four experiments per-

xv



xvi ABSTRACT

formed are explained. It was decided to first test the behavior of
the TRNG at different frequencies to decide which provided ran-
domness with the best quality. Afterwards, the TRNG was placed
in different areas of the FPGA at the optimal frequency to test the
variability of the device. A third experiment consisted of comparing
these results in more devices to further study the variability. The
final experiment consisted on forcing a reset of the circuit to ensure
that the TRNG was resilient against this type of attacks.

Last but not least, the results are summarized and several fu-
ture developments are presented. After this the legal aspects and
management of the project are explained.

Keywords: random number generator, true random number gener-
ator, FPGA, hardware security.



Abstract

La protección de información ha sido una constante preocupación
a lo largo de la historia. Especialmente hoy en d́ıa debido a las
muchas aplicaciones que manejan datos confidenciales como tarjetas
inteligentes o conexiones a Internet. Para proteger esta información
diferentes protocolos criptográficos son usados. Estos son algoritmos
que cifran los datos para encapsularlos. Sin embargo, esto se hace
programando una aplicación que corre una formula matemática dig-
ital. Esto significa que también es posible programar aplicaciones
maliciosas para decodificar el cifrado. Para poder evitar esto es
necesario añadir aleatoriedad o un elemento impredecible al proceso
de codificación. Esto puede hacerse empleando un Generador de
Números Aleatorios cuyas siglas en inglés son RNG.

Es posible implementar un RNG tanto en software como en hard-
ware; sin embargo, una secuencia realmente impredecible no se puede
generar a través de un proceso digital basado en la computación de
fórmulas matemáticas. Esto es lo que hace que la mayoŕıa de RNGs
produzcan una especie de pseudo-aleatoriedad. Un Generador de
Números Realmente Aleatorios (True Random Number Generator
o TRNG) debe ser implementado en una tecnoloǵıa que le permita
extraer entroṕıa de un proceso f́ısico impredecible o caótico. Es por
esto que los TRNG se implementan en hardware. De hecho, es posi-
ble obtener entroṕıa a través de circuitos integrados como ASICs
o FPGAs. El objetivo de este proyecto es diseñar e implementar
un TRNG en tecnoloǵıa FPGA puesto que sus bloques lógicos pre-
definidos que solo necesitan unos recursos reducidos la convierten
en una solución atractiva.

Se empieza por presentar un análisis de los diseños de RNG
t́ıpicos para comprender la diferencia entre generadores pseudo aleato-
rios y TRNGs. Tras esto, se especifica la forma en la que los TRNGs
se diseñan para circuitos integrados. Además, se expone la necesidad
de evaluar la calidad de la aleatoriedad que se genera. Esta se com-
prueba a través de una bateŕıa de tests que estudian las propiedades

xvii
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estad́ısticas del output del TRNG.

A continuación, las propuestas de diseño de TRNGs de Böhl en
las que este proyecto se basa son introducidas y analizadas seguidas
del diseño e implementación propios. Tras lo cual se explican los
cuatro experimentos realizados. Primero se decidió comprobar el
comportamiento del TRNG a diferentes frecuencias con el fin de de-
terminar a cuál de ellas se produćıa la aleatoriedad de mayor calidad.
Segundo, el TRNG fue posicionado en diferentes áreas de la FPGA
a la frecuencia óptima para evaluar la variabilidad de la placa. El
tercer experimento explora aún más la variabilidad al realizar el ex-
perimento anterior en otras placas. El último experimento consistió
en forzar un reset del circuito para comprobar la resistencia TRNG
ante ataque de este tipo.

Finalmente, los resultados obtenidos se presentan resumidos junto
con varias propuestas de mejoras futuras. Tras ello se muestran los
aspectos legales del proyecto y su gestión.

Keywords: generador de numeros aleatorios, generador de numeros
realmente aleatorios, FPGA, seguridad hardware.



Summary

Throughout history many different forms of protecting sensible in-
formation have been designed but nowadays the most commonly
used are cryptographic protocols. These protocols consist of algo-
rithms that attempt to encapsulate the data by ciphering it. How-
ever, the algorithms are digital functions computed by a machine,
therefore, the protocol is as reliable as the computer that generated
it. If a software application was pre-programmed to encode a se-
cure environment, another malign application can be programmed
to decode it. An extra layer of security that an external applica-
tion would find unpredictable is required. This can be achieved by
employing a Random Number Generator.

There are several ways to create random numbers but the most
desirable is to design a generator that produces an uniformly dis-
tributed sequence in which there is no discernible pattern. In other
words, any element taken from it must be statistically independent
from the rest. This can be implemented in both hardware and soft-
ware but, again, the mathematical formulae on which digital pro-
cesses are based on are not reliable to produce a truly unpredictable
sequence. This is why many RNGs have a deterministic compo-
nent that results in the generation of a sequence that can only be
considered pseudo-random.

True randomness originates from the entropy of an aleatory or
chaotic physical phenomenon such as noise or nuclear decay. A True
RNG will harvest this entropy and handle it to generate a sequence
of numbers. In order to do this a hardware device is required. De-
spite this seemingly complicated process, many small-sized devices
can implement a TRNG such as integrated circuits like ASICs or
FPGAs. For this project FPGA boards seemed an appealing so-
lution because not only they are highly affordable but also because
their resource consumption is reduced by the use of pre-defined logic
blocks.

xix



xx SUMMARY

In FPGA devices, there are several sources from which random-
ness can be extracted. First, through analog peripherals integrated
circuits can gather entropy directly from a chaotic event, however
most models do not include such technology. Second, there is metasta-
bility which refers to unpredictable voltage oscillations of flip-flops
when their hold time and setup times are violated. However, FPGA
technology is designed so that these effects can be reduced. Third,
using SRAM memories to either simulate metastability or through
its start-up state that generates non-deterministic noise. Fourth,
Open Delay Chains that XOR many delay stages originated by D-
latches. Last but not least, jittery clock that deviate from the ideal
behavior of a signal. This has proven to be the best method for
FPGAs since it only requires simple components that can be found
in any type of FPGA.

There are two ways to exploit jitter in RNGs: coherent sampling
and jittery clock sampling. In coherent clock sampling several jitter-
ing clocks are necessary. A jittery clock takes samples from another
one, since none of them are ideal the samples results in a random
sequence. Meanwhile, jittery clock sampling takes samples from os-
cillators. An oscillator can either be a Ring Oscillator, a feedback
loop of an odd number of oscillators, or a Self-Timed Ring, a loop
of adjacent stages.

It is very likely that the quality of the randomness generated by
any of these means may not be perfect. The output of any TRNG
must be analyzed by any of the official batteries of statistical tests
dedicated to estimate whether the randomness is truly unpredictable
and uniformly distributed or not. If a RNG does not pass these tests
it means that it has a deterministic component. A module can be
added to the design of the TRNG to correct biases in the numbers
generated: a post-processing mechanism. The two most common
are: the XOR corrector which simply compresses the sequence by
performing an XOR operation of n consecutive bits and the von
Neumann corrector that takes pairs of bits and either returns the
first bit if they are different and discards them otherwise. There
are other mechanisms such as hash and resilient functions, linear
feedback registers, encrypting the noise signal, etc.

The TRNG implemented and studied in this project is based on
Böhl's proposal for a fault attack robust generator. It consists of a
Ring Oscillator of nine inverting components: an initial NAND gate
and eight inverters. The random sequence is obtained by sampling
at three points of the ring through D flip-flops. Each of these are
placed after three inverting elements.
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FPGAs, such as the Xilinx Spartan-3E board used, reduce the
difficulties in designing circuits by routing the signals and elements
in the hardware automatically. Nevertheless, this means that for
each measurement that would be taken there is a chance that the
hardware would be routed differently. Thus, it would be impossible
to guess if the quality results obtained each time a measurement
would be taken would depend on the variables controlled during the
experiments or because a different routing was more or less effective.
To avoid this ambiguous situation, it was decided to turn the TRNG
into a Hard Macro. In other words, custom analog block surrounded
by digital logic that fixes the components and routing it requires in
every implementation.

It was found after a first attempt at evaluating this TRNG that a
post-processing mechanism is required to correct its weaknesses. An
XOR corrector has been chosen for this purpose. It was desirable to
test the performance the post-processor at different lengths: 3-bit,
5-bit, 7-bit and 9-bit. Originally, this was going to be implemented
on the hardware. However, it was soon realized that the time that
would be wasted in doing so and capturing the data afterwards
would not be advantageous. Instead, the corrector was implemented
as a digital Python script which greatly reduced the time spent in
post-processing. The script treats the random sequence captured by
XORing as many bits as specified. As such, it only took a couple of
minutes to post-process the sequence with the four XOR correctors.

At the beginning of the project, due to the time constraints, only
two experiments had been scheduled but because of the Python
optimization another two experiments could be performed. The four
experiments are: an evaluation of the TRNG at different frequencies
of oscillation, an intradevice test, an interdevice test and a forced
restart of the oscillations. The four of them as explained in the
following paragraphs.

The experiment is the evaluation at different frequencies. In the
reference proposal, it was declared that the frequency of oscillation
at which the TRNG produces optimal results is 1MHz. It was de-
cided to prove or disprove this by measuring the random sequence
produced by the TRNG in a fixed position of the FPGA at several
oscillation frequencies: 50KHz, 100KHz, 500KHz, 1MHz, 25MHz
and 50MHz. The XOR correctors of 3 and 5 bits did not produce
satisfactory results as they failed many statistical tests. Neverthe-
less, at 7 bits the post-processing started to correct the bias effec-
tively, although the best results were obtained with a 9-bit XOR.
It was found that at higher frequencies there is not enough time for
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jitter accumulation which reduces the quality of randomness. Mean-
while, while at low frequencies the time for accumulation is greater,
at some point the penalty in throughput becomes too high also af-
fecting the performance of the TRNG negatively. It was therefore
proven that at 1MHz the best quality was produced.

The second experiment consists of an intradevice test. This time,
using the best frequency of oscillation (1MHz) and the best post-
processing (9-bits) the quality of the TRNG is evaluated in different
locations of the FPGA board. The objective of this is to test the
hardware variability. Nine positions were evaluated: the center of
the board, the four outer corners and the four inner corners. The
best results were obtained at the center. The reason for this is that,
despite the Hard Macro, the connections in surrounding components
can affect the jitter. At the center the board has more space to place
other elements further away from the TRNG so they would not affect
its performance.

The third experiment consists of an interdevice test to further
test the hardware variability. This has been done by evaluating the
performance of the TRNG in several devices under the established
variables: the optimal position, frequency of oscillation and post-
processing. It is found that the four boards passed the same number
of statistical test but an oddity occurred: the quality of results of
the three the newly acquired FPGAs were significantly worse. It
has been deduced that these measurements were taken during a
heat wave which indicates that the TRNG is not resilient against
environmental changes.

Lastly a restart experiment was performed. This consisted on
bringing the oscillations to a halt by force and restarting them in
order to evaluate whether or not the TRNG could still generate a
robust random output. The initial NAND gate of the oscillator is fed
by a reset signal. If this signal becomes zero for some reason while
the TRNG is running the oscillations will stop. This reset is directly
connected to a trigger of the FPGA board. All that is needed to
restart the circuit is to pull down this trigger and immediately pull
it up again. After many restarts were performed sequence generated
was analyzed. No patterns were found that would indicate that the
sequence produced after a restart could be guessed. Therefore it has
been concluded that the TRNG is secure against this type of attack.

To sum up, it has been found that for this TRNG on a Spartan-
3E board, 1MHz is the optimal frequency of oscillation but a post-
processing mechanism is required. An XOR corrector of 9-bits yields
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the best quality. The TRNG can be implemented anywhere within
the FPGA but the best results are obtained at a centered position.
Moreover, the TRNG is resilient against restart attacks but not to
environmental changes.

There have been previous attempts at implementing this proposal
of a TRNG in several technologies. These found that it was robust
with a 3-bit XOR corrector and also fault and attack resilient. From
this it can be deduced that the quality and weaknesses of this im-
plementation may be caused by the variability of the FPGA model
chosen that could be influencing the Ring Oscillator negatively. It
would be desirable to repeat these experiments under a controlled
environment in other FPGA technology in the future to be able to
assure that the Xilinx Spartan-3E is to blame.

Nevertheless, since the TRNG was proven to generate a good
quality output given the appropriate conditions, several future de-
velopments could be implemented to improve the quality of the out-
put of the TRNG.

Originally, in his proposal, Böhl suggested that the random out-
put of the TRNG could be built in another way. Instead of directly
outputting the three bits stored in the three DFFs consecutively,
the three of them could be XORed. The actual random sequence
would be the output of this last operation. The first modification to
the design would have to be testing the quality of the design slightly
modified in this way.

The next possible modification to the design would be to add
more inverting elements to the ring oscillator. The randomness
would have higher quality because the more stages the more jitter
that would accumulate. This change to the design would probably
change the optimal frequency of oscillation so the first experiment
would need to be re-evaluated. There would be two possible ways
of modifying the design according to this: first, add more inverters
before each sampling stage since it could be assumed that the weak-
nesses could be appearing because three inverters before sampling
are not enough; second, add more sampling stages preceded by three
inverters although this would most likely drain more resources. In
case any of these two possibilities were implemented, it would be
recommended to evaluate the quality of the output first from just
outputting the sampled bits and afterwards by XORing them before
generating the sequence.

Another completely different approach would be to evaluate other
post-processing mechanisms in hopes that there might be a better
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correction of bias such as a Linear Feedback Shift Register, the von
Neumann algorithm or a hash or resilient function. However, it
would also be interesting to test the quality of the current XOR
corrector with the previous proposals either using a new technology
or by changing the current design.

A last consideration would be to compare the results obtained
by this TRNG with a different type of feedback loop. The Ring
Oscillator of inverting elements would be replaced by a Self-Timed
Ring since that kind of implementation has been proven to be more
resistant to variabilities and generate jitter with higher quality.

In conclusion, the TRNG implemented did manage to produce a
considerably reliable random sequence given the appropriate post-
process was appended. In spite of this, the TRNG is not without its
faults and weaknesses which may have been caused by the hardware
limitations. It is recommended to repeat these experiments in sev-
eral FPGAs but it would also be possible that by slightly modifying
the current design the deficiencies could be corrected.



Chapter 1

Introduction

Sensible data and information has always been secured employing a
wide variety of ways all through history. In fact, nowadays many ap-
plications use some form of security: smart cards, Internet routers,
home computers and all sorts of mobile and wireless devices. All
of these applications demand that the information is handled and
stored in a secure way. Modern cryptography attempts to serve this
purpose through codes that cipher the data and the transmission
channel. However, cryptographic protocols are usually generated
by software as a digital function which is not enough to store the
data securely, to achieve it, hardware security is required.

Security in hardware usually consists on the use of circuits or
other devices that add the conditions necessary for the application
to run over a secure environment. In the case of embedded systems,
random number generation is a very useful process for addressing
this issue. There are several ways to create random numbers but
the most desirable is to design a generator that produces a sequence
that cannot be guessed because it is uniformly distributed and un-
predictable, in other words, a generator that can achieve true ran-
domness.

1.1 Motivation

The motivation of this project is to study how TRNGs can be de-
signed and implemented on integrated circuits and particularly on
Field Programmable Gate Arrays.

Random numbers are used in many different types of applications
from gambling to data encryption and more. In cryptographic ap-

1



2 CHAPTER 1. INTRODUCTION

plications, it is very beneficial to have a generator that can produce
a truly random sequence to cipher and/or secure data. As such,
many Random Number Generators have been designed in software
and hardware.

A sequence is considered truly random when it cannot be pre-
dicted. However, especially in software RNGs this is difficult to
achieve because they create a sequence according a pre-programmed
mathematical formula therefore only obtaining a form of pseudo-
randomness. True randomness is not accomplished through an al-
gorithm but it is produced as a result of a physical process such as
noise or nuclear decay. True random number generators are imple-
mented on hardware devices that have the ability to harvest entropy
from these processes.

Despite the apparent difficulty that gathering randomness presents,
it is possible to do so through very small integrated circuitry like
ASICs or FPGAs. ASICs are very advantageous since they can
integrate tailored blocks including many sorts of analog elements.
However, tuning all the parameters and components that the gen-
erator requires can make implementing a TRNG on ASICs quite
expensive. In contrast, despite their constrained resources FPGAs
are a very popular hardware on which to implement TRNGs due to
their pre-defined logic blocks which greatly reduces their price.

1.2 Objectives

The main objective of this project is to implement a TRNG on
integrated circuitry and study its behavior. More specifically, this
project tests the behavior of a TRNG based on Böhl's attractive
proposal in [1] on a FPGA board.

According to [1], the a jittery clock such as the one included
in FPGAs can be used at an oscillation of 1MHz to produce true
randomness but it also states that a post-processing technique is
required to enhance entropy. In [2], another paper based in [1], a
simple post process is used: an XOR operation of 3 bits. This is
tested on a couple of different hardware solutions. One of them is
a FPGA which is a very interesting type of hardware it allows to
place the TRNG almost anywhere within it. However, this feature
is not tested in [2] as it only provides data based on frequency sam-
ples. Another important reason to try to emulate their approach of
implementing the TRNG in FPGA technology is that, FPGAs also
introduce the great advantage of reducing costs in materials.
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There are several things that it was desirable to demonstrate as
they were not delved into by neither [1] or [2]. The experiments that
were decided to be carried out are:

1. The reliability of the TRNG at several frequencies and prove
or disprove that the optimal frequency of oscillation is 1MHz.

2. Expand on the use of the TRNG on FPGA technology and
check if its placement in different areas of the same hardware
affects its performance.

3. Test its output with and without post processing.

4. Post process of the output with a XOR operation of not just 3
bits but also several more bits to test how this affects random-
ness.

All of these experiments will be performed by passing the data
captured through the Statistical Test Suite provided by the Na-
tional Institute of Standards and Technology. This battery of tests
has been especifically designed to examine the quality of a random
sequence. [3].

1.3 Structure of this Document

This document is structured as follows:

• Chapter 1 provides the basic introductory information to the
project that will be discussed in later chapters.

• Chapter 2 expands the theory introduced in the previous
chapter as well as providing information on the technology
used.

• Chapter 3 is an in depth explanation of the solution created
to implement and design the True Random Number Generator
and how it has been tested.

• Chapter 4 presents the final conclusions that have been reached
after the results of the tests have been analyzed and provides
future possible developments.

• Chapter 5 exposes the legal conditions that the project is
required to meet.
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• Chapter 6 includes a initial economic management of the
project as well as its estimated duration of the project along
with the final real money and time spent.



Chapter 2

State of the Art

In this chapter we present an overview of the theory of random
number generation as well as the hardware technology that is used
in the project to this end.

2.1 Security and Hardware

The creation of secure environments has always been an issue through-
out all the history of humanity. The greatest advance in security
occurred with the discovery of electricity which led to a new form
of security: hardware security. Its first incarnation was introduced
in 1853 with the creation of electro-magnetic alarms used to pro-
tect businesses and residences. By the end of the 19th century this
groundbreaking technology had advanced to be able to electronically
controlled vaults [4].

However, protecting physical property is not the only use for
hardware security. Securing sensible information has been an issue
dating back to ancient times. Cryptography fulfilled this necessity
through the use of codes and ciphers generated in a manual process.
In contrast, modern cryptography focuses not only on coding the
data to be transmitted but also on creating a secure transmission
channel. The first instances of these new methods of encryption ap-
peared in military applications by the end of the 19th century but
they became a major security measure during World War II with the
creation of the German Enigma rotor machine. Breaking the code of
this and other encryption machines also became a military priority
which resulted in a constant flow of revolutionary hardware security
techniques such as computing. It was only a matter of time that
these technological advances were applied to civil applications lead-

5
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ing to the first computing mainframes in the 1960s, supercomputers
in the 1960s and finally personal microcomputers in the 1970s. [5]
[6]

Nowadays, hardware security can be found practically every as-
pect of our daily lives as it is necessary in many consumer applica-
tions such as: ID-cards, Internet routers, sim cards, smart cards,
game controllers, car electronics. All these applications require
hardware security not only to handle information in a secure way
but also to store it anywhere at any time with small costs in energy
and resources. Modern cryptographic protocols are generally a se-
ries of mathematical digital functions that must be made resistant
to algorithmic attacks. These protocols generally rely on private
or session keys to secure data before exchanging it. An attacker
would attempt to eavesdrop on the transmission and guess the key.
It is necessary to make the channel resilient against malicious listen-
ers but, in case that line of protection failed, the keys must also be
very hard to decode. One way to ensure this is to employ a Random
Number Generator: a device that can generate a key so complicated
so that an attacker cannot guess it or even produce a sequence to
envelop the channel and protect the data to be transmitted from
eavesdroppers.

RNGs have been implemented in several types of technologies.
Modern integrated circuits (IC), such as Field Programmable Gate
Arrays (FPGAs) and Application Specific Integrated Circuits (ASICs),
are very popular technology to implement RNGs precisely because
they are highly affordable and they only require a small amount of
resources.

2.1.1 Random Number Generators

Generating random numbers has always been required in many sit-
uations. In ancient times, divination and card or dice games were
the main areas where randomness was applied which entailed a very
elaborated and difficult calculation process. However, due to the
processing capacity of computational or physical devices nowadays
random number generation has radically changed. New applications
for it have also appeared such as new forms of massive national and
international gambling games as well as many security measures
such as producing secure data encryption keys.

These modern Random Number Generators (RNGs) in order to
be considered secure and trustworthy are expected to produce a se-
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quence of numbers in which there is no pattern: any element taken
from it must be statistically independent from the rest. [7] There
exist statistical tests for randomness to study how successfully a
RNG produces an indiscernible pattern. However, many generators
that pass them do not actually produce a truly random sequence.
In computer applications this is due to the fact that, after all, since
a computer simply follows the commands that have been given to
it, its behavior is predictable. Hardware RNGs pose a better solu-
tion over software applications since they are based on a, usually,
unpredictable physical phenomenon although that does not mean
that they are without fail.

Therefore, there exist two kinds of RNGs [8]:

• Pseudo-random Number Generators based on a deterministic
bit generation process.

• True Random Number Generators based on non-determinisctic
random bit generation.

In the following sections of this document these RNGs are ex-
plained in greater detail.

2.2 Pseudo-random Number Generators

A Pseudo-random Number Generator or PRNG consists of a deter-
ministic mathematical algorithm that produces output sequences of
numbers that appear to be random. This is because all of them have
the same probability of appearing and can satisfy statistical tests.
However, this output, also known as a unbiased random output, is
not truly random. The output is obtained through a pre-calculated
list or mathematical formulae that contains all possible values the
PRNG can take. In order to simulate randomness, this list is tra-
versed at an unknown starting point known as 'seed' which is fed
to the generator [9] [10]. This quality means they can generate long
sequences of numbers quite fast which makes them very efficient
but it is also what makes them deterministic, any time you feed the
same seed to the PRNG it will return the same output sequence.
It can also be deduced from this that PRNGs are generally peri-
odic, while this at first may seem like a hindrance to randomness it
should be taken into account that the period would be so long that
it would not be noticed in most applications in which PRNGs are
used. Moreover, there may be certain applications in which it might
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be useful to repeat a previous sequence easily such as in simulation
and modelling [7].

There are many PRNGs being used but some of the most well-
known are:

• Mersenne twister is the most widely used algorithm in PRNGs
for software systems such as Python, PHP, MATLAB, Maple,
Apache, etc. It was developed in 1997 and was designed to cor-
rect the many flaws in previous PRNGs by generating pseudo-
random integers with speed and high-quality. Although there
is a 64-bit word length implementation, the standard is to pro-
duce a sequence of a 32-bit integers based on the Mersenne
prime that produces a period of 219937 − 1. In any case, for a
w-word length, integers are generated in a range of [0, 2w − 1]
which is k-distributed to v-bit accuracy by the following equa-
tion: (truncv(Xi), truncv(Xi+1), ..., truncv(Xi+k−1)) (0 < i <
P ) where P is the period of a kv-vector and truncv(x) denotes
the first v bits of x, each of the 2kv combinations occur the
same number of times during a period.[11]

• Blum-Blum Shub generates a bit sequence according to the
formula: Xn+1 = X2

nmodM where M is the product of two
very large secret and distinct prime numbers each congruent
to 3 modulo 4. X0 is calculated through the seed which is
in the random interval [1, n − 1] and must meet the condition
gcd(seed, n) = 1, thus X0 = seed2modM [9]

• Linear Congruential Generator (LCG) is one of the oldest
PRNGs. It is based on the recurrence relation: Xn+1 = (aXn+
c)modm in which a, c, m and the seed X0 are constants that,
if selected properly can make the PRNG a maximal period
generator. LCGs have been proven to be quite efficient when
m is selected to be a power of 2, generally 232 or 264. However,
since Xn and Xn+1 are not independent, the sequence generated
could be guessed by an attacker, therefore, LCGs are not a type
of CSPRNG and cannot be used in cryptographic applications.
[10]

• Linear Feedback Shift Register (LFSR) is a shift register
which is fed an input bit that is actually a linear function of its
previous state. As a PRNG this feedback function consists of
a combination of XOR gates as can be seen in figure 2.1 which
results in: (C(x) = 1+c1x

1+c2x
2+...+cnx

n). While LFSR are
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Figure 2.1: LFSR scheme

a very popular PRNG, the fact that they are linear presents a
serious weakness[10].

• Xorshift is an specification of the LFSR that introduces the
advantange that the needed state bits are a multiple of the
length of the word. The number of state bits can be as large
as 4096, this ensures that the memory cache of a computer can
process the PRNG without slowing down while also generating
a quite robust output [12].

Other algorithms commonly used as PRNGs include: Wichmann-
Hill, Inversive congruential generator, ISAAC, Lagged Fibonacci
generator, Maximal periodic reciprocals, Multiply-with-carry, RC4
PRGA, etc.

2.3 True Random Number Generators

Unlike PRNGs, True Random Number Generators (TRNGs), also
known as Hardware Random Number Generators, provide random-
ness from a physical phenomenon rather than a pre-calculated list.
There are many possible physical sources of randomness but all of
them must allow the TRNG to generate unpredictable data, which
in turn means that, as opposed to PRNGs, this kind of generators
are nondeterministic because any sequence generated must not be
possible to be reproduced at will and thus the random sequence
must not be periodic. However, all of this also means that a TRNG
will be more inefficient than a PRNG since it takes much more time
to produce random numbers. [7]

TRNGs must be very reliable and robust as they are a very im-
portant element in cryptography since they are typically used in the
generation of secure keys, nonces, padding or even shielding with
random noise the data transmitted at a certain bandwidth in or-
der to prevent modifications that can range from natural disruptive
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Figure 2.2: TRNG scheme

environmental changes to intended malicious attacks to the chan-
nel. Embedded systems also require the security a TRNG provides,
however, these hardware devices tend to be designed to implement
deterministic functions which may lead to costly undesired results
and an overconsumption of the available resources. In the specific
case of FPGAs, since the resources are limited to the logic blocks it
contains the flexibility to implement a TRNG is reduced. [10]

2.3.1 Structure of a TRNG

The structure of any TRNG depends on the quality of the four basic
components that can be seen in figure 2.2.

• Source of Randomness: also known as Entropy source, con-
sists on a physical process that can be used to create un-
predictable behaviour. These generally are: chaos, electronic
noise, nuclear or quantum decay and free running oscillators
[13]. However, most logic devices, such as FPGAs, do not con-
tain analog blocks that can reproduce those physical phenom-
ena. Instead, the phenomena used in those devices are:

– Metastability refers to performance of logic gates be-
tween two different logic levels. This occurs when the hold
time of flip-flops and the setup are violated. The reaction
of the internal gates of the flip-flop is unpredictable oscil-
lating at a voltage that is neither the expected logical low
or high. After a while the oscillations recede and it outputs
a logical low or high randomly [14].

– Jitter is the short-term variation in signals between logic
gates from their ideal position. This causes deviations and
delays in the propagation of signals. The jitter is also seen
as an instability of the clock period due to clock generators
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that contain elements in a closed loop that produce a delay
such as ring oscillators [15].

– Thermal Noise produced by the components inside the
device, commonly resistors and capacitors. The noise is
used as the frequency of a free running oscillator which
to be extracted needs first to be converted to the time
domain. However, FPGAs cannot implement resistors and
capacitors therefore it is not possible to use this as a source
of randomness in FPGAs [10].

• Entropy Extractor is a sampler that collects and digitalizes
the maximum entropy of the source of randomness without
tampering with the analog physical process. Moreover, a par-
ticular type of extractor will be used depending on the source
employed. In the case of logic devices without analog blocks
the extraction is done through synchronous or asynchronous
flip-flops that sample the rising or falling edges of the desired
signal. The synchronous case consists on taking samples at
fixed time intervals of a random signal while asynchronous flip-
flops take samples at random time intervals of a regular signal
.

• Post-processing Mechanism is used to conceal the weak-
nesses or bias of the random signal that has been obtained.
Imperfections in the signal can cause it to produce very weak
random numbers that can even be considered non-random by
the statistical tests. These weaknesses can be produced by a
not high enough entropy source (metastability), a faulty ex-
traction mechanism, environmental changes or tampering [15]
[14]. Post-processing may not be applied if the TRNG does
not suffer from this bias, otherwise it is required. By employ-
ing a post-processing mechanism that compresses the signal,
entropy is increased and correlation and bias are reduced. The
most common mechanisms are:

– XOR corrector: applies a simple linear exclusive-OR op-
eration on blocks of n consecutive bits to the signal out-
putting one bit. If the bits of the original signal were inde-
pendent this compression of the data can reduce the bias
the signal had very effectively. However, if they were cor-
related the bias won't be corrected. Not only this post-
processing is very simple to implement in hardware but
also keeps a constant throughput. [16]
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– Von Neumann corrector: probably the most well-known
post-processing mechanism not only because it produces an
unbiased output but also because it's a simple non-linear
function. It processes pairs of successive bits: it outputs
the first one if they are different and discards the pair if
they are equal. As a result, about a 75% of the bits are
discarded. In spite of this, its output will be unbiased even
if the original was stationary and biased. [17]

– Hash functions: an almost uniform and collision-resistant
stream can be generated by a hash function it its fed a high
entropy signal. However, these functions consume many
resources so they are not easy to implement in hardware.
[18]

– Linear Feedback Shift Registers: not only are they
aesy to implement in hardware but also they are able to
output a sequence with a quite long period and very stastis-
cally robust. [19]

– Good Linear Codes: also known as Resilient func-
tions (a derivative of boolean functions [20]). If any at-
tacker has discovered n bits of the random sequence they
still cannot guess the full sequence adding robustness to
the sequence. Moreover, these codes do not consume many
resources and have a very good throughput. [21] [22] [23]

– Encryption of the digitalized noise signal: based on
the cryptographic diffusion and confusion properties to dy-
namically modify the output of the generator. However,
this mechanism is not easy to implement and is quite ex-
pensive. [15]

• Embedded tests are required before the TRNG can be im-
plemented in secure cryptographic applications. The tests ex-
amine the quality of the random signal generated by evaluating
that it is uniformly distributed. Some of these tests are also
used for PRNGs.

– DIEHARD: one of the toughest test batteries, it has two
versions: the original consisting of 15 tests [24] and a newer
lightweight suite of 3 tests with updated versions of the
three selected tests [25].

– ENT: calculates five statistical meassures of the input
stream: entropy, chi-square, arithmetic mean, Montecarlo
value for Pi and the serial correlation coefficient. It is used
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not just for testing the quality of RNGs but also for testing
algorithms or applications that mask information density
such as compression algorithms [26].

– FIPS: developed by the National Institute of Science and
Technology (NIST), the Federal Information Processing
Standard is used by the government of the United States.
It specifies 4 levels of security for a cryptographic appli-
cation designed to secure unclassified but sensitive data.
[27]

– AIS31: exclusive to test TRNGs and developed by the
Bundesamt für Sicherheit in der Informationstechnik (BSI)
or the German Federal Office for Information Security. It
consists of two levels of security: the first one, consisting
of 6 tests (disjointness, autocorrelation and 4 FIPS tests),
evaluates the final signal after post-processing while the
second level that consists of three tests (distribution, com-
parative of multinomial distributions and entropy) evalu-
ates the output signal of the source of randomness. The
AIS31 also establishes that an alarm should be generated
when the minimum entropy by bit is not achieved, this can
be done through an on-line test. [28]

– On-line Test: According to [29] these tests should fulfill
the next requirements:

∗ It must detect almost immediately breakdowns of the
source of randomness.

∗ It must detect fatal statistical imperfections of the ran-
dom sequence being tested.

∗ If the sequence has a slight deviation from ideal ran-
domness it must not raise an alarm.

∗ It must barely consume any memory, run fast and be
easy to implement.

– NIST Statistical Test Suite for Random Number
Generators: a statistical package that includes 15 tests
and developed by the National Institute of Science of Tech-
nology. It is generally used on PRNGs but is also suitable
for TRNGs since it tests the quality of the distribution of
large binary sequences as well as their unpredictability [3].
This is the battery of tests that will be used to test our
TRNG. Take into account that out of the 15 tests only
13 will be required since the Random Excursions and the
Random Excursions Variant tests are only suitable to test
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PRNGs [30]. It should be noted that for all of these tests,
only if the P-value obtained is > 0.01 the sequence tested is
considered random. The P-value of each test is calculated
from a test statistic individual for each test. For more in-
formation see the documentation provided by the NIST.
[31]

∗ Frequency Test This test focuses on the frequency
in which zeroes and ones appear in the sequence being
tested. In order to pass the test, the proportion of zeros
and ones must be approximately equal as is expected
from a sequence that is truly random. Passing this
test is crucial as all the others depend on this one. To
compute the test statistic it is first required that the
binary numbers are converted to ±1. The zero values
of the input sequence are converted to −1 while the
ones are considered as +1. Then, they are added to
produce the function: Sn = X1 + X2 + ... + Xn in
which Xi = 2εi − 1, where εi is either a −1 or a +1.
If Sn results in a large positive value it means that in
the sequence there were far more ones than zeros and
viceversa if Sn results in a large negative number.

∗ Frequency Test within a Block In this test, the fre-
quency of ones is calculated by the proportion in which
they appear in non-overlapping blocks of M-bits. Any
bits that cannot fill a full block are discarded. Since the
previous test stablished that the number of zeros and
ones in the sequence should be approximately equal, for
the sequence to pass this test, it is expected that the
number of ones in the block should approximately be
M
2

, otherwise the sequence is considered non-random.
In case that M = 1 the test works just like the previous
monobit test. It is recommended that the sequence to
be tested should at least be of 100 bits.

∗ Cumulative Sums Test This test first computes the
cumulative sum, also known as a random walk, of par-
tial sequences of the input sequence (ε). To do so, it
is necessary to form a normalized sequence by turning
the bits of ε into ±1 according to Xi = 2εi − 1. Af-
terwards, the test determines how large or small the
random walk is compared to the one expected from
a random sequence. If the statistic results in a small
value it means that there is a similar amount of ones
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and zeros and is therefore random. Otherwise, a large
value indicates that there are either too many ones or
zeroes at the beginning of the sequence or at the latter
stages.

∗ Runs Test A run is the name given to an uninter-
rupted sequence of the same bits, therefore, a run of
k bits also has length k and is preceded and followed
by the opposite bit value. The goal of this test is to
check how many runs are there in the input sequence
whether their lengths are suitable for a random se-
quence as well as how fast the oscillation between bits
takes place. This test requires a previous calculation of
the Frequency test to work, if it failed this one is not
performed and its P-value is set to 0. In order to be
considered random there must be a lot of changes in
the sequence.

∗ Tests for the Longest-Run-of-Ones in a Block
Expanding upon the previous test, the sequence is di-
vided in blocks of M bits from which the longest run
of ones will be the focus. In order to be considered a
random sequence, the length of the longest run of ones
should be consistent with that of a random sequence.
The same could be tested taking the runs of zeroes but
it is not required as if the length of the longest run of
ones does not meet the criteria it implies that the same
is most likely to happen with the longest run of zeroes.
The test has been prepared to work at 3 different sizes
of M: 8, 128 and 104 for which the minimum length of
the sequence is 128, 6272 and 750000 bits respectively.

∗ Binary Matrix Rank Test
The goal of this test is to determine whether or not
there exists a linear dependence among substrings of
the input sequence. These substrings are organized as
sub-matrices of MxQ bits and from them the rank of
disjoint is calculated. The test has been configured to
set M = Q = 32. The bits that cannot fill an entire
matrix are discarded.

∗ Discrete Fourier Transform Test
This test detects periodicity in the form of repetitive
patterns in the input sequence. This is done by cal-
culating the Discrete Fast Fourier Transform of the se-
quence and checking its peak heights. The number of
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peaks that exceed the threshold by 95% should consid-
erably differ from 5%.

∗ Overlapping Template Matching Test
In this test, the focus is the number of times target
strings occur. It will consider the sequence as random if
the number of ones of a certain length does not deviate
from the number it expects from a random sequence.
As in the Longest-Run test, it is not necessary to test
the number of zeros since an anomaly in the number
of ones also means an anomaly in the zeros. This pro-
cess is done through a window of m bits that used to
search an m-bit pattern throughout the whole sequence
to check how often that pattern appears. The window
slides by one bit whether the pattern is found or not.

∗ Non-overlapping Template Matching Test
As in the previous test, this test focuses on the number
of times target strings occur. However, unlike the Over-
lapping Template Test, this tes only considers random
those sequences that do not contain many occurrences
of the pre-defined aperiodic strings. As such something
very important to mention is that in this one many
P-values are computed because it depends on several
variables and not just the test statistic. This test works
similarly to the previous one with the exception that
the window only slides one bit when the pattern has
not been found, otherwise, the window slides m bits
or, in other words, to the next position to where the
pattern was found.

∗ Maurer’s ”Universal Statistical” Test
In this test randomness is related to the compression
of the sequence. A sequence can be compressed as long
as no information is lost. If a sequence can be com-
pressed greatly it is not random because there were
many matching patterns and thus they did not add
any new information. To determine this, the input se-
quence has to be partitioned as seen in figure 2.3 so
that K = n

L
− Q If there are any remaining bits that

cannot form a L-bit block they are discarded. This
test is also based in a series of pre-computed values, it
should be noted that if the test statistic differed con-
siderably from these pre-computed expected values, the
P-value will not fall in the desired range. In that case,
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Figure 2.3: Universal test sequence partitioning

the sequence can be compressed and thus not random.

∗ Approximate Entropy Test
The goal of this test is to check the frequency of every
overlapping blocks of similar lengths in the sequence,
one of m bits and the other of m+1 bits.

∗ Serial Test
Since a random sequence should be uniform, any of the
2m m-bit overlapping string or pattern must appear the
same number of times as any other m-bit pattern. As
such, this test checks if the frequency of appearance of
any possible overlapping pattern of m bits throughout
the entire sequence is approximately the same. If m =
1 this test operates just like the Frequency test.

∗ Linear Complexity Test
This test establishes the complexity of the sequence
comparing it to a LFSR. The longest the LFSR is the
more complex the sequence and the better the random-
ness. If the length is too short the test fails. The short-
est possible LFSR is computed through the Berklekamp-
Massey algorithm [32].

2.4 FPGA Technology

Field Programmable Gate Arrays (FPGAs) are semiconductor de-
vices that contain generic logic cells in a two dimensional array along
with programmable switches forming a matrix of Configurable Logic
Blocks (CLBs) whose interconnections are also programmable (see
section 2.4.1 for more details). Unlike Application Specific Inte-
grated Circuits (ASICs) devices that are designed for a specific de-
sign, the programmable capacity of FPGAs means they can be re-
programmed to run several applications with very different circuit
layouts without having to re-design the application nor changing the
hardware [33].
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The main manufacturers of this hardware are Xilinx and Altera
which have controlled the market for years. While Altera was the
first of the two in producing a truly reprogramable industrial logic
device in 1984, it was Xilinx who a year later released a commercial
FPGA known as the XC2064 (whose name refers to its 64 CLBs).
These two companies were unchallenged in the market during a
decade until the mid-1990s when other companies started to be-
come serious competitors, among these are: Microsemi, SilliconBlue
Technologies, Achronix, QuickLogic, Lattice Semiconductor, Tab-
ula, etc

Nowadays, some areas in which FPGAs are commonly used in
[34] are:

• Aerospace and Defence: avionics, missiles and munition,
security, space, etc.

• ASIC Prototyping: it is possible to verify an embedded sys-
tem.

• Audio: with Digital Signal Processing FPGAs provide a wide
range of applications in this field.

• Automotive: driver assistance systems, vehicle networking
and connectivity and in-vehicle infotainment.

• Broadcast: Encoders, decoders, displays, switches and routers,
Real-Time Video Engines, etc.

• Consumer Electronics: portable electronics, digital cam-
eras, printers, home networking, etc.

• Data Center: storage in Servers for Cloud Computing.

• Industrial: imaging, networking, motor control, etc.

• Medical: Ultrasound, CT scanning, X-ray, etc

• Video and Image Processing: video over IP, high resolution
video, digital displays, etc.

• Wired and Wireless Communications: optical networks,
network processing, radio, connectivity interfaces,compatible
with standards such as HSDPA and WiMax

The FPGA behaviour is programmed or described through a de-
sign in a schematic or it is written in a hardware description language
(HDL), the most well know among these languages are VHDL (VH-
SIC hardware description language) and Verilog although there are
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Figure 2.4: FPGA Block Structure

newer graphical programming languages like National Intrument's
LabView. For this project, as we have chosen a Xilinx Spartan-3E
Board their official design suite has been used and therefore, our
design is written in VHDL as it is the recommended option for this
application and our target device.

Generally, before synthesizing and running an application on the
FPGA hardware, circuit designs are first tested by simulating them
with software programs such as Modelsim however, this is not pos-
sible for testing True Random Number Generators because it is im-
possible for the software to emulate the source of entropy that the
TRNG requires.

2.4.1 FPGA Block Structure

Every model has different components that make it unique however,
as seen in figure 2.4, there are some that can always be found in the
block structure of a FPGA board:

• Logic Blocks. Formed by a switching matrix, flip-flops and
selection circuits like multiplexers or demultiplexers. This Con-
figurable Logic Block can have a synchronous or asynchronous
output thanks to these components and moreover, it is always
accompanied by several I/O pads as well as flexible intercon-
nection routes between them and other blocks of the board. To
reduce design complexity the routing is an automatic task gen-
erally hidden from the designer of FPGA applications however
this may cause a wrong use of the FPGA resources and take
more routing tracks than the design might actually need.
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Figure 2.5: Spartan-3E

• Memories. FPGA designs can have on-chip memory as most
boards contain some sort of Embedded Block RAM (BRAM)
memory that can also work in a dual-port operation with difer-
ent clocks.

• Clocking. Many components will require a synchronous clock
signal for them to work therefore a Digital Clock Manager
(DCM) will always be present alongside with routing dedicated
exclusively to clock and reset signals all throughout the board
as well as clock frequency synthetization through analog PLLs
or DLLs and sometimes even a Digital Signal Processor (DSP).
A DCM can manipulate clock signals by eliminating their skew,
adding a different phase shift, multiplying or diving the signal,
etc.

2.4.2 Xilinx Spartan-3E

This project uses a board from the Xilinx Spartan-3E family devices
which is an improvement over the previous successful Spartan-3 fam-
ily. This is done by improving the configuration costs and system
performance since the amount of I/O pads per logic cell is higher.
Moreover, it comes with newer, cheaper and more advanced 90-
nanometer technologies which not only allow for more bandwidth
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Figure 2.6: Spartan-3E Family Architecture

but also many functionalities that make them ideal for their use
in consumer electronics such as home networking with broadband
access and digital displays for television. [35]

There are five main programmable types of elements in this fam-
ily of FPGAs, their distribution in a device are as shown in figure
2.6:

• CLBs: store data in latches and flip-flops as well as implement
the logic of the circuit.

• I/O Blocks: manage the data transmitted and received bidi-
rectionally in between I/O pins and the rest of the device.

• Block RAM: stores data in dual-port blocks of 18Kb. Each
BRAM has their dedicated multiplier.

• Multiplier Blocks: can calculate the product of two binary
numbers of 18 bits.

• DCM Blocks: to digitally self-calibrate clock signals. It is
possible to multiply, divide, delay, phase-shift and distributing
the signal.

The board that has been used in this project, the Xilinx Spartan-
3E Starter Board (see figure 2.5), also has as some its main features
[36]:

• 232 I/O pins
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• A Xilinx 4Mbit PROM

• Parallel 16MB NOR Flash configuration

• 16Mbit SPI serial Flash configuration

• MicroBlazeTM32-bit embedded RISC processor

• PicoBlazeTM8-bit embedded controller

• 64MB DDR SRAM interfaces.

2.5 Implementing TRNGs on FPGAs

As mentioned in section 2.4, when designing a solution for integrated
circuits it is important to take into account that the resources they
provide are limited. In spite of this, there are several ways to imple-
ment TRNG on FPGA technology. These can be presented accord-
ing to the method employed to extract randomness or their source
of entropy.

1. Metastability. As seen in section 2.3.1 , it refers to the abil-
ity of a circuit to endure an unstable state during a prolonged
time. FPGAs are designed to avoid situations that can produce
metastability which makes it difficult to use this mechanism.
However, a couple of solutions employing metastability have
been implemented on FPGAs, the most well-known is the one
designed by Vasyltsov et al. [37] As presented in figure 2.7,
it is a ring oscillator (RO) formed by inverters whose output
is connected to their input by a multiplexer that acts as a
switch. The state of those switches determines if the circuit
works in entropy accumulation mode (metastability) or in os-
cillating mode. When the inverters are disconnected from each
other metastability occurs and the output voltage fluctuates.
Therefore, when they are connected again the state of the ring
oscillator depends on the entropy created in each inverter.

2. Open Delay Chain. Through a chain of delay elements an
n-bit signal is obtained by using D-latches in the LUTs. After-
wards, it is XOR-ed to produce a random bit. There are two
advantages to this method: first, it is possible to produce high
rates of data at the maximum clock frequency and second, it is
a simple structure without the need of PLLs or ROs.
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Figure 2.7: Vasyltsov et al. TRNG

3. Chaos. Obtaining randomness from a chaotic event is only
possible through an analog device. Most FPGAs lack such
technology but certain models have several analog blocks or
peripherals. However, these cannot produce the chaotic behav-
ior required for a TRNG. Although it is possible to produce
this behavior through an Analog to Digital converter which is
only a matter of time until FPGAs are manufactured with one.

4. Use of SRAM Memories. There are two methods to make
use of the SRAM in an FPGA to generate random numbers:
first, through the start-up state of the SRAM that generates
non-deterministic noise [38] and second, by the write collisions
method which consist of trying to write opposite values at the
same time which results in a process similar to metastability
[39].

5. Jittery Clock Sampling. The deviation from ideal behavior
of a signal or jitter has been proven to be the best method for
FPGAs since the possible implementations are technology inde-
pendent and require components that can be found in any type
of FPGA. The jittery signals are composed of thermal noise
and flicker noise. The former results in the non-deterministic
behavior while the latter adds a deterministic behavior depen-
dent of the technology on which the TRNG is implemented.
The two techniques of using jitter are:

• Coherent Sampling. This method employs two or more
clocks with output frequencies or phases that are related.
One of the clock signal samples the others in the edges but
since none of them are ideal the result will be a random se-
quence. There are two well-known implementations of this
principle: Fischer and Drutarovsky's [40] and Kohlbrenner
and Gaj's [41] . In the former, PLLs are used to gener-
ate the jittery clock signals, no post-processing is required
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Figure 2.8: Sunar et al. TRNG

and the output bit rate, while considerably low, is con-
stant. However, many FPGA families do not contain PLLs
and therefore this TRNG cannot be implemented in them.
Kohlbrenner and Gaj solve this problem by replacing the
PLLs by ROs that can be implemented in all FPGAs. The
frequencies of the oscillators must be very similar but not
the same in order to obtain the desired random sequence
which will have a very long period.

• Jittery Clock Signals. This method uses a synchronous
or asynchronous D flip-flop (DFF) to sample the high fre-
quency signals generated by oscillators. A reference clock
(generally obtained from a quartz oscillator) is used to ob-
tain the sampling frequency. This technique was originally
coined by Sunar et al. (see figure 2.8) [42] who samples
several ROs at the same time. Their outputs are XOR-ed
to obtain a high-frequency random signal which is sam-
pled by the DFF. Afterwards a resilient function is used as
post-processing that makes the output bit-rate constant.
This implementation, however, has two disadvantages: not
only the power consumed by this TRNG is substantial
since many ROs are required to oscillate simultaneously
and continuously but also the XOR and the DFF are not
capable of handling all the transitions. A solution to this
problem is proposed in [43] and can be seen in figure 2.9.
It consists of putting a DFF after each RO. Moreover, it
claims that by doing this the post-processing would be-
come unnecessary and the number of ROs can be reduced.
It has been argued however that the behavior it produces
is not true randomness but pseudo-randomness. Another
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Figure 2.9: Wold et al. TRNG

improvement to this was proposed in [44] where instead of
ROs, Self-Timed Rings are used.

In this project, a jittery clock has been used as entropy source.
It has just been stated above that this can be implemented by using
ROs or STRs, therefore an explanation of both is in order.

• Ring Oscillators: consist of a chain of an odd number of
elements connected in a feedback loop to form a ring. These
elements are either inverters as seen in figure 2.10 or an initial
inverter and delay elements. They are widely used in ASICs
and FPGAs in jittery clock sampling due to their many useful
features [45]:

– They are easy to design in integrated circuit technology.

– High frequency oscillations with dissipating low power are
achieved at a low voltage.

– Their frequency of oscillation can be tuned with a wide
range of possibilities.

– It is possible to obtain a multiphase output.

The frequency of oscillation depends on the number of de-
lay elements and the propagation delay they produce. A self-
sustained oscillator must have a 2π phase shift. For a RO of n
elements to achieve this, if each element adds a π

n
phase shift

and a propagation delay of τd (its actual value depends on the
parameters of the circuit), the RO completes a first revolution
in a time of nτd with a phase shift of π. Another revolution
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Figure 2.10: Ring Oscillator basic stucture

Figure 2.11: Self-Timed Ring basic stucture

is required to reach the 2π phase and thus the time period of
the whole process becomes 2nτd. Therefore, the frequency of
oscillation on an RO is fo = 1

2nτd
.

• Self-Timed Rings: are a handshake protocol that controls
a sequence of events by distributing them through different
adjacent stages (each consisting of a Muller C-element and an
inverter) forming a micropipeline FIFO as can be seen in figure
2.11. The clocks of synchronous designs are replaced by these
handshakes and therefore the oscillator is highly configurable
allowing to choose phase and frequency between signals. The
jitter does not depend on the length of the ring but on the one
that each stage generates [46].

As was stated in section 1.2, the nature of this project is to ex-
pand on Böhl's RO. However, it must be taken into account that,
despite all of their advantages, ROs are very sensitive towards volt-
age and process variability. In [46] and [47] comparisons between
ROs and STRs are presented. They conclude that, while in ROs
the jitter has a greater magnitude and propagates throughout the
whole ring, the jitter generated by STRs has a better quality as its
deterministic noise component is much lower than the one a RO
generates.



Chapter 3

Characterization of the
TRNG

In this chapter, the implementation and design of the TRNG is
presented along with an analysis of its results.

First, the detailed design of the TRNG is shown, followed by its
implementation on the Xilinx Spartan-3E as well as how the random
numbers it generates are captured and handled prior to being tested.
Afterwards, the different experiments performed on the hardware
are explained. First, testing for which frequency and post-processing
the best results are obtained, second, on which area of the chosen
FPGA the TRNG is the most robust, third, a comparison between
different FPGAs on the optimal position and, last but not least,
a forced reset of the generator to prove whether or not it is still
reliable.

3.1 TRNG Under Study

This project studies the TRNG proposed in [1]. Back in section 2.5,
it was stated that common designs for TRNGs on FPGAs consist
of ring oscillators. ROs are a feedback loop of an odd number of
inverting elements. Most RO-based TRNGs employ several ROs,
however [1] and [2] state that a robust TRNG can be implemented
with just one RO. This is achieved with multiple taps or sample
points within it. Typical approximations use instead of a single
sample point after the last inverting element before the feedback
takes place. This was previously shown in figures 2.8 and 2.9 from
[42] and [43] respectively. In any case, it is required that these taps

27
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Figure 3.1: TRNG design

are arranged after an odd number of elements for this approach to
work.

Therefore, the TRNG design is as shown in figure 3.1: a RO of
9 inverting elements and 3 sample points. The initial inverter is
replaced by a NAND gate to control the start of the oscillations as
well as stop them. The sampling is done through D flip-flops placed
after the third, sixth and ninth inverters respectively. The DFFs
store the retrieved bits.

This design extracts entropy from the jitter or deviation from
the ideal behavior of the signal travelling through the RO. This
occurs because it is being delayed by the inverting elements that add
to it flicker and thermal noise. The noise is the non-deterministic
component that produces randomness. Therefore the bits stored in
the DFFs can be XORed or simply processed independently because
they are already random.

On the one hand, [1] simply states that a sampling frequency
of 1MHz is enough to accumulate sufficient jitter. Our first goal
will be to prove the veracity of this statement by controlling the
sample clock signal. On the other hand, [2] recommends to use a 3-
bit XOR post-processing, however, the results of the statistical tests
are not provided. Thus, the actual quality of the output of the RO
is unknown. As such, it was decided to first test the quality of the
TRNG (see section 3.3) as is and afterwards, if necessary, design a
post-processing unit.

3.2 Experimental Framework

Now that the theoretical design of the TRNG has been introduced,
this section deals with its actual physical design as well as its im-
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plementation on the chosen FPGA. Once this is done, it focuses on
the procedures taken to capture the output and handling it before
and after the statistical tests were applied.

3.2.1 FPGA Implementation

A design is implemented in the Xilinx Spartan-3E family by describ-
ing the required hardware elements in a VHDL application which is
loaded to the FPGA. For a design to work the target FPGA must
have the elements described in it. This would not be a constraint for
the TRNG since its elements are just logic gates and DFFs which
are elements featured in every FPGA technology.

First, the three basic elements of the design (inverter, NAND
gate and DFF) were described in three separate VHDL files. Sec-
ondly, the actual RO is implemented by adding these three as its
components. Lastly, since we want to control and change the sample
frequency a last file is required in which the RO will be a compo-
nent. The clock of the Spartan-3E runs at 50MHz so in order to
make the RO work in a different oscillation frequency a counter is
created. This counter will create the sample clock signal that will
be fed to the DFFs. The desired frequencies are obtained according
to the length of the counter: the largest the counter is the smaller
the oscillating frequency. Nevertheless, there is a third element in
the final application: the RS232 protocol connection. This connec-
tion is an important part of the design since it is through it that the
generated random bits of the TRNG are transmitted to be captured.

In the previous section, 3.1, it was stated that this design offered
two different possibilities to produce a random sequence:

1. XOR the 3-bits stored in the DFFs to easily produce a single
signal

2. Process the 3 bits independently, each forming a bit of the
random sequence.

It was decided to make use of this second possibility so a longer
sequence will be created more quickly. The bits created in these
stages can be considered random because the phase shift produced
by the accumulated jitter has been through an odd number of ele-
ments after each sample is taken, a requirement that was specified
in section 2.5. The 3-bits are then stored in a 8-bit register before
they are overwritten in the next oscillation. The contents of this
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register are shifted and sent through the RS232 transmission to be
captured.

All the VHDL code used in the design is available in appendix
A.

There is however a crucial intermediate step in the implementa-
tion that has not yet been mentioned. In section 2.4.1 it was declared
that the difficulty of designing applications for FPGAs is greatly re-
duced because the routing of the circuit is done automatically which
is quite convenient for most designs. It would also be convenient for
this TRNG if it was not for the nature of the experiments to be
performed.

Since we want to place the TRNG in several positions all through-
out the FPGA it is most likely that the routing that will be assigned
in each case will also be different. Theoretically, this should not af-
fect the process, however it cannot be assured. Therefore, we have
to ensure that the routing of the RO is always the same. This is
done by turning the RO into a Hard Macro before adding it to the
final design. A Hard Macro is a custom analog block surrounded
by digital logic. This means that for an application the distribution
of blocks of the FPGA with the required components as well as the
routes used to connect them are fixed. Now, wherever the oscillator
needs to be placed its routing will remain constant. The designer
simply needs to be careful and place the reference component of the
RO in an area of the FPGA that allows that distribution. An in-
depth explanation of how the Hard Macro of the TRNG is created
can be found in appendix B.

Once the design has been implemented in VHDL, the target de-
vice, the Xilinx Spartan 3-E, has to be configured to run the ap-
plication. This has been done in ISE Project Navigator an official
application distributed by Xilinx. Notice that, as was already said in
section 2.4, before programming an FPGA with a program, the ap-
plication should be tested in simulating software but since a TRNG
uses physical processes to generate entropy it cannot be simulated.

3.2.2 Treatment of the Data

While the TRNG is running on the FPGA, the random sequence
has to be captured before its quality can be tested. Any application
that captures data from the prolific serial port of a computer would
suffice.

The statistical tests demand that a sufficiently large sequence
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Figure 3.2: Capturing software

must be evaluated, the larger the sequence the more reliable the
results of the tests. It was considered that capturing around 10MBs
of data would be more than enough. Moreover, the chosen software
does not capture the data received from the RS232 in binary, as is
necessary for the battery of tests, but in hexadecimal. Therefore,
the 10MB hexadecimal file after conversion conveniently becomes
a binary file of approximately 40MBs. The hexadecimal to binary
converter is a Python script developed specifically for this project
whose code can be found in appendix C, it only requires to specify
the input hexadecimal file and the name or location of the new
generated binary file.

The NIST allows a free download of its Statistical Test Suite as a
zip which we have run on a virtual linux machine to save us time as it
requires to run a makefile to install it. To run the tests the first step
is to assess the number of traces and the input file with the binary
sequence. The application then prompts for the tests to be passed,
even though the results of the Random Excursions and the Random
Excursions Variant are specific to PRNGs and would not be useful in
this context it was chosen to run all the tests as it is easier to simply
ignore the results of these two later on. Back in section 2.3.1 several
parameters required in the tests were introduced, if we wished to
modify them it would be possible at this point. Nevertheless, it was
decided to use the default values:
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1. Block Frequency Test - block length(M): 128

2. NonOverlapping Template Test - block length(m): 9

3. Overlapping Template Test - block length(m): 9

4. Approximate Entropy Test - block length(m): 10

5. Serial Test - block length(m): 16

6. Linear Complexity Test - block length(M): 500

The results of the tests are stored in an ASCII file named final-
AnalysisReport.txt. This file nicely lays out the numerical statistical
data and marks which tests have failed but it does so in a way that
it is not easy to work with it. Another Python script has been cre-
ated to remove the unnecessary info of the results file and instead
turn it in a comma-separated CSV file. The script is presented
and detailed in appendix C. From the CSV file the p-values can be
easily extracted afterwards in Matlab to compare graphically each
measurement.

After taking the measurements for the first experiment it was
found that the TRNG was not generating reliable random numbers
because it did not pass the tests. A post-processing mechanism is
required.

3.2.2.1 Post Processing

In Böhl's original paper [1], no specific post-processing mechanism
was specified. In [2], however, a simple serial XOR corrector is used
as post-processing. As it was already mentioned in section 2.3.1,
this operation compresses the original sequence which results in an
effective reduction of bias or deviation from the expected 1

2
number

of ones and zeroes.

The basic bitwise XOR operation is shown in table 3.1 and can
be represented as A ⊗ B. It will return 1 if A or B are 1 and it
will return 0 if they are equal. This also means that the operation
is commutative: A⊗ B = B ⊗ A. An XOR can operate more than
two bits as can be seen in tables 3.2 and 3.3. These tables also
help to realize why this operation is also known as a parity check: a
sequence of n bits has even parity (XOR = 0) if the number of 1s
in it is even, otherwise, if the number of ones is odd the sequence
also has odd parity (XOR = 1). From this it can also be deduced
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Table 3.1: XOR operation of 2 bits
A B XOR
0 0 0
0 1 1
1 0 1
1 1 0

Table 3.2: XOR operation of 3 bits
A B C XOR
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

that a XOR operation is also associative, for example, for 3 bits:
A⊗ (B ⊗ C) = (A⊗B)⊗ C [16].

An XOR compresses a binary sequence according to the number
of bits the operation takes, for example: an XOR operation of 2 bits
is mapping 2 bits into 1 and thus reduces the length of the sequence
in half. A 3-bit operation has a compression rate of 3:1 bits, for
5-bit operation it is 5:1 bits and so on. Moreover, in a n-bit XOR
all possible combinations of those bits are 2n, which always consist
of an equal amount ones and zeroes: 2n

2
. For example: in table 3.2,

the 3-bit XOR yields 23 = 8 possible results, out of these, one half,
23

2
= 4, are ones and the other half are zeros. Meanwhile, in table

3.3, the 5-bit XOR returns 25 = 32 possible results, 16 1s and 0s.

To sum up, the greater the number of bits that the XOR takes,
the greater the compression rate as well as the more difficult for
an attacker to guess which was the original sequence of bits, there-
fore not only reducing the bias of the sequence but also making it
more resistant to attacks. While the reference work used simply and
XOR of 3-bits, for this project it has been decided to also evaluate
the performance of other three post-processing XOR correctors that
operate with a higher number of bits.

In spite of how advantageous the post-processing is, one prob-
lem has been encountered: the time constraint. Capturing the data
of a single measure takes up to approximately an hour and a half,
if instead of measuring each experiment once for each frequency
and position it were performed 4 times, the time required to finish



34 CHAPTER 3. CHARACTERIZATION OF THE TRNG

Table 3.3: XOR operation of 5 bits
A B C D E XOR
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0
0 0 1 0 0 1
0 0 1 0 1 0
0 0 1 1 0 0
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 0 1 0
0 1 0 1 0 0
0 1 0 1 1 1
0 1 1 0 0 0
0 1 1 0 1 1
0 1 1 1 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 0 0 1 0
1 0 0 1 0 0
1 0 0 1 1 1
1 0 1 0 0 0
1 0 1 0 1 1
1 0 1 1 0 1
1 0 1 1 1 0
1 1 0 0 0 0
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 0
1 1 1 0 0 1
1 1 1 0 1 0
1 1 1 1 0 0
1 1 1 1 1 1

the project would have increased greatly leaving no margin for er-
rors and possible re-measurements. Since at this point the physical
process required for the TRNG has already been handled, it was
decided to implement the post-processing mechanism as a Python
script outside the hardware to optimize the running time. This op-
timization allows us to compare the exact same measurement with
different post-processing. The code of this script has been included
in appendix C.

Through this optimization, the XOR correctors used in the project
result in:



3.3. EXPERIMENTS: RESULTS AND ANALYSIS 35

1. 3-bit XOR:

• Compression rate: 3:1, reduces 40MB file to approximately
13MBs

• Possible combinations of bits: 23 = 8, number of ones and
zeros: 23

2
= 4.

2. 5-bit XOR:

• Compression rate: 5:1, reduces 40MB file to 8MBs

• Possible combinations of bits: 25 = 32, number of ones and
zeros: 25

2
= 16.

3. 7-bit XOR:

• Compression rate: 7:1, reduces 40MB file to approximately
5.7MBs

• Possible combinations of bits: 27 = 128, number of ones
and zeros: 27

2
= 64.

4. 9-bit XOR:

• Compression rate: 9:1, reduces 40MB file to approximately
4.45MBs

• Possible combinations of bits: 29 = 512, number of ones
and zeros: 29

2
= 256.

3.3 Experiments: Results and Analysis

In [1] it is stated that at 1MHz sufficient jitter accumulates to gen-
erate a robust random sequence. Therefore the first experiment
performed consisted on proving whether this is truly the optimal
oscillation frequency or not. Once that experiment concluded it was
also desirable to evaluate if the quality of the TRNG was dependent
on the position on which it was placed in the hardware. To find
this, nine representative positions of the FPGA layout were chosen.

Originally, those were the only experiments planned because it
was considered that they would take more time than they actually
did. This was partly due to the new computer on which the cap-
turing software was run but mostly thanks to using python for the
XOR corrector. With this extra time two more experiments were
executed: a test of the optimal position in several FPGAs and a
restart of the circuit while the TRNG is running to make sure it is
still working.
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The analysis of all four tests is described in the subsequent sec-
tions. Notice that since the generator did not pass the tests without
post-processing these sections only provide the results of the 4 XOR
correctors.

3.3.1 Frequencies

The first experiment focuses on proving the claim from [1] that the
optimal frequency of oscillation for the design is 1MHz. To do so,
a range of frequencies including 1MHz has been chosen to evaluate
the behavior of the TRNG. This range goes from 50KHz to the
oscillation frequency of the clock of the FPGA, 50MHz. Inside this
range, six representative frequencies were tested: 50KHz, 100KHz,
500KHz, 1MHz, 25MHz and 50MHz.

Moreover, for this experiment the placement of the TRNG within
the Spartan-3E board has been fixed to a central position. Due
to the Hard Macro it is assured that the routing and components
used in each measurement are exactly the same so it is possible to
conclude that the results obtained are completely dependent on the
frequency being tested.

Tables 3.4 to 3.9 show the p-values obtained from the statistical
test suite while in figure 3.3 a graphic view of these is presented.

For 50KHz (table 3.4):

• 3-bit post-processing: only passes 4 tests out of 15

• 5-bit post-processing: only passes 6 tests out of 15

• 7-bit post-processing: passes 9 tests out of 15

• 9-bit post-processing: passes 14 tests out of 15

For 100KHz (table 3.5):

• 3-bit post-processing: only passes 4 tests out of 15

• 5-bit post-processing: passes 5 tests out of 15

• 7-bit post-processing: passes 10 tests out of 15

• 9-bit post-processing: passes 13 tests out of 15

For 500KHz (table 3.6):

• 3-bit post-processing: only passes 4 tests out of 15
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Table 3.4: Central Position 50KHz
Test PP3 PP5 PP7 PP9

Frequency 0.000000 0.000000 0.236810 0.699313
BlockFrequency 0.000000 0.000076 0.000954 0.366918
CumulativeSums 0.000000 0.000000 0.071177 0.897763
CumulativeSums 0.000000 0.000005 0.437274 0.759756

Runs 0.000000 0.000000 0.000000 0.867692
LongestRun 0.000000 0.000001 0.002559 0.739918

Rank 0.616305 0.289667 0.090936 0.090936
FFT 0.000000 0.798139 0.275709 0.042808

OverlappingTemplate 0.000000 0.003447 0.005762 0.883171
NonOverlappingTemplate 0.029305 0.45492 0.396955 0.473554

Universal 0.000000 0.000000 0.000000 0.000000
ApproximateEntropy 0.000000 0.001296 0.006661 0.162606

Serial 0.000000 0.514124 0.719747 0.012650
Serial 0.401199 0.003996 0.867692 0.779188

LinearComplexity 0.102526 0.085587 0.798139 0.334538

• 5-bit post-processing: passes 9 tests out of 15

• 7-bit post-processing: passes 12 tests out of 15

• 9-bit post-processing: passes 13 tests out of 15

For 1MHz (table 3.7):

• 3-bit post-processing: only passes 3 tests out of 15

• 5-bit post-processing: passes 9 tests out of 15

• 7-bit post-processing: passes 10 tests out of 15

• 9-bit post-processing: passes 13 tests out of 15

For 25MHz (table 3.8):

• 3-bit post-processing: only passes 6 tests out of 15

• 5-bit post-processing: passes 13 tests out of 15

• 7-bit post-processing: passes 14 tests out of 15

• 9-bit post-processing: passes 14 tests out of 15

For 50MHz (table 3.9):

• 3-bit post-processing: only passes 2 tests out of 15
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Table 3.5: Central Position 100KHz
Test PP3 PP5 PP7 PP9

Frequency 0.000000 0.000000 0.759756 0.657933
BlockFrequency 0.000000 0.000000 0.759756 0.213309
CumulativeSums 0.000000 0.000000 0.911413 0.935716
CumulativeSums 0.000000 0.000000 0.006196 0.494392

Runs 0.000000 0.000000 0.000000 0.005358
LongestRun 0.000000 0.000000 0.004301 0.964295

Rank 0.924076 0.249284 0.304126 0.037566
FFT 0.000000 0.009535 0.419021 0.058984

OverlappingTemplate 0.000000 0.000000 0.115387 0.108791
NonOverlappingTemplate 0.021242 0.3089 0.480633 0.501248

Universal 0.000000 0.000000 0.000000 0.000000
ApproximateEntropy 0.000000 0.000000 0.000097 0.455937

Serial 0.000000 0.028817 0.289667 0.779188
Serial 0.851383 0.019188 0.202268 0.834308

LinearComplexity 0.334538 0.595549 0.129620 0.289667

• 5-bit post-processing: only passes 6 tests out of 15

• 7-bit post-processing: only passes 7 tests out of 15

• 9-bit post-processing: passes 13 tests out of 15

The p-values for each frequency are represented in figure 3.3
through boxplots. A boxplot is a tool used in descriptive statis-
tics to depict groups of numerical data graphically without being
parametric. This means that the data is represented without as-
suming that it follows any type of distribution. This is interesting
because classical statistics is usually based on the normal distribu-
tion. In that situation, the mean of the data is used to describe the
central tendency of the data set. However, when a normal distri-
bution cannot be assumed this is no longer a useful value and it is
instead replaced by the median. If, as in our case, the number of
data to be represented is odd, the median is the middle observation
when the data is ranked from smallest value to largest or vice versa.

A boxplot is also based on the interquartile range of the data
which is the range between the lower quartile and the upper quartile
values of the data. The median of the whole data divides it in
half, then the median of the half with the smaller values is also the
lower quartile and the median of the other half becomes the upper
quartile. The IQR is then the difference between the upper and
lower quartiles. The median of the whole data and the IQR are
used to draw the box: its width is not relevant but its height is
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Table 3.6: Central Position 500KHz
Test PP3 PP5 PP7 PP9

Frequency 0.000000 0.000000 0.779188 0.678686
BlockFrequency 0.000000 0.003712 0.834308 0.129620
CumulativeSums 0.000000 0.000002 0.474986 0.032923
CumulativeSums 0.000000 0.000000 0.062821 0.851383

Runs 0.000000 0.000000 0.000002 0.419021
LongestRun 0.000000 0.262249 0.162606 0.816537

Rank 0.455937 0.010237 0.002374 0.115387
FFT 0.000000 0.191687 0.798139 0.494392

OverlappingTemplate 0.000000 0.911413 0.851383 0.419021
NonOverlappingTemplate 0.023762 0.481288 0.475329 0.438327

Universal 0.000000 0.000000 0.000000 0.000000
ApproximateEntropy 0.000000 0.014550 0.014550 0.003712

Serial 0.000000 0.834308 0.574903 0.437274
Serial 0.137282 0.678686 0.971699 0.289667

LinearComplexity 0.897763 0.334538 0.616305 0.289667

Table 3.7: Central Position 1MHz
Test PP3 PP5 PP7 PP9

Frequency 0.000000 0.000000 0.637119 0.911413
BlockFrequency 0.000000 0.122325 0.000406 0.437274
CumulativeSums 0.000000 0.000000 0.249284 0.494392
CumulativeSums 0.000000 0.000000 0.474986 0.897763

Runs 0.000000 0.000000 0.000000 0.003201
LongestRun 0.000000 0.437274 0.000002 0.935716

Rank 0.071177 0.262249 0.494392 0.924076
FFT 0.000000 0.319084 0.001030 0.978072

OverlappingTemplate 0.000000 0.455937 0.236810 0.153763
NonOverlappingTemplate 0.007652 0.472842 0.444217 0.501438

Universal 0.000000 0.000000 0.000000 0.000000
ApproximateEntropy 0.000000 0.000347 0.000000 0.304126

Serial 0.000000 0.616305 0.202268 0.616305
Serial 0.191687 0.637119 0.129620 0.401199

LinearComplexity 0.366918 0.129620 0.616305 0.759756
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Table 3.8: Central Position 25MHz
Test PP3 PP5 PP7 PP9

Frequency 0.000000 0.366918 0.616305 0.171867
BlockFrequency 0.000000 0.224821 0.366918 0.066882
CumulativeSums 0.000000 0.236810 0.419021 0.153763
CumulativeSums 0.000000 0.275709 0.964295 0.015598

Runs 0.000000 0.035174 0.514124 0.616305
LongestRun 0.000000 0.637119 0.798139 0.062821

Rank 0.401199 0.419021 0.191687 0.129620
FFT 0.554420 0.171867 0.759756 0.455937

OverlappingTemplate 0.037566 0.699313 0.779188 0.122325
NonOverlappingTemplate 0.239008 0.479693 0.526375 0.495125

Universal 0.000000 0.000000 0.000000 0.000000
ApproximateEntropy 0.000000 0.008266 0.007160 0.153763

Serial 0.000000 0.911413 0.514124 0.137282
Serial 0.153763 0.911413 0.719747 0.834308

LinearComplexity 0.637119 0.304126 0.678686 0.997823

Table 3.9: Central Position 50MHz
Test PP3 PP5 PP7 PP9

Frequency 0.000000 0.000000 0.000000 0.534146
BlockFrequency 0.000000 0.006661 0.000000 0.401199
CumulativeSums 0.000000 0.000000 0.005762 0.055361
CumulativeSums 0.000000 0.000000 0.000004 0.275709

Runs 0.000000 0.000000 0.000000 0.554420
LongestRun 0.000000 0.000060 0.000000 0.289667

Rank 0.009535 0.075719 0.401199 0.006661
FFT 0.000000 0.108791 0.574903 0.262249

OverlappingTemplate 0.000000 0.008879 0.798139 0.657933
NonOverlappingTemplate 0.047825 0.449661 0.432256 0.49566

Universal 0.000000 0.000000 0.000000 0.000000
ApproximateEntropy 0.000000 0.000000 0.000000 0.010237

Serial 0.000000 0.181557 0.554420 0.494392
Serial 0.000005 0.401199 0.494392 0.275709

LinearComplexity 0.719747 0.678686 0.616305 0.350485
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Figure 3.3: Tested Frequencies in Central Position
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determined by the lower and upper quartiles and a horizontal bar
is drawn at the position of the median. The values that do not fall
within the IQR are represented as whiskers. The whiskers however,
do not represent the actual data but are dependent on the IQR,
their range is: [−1.5IQR; +1.5IQR]. The box should more or less
be centered in the whiskers. If this does not happen and there are
value exceedingly larger or smaller than the limits of the whiskers
they are represented as asterisks and referred as extremes [48].

The values being represented are the p-values obtained for each
statistical test at each frequency with the four XOR correctors. A
p-value is expected to take a value from 0 to 1 but for the TRNG to
pass the tests the p-value must be greater than 0.01. The furthest
the lower quartile is from 0 the better the results of the tests. The
assumption made in 3.2.2.1 that the greater the bits of the XOR
corrector the better the randomness can be observed.

The results obtained with a 3-bit XOR are still defective for all
frequencies. The 5-bit post-process starts yielding better results for
those frequencies near 1MHz but they are still insufficient. At 7-bits
of post-processing the results become considerably satisfactory but
it is still found that the lower quartile is too close to zero (if not
zero) for most cases. With an XOR corrector of 9-bits it is finally
seen that the frequencies higher than 1MHz degrade while the lower
quartile of those below it is still near 0.

Next, a closer comparison of the post-processing of 7-bits and
9-bits is provided in tables 3.10 and 3.11 and figures 3.4 and 3.5.

A couple of anomalies can be noted:

1. Graphically, at 500KHz it seems that a 7-bit XOR produces
better results than a 9-bit one. However, as can be seen in
the p-values of table 3.6, the 9-bit post-process does pass more
tests than the 7-bit XOR.

2. At 25MHz and a post-process of 7-bits the p-values obtained are
drastically improved and rival those of the 9-bit XOR at 1MHz.
However, the fact that the results for 25MHz quickly degrade
at a higher post-processing makes this frequency unreliable. It
can be concluded that what is being gained in randomness does
not compensate the throughput penalty.

Theoretically, at lower frequencies better results should be ob-
tained since there is more time for accumulating jitter. In spite of
this, at some point this backfires because the lower the frequency
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Figure 3.4: Comparison of 7-bit XOR of central position

Figure 3.5: Comparison of 9-bit XOR of central position

the greater the loss of throughput. Therefore, it was then concluded
that the optimal frequency was indeed 1MHz with a 9-bit XOR cor-
rector.
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Table 3.10: Central Position Post-Processing of 7-bits
Test 50KHz 100KHz 500KHz 1MHz 25MHz 50MHz

Frequency 0.000000 0.759756 0.779188 0.637119 0.616305 0.000000
BlockFrequency 0.000000 0.759756 0.834308 0.000406 0.366918 0.000000
CumulativeSums 0.000000 0.911413 0.474986 0.249284 0.419021 0.005762
CumulativeSums 0.000000 0.006196 0.062821 0.474986 0.964295 0.000004

Runs 0.000000 0.000000 0.000002 0.000000 0.514124 0.000000
LongestRun 0.000000 0.004301 0.162606 0.000002 0.798139 0.000000

Rank 0.616305 0.304126 0.002374 0.494392 0.191687 0.401199
FFT 0.000000 0.419021 0.798139 0.001030 0.759756 0.574903

OverlappingTemplate 0.000000 0.115387 0.851383 0.236810 0.779188 0.798139
NonOverlappingTemplate 0.029305 0.480633 0.475329 0.444217 0.526375 0.432256

Universal 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ApproximateEntropy 0.000000 0.000097 0.014550 0.000000 0.007160 0.000000

Serial 0.000000 0.289667 0.574903 0.202268 0.514124 0.554420
Serial 0.401199 0.202268 0.971699 0.129620 0.719747 0.494392

LinearComplexity 0.102526 0.129620 0.616305 0.616305 0.678686 0.616305
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Table 3.11: Central Position Post-Processing of 9-bits
Test 50KHz 100KHz 500KHz 1MHz 25MHz 50MHz

Frequency 0.699313 0.657933 0.678686 0.911413 0.171867 0.534146
BlockFrequency 0.366918 0.213309 0.129620 0.437274 0.066882 0.401199
CumulativeSums 0.897763 0.935716 0.032923 0.494392 0.153763 0.055361
CumulativeSums 0.759756 0.494392 0.851383 0.897763 0.015598 0.275709

Runs 0.867692 0.005358 0.419021 0.003201 0.616305 0.554420
LongestRun 0.739918 0.964295 0.816537 0.935716 0.062821 0.289667

Rank 0.090936 0.037566 0.115387 0.924076 0.129620 0.006661
FFT 0.042808 0.058984 0.494392 0.978072 0.455937 0.262249

OverlappingTemplate 0.883171 0.108791 0.419021 0.153763 0.122325 0.657933
NonOverlappingTemplate 0.473554 0.501248 0.438327 0.501438 0.495125 0.49566

Universal 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ApproximateEntropy 0.162606 0.455937 0.003712 0.304126 0.153763 0.010237

Serial 0.012650 0.779188 0.437274 0.616305 0.137282 0.494392
Serial 0.779188 0.834308 0.289667 0.401199 0.834308 0.275709

LinearComplexity 0.334538 0.289667 0.289667 0.759756 0.997823 0.350485
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Figure 3.6: Tested Positions of the FPGA

3.3.2 Intradevice Testing

The second experiment evaluates the quality of the TRNG in sev-
eral positions within the same FPGA. As explained previously, the
routing for the design is always the same because of the Hard Macro,
thus it would be possible to conclude that the results obtained for
each position depend solely on its specific position on the hardware.

The chosen positions needed to be representative of the layout
of the Spartan-3E board.Therefore, it was decided to test the nine
different positions shown in figure 3.6 by selecting the required pins
for the Hard Macro. The exact locations used are specified in the
ucf file of the implementation of the design in appendix A. Notice
that the ninth central position is also where the TRNG was placed
for the previous experiment, as such its measurements have already
been obtained and there is no need to repeat them.

In the previous experiment it was confirmed that the optimal
oscillation frequency was 1MHz as [1] claimed. Moreover, it was
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Figure 3.7: Intradevice Test: 1MHz and Post-Procressing of 9-Bits

found that employing a 9-bit XOR operation in the post-process
provided the best results. As such, this experiment used a frequency
of oscillation of 1MHz for the RO to generate random numbers and
a XOR corrector of 9 bits as its post-processing mechanism.

The results obtained are presented in figure 3.7, for the numerical
values obtained for the p-values refer to table 3.12 from which we
can see that:

• Position 1: passes 13 tests

• Position 2: passes 11 tests

• Position 3: passes 13 tests

• Position 4: passes 12 tests

• Position 5: passes 10 tests

• Position 6: passes 10 tests

• Position 7: passes 13 tests

• Position 8: passes 14 tests

• Position 9: passes 13 tests
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However, it has to be taken into account that at this point, we
are not just looking at the number of tests that the TRNG passes
but also the quality of those p-values. While the central ninth po-
sition does not pass the Runs test and the eighth position does, in
general, the p-values of the central position are far better than any
other. This can be noticed in figure 3.7 where, with the exception of
the fifth and ninth positions, all the other positions present a very
small lower quartile. In spite of this, it can be seen that for the
fifth position although the p-values obtained for the tests that pass
are considerably good, it fails several tests. This can be explained
according to the research in [41] that discovered a wide variation in
the intrinsic speed of FPGAs of approximately a 7% between the
normalized speeds of the slowest CLB and the fastest CLB.

It is not surprising that centering the TRNG in the board yields
better results. In spite of using Hard Macros, the connections with
other elements can influence the jitter. At the center, the synthesizer
has more space to place other elements in a natural way that would
not interfere with the TRNG. Therefore, it has been concluded that
the central position of the FPGA is the best one to place the TRNG.



3.3.
E
X
P
E
R
IM

E
N
T
S
:
R
E
S
U
L
T
S
A
N
D

A
N
A
L
Y
S
IS

49

Table 3.12: All positions Post-Processing of 9-bits
Test P1 P2 P3 P4 P5 P6 P7 P8 P9

Frequency 0.401199 0.145326 0.897763 0.202268 0.366918 0.419021 0.236810 0.816537 0.911413
BlockFrequency 0.213309 0.616305 0.102526 0.514124 0.350485 0.080519 0.145326 0.085587 0.437274
CumulativeSums 0.040108 0.534146 0.678686 0.455937 0.759756 0.000700 0.181557 0.798139 0.494392
CumulativeSums 0.419021 0.494392 0.108791 0.759756 0.383827 0.983453 0.115387 0.304126 0.897763

Runs 0.122325 0.000000 0.162606 0.000000 0.000000 0.000000 0.319084 0.153763 0.003201
LongestRun 0.699313 0.040108 0.474986 0.096578 0.437274 0.004301 0.171867 0.987896 0.935716

Rank 0.145326 0.699313 0.798139 0.016717 0.334538 0.419021 0.000031 0.090936 0.924076
FFT 0.437274 0.779188 0.851383 0.437274 0.514124 0.319084 0.474986 0.759756 0.978072

OverlappingTemplate 0.955835 0.574903 0.595549 0.437274 0.249284 0.946308 0.080519 0.145326 0.153763
NonOverlappingTemplate 0.491438 0.490924 0.461254 0.487463 0.48546 0.48408 0.479589 0.49665 0.501438

Universal 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ApproximateEntropy 0.102526 0.000043 0.213309 0.002971 0.013569 0.000001 0.319084 0.010237 0.304126

Serial 0.202268 0.000757 0.032923 0.304126 0.657933 0.090936 0.401199 0.699313 0.616305
Serial 0.066882 0.236810 0.401199 0.122325 0.883171 0.816537 0.334538 0.080519 0.401199

LinearComplexity 0.202268 0.021999 0.419021 0.153763 0.964295 0.350485 0.616305 0.153763 0.759756
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3.3.3 Interdevice Testing

Having proved that the best place to implement the TRNG on the
Xilinx Spartan-3E is its central area with an oscillation frequency of
1MHz and a 9-bit XOR post-processing mechanism, the third exper-
iment consists on evaluating the TRNG with these characteristics
in several FPGAs of the same model.

In figure 3.8 the results of this experiment are presented. Again,
for the numerical resulting p-values of the statistical test suite, refer
to table 3.13.

Table 3.13: Several FPGA, 1MHz, Post-processing of 9-bits
Test Original FPGA1 FPGA2 FPGA3

Frequency 0.911413 0.574903 0.224821 0.883171
BlockFrequency 0.437274 0.514124 0.946308 0.006196
CumulativeSums 0.494392 0.991468 0.637119 0.616305
CumulativeSums 0.897763 0.474986 0.616305 0.924076

Runs 0.003201 0.085587 0.319084 0.334538
LongestRun 0.935716 0.304126 0.115387 0.637119

Rank 0.924076 0.202268 0.350485 0.224821
FFT 0.978072 0.798139 0.202268 0.071177

OverlappingTemplate 0.153763 0.867692 0.419021 0.319084
NonOverlappingTemplate 0.501438 0.468086 0.524918 0.518739

Universal 0.000000 0.000000 0.000000 0.000000
ApproximateEntropy 0.304126 0.000051 0.007160 0.037566

Serial 0.616305 0.137282 0.108791 0.108791
Serial 0.401199 0.350485 0.978072 0.971699

LinearComplexity 0.759756 0.062821 0.514124 0.350485

The four tested devices pass the same number of tests however,
while the other three newly tested devices generate similar results
the quality of the obtained p-values is far from that of the first
device evaluated. The fact that they are similar among themselves
leads to believe that the difference with the last one is not due
to these devices being faulty but because of other external sources.
The environment of which the experiments were conducted was not a
controlled one. Moreover, as was stated back in section 2.3, a TRNG
can suffer modifications not just from a malicious attack but also
from environmental changes. This was not taken into account for the
duration of this project which was only focused on the quality of the
generator in ideal conditions. It is most likely that the measurements
of these other three devices were taken during one of the many heat
waves that struck Spain the summer of 2015.

It would be recommended to repeat this experiment in the fu-
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Figure 3.8: Interdevice Test: 1MHz and Post-Procressing of 9-Bits

ture with more devices and in a controlled environment to be able
to assure that random numbers generated are consistent in this tech-
nology.

3.3.4 Restart Experiment

The final experiment is separate from the results obtained in the
previous ones and instead applies the idea proposed in [49]. The only
conditions necessary were that the TRNG was captured while it ran
at a position and a frequency where the tests had been confirmed
to pass. The TRNG is restarted from the same initial conditions
before it started oscillating. This can be performed easily because
in the design of the TRNG (see section 3.1 above) the first inverting
element is a NAND gate rather than an inverter. This was done so
that the oscillations could be controlled and stopped if necessary.
This property added to the RO by the NAND gate is the focus of
study of this experiment.

As can be seen in the VHDL code in appendix A, the oscillation
only occurs when the reset trigger of the circuit is active. If the reset
trigger is turned off the oscillation stops and the TRNG simply
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Figure 3.9: Restart Experiment Results

produces a null result. When the trigger is turned on again and
thus the reset signal is set to 1, the RO starts oscillation again. The
question is: is the quality of the numbers generated after restarting
the oscillation still adequate?

To appraise the quality of the TRNG through the statistical test
suite is pointless. The reset trigger was pulled many times while the
sequence generated was being captured, therefore if the statistical
tests were to be applied several problems would have been encoun-
tered:

1. Many long substrings of zeroes would be found in the whole
sequence. This would immediately make the tests fail.

2. Deleting the long substrings of zeroes would not we useful.
Erasing them from the sequence would mean feeding the tests
fake data.

3. Simply partitioning the sequence is also out of the question.
The file captured is much smaller than those used in the pre-
vious experiments, if the sequence was divided its parts would
most likely not be long enough for the statistical test.

4. Capturing longer periods of data in between restarts is also
ineffective. To produce a sequence nearly as long as those cap-
tured in the previous experiments the time required would be
enormously higher. Not just that, the number of restarts for
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the experiment would have had to be reduced which would have
also led to an unreliable result.

To avoid all of these problems, the approach taken to test the
behavior of the generator after the reset becomes active again has
been a graphical one. The first substrings of bits generated after
each restart have been represented in a couple of ways in search of a
pattern that would indicate that the sequence could be guessed. By
paying close attention to figures 3.9 and 3.10, which are not also a
different way of representing the bits but also different iterations of
the restart experiment, no such pattern has been observed. Another
way of ensuring this would be to capture a large sample of bits and
then check if there is a correlation between them. This can be done
by modifying the design of our TRNG to program automatic restarts
and then only send a certain number of bits after each reset occurs.
Nevertheless, it can be concluded that the TRNG is secure against
any number of restarts.

3.4 Final Analysis

These experiments have proven that [1] was indeed correct when it
claimed that 1MHz was an optimal frequency for this sort of TRNG
however, using a 3-bit XOR corrector in the post-processing like in
[2] is not enough for this technology.

What's more, from the results of the second experiment, it is
not suggested to implement this generator in any other location of
the Xilinx Spartan-3E but in its central area. While the fourth
experiment proves that the RO is resilient against possible restart
attacks, it is, however, not possible to assess it reliability against
environmental changes according to the results obtained in the third
experiment.

In the following chapter, this analysis is expanded along with
possible future developments to solve the weaknesses of this TRNG.
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Chapter 4

Conclusions

Random Number Generators are a vital component in cryptograph-
ically secure applications nowadays, even more if those numbers can
be attested to be the result of true randomness. A true random
number generator is however not so easy to implement which is why
it was so appealing to evaluate Böhl's simplified design of a ring
oscillator-based TRNG.

Certain properties of this generator were considered to be worth
evaluating and at the beginning of this project some goals were
set (as was seen in section 1.2). Not only have the experiments
performed fulfilled those goals but also, due to the optimizations
in the post-processing mechanism, it has been possible to expand
on those goals and test other behavior of the TRNG that had not
originally been contemplated.

4.1 Conclusion

As stated above, a certain number of goals were set and achieved.
Here is a summary of the results obtained:

• Original Goals:

1. Prove whether or not the optimal frequency of oscillation
for the RO is 1MHz by evaluating the quality of the output
at several frequencies of oscillation → It is expected that
the lower the frequency the better the results because there
is more time for jitter accumulation. However, for frequen-
cies lower that 1MHz the throughput losses become too
high which reflects negatively in the performance generat-

55
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ing less random numbers per second. As such, it has been
concluded that 1MHz is certainly the optimal frequency.

2. Expand on the use [2] gives to the TRNG on FPGA tech-
nology by testing its performance in different areas of the
same device → The generator is the most reliable when it
is placed in the central area of the Spartan-3E. The reason
for this is that there is a variation of about a 7% in the
intrinsic speed between the slowest and the fastest CLBs
of an FPGA. In the implementation of the TRNG, this oc-
curs because the connections with other nearby elements
can affect jitter. At the center of the board the TRNG
is more likely to avoid being influenced by other elements
because there is more space to place them.

3. Evaluate the quality of the TRNG with and without a post-
processing mechanism → Post-processing is necessary as
the generator does not pass the statistical tests without it.

4. Use XOR correctors of 3-bits and more in the post-process
to check their effect on the sequence → The greater the
number of bits of the XOR corrector, the better results.
It results in a much more effective reduction of bias due
to the higher compression rate. Moreover, an attacker will
find all the more difficult to guess the original bit sequence.

• Extra Goals:

5. Test the quality of results in different FPGAs of the same
model→ It could be guessed that the generator produces a
similar output, however, a definitive answer cannot be pro-
vided due to environmental changes that have most likely
altered the jitter of the RO.

6. Test how the TRNG behaves when a restart occurs and
whether or not it is still robust → After any number of
restarts of the circuit the generator does not produce any
distinguishable patterns. Therefore, the output of the gen-
erator cannot be guessed.

The design and implementation of this TRNG on FPGA technol-
ogy is not only quite simple but also saves many resources. This is
because of its reduced number of elements which are also very basic:
just eight inverters, a NAND gate and three DFFs.

It has been possible to prove that this generator is resilient against
possible restart attacks, however, as was demonstrated in the third
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Figure 4.1: Modified TRNG design with more inverters

experiment in section 3.3.3, it seems weak against other kinds of ex-
ternal tampering such as those produced by environmental changes.
Moreover, the TRNG by itself is not enough to provide randomness
as it did not pass the tests by itself and required a post-processor.
In [2] the post-processing mechanism consisted on a XOR correc-
tor of 3 bits; however the results obtained in this project for that
corrector were disastrous. An XOR operation that took a longer
string of bits was required to cover the bias of the generator. It was
found that with a 7-bit XOR the results started to become accept-
able however at least 9-bits are required to obtain a truly reliable
random sequence at the optimal oscillation frequency of 1MHz.

Nevertheless, it cannot be assured that these weaknesses that
the TRNG has presented are entirely because of its design since the
results obtained in [1] and [2] present it as a robust solution. It is
entirely possible that these vulnerabilities have appeared as a result
of the variability of the target device which in turn has affected the
performance of the RO. This is demonstrated through the results
obtained in experiment 3.3.2. It can be seen that the behavior of
the TRNG varies greatly depending on the area of the hardware
on which it is placed. By turning the TRNG into a Hard Macro
it was assured that the distribution of the RO and its routing were
constant, therefore it has to be concluded that the hardware in which
the TRNG was implemented may not advantageous.

4.2 Future developments

It has been concluded that, while the TRNG has been proved to be
easy to implement and can provide a reliable random sequence, it
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Figure 4.2: Modified TRNG design with more inverters and more sampling
stages

is not flawless. It is very likely that the vulnerabilities it presents
are caused by the properties and variability of the FPGA model on
which it has been tested. To be able to ascertain that the hardware
is to blame for the vulnerabilities found, it would be desirable to
implement this design in several FPGA devices and perform the
same experiments to be able to compare the behavior of the TRNG.

Taking into account the results of experiment 3.3.3, performing
said experiments in a controlled environment and test the behavior
of the TRNG at several temperatures would also be recommended.
That way modifications in the random sequence by external natural
processes could be analyzed and counteract if necessary. Moreover,
as was stated at the end of section 3.3.4 it would be interesting to
perform the Restart experiment again by modifying the design to
automatically restart the oscillation and then send a certain number
of bits instead of doing it manually.

However, as the TRNG has been proven a good solution given
that a strong enough post-processing stage is implemented as well
as very resistant against resetting its oscillation, there might still be
room for improvement.

In 3.1 it was mentioned that it was possible to either XOR the
stored bits in the three DFFs or simply output them because each
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inverting element would have already added enough phase shift to
produce a random bit in each inverting stage. It was chosen to take
this second approach and it may be the source of many weakness
encountered. Consequently, several possible solutions to solve this
can be implemented by changing slightly the design:

1. Try the other approach and XOR the 3 bits in the DFFs. The
resulting bit will be the output of the TRNG.

2. Add more inverting elements to the design. The more inverting
stages the higher the phase shift and jitter accumulated which
results in better randomness with much better quality. And it
would also be possible to XOR the bits sampled by the DFFs
if necessary. Although it needs to be taken into account that
the optimal frequency of oscillation would no longer be 1MHz.
There is a couple of ways to change the design through this
approach:

(a) Add more inverters before each sampling stage. This would
ensure that the jitter accumulated before sampling has a
better quality. Currently the design has only 3 inverting
elements before a bit is stored in a DFF which might be
also the reason for an unsatisfactory output. This would
change the design from figure3.1 to 4.1.

(b) Add more inverters so that also more sampling stages can
be implemented. It could be possible to do this by still
keeping three inverting stages in between each DFF, chang-
ing the design to fit figure 4.2, or adding more inverting
stages like in the previous proposal to accumulate more
jitter. This approach however would drain more resources
than the previous ones.

A last consideration would be to study the behavior of the post-
processing mechanism. From the reference work in [2], it was de-
cided to try a 3-bit XOR corrector but it turned out that to obtain
appropriate results over 7-bits were required. There are also some
possible future developments to derive from this:

1. An XOR corrector might not be the most adequate mecha-
nism and without changing the circuit another post-processing
methodology could be studied. Instead of an XOR, in [1] the
von Neumann algorithm and resilient functions are mentioned
as possible post-processing techniques. Moreover, the author
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offers a possible novel design for a post-processing circuit that
would raise an alarm if an attack is detected.

2. It is likely that if the TRNG generated a better output by itself
the 3-bit XOR would suffice. From what has been proposed
previously, if the design of the circuit was to be changed and
its quality improved the 3-bit XOR would have to be evaluated
again but it can be expected to yield better results.

3. It also has to be considered that if implementing the current
design of the TRNG in a different FPGA resulted in an out-
put of higher quality, there are many chances that the 3-bit
corrector would be efficient.

In case all these failed, another possibility to ensure if the Xilinx
Spartan-3E device is a good one to implement TRNGs would be to
use a completely different type of design. In section 2.5 another com-
mon type of TRNG for FPGAs was introduced: Self-Timed Rings.
Compared to ROs, STRs are much more resistant to variabilities
in voltage and are capable to produce jitter with a higher quality
because the deterministic noise generated in the process is largely
diminished.



Chapter 5

Legal Aspects

IT products are bound to certificates and standards released by of-
ficial organizations such as the International Organization for Stan-
dardization. In the case of security in IT there are more specific
standards such as the Common Criteria for Information Technology
Security Evaluation (also known as just Common Criteria). The CC
is in fact the first truly international security standard as it origi-
nated by combining three previous standards: the European Infor-
mation Technology Security Evaluation Criteria which was compiled
in 1990, the Trusted Computer System Evaluation Criteria which
was issued by the Department of Defense of the United States in
1983 and last but not least the Canadian Trusted Computer Prod-
uct Evaluation Criteria which was itself a combination of the ITSEC
and the TCSEC published in 1993.

However, despite the importance of RNGs in numerous cryp-
tographic applications, the CC does not provide in its evaluation
methodology (the Common Evaluation Methodology) uniform cri-
teria to assess RNGs, nor do the previous standards on which it is
based.

In spite of this, as was stated in chaper 2, it is acknowledged
that for a RNG to be considered secure it has to pass several sta-
tistical tests. These are not stablished by the CC itself but by
national official testing laboratories that follow the standard ISO
17025 for testing and calibration. Some of these laboratories are:
the National Institute of Standards and Technology (NIST) in the
United States, the Bundesamt für Sicherheit in der Information-
stechnik (BSI) in Germany, United Kingdom Accreditation Service
(UKAS), the Standards Council of Canada, the Comité français
d'accréditation (COFRAC) in France and the National Cryptologic
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Center (CCN) in Spain.

Out of the batteries of tests for TRNGs presented in section 2.3.1
the official standards presented by the NIST and the BSI are:

• FIPS 140-2: a standard by the NIST that acknowledges 4
levels of security although it does not specify what level a par-
ticular cryptographic application requires.

– Level 1: the lowest level of security. The requirements it
imposes are limited and are loosely defined. all components
must be ”production-grade” and various egregious kinds of
insecurity must be absent

– Level 2: on top of the level 1 security, it adds requirements
for role-based authentication as well as tampering evidence
physically.

– Level 3: on top of level 2, it adds requirements for identity-
based authentication, more precise measures against physi-
cal tampering of evidence and a need to separate interfaces
of the module.

– Level 4: the top level insists on the need of robustness
against environmental attacks.

• NIST SP 800-90: This has been the standard that has been
followed in the project by using the NIST statistical test suite,
however it deals more with PRNGs than TRNGs. It is divided
in three:

– SP 800-90A: recommendations for the creation of pseudo-
random values by proposing deterministic algorithms with
an entropy input.

– SP 800-90B: recommendations for designing and imple-
menting entropy sources.

– SP 800-90C: recommendations to link the entropy source
with the RNG algorithm.

• AIS31: a standard by the BSI that expands upon the previous
AIS20. It defines a methodology to test TRNGs separately
from PRNGs. It stablishes three classes of TRNGs:

– PTG.1: TRNG with internal tests which detect a total
failure of the entropy source as well as non-tolerable sta-
tistical defects of the internal generated numbers.
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– PTG.2: TRNG that fulfills PTG.1 and adds a stochas-
tic model of the entropy source and statistical tests of the
random raw numbers (instead of the internal random num-
bers).

– PTG.3: TRNG that fulfills PTG.2 with cryptographic
postprocessing.

While the NIST has not yet approved any TRNGs, the BSI has
approved several such as Schindler's generator based on noise diodes
[50] and the so called Quantis AIS 31 Validated RNG [51].



64 CHAPTER 5. LEGAL ASPECTS



Chapter 6

Project Management

Any type of project should be monitored from the very beginning,
not just during the span of the activities performed to reach the
desired goals but also even before the work has started to set its
objectives, decide the materials that will be needed and calculate
its costs and time it will take to complete it. This chapter focuses
on this process by first showing the management of tasks in time
and afterwards the costs of materials and personnel.

6.1 Planning

In this section an oversight of the distribution of time to finish the
different tasks of the project is presented.The time expected to be
spent developing a task is difficult to calculate before the project
starts, therefore the initial naive estimation is provided followed by
the actual final time spent in each task that was performed.

6.1.1 Initial Planning

Since the student and person doing the research was also employed
part-time during the duration of the project, a working ship for the
project of 5 hours a day was established. Another time constraint
that was taken into account from the very beginning was the time
required to take a measurement of the output of the TRNG. In order
for us to obtain reliable confirmation of its randomness with the
statistical tests it was mandatory to capture at least 10MB of data
per measurement which it was calculated that could take around 3
hours. Thus, initially, only interdevice tests were planned to decide
where within the same hardware the TRNG solution would be the
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Table 6.1: Initial Planning
Task Duration (hours) Personnel

Problem Analysis 20 Elena Mart́ınez López
Working environment set-up 25 Elena Mart́ınez López

Implement TRNG code 30 Elena Mart́ınez López
Taking meassurements 48 Elena Mart́ınez López

Postprocessing 174 Elena Mart́ınez López
Result Analysis 45 Elena Mart́ınez López

Supervision 25 Honorio Mart́ın
Documentation 100 Elena Mart́ınez López

TOTAL 467

Figure 6.1: Initial Gantt

most robust. Lastly, Böhl already mentioned in his documentation
the need of a post processing to improve the results of the TRNG
therefore it was decided to XOR the bits in groups of 3, 5, 7 and 9.
This, however would increase the time spent taking measurements
greatly as it would require to repeat the captures of data 4 times.

Aside from those constraints the rest of the technical tasks, such
as understanding Böhl's proposal, implementing it and treating its
output once it was captured, were calculated to take a moderately
short period of time of at most a week each. Notice that the time
estimated for the project supervision, unlike that of the rest of tasks,
is approximated and is actually consisting in tutoring sessions of
about an hour or an hour and a half each scheduled throughout the
whole duration of the project which is why in 6.1 it is shown to take
such a long period of time.

6.1.2 Final Planning

Some considerable amount of time was wasted because of problems
with the installation of the IDE Design Suite for Windows 8 and im-
plementing a Hard Macro so that the process of moving the TRNG
around the hardware was easier as well as some measures requiring
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Table 6.2: Final Planning
Task Duration (hours) Personnel

Problem Analysis 20 Elena Mart́ınez López
Working environment set-up 30 Elena Mart́ınez López

Implement TRNG code 40 Elena Mart́ınez López
Taking meassurements 45 Elena Mart́ınez López

Postprocessing 20 Elena Mart́ınez López
Restart Experiment 15 Elena Mart́ınez López

Result Analysis 75 Elena Mart́ınez López
Supervision 25 Honorio Mart́ın

Documentation 100 Elena Mart́ınez López
TOTAL 370

to be captured again since they were faulty. However, due to the
computer that was acquired for the project, the time estimated for
capturing the output data was reduced from 3 hours to around an
hour and a half for each measurement. What’s more, the Python
script that was created for post processing the numbers generated
made repeating the measurements unnecessary, therefore ensuring
that a lot of time was gained. These conditions allowed to introduce
intradevice tests and the restart experiment. All of this is reflected
in figure 6.2.

6.2 Budget

Just as it was necessary to initially approximate the time required
to finish the project and as this is merely an investigation project
and no monetary gain is derived from it it is all the more important
to calculate its budget.

6.2.1 Initial Costs

6.2.1.1 Initial Estimated Material Costs

Table 6.3: Initial Estimated Costs
Resource Quantity Cost (AC/item)

Spartan 3E Starter Board 1 199
HP 15-r213ns laptop 1 699

Matlab Student Suite 1 97
VMWare Workstation 1 228.63

TOTAL 1223.23
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Figure 6.2: Final Gantt

Some of the software programs used, such as Python, Realterm
and the Statistical Test Suite from the NIST, are either open source
or free to download. Additionally, Xillinx not only allows to down-
load their IDE Design Suite from their webpage but also provides
free software licenses for students. However, Matlab and VMWare
Workstation only have paid versions.

As for the hardware, investing in a new computer is key to the
project, not only to set up the working environment but it also
provides better resources to run a virtual machine than an older
computer.

6.2.1.2 Initial Estimated Personnel Costs

Table 6.4: Initial Estimated Personnel Costs
Position Income (AC/hour) Number of hours

Junior Engineering Investigator 13 467
TOTAL (AC) 6071

An approximation to the salary of a junior engineering investiga-
tor for the duration of the project has been calculated from that a
university department pays their part-time interns.
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6.2.2 Final Costs

By ’final’ this section actually refers to the real costs of the project
which vary from those originally calculated in both resources used
and working hours as seen in 6.1.

6.2.2.1 Final Material Costs

Table 6.5: Final Material Costs
Resource Quantity Cost (AC/item)

Spartan 3E Starter Board 4 199
HP 15-r213ns laptop 1 600

Matlab Student Suite 1 63
TOTAL 1459

There have been several ways to save money:

• Student discount in HP products

• Acquiring only the basic Matlab package as well as its statistical
related functions

• Instead of building a virtual machine from scratch with VMWare
Workstation, a free version of VMWare Player and a prebuilt
virtual machine with OS Fedora linux has been used.

In spite of this, by increasing the number of FPGAs to be tested,
the budget has slightly increased by 200AC.

6.2.2.2 Final Personnel Costs

Table 6.6: Final Personnel Costs
Position Income (AC/hour) Number of hours

Junior Engineering Investigator 13 370
TOTAL (AC) 4810

By reducing the number of working hours from 467 to 370 the
costs to maintain a junior engineering investigator have plummeted.
This reflects on the whole budget very favorably as the whole cost
of the project has decreased.
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Appendix A

TRNG Code

The True Random Number Generator consists of a ring oscillator
that is formed by a set of very simple components

Basic Components

Inverter

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity INVERTER is

port(

A: in std_logic;

B: out std_logic

);

end INVERTER;

architecture INVARCH of INVERTER is

begin

B <= NOT A;

end INVARCH;

NAND Gate

library ieee;

use ieee.std_logic_1164.all;

entity NANDGATE is

port(

A1: in std_logic;

A2: in std_logic;

B: out std_logic
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);

end NANDGATE;

architecture NANDARCH of NANDGATE is

begin

B <= A1 nand A2;

end NANDARCH;

D-FlipFlop

library ieee;

use ieee.std_logic_1164.all;

entity DFLIPFLOP is

port(

D: in std_logic;

Reset: in std_logic;

Clock: in std_logic;

Q: out std_logic

);

end DFLIPFLOP;

architecture Sampling of DFLIPFLOP is

begin

process(Reset, Clock)

begin

if Reset=’0’ then

Q <= ’0’;

elsif Clock’EVENT and Clock=’1’ then

Q <= D;

end if;

end process;

end Sampling;

Ring Oscillator

With the three previous components we can create our Ring Oscil-
lator:

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity RING is

port(

Clk: in std_logic;

Rset: in std_logic;

enable:in std_logic;

digit0_0: out std_logic;

digit1_0: out std_logic;
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digit2_0: out std_logic

);

end RING;

architecture oscillator of RING is

-- signals

signal wire1: std_logic;

signal wire2: std_logic;

signal wire3: std_logic; -- first flipflop

signal wire4: std_logic;

signal wire5: std_logic;

signal wire6: std_logic; -- second flipflop

signal wire7: std_logic;

signal wire8: std_logic;

signal wire9: std_logic; -- third flipflop

signal S0: std_logic;

signal S1: std_logic;

signal S2: std_logic;

-- components

component NANDGATE is

port(

A1: in std_logic;

A2: in std_logic;

B: out std_logic

);

end component;

component INVERTER is

port(

A: in std_logic;

B: out std_logic

);

end component;

component DFLIPFLOP is

port(

D: in std_logic;

Reset: in std_logic;

Clock: in std_logic;

Q: out std_logic

);

end component;

-- to force the process

attribute keep : string;

attribute keep of wire1,wire2,wire3,wire4,wire5,wire6,wire7,wire8,wire9:

signal is "TRUE";

begin

digit0_0 <= S0;

digit1_0 <= S1;

digit2_0 <= S2;

ngate: NANDGATE port map (A1 => enable, A2 => wire9, B => wire1);

inv1: INVERTER port map (A => wire1, B => wire2);

inv2: INVERTER port map (A => wire2, B => wire3); -- first dff

inv3: INVERTER port map (A => wire3, B => wire4);

inv4: INVERTER port map (A => wire4, B => wire5);

inv5: INVERTER port map (A => wire5, B => wire6); -- second dff

inv6: INVERTER port map (A => wire6, B => wire7);
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inv7: INVERTER port map (A => wire7, B => wire8);

inv8: INVERTER port map (A => wire8, B => wire9); -- third dff

dff1: DFLIPFLOP port map (D => wire3, Reset => Rset, Clock => Clk, Q =>

S0);

dff2: DFLIPFLOP port map (D => wire6, Reset => Rset, Clock => Clk, Q =>

S1);

dff3: DFLIPFLOP port map (D => wire9, Reset => Rset, Clock => Clk, Q =>

S2);

end oscillator;

Final Design

Turning our ring oscillator into a hard macro to easily move it
around the FPGA we create a new project in which it will work
alongside with the logic needed to use the serial port RS232:

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

use std.textio.all;

entity TRNG is

port(

CLK: in std_logic;

RST: in std_logic;

EN: in std_logic;

WR: in std_logic;

TXD: out std_logic := ’1’

);

end TRNG;

architecture behaviour of TRNG is

-- components

-- HARD MACRO

component ring

port(

Clk: in std_logic;

Rset: in std_logic;

enable:in std_logic;

digit0_0: out std_logic;

digit1_0: out std_logic;

digit2_0: out std_logic

);

end component;

------------------------------------------------------------------------

-- Local Type Declarations

------------------------------------------------------------------------
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type tstate is (

sttIdle, --Idle state

sttTransfer, --Move data into shift register

sttShift --Shift out data

);

------------------------------------------------------------------------

-- Signal Declarations 01010010

------------------------------------------------------------------------

constant baudDivide: std_logic_vector(7 downto 0) := "01010010"; --Baud

Rate dividor, set now for a rate of 19200.

signal tfReg: std_logic_vector(7 downto 0); --Transfer holding

register

signal tfSReg: std_logic_vector(10 downto 0) := "11111111111";

--Transfer shift register

signal clkDiv: std_logic_vector(8 downto 0) := "000000000"; --used for

rClk

signal rClkDiv: std_logic_vector(3 downto 0) := "0000"; --used for

tClk

signal ctr: std_logic_vector(3 downto 0) := "0000"; --used for

delay times

signal tfCtr: std_logic_vector(3 downto 0) := "0000"; --used to

delay in transfer

signal rClk : std_logic := ’0’; --Receiving Clock

signal tClk : std_logic; --Transfering Clock

signal ctRst: std_logic := ’0’;

signal load: std_logic := ’0’;

signal shift: std_logic := ’0’;

signal par: std_logic;

signal tClkRST: std_logic := ’0’;

signal rShift: std_logic := ’0’;

signal dataRST: std_logic := ’0’;

signal dataIncr: std_logic := ’0’;

signal sttCur: tstate := sttIdle; --Current state in the

Transfer state machine

signal sttNext: tstate; --Next state in the

Transfer staet machine

signal reg: std_logic_vector(7 downto 0);

signal digit: std_logic_vector(2 downto 0);

signal CLK_counter: std_logic;

signal count: integer range 0 to 251 := 0;

begin

-- RING WITH COUNTER

ringhm: truerng port map (Clk => CLK_counter, Rset => RST, enable => EN,

digit0_0 => digit(2), digit1_0 => digit(1), digit2_0 => digit(0));

--------------------------------

--------------------------------

-----------RS232---------------

-----------START----------------

--------------------------------
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--------------------------------

par <= not ( ((tfReg(0) xor tfReg(1)) xor (tfReg(2) xor tfReg(3))) xor

((tfReg(4) xor tfReg(5)) xor (tfReg(6) xor tfReg(7))) );

--Clock Dividing Functions--

--set up clock divide for rClk

process (CLK, clkDiv) begin

if (Clk = ’1’ and Clk’event) then

if (clkDiv = baudDivide) then

clkDiv <= "000000000";

else

clkDiv <= clkDiv +1;

end if;

end if;

end process;

--Define rClk

process (clkDiv, rClk, CLK)

begin

if CLK = ’1’ and CLK’Event then

if clkDiv = baudDivide then

rClk <= not rClk;

else

rClk <= rClk;

end if;

end if;

end process;

--set up clock divide for tClk

process (rClk)

begin

if (rClk = ’1’ and rClk’event) then

rClkDiv <= rClkDiv +1;

end if;

end process;

--define tClk

tClk <= rClkDiv(3);

--set up a counter based on rClk

process (rClk, ctRst) begin

if rClk = ’1’ and rClk’Event then

if ctRst = ’1’ then

ctr <= "0000";

else

ctr <= ctr +1;

end if;

end if;

end process;

--set up a counter based on tClk

process (tClk, tClkRST)

begin
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if (tClk = ’1’ and tClk’event) then

if tClkRST = ’1’ then

tfCtr <= "0000";

else

tfCtr <= tfCtr +1;

end if;

end if;

end process;

--This process loads and shifts out the transfer shift

--register

process (load, shift, tClk, tfSReg)

begin

TXD <= tfsReg(0);

if tClk = ’1’ and tClk’Event then

if load = ’1’ then

tfSReg (10 downto 0) <= (’1’ & par & tfReg(7

downto 0) &’0’);

end if;

if shift = ’1’ then

tfSReg (10 downto 0) <= (’1’ & tfSReg(10 downto 1));

end if;

end if;

end process;

-- Transfer State Machine--

process (tClk, RST)

begin

if (tClk = ’1’ and tClk’Event) then

if RST = ’1’ then

sttCur <= sttIdle;

else

sttCur <= sttNext;

end if;

end if;

end process;

-- This process generates the sequence of steps needed

-- transfer the data

process (sttCur, tfCtr, tfReg, tclk,WR)

begin

case sttCur is

when sttIdle =>

tClkRST <= ’0’;

shift <= ’0’;

load <= ’0’;

if WR = ’0’ then

sttNext <= sttIdle;

else

sttNext <= sttTransfer;

end if;
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when sttTransfer =>

shift <= ’0’;

load <= ’1’;

tClkRST <= ’1’;

sttNext <= sttShift;

when sttShift =>

shift <= ’1’;

load <= ’0’;

tClkRST <= ’0’;

if tfCtr = "1100" then

sttNext <= sttIdle;

else

sttNext <= sttShift;

end if;

end case;

end process;

--------------------------------

--------------------------------

------------RS232---------------

------------END-----------------

--------------------------------

--------------------------------

--------------------------------

--------------------------------

------------TRNG----------------

--------------------------------

--------------------------------

-- To control the sampling frequency of the ring

process (CLK, RST)

begin

if RST=’1’ then

CLK_counter <= ’0’;

elsif Clk’EVENT and Clk=’1’ then

if count < 25 then

-- The maximum value of count is modified for each frequency

count <= count + 1;

else

count <= 0;

CLK_counter <= not CLK_counter;

reg <= digit & reg(7 downto 3);

end if;

end if;

end process;

tfReg<=reg;

end behaviour;
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In order to make the different tests we have to place the Hard
Macro in different places in the FPGA which is done through the
ucf file:

#POSITION 01

#INST "ring" LOC=SLICE_X1Y91;

#POSITION 02

#INST "ring" LOC=SLICE_X65Y91;

#POSITION 03

#INST "ring" LOC=SLICE_X65Y5;

#POSITION 04

#INST "ring" LOC=SLICE_X1Y5;

#POSITION 05

#INST "ring" LOC=SLICE_X15Y87;

#POSITION 06

#INST "ring" LOC=SLICE_X107Y87;

#POSITION 07

#INST "ring" LOC=SLICE_X107Y19;

#POSITION 08

#INST "ring" LOC=SLICE_X15Y19;

#POSITION 09

#INST "ring" LOC=SLICE_X31Y45;

#PACE: End of Constraints generated by PACE

NET "CLK" TNM_NET = "CLK";

TIMESPEC TS_Clk = PERIOD "CLK" 20 ns HIGH 50 %;

#PACE: Start of Constraints generated by PACE

#PACE: Start of PACE I/O Pin Assignments

NET "CLK" LOC = C9;

NET "RST" PULLDOWN;

NET "RST" LOC = L13;

NET "enable" PULLDOWN;

NET "enable" LOC = N17;

NET "WR" PULLDOWN;

NET "WR" LOC = L14;

#NET "DBIN<0>" LOC = "N17" | PULLDOWN ;

#NET "DBIN<1>" LOC = "H18" | PULLDOWN ;

NET "TXD" IOSTANDARD = LVTTL;

NET "TXD" DRIVE = 8;

NET "TXD" SLEW = SLOW;

NET "TXD" LOC = M14;
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Appendix B

Creating the Hard Macro

In order to place the ring oscillator throughout the FPGA with ease,
it has been turned into a hard macro: a fixed circuit or component.
To do so, we go to the FPGA Editor (View/Edit Routed Design)
which can be found under the Place & Route options in the Processes
menu.

Figure B.1: FPGA Editor

In the FPGA Editor, the first thing to do is to save the design
as a Hard Macro, simply go to File → Save As and in the pop-
up choose the Hard Macro option and with the Browse option you
can save it as a file with the extension .nmc in your project folder.

Before any changes can be done to the design its properties have
to be edited from File→Main Properties where the Read Write
mode can be enabled.

Now, it is necessary to unplace all components that are not of
type SLICE, such as input and output signals in a way that all we
have remaining are the inverters, the NAND gate and the D flip
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Figure B.2: FPGA Editor Save as Hard Macro

Figure B.3: FPGA Editor Read Write mode

flops. Note that the NAND and the inverters are contained in the
wire components. To unplace components, select the component in
the list by double clicking it and on the schematic right click it and
select Unplace Component:

The components that have just been unplaced can be seen in the
Unplaced Components list and can be removed from the design
by selecting and deleting them.

To be able to use the Hard Macro, its external pins Need to be
explicitly declared. Select the pin to which the input (enable, reset
and clock) and output (digit0 0, digit1 0, digit2 0) signals belong
and go to Edit → Add Hard Macro External Pin, where it is
very important that the pins is named exactly like the name of the
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Figure B.4: FPGA Editor Unplace component

i/o defined in the vhdl file.

Figure B.5: FPGA Editor Add Hard Macro External Pin

The last step is to set a component of the Hard Macro as its
reference component, which later on is the component that is moved
around the FPGA. Select the desired component and go to Edit→
Set Macro Reference Component.

In the project that will instantiate the hard macro simply add as
a resource this nmc file we have just edited and instantiate it as any
other component and has to be placed in the ucf file manually.
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Appendix C

Python Scripts

Hex To Bin

The output of the TRNG captured with Realterm is in hexadeci-
mal, in order to apply the statistical tests to check how robust our
generator is we first need to convert it to binary.

This script requests an input file to be specified with the com-
mand -i as well as an output file with the command -o to save the
converted binary string.

import os

from optparse import OptionParser

def getOptions():

parser = OptionParser()

parser.add_option("-i", "--input", help="Hexadecimal file",

metavar="FILE")

parser.add_option("-o", "--output", help="Output Binary File")

return parser.parse_args()

def hexToBin(hexchar):

binstr = bin(int(hexchar, 16))[2:]

while((len(binstr)) < 4):

binstr = ’0’ + binstr

return binstr

if __name__ == ’__main__’:

(options, args) = getOptions()

print ’Retrieving input...’

fin = open(options.input, ’r’)

print ’Hexadecimal file retrieved!’

print ’Transforming to binary...’

fout = open(options.output, ’w’)

while True:

charhex = fin.read(1)
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if not charhex: break

charsbin = hexToBin(charhex)

fout.write(charsbin)

print ’Transformation finished’

fin.close()

fout.close()

Post-Processor

Post-processing the output data of the TRNG makes the number
generated all the more secure to attacks as explained in 3.2.2.

The script requires the output binary file of the previous Hex
to Bin script as input and performs an XOR operation of as many
bits as we wish through the argument -b. Finally, it returns the
new binary file with the name we provide in argument -o.

import os

from optparse import OptionParser

def getOptions():

parser = OptionParser()

parser.add_option("-i", "--input", help="Binary file", metavar="FILE")

parser.add_option("-o", "--output", help="Output Postprocessed")

parser.add_option("-b", "--buffer", help="Bits to XOR")

return parser.parse_args()

if __name__ == ’__main__’:

(options, args) = getOptions()

print ’Retrieving input...’

fin = open(options.input, ’r’)

print ’Binary file retrieved!’

buf = options.buffer

print ’Bits to process: ’ + buf

buff = int(buf)

print ’Creating output...’

fout = open(options.output, ’w’)

xor = fin.read(1)

chunk = fin.read(buff - 1)

while chunk:

for char in chunk:

xor = int(xor) ^ int(char)

if xor == True:

fout.write(’1’)

else:

fout.write(’0’)

xor = fin.read(1)

chunk = fin.read(buff - 1)

print ’Process finished!! Output file created’

fin.close()
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fout.close()

Editing STS Result File

For every measure of the TRNG output, the NIST Statistical Test
Suite results are returned in a simple text file. As an example of
how the content of said files are presented, here are the results of
the tests for the central position at 1MHz and a post-processing of
5 bits:

------------------------------------------------------------------------------

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES

------------------------------------------------------------------------------

generator is <p09freq1Mpp5>

------------------------------------------------------------------------------

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

------------------------------------------------------------------------------

33 11 12 11 3 5 7 3 7 8 0.000000 * 88/100 * Frequency

12 14 13 10 17 7 8 7 8 4 0.122325 96/100 BlockFrequency

30 13 10 4 11 6 9 6 4 7 0.000000 * 92/100 * CumulativeSums

29 18 9 8 6 5 8 5 8 4 0.000000 * 89/100 * CumulativeSums

77 7 6 5 3 0 1 0 1 0 0.000000 * 60/100 * Runs

13 13 11 12 9 11 10 5 12 4 0.437274 99/100 LongestRun

13 15 12 7 13 9 9 8 11 3 0.262249 100/100 Rank

6 9 16 7 12 9 12 9 6 14 0.319084 99/100 FFT

9 19 7 6 7 12 5 8 14 13 0.042808 99/100 NonOverlappingTemplate

9 10 10 8 14 10 9 12 9 9 0.971699 98/100 NonOverlappingTemplate

9 8 14 10 12 4 13 11 11 8 0.574903 99/100 NonOverlappingTemplate

16 9 12 10 5 8 9 12 13 6 0.350485 97/100 NonOverlappingTemplate

13 7 8 8 15 6 18 10 11 4 0.051942 100/100 NonOverlappingTemplate

10 15 4 12 10 10 12 9 9 9 0.616305 98/100 NonOverlappingTemplate

6 11 9 11 12 6 15 13 6 11 0.437274 99/100 NonOverlappingTemplate

9 16 9 7 13 11 8 10 7 10 0.637119 99/100 NonOverlappingTemplate

7 9 13 10 11 10 15 9 9 7 0.779188 99/100 NonOverlappingTemplate

10 10 17 10 15 11 8 6 5 8 0.191687 99/100 NonOverlappingTemplate

7 10 10 9 11 9 12 14 9 9 0.946308 100/100 NonOverlappingTemplate

12 6 13 19 8 13 7 11 7 4 0.037566 98/100 NonOverlappingTemplate

11 12 3 11 12 4 8 12 12 15 0.153763 99/100 NonOverlappingTemplate

5 11 10 7 19 13 11 8 7 9 0.122325 98/100 NonOverlappingTemplate

8 15 5 6 10 11 10 9 12 14 0.419021 100/100 NonOverlappingTemplate

14 8 9 9 10 10 6 11 11 12 0.883171 99/100 NonOverlappingTemplate

7 16 12 9 8 11 13 10 3 11 0.249284 100/100 NonOverlappingTemplate

9 13 8 16 7 11 8 7 11 10 0.595549 99/100 NonOverlappingTemplate

16 13 9 10 9 11 8 12 7 5 0.437274 97/100 NonOverlappingTemplate

11 5 9 9 13 8 13 9 13 10 0.739918 100/100 NonOverlappingTemplate

10 13 12 6 10 13 13 9 6 8 0.657933 98/100 NonOverlappingTemplate

7 2 17 10 15 9 7 17 8 8 0.010988 100/100 NonOverlappingTemplate

13 6 16 12 8 10 9 6 10 10 0.474986 100/100 NonOverlappingTemplate

12 8 6 6 15 8 10 13 11 11 0.534146 99/100 NonOverlappingTemplate

9 8 13 14 11 9 6 10 7 13 0.678686 100/100 NonOverlappingTemplate

10 10 12 11 9 11 8 14 9 6 0.883171 100/100 NonOverlappingTemplate

11 10 11 9 9 9 10 7 9 15 0.911413 99/100 NonOverlappingTemplate

8 17 11 10 8 5 11 10 8 12 0.419021 99/100 NonOverlappingTemplate

15 6 10 11 9 11 8 12 9 9 0.798139 99/100 NonOverlappingTemplate

15 8 14 13 11 5 12 7 10 5 0.224821 98/100 NonOverlappingTemplate

12 12 5 8 11 12 11 13 6 10 0.657933 99/100 NonOverlappingTemplate
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9 9 8 10 12 11 9 12 7 13 0.946308 100/100 NonOverlappingTemplate

8 8 13 7 11 12 10 14 10 7 0.779188 97/100 NonOverlappingTemplate

6 7 14 8 11 8 10 14 15 7 0.350485 99/100 NonOverlappingTemplate

7 8 9 10 13 6 14 10 12 11 0.739918 99/100 NonOverlappingTemplate

18 6 12 9 11 11 9 9 10 5 0.249284 98/100 NonOverlappingTemplate

10 11 7 11 13 8 13 6 12 9 0.798139 99/100 NonOverlappingTemplate

12 8 14 11 9 12 11 9 9 5 0.759756 99/100 NonOverlappingTemplate

10 10 11 15 12 6 7 7 13 9 0.595549 98/100 NonOverlappingTemplate

8 11 12 11 6 13 9 15 5 10 0.474986 100/100 NonOverlappingTemplate

7 13 10 9 14 10 8 8 9 12 0.851383 100/100 NonOverlappingTemplate

17 13 9 12 7 8 6 14 6 8 0.171867 99/100 NonOverlappingTemplate

11 10 7 11 10 9 13 7 10 12 0.946308 98/100 NonOverlappingTemplate

16 12 7 8 5 7 12 15 10 8 0.213309 98/100 NonOverlappingTemplate

11 8 6 11 9 13 9 11 8 14 0.798139 99/100 NonOverlappingTemplate

7 3 8 11 9 10 14 18 12 8 0.085587 100/100 NonOverlappingTemplate

20 12 13 5 15 10 6 4 8 7 0.006661 97/100 NonOverlappingTemplate

6 8 5 8 15 12 12 12 14 8 0.304126 100/100 NonOverlappingTemplate

10 12 13 7 11 13 13 9 6 6 0.595549 99/100 NonOverlappingTemplate

16 9 13 11 6 6 15 10 7 7 0.202268 99/100 NonOverlappingTemplate

10 12 11 9 8 14 13 4 10 9 0.616305 99/100 NonOverlappingTemplate

15 10 12 14 7 10 7 8 6 11 0.494392 96/100 NonOverlappingTemplate

9 9 16 8 7 13 14 9 8 7 0.437274 97/100 NonOverlappingTemplate

10 6 11 6 8 9 12 14 11 13 0.657933 98/100 NonOverlappingTemplate

5 10 14 7 10 10 11 10 10 13 0.739918 99/100 NonOverlappingTemplate

10 10 11 11 10 9 10 7 13 9 0.987896 99/100 NonOverlappingTemplate

9 12 9 10 13 11 6 14 7 9 0.759756 99/100 NonOverlappingTemplate

10 13 11 6 10 11 8 13 7 11 0.834308 98/100 NonOverlappingTemplate

9 9 10 8 10 4 12 16 10 12 0.474986 100/100 NonOverlappingTemplate

15 9 8 14 12 6 5 13 10 8 0.319084 97/100 NonOverlappingTemplate

7 6 9 11 10 11 14 13 9 10 0.798139 99/100 NonOverlappingTemplate

6 8 11 12 9 10 9 9 18 8 0.383827 100/100 NonOverlappingTemplate

10 15 13 8 7 11 11 11 7 7 0.657933 99/100 NonOverlappingTemplate

15 7 11 15 9 9 4 13 6 11 0.191687 98/100 NonOverlappingTemplate

10 8 8 7 9 9 13 10 13 13 0.867692 99/100 NonOverlappingTemplate

8 13 14 9 13 5 6 9 13 10 0.437274 100/100 NonOverlappingTemplate

16 4 5 6 14 11 15 9 13 7 0.042808 98/100 NonOverlappingTemplate

17 12 16 6 7 14 7 10 7 4 0.030806 93/100 * NonOverlappingTemplate

16 11 15 7 5 8 13 13 5 7 0.085587 97/100 NonOverlappingTemplate

11 15 10 10 12 5 12 14 8 3 0.171867 99/100 NonOverlappingTemplate

14 12 9 12 8 6 14 12 10 3 0.249284 97/100 NonOverlappingTemplate

15 10 13 17 7 7 12 6 9 4 0.071177 99/100 NonOverlappingTemplate

11 13 6 11 13 9 9 14 7 7 0.616305 100/100 NonOverlappingTemplate

17 10 11 7 11 12 10 11 5 6 0.304126 96/100 NonOverlappingTemplate

9 19 7 6 7 12 5 8 14 13 0.042808 99/100 NonOverlappingTemplate

10 13 9 10 11 7 11 7 8 14 0.834308 98/100 NonOverlappingTemplate

13 8 8 9 11 11 9 8 10 13 0.946308 97/100 NonOverlappingTemplate

12 10 7 9 13 9 11 8 12 9 0.946308 99/100 NonOverlappingTemplate

9 4 4 8 13 8 16 14 11 13 0.085587 99/100 NonOverlappingTemplate

11 8 10 11 6 14 12 13 5 10 0.574903 100/100 NonOverlappingTemplate

11 6 12 6 9 11 10 9 14 12 0.739918 100/100 NonOverlappingTemplate

8 11 9 15 13 10 9 10 10 5 0.678686 98/100 NonOverlappingTemplate

9 11 10 13 10 5 7 12 11 12 0.798139 98/100 NonOverlappingTemplate

4 11 17 5 9 11 9 14 8 12 0.129620 100/100 NonOverlappingTemplate

8 8 7 13 13 11 12 9 10 9 0.897763 99/100 NonOverlappingTemplate

5 7 14 9 14 7 11 18 8 7 0.080519 100/100 NonOverlappingTemplate

5 13 9 15 8 10 4 14 14 8 0.137282 100/100 NonOverlappingTemplate

11 9 10 14 8 14 8 7 10 9 0.816537 99/100 NonOverlappingTemplate

8 8 14 11 10 9 12 4 21 3 0.004981 99/100 NonOverlappingTemplate

11 5 9 13 15 11 7 11 9 9 0.595549 98/100 NonOverlappingTemplate

6 10 7 10 11 14 10 13 8 11 0.779188 98/100 NonOverlappingTemplate

7 16 8 9 12 13 8 8 7 12 0.494392 99/100 NonOverlappingTemplate

12 13 10 7 6 8 10 8 15 11 0.616305 99/100 NonOverlappingTemplate
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10 11 9 13 14 9 5 9 10 10 0.798139 100/100 NonOverlappingTemplate

16 12 10 11 5 4 8 12 12 10 0.249284 99/100 NonOverlappingTemplate

19 11 4 8 6 9 13 8 15 7 0.028817 100/100 NonOverlappingTemplate

18 5 6 9 13 9 13 10 9 8 0.162606 97/100 NonOverlappingTemplate

6 6 10 10 10 12 7 16 12 11 0.474986 99/100 NonOverlappingTemplate

9 11 11 10 12 10 5 9 12 11 0.924076 99/100 NonOverlappingTemplate

11 9 10 6 15 15 4 8 14 8 0.171867 99/100 NonOverlappingTemplate

9 5 10 12 13 12 7 9 10 13 0.719747 99/100 NonOverlappingTemplate

13 8 11 8 9 11 14 4 10 12 0.574903 99/100 NonOverlappingTemplate

12 11 11 9 5 10 10 14 7 11 0.759756 99/100 NonOverlappingTemplate

10 12 9 6 5 13 10 12 16 7 0.319084 99/100 NonOverlappingTemplate

7 12 11 9 9 11 11 7 8 15 0.779188 100/100 NonOverlappingTemplate

6 7 9 15 7 10 15 12 12 7 0.334538 99/100 NonOverlappingTemplate

11 10 14 3 9 11 7 11 14 10 0.401199 99/100 NonOverlappingTemplate

7 14 9 15 7 11 7 7 12 11 0.494392 99/100 NonOverlappingTemplate

9 10 17 8 9 9 9 10 5 14 0.366918 100/100 NonOverlappingTemplate

7 13 6 15 10 6 13 7 7 16 0.129620 100/100 NonOverlappingTemplate

6 6 9 14 13 12 9 10 12 9 0.657933 100/100 NonOverlappingTemplate

5 8 10 13 10 12 6 9 18 9 0.191687 99/100 NonOverlappingTemplate

7 10 9 13 10 4 11 12 14 10 0.574903 97/100 NonOverlappingTemplate

3 9 15 12 5 16 13 8 8 11 0.071177 99/100 NonOverlappingTemplate

6 6 9 10 11 9 8 19 11 11 0.202268 100/100 NonOverlappingTemplate

10 12 14 5 12 8 5 11 11 12 0.494392 99/100 NonOverlappingTemplate

11 7 14 7 6 11 11 11 14 8 0.595549 100/100 NonOverlappingTemplate

9 7 20 8 8 10 12 9 5 12 0.085587 97/100 NonOverlappingTemplate

13 9 6 10 6 10 10 9 8 19 0.171867 98/100 NonOverlappingTemplate

13 10 12 12 7 7 11 10 9 9 0.924076 100/100 NonOverlappingTemplate

16 7 10 9 8 10 10 13 10 7 0.657933 93/100 * NonOverlappingTemplate

16 13 6 12 6 13 11 6 8 9 0.262249 98/100 NonOverlappingTemplate

10 12 7 7 8 11 10 12 11 12 0.935716 99/100 NonOverlappingTemplate

7 8 11 12 12 10 10 11 10 9 0.983453 100/100 NonOverlappingTemplate

5 14 14 13 9 11 8 8 9 9 0.554420 100/100 NonOverlappingTemplate

17 7 7 19 8 8 9 7 8 10 0.048716 97/100 NonOverlappingTemplate

10 10 15 10 9 8 13 9 11 5 0.678686 98/100 NonOverlappingTemplate

7 14 15 6 11 8 5 14 8 12 0.213309 100/100 NonOverlappingTemplate

6 8 8 9 12 11 13 12 12 9 0.851383 99/100 NonOverlappingTemplate

4 14 11 6 12 12 9 7 10 15 0.262249 98/100 NonOverlappingTemplate

12 7 10 10 11 10 11 12 11 6 0.935716 100/100 NonOverlappingTemplate

17 12 11 5 7 11 9 12 9 7 0.319084 97/100 NonOverlappingTemplate

10 9 13 11 7 8 9 4 12 17 0.249284 99/100 NonOverlappingTemplate

16 10 9 5 16 12 12 9 7 4 0.085587 100/100 NonOverlappingTemplate

11 3 9 12 7 15 15 11 7 10 0.191687 100/100 NonOverlappingTemplate

11 7 13 8 7 16 9 11 12 6 0.437274 99/100 NonOverlappingTemplate

9 9 4 20 11 10 13 8 6 10 0.051942 100/100 NonOverlappingTemplate

12 7 7 12 13 6 8 13 11 11 0.678686 99/100 NonOverlappingTemplate

5 7 9 17 5 8 9 13 15 12 0.085587 98/100 NonOverlappingTemplate

8 7 14 12 16 11 11 8 5 8 0.319084 98/100 NonOverlappingTemplate

15 10 10 11 9 11 8 7 10 9 0.897763 99/100 NonOverlappingTemplate

15 13 14 9 8 14 4 12 5 6 0.085587 97/100 NonOverlappingTemplate

8 9 12 10 12 12 11 10 7 9 0.971699 100/100 NonOverlappingTemplate

14 12 8 7 16 10 3 4 12 14 0.042808 97/100 NonOverlappingTemplate

19 13 6 12 9 7 8 6 13 7 0.071177 98/100 NonOverlappingTemplate

11 10 9 18 4 8 8 10 10 12 0.249284 99/100 NonOverlappingTemplate

14 18 11 14 5 11 8 8 8 3 0.030806 97/100 NonOverlappingTemplate

17 10 11 7 11 12 10 10 6 6 0.383827 96/100 NonOverlappingTemplate

12 10 14 7 8 7 9 10 16 7 0.455937 95/100 * OverlappingTemplate

0 0 0 0 0 0 0 0 0 100 0.000000 * 100/100 Universal

23 11 10 16 11 7 5 8 4 5 0.000347 98/100 ApproximateEntropy

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions
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0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant

0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant

9 9 8 10 14 7 10 13 6 14 0.616305 100/100 Serial

12 11 6 9 10 7 16 9 11 9 0.637119 100/100 Serial

13 8 12 9 11 6 17 4 13 7 0.129620 97/100 LinearComplexity

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The minimum pass rate for each statistical test with the exception of the

random excursion (variant) test is approximately = 96 for a

sample size = 100 binary sequences.

The minimum pass rate for the random excursion (variant) test is undefined.

For further guidelines construct a probability table using the MAPLE program

provided in the addendum section of the documentation.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

An asterisk next to the name of a test or proportion means the
TRNG did not pass said test.

However, in order to compare the results of each measure in a
box-plot simply having these text files is not enough. Since we would
have to manually check each file, to make this process automatic,
this python script removes all unnecessary information from the files
and creates a CSV file which organizes the data in columns. This is
done by removing spaces, asterisks, the opening and closing text and
the RandomExcursions and RandomExcursionsVariant tests which
are not helpful in testing our TRNG. Moreover, as was mentioned
in section 2.3.1, the Non-Overlapping Template Matching Test pro-
duces as many p-values as blocks in which the tested sequenced was
divided by its algorithm, the script computes the average proportion
and p-value of these and writes it into the output CSV file.

import os



93

import fileinput

def getOptions():

parser = OptionParser()

parser.add_option("-o", "--output", help="Output File for

Representation")

return parser.parse_args()

def getColumns(inFile, delim=";", header=True):

cols = {}

indexToName = {}

for lineNum, line in enumerate(inFile):

if lineNum == 0:

headings = line.split(delim)

i = 0

for heading in headings:

heading = heading.strip()

if header:

cols[heading] = []

indexToName[i] = heading

else:

# in this case the heading is actually just a cell

cols[i] = [heading]

indexToName[i] = i

i += 1

else:

cells = line.split(delim)

i = 0

for cell in cells:

cell = cell.strip()

cols[indexToName[i]] += [cell]

i += 1

return cols, indexToName

def find_element_in_list(element,list_element):

try:

index_element=list_element.index(element)

return index_element

except ValueError:

return -1

if __name__ == ’__main__’:

(options, args) = getOptions()

stats = file("finalAnalysisReport.txt", ’r’)

fin = stats.readlines()

stats.close()

fout = file("output.txt", "w")

words = [’*’, ’TEST’, ’/100’]

commas = [’;;;;;’, ’;;;;’, ’;;;’, ’;;’]

# FIRST: Edit the input file to be able to work with it

# 14 columns separated by commas

# We are interested in the last 3 columns

for line in fin:
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if any(line.startswith(word) for word in (’-’, ’RESULTS’, ’

generator’, ’The’, ’random’, ’sample’, ’is’, ’For’,

’provided’)):

continue

if ’RandomExcursions’ in line:

continue

lineedited = line.replace(’ ’, ’;’)

for word in words:

lineedited = lineedited.replace(word, ’’)

if line.startswith(’1’):

lineedited = lineedited.replace(’100’, ’;10’)

for comma in commas:

lineedited = lineedited.replace(comma, ’;’)

if lineedited.startswith(’;C1;’):

lineedited = lineedited.replace(’;C1;’, ’EMP;C1;’)

if ";\n" in lineedited:

lineedited = lineedited.replace(";\n", ’\n’)

fout.write(lineedited)

#SECOND: AVERAGE OF NonOverlappingTemplate

fout.close()

fout = file("output.txt.tmp", ’r’)

cols, indexToName = getColumns(fout)

NonOver = ’’

sumpv = 0

sump = 0

avpv = 0

avp = 0

indices = list()

offset = 0

for cell in

range(cols[’STATISTICAL’].count(’NonOverlappingTemplate’)):

indices.append(cols[’STATISTICAL’].index(’NonOverlappingTemplate’,offset))

offset = indices[-1] + 1

for index in indices:

sumpv = float(cols[’P-VALUE’][index]) + sumpv

sump = int(cols[’PROPORTION’][index]) + sump

avpv = float("{0:.6f}".format(sumpv/len(indices)))

avp = int(sump/len(indices))

print avpv

print avp

fout.close()

fout = file("output.txt.tmp", ’r’)

foutlines = fout.readlines()

fout.close()

fout2 = file(options.output, ’w’)

for line in foutlines:

if ’NonOverlappingTemplate’ in line:

continue

if ’;OverlappingTemplate’ in line:

fout2.write(line)

fout2.write(";0;0;0;0;0;0;0;0;0;0;" + str(avpv) + ";" +

str(avp) + ";NonOverlappingTemplate\n")

else:

fout2.write(line)
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fout2.close()
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Appendix D

Glossary

ASIC: Application Specific Integrated Circuits

BRAM: Block Random Access Memory

BSI: Bundesamt für Sicherheit in der Informationstechnik

CCN: Centro Criptológico Nacional

CLB: Configurable Logic Block

COFRAC: Comité français d'accréditation

CSV: Comma-separated Values

DCM: Digital Clock Manager

DCM: Digital Clock Source

DFF: D flip-flop

DLL: Delay-locked Loop

DSP: Digital Signal Processor

DSP: Digital Signal Processor

FFT: Fast Fourier Transform

FIFO: First in, First out

FIPS: Federal Information Processing Standards

FPGA: Field Programmable Gate Array

HDL: Hardware Description Language

IC: Integrated Circuit
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IQR: Interquartile Range

LFSR: Linear Feedback Shift Register

NIST: National Institute of Science and Technology

PLL: Phase-locked Loop

PRNG: Pseudo-random Number Generator

RAM: Random Access Memory

RFID: Radio Frequency Identification

RNG: Random Number Generator

RO: Ring Oscillator

SRAM: Static Random Access Memory

STR: Self-Timed Ring

STS: Statistical Test Suite

TRNG: True Random Number Generator

UKAS: United Kingdom Accreditation Service

VHDL: VHSIC Hardware Description language

VHSIC: Very High Speed Integrated Circuit

XOR: Exclusive OR
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