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Abstract

Low-rank structured matrices have attracted much attention in the last decades,
since they arise in many applications and all share the fundamental property that
can be represented by O(n) parameters, where n× n is the size of the matrix. This
property has allowed the development of fast algorithms for solving numerically
many problems involving low-rank structured matrices by performing operations on
the parameters describing the matrices, instead of directly on the matrix entries.
Among these problems the solution of linear systems of equations and the compu-
tation of the eigenvalues are probably the most basic and relevant ones. Therefore,
it is important to measure, via structured computable condition numbers, the rela-
tive sensitivity of the solutions of linear systems with low-rank structured coefficient
matrices, and of the eigenvalues of those matrices, with respect to relative perturba-
tions of the parameters representing such matrices, since this sensitivity determines
the maximum accuracy attainable by fast algorithms and allows us to decide which
set of parameters is the most convenient from the point of view of accuracy.

In this PhD Thesis we develop and analyze condition numbers for eigenvalues of
low-rank matrices and for the solutions of linear systems involving such matrices.
To this purpose, general expressions are obtained for the condition numbers of the
solution of a linear system of equations whose coefficient matrix is any differentiable
function of a vector of parameters with respect to perturbations of such parameters,
and also for the eigenvalues of those matrices.

Since there are many different classes of low-rank structured matrices and many
different types of parameters describing them, it is not possible to cover all of them
in this thesis. Therefore, the general expressions of the condition numbers are par-
ticularized to the important case of quasiseparable matrices and to the quasisep-
arable and the Givens-vector representations. In the case of {1, 1}-quasiseparable
matrices, we provide explicit expressions of the corresponding condition numbers
for these two representations that can be estimated in O(n) operations. In addi-
tion, detailed theoretical and numerical comparisons of the condition numbers with
respect to these two representations between themselves, and with respect to un-
structured condition numbers are provided. These comparisons show that there are
situations in which the unstructured condition numbers are much larger than the
structured ones, but that the opposite never happens. On the other hand, for general
{nL, nU}-quasiseparable matrices we also present an explicit expression for comput-
ing the eigenvalue condition number for the general quasiseparable representation
in O((n2

L + n2
U)n) operations. In this case, significant differences are obtained with

respect to the {1, 1}-case, since if nL or nU are greater than one, then the structured
condition number may be much larger than the unstructured one, which suggests
the use of a more stable representation in that case. The approach presented in
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this dissertation can be generalized to other classes of low-rank structured matrices
and parameterizations, as well as to any class of structured matrices that can be
represented by parameters, independently of whether or not they enjoy a “low-rank”
structure.



Contents

Acknowledgements iii

Abstract v

1 Introduction and summary of main results 1

2 A brief review of quasiseparable matrices 9
2.1 Basics on low-rank structured matrices . . . . . . . . . . . . . . . . . 9
2.2 Quasiseparable matrices . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Inverses of quasiseparable matrices . . . . . . . . . . . . . . . 15
2.3 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 The quasiseparable representation for {1, 1}-quasiseparable ma-
trices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 The Givens-vector representation for {1, 1}-quasiseparable ma-
trices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 The quasiseparable representation for {nL, nU}-quasiseparable
matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Principles of condition numbers 25
3.1 Basics on condition numbers for linear systems . . . . . . . . . . . . . 25

3.1.1 Standard results . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Condition numbers for parameterized linear systems . . . . . . 27

3.2 Basics on eigenvalue condition numbers . . . . . . . . . . . . . . . . . 30
3.2.1 Standard results . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Eigenvalue condition numbers for parameterized matrices . . . 34

4 Structured condition numbers for linear systems with parameter-
ized quasiseparable coefficient matrices 39
4.1 Condition number of the solution of {1, 1}-quasiseparable linear sys-

tems in the quasiseparable representation . . . . . . . . . . . . . . . . 40
4.2 Condition number of the solution of {1, 1}-quasiseparable linear sys-

tems in the Givens-vector representation . . . . . . . . . . . . . . . . 45

vii



viii CONTENTS

4.2.1 The Givens-vector representation via tangents for {1, 1}-quasise-
parable matrices . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.2 The condition number for {1, 1}-quasiseparable matrices in
the Givens-vector representation via tangents . . . . . . . . . 47

4.3 Comparison of condition numbers in the quasiseparable and the Givens-
vector representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Fast estimation of condition numbers: the effective condition number 54
4.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Structured eigenvalue condition numbers for parameterized qua-
siseparable matrices 61
5.1 Eigenvalue condition numbers for {1, 1}-quasiseparable matrices in

the quasiseparable representation . . . . . . . . . . . . . . . . . . . . 62
5.2 Fast computation of the eigenvalue condition number in the quasisep-

arable representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.1 Pseudocode for computing cond (λ; ΩQS) fast . . . . . . . . . . 73

5.3 Eigenvalue condition numbers for {1, 1}-quasiseparable matrices in
the Givens-vector representation via tangents . . . . . . . . . . . . . 74

5.4 Fast computation of the eigenvalue condition number in the Givens-
vector representation via tangents . . . . . . . . . . . . . . . . . . . . 78
5.4.1 Pseudocode for computing cond (λ; ΩGV ) fast . . . . . . . . . . 79

5.5 Comparison of the condition numbers in the quasiseparable and the
Givens-vector representation . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Structured eigenvalue condition numbers for {nL, nU}-quasiseparable
matrices 87
6.1 Eigenvalue condition numbers for {nL, nU}-quasiseparable matrices

in the quasiseparable representation . . . . . . . . . . . . . . . . . . . 88
6.2 Fast computation of the eigenvalue condition number in the quasisep-

arable representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Conclusions, publications, and open problems 107
7.1 Conclusions and original contributions . . . . . . . . . . . . . . . . . 107
7.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.3 Contributions to Conferences . . . . . . . . . . . . . . . . . . . . . . 110
7.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Bibliography 113



Chapter 1

Introduction and summary of main
results

In simple words, a low-rank structured matrix is a matrix such that large submatrices
of it have ranks much smaller than the size of the matrix. Perhaps, the best known
examples of low-rank structured matrices are tridiagonal and other banded matrices
with small bandwidth, for which all the submatrices lying in the (strictly) lower or
upper triangular parts have ranks smaller than or equal to the bandwidth. These
examples correspond to special cases of sparse matrices, but many other classes
of dense low-rank structured matrices are available in the literature and arise in
many applications. Research on low-rank structured matrices has received much
attention in the last 15 years from the points of view of theory, computations,
and applications. In fact, a number of recent books are devoted to this subject
[27, 28, 61, 62], as well as survey papers [13], and the interested reader can find a
huge number of references on this topic in them. From a numerical perspective, the
key features of n× n low-rank structured matrices are that they can be very often
described in terms of different sets of O(n) parameters, called representations [61,
Ch. 2], and that this fact has been used to develop many fast algorithms operating
on these parameters to perform computations with low-rank structured matrices
[27, 28, 61, 62]. In this context, fast algorithms mean algorithms with cost O(n)
operations for solving linear systems of equations or with cost O(n2) operations
for solving eigenvalue problems, which should be compared with the O(n3) cost of
traditional dense matrix algorithms [38, 41].

Besides being the subject of modern research, low-rank structured matrices have
an old and long history. One of the first examples of low-rank structured matrices
are the single-pair matrices presented in 1941 in [36] in the context of totally non-
negative matrices (see also [35]). Another historical source of low-rank structured
matrices is related to the efforts made in the 1950s to compute inverses of tridiag-
onal and, in general, of banded matrices with small bandwidth [1, 2, 7, 55]. These
efforts were motivated by early research on the numerical solution of certain integral
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2 CHAPTER 1. INTRODUCTION AND SUMMARY OF MAIN RESULTS

equations, boundary value problems, and problems in statistics. Inverses of banded
matrices are included in a class of low-rank structured matrices called nowadays
semiseparable matrices [61, Theorems 1.38 and 8.45]. Since the 1950s, the number
of publications on low-rank structured matrices has increased considerably and, in
fact, has exploded in the last 15 years. We refer the reader to the historical notes
in [27, 28, 61, 62] and the detailed bibliography in [60].

Many interesting applications of low-rank structured matrices are discussed in
the general references [13, 27, 28, 61, 62], but here we would like to emphasize a
few of them and to cite a few specific references as a sample. Fast computations
with low-rank structured matrices have been used, for instance, in the numerical
solution of elliptic partial differential equations [5, 39], in the numerical solution
of integral equations [12, 50, 51], and in the classical problem of computing all the
roots of a polynomial of degree n via matrix eigenvalue algorithms with cost of O(n2)
operations and O(n) storage [9, 11, 14, 29, 58]. With respect to this last problem,
the recent reference [3] deserves special attention, since it includes a new algorithm
and, for the first time in the literature, a rigorous proof that a fast and memory
efficient algorithm for computing all the roots of a polynomial is backward stable
in a matrix sense, which solves a long-standing open problem in Numerical Linear
Algebra.

An important drawback of fast algorithms for low-rank structured matrices is
that they have not been proved to be backward stable, with the exception of the
particular ones in [3, 6, 21, 57, 66, 67]. Taking into account the large number of
references available on these algorithms, this lack of error analyses is striking. Possi-
ble reasons for it are that these fast algorithms are often involved, which makes the
potential errors analyses very difficult and, also, that some of them are potentially
unstable in rare cases. In this scenario, a practical option is to estimate a posteriori
error bounds for the outputs of these algorithms based on the classical approach in
Numerical Linear Algebra of computing the residuals of the computed quantities,
which give the backward errors, and multiply them by the corresponding condition
numbers [38, 41, 42, 43]. Since fast algorithms for low-rank structured matrices
operate on parameters and not on matrix entries, the most sensible approach would
be to estimate from the residuals the backward errors in the parameters defining the
matrix, and to multiply them by the corresponding condition numbers with respect
to perturbations of those parameters. The results in this thesis include the first
steps in this ambitious plan, since we present condition numbers with respect to
parameters for a family of low-rank structured matrices. More precisely, we develop
condition numbers for eigenvalues and for the solution of linear systems of equa-
tions, and show that for the case of {1, 1}-quasiseparable matrices some eigenvalues
or solution vectors may be extremely ill-conditioned under general componentwise
relative unstructured perturbations of the matrix entries, but very well-conditioned
under perturbations in the parameters.

There exist many classes of low-rank structured matrices and it is not possible to
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cover all of them in this thesis. Therefore, we restrict ourselves to the particular but
important class of quasiseparable matrices, whose definition is recalled in Section
2.2. This class of matrices was introduced in [24] and includes several other relevant
classes of low-rank structured matrices, as is discussed in [61, p. 10]. In addition,
we would like to emphasize that the approach presented in this work can be eas-
ily extended to other classes of structured matrices as long as they are explicitly
described in terms of parameters, as a consequence of the general framework devel-
oped in Sections 3.1.2 and 3.2.2. So, we expect that the results in this thesis can
show how to get in the future condition numbers for many other classes of low-rank
structured matrices and problems, as well as to foster more research on this topic.

The results in Chapters 4, 5, and 6 can be seen as a new contribution to struc-
tured perturbation theory, a very fruitful and active area of research inside Numer-
ical Linear Algebra. The general goal of the research in this area is to show that
either for matrices in certain classes or for perturbations with particular properties,
it is possible to derive much stronger perturbation bounds for the solutions of nu-
merical problems (finding eigenvalues or solving linear systems, for instance) than
the traditional ones obtained for general unstructured perturbations, and that these
strong bounds can be used to prove that certain algorithms taking advantage of the
structure yield much more accurate outputs than standard unstructured algorithms.
The number of publications in this area is also very large and, here, we simply list
a small sample of relevant references [32, 42, 43, 45, 46, 49]. A common thread in
structured perturbation theory is that the relative, instead the absolute, sensitivity
of the desired output of an algorithm is studied and bounded, as a consequence of
the high expectations of the computations in our times. In addition, for the same
reasons, many works on structured perturbation theory consider relative componen-
twise perturbations of the parameters defining the matrices of the given problem.
We follow both approaches in this dissertation, which are also motivated by the fact
that the parameters defining a given quasiseparable matrix can be widely scaled,
while yielding the same matrix [61, Chs. 1 & 2], and so their collective norm is not
related to the norm of the matrix. The results in this dissertation are, in particular,
influenced by the recent ones in [32], but also influenced by the classical and semi-
nal reference [53], which is often forgotten and which initiated the use of differential
calculus for getting condition numbers.

Another goal of this dissertation is to provide a way to compare different repre-
sentations of low-rank structured matrices. It is well known that the same quasisep-
arable matrix can be represented by different sets of parameters ([26], [61, Ch. 2],
see also Section 2.3 in this thesis), also called generators, and it is not clear which set
is more appropriate for developing a fast algorithm. A sensible option is to choose
that representation for which the condition number of the desired quantity with
respect to perturbations of the parameters is the smallest one. For this reason, we
study and compare condition numbers for eigenvalues of {1, 1}-quasiseparable matri-
ces and for the solutions of linear systems of equations with a {1, 1}-quasiseparable
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coefficient matrix with respect to relative perturbations on the parameters in dif-
ferent representations of such quasiseparable matrices. More precisely, we consider
all the quasiseparable representations [26], there are infinitely many, and the, essen-
tially unique, Givens-vector representation ([59], [61, Ch. 2]), and we prove that,
in both cases, the condition numbers for the different representations have similar
magnitudes, but that those corresponding to the Givens-vector representation are
the respective smallest ones. We advance that the most basic reason for this fact is
the presence of extra constraints in the parameters of the Givens-vector represen-
tation with respect to the ones of the quasiseparable representation, which restrict
the set of possible perturbations. In this context, it should be stressed that relative
condition numbers do not take into account other issues which are also very impor-
tant in practical computations, as the appearance of very large or small parameters
that can produce overflow or underflow and spoil the whole computation.

Two remarkable unexpected properties are proved in this dissertation for the
covered condition numbers for {1, 1}-quasiseparable matrices with respect to the
(infinitely many) quasiseparable representations. First, that these condition num-
bers are independent of the particular representation (see Proposition 4.4 for the
solutions of linear systems and Proposition 5.3 for the eigenvalues case) and, sec-
ond, that they can be respectively expressed just in terms of the matrix entries, i.e.,
without using any parametrization of the matrix (see Theorems 4.3 and 5.2, respec-
tively). Nevertheless, the low-rank structure of the matrix is reflected in the way
the different entries of the matrix contribute to the conditions number. These prop-
erties are important because it is not always trivial to compute a parametrization
of a low-rank structured matrix.

On the other hand, for the general case of {nL, nU}-quasiseparable matrices, we
also derived an expression for computing the eigenvalue condition number with res-
pect to the general quasiseparable representation, but in this case, that condition
number does depend on the parameters (see the expression in Theorem 6.2 for its
computation), and, what it is more important, it can be much larger than the un-
structured standard condition number as we have seen in our numerical experiments
described in Section 6.3. This significant difference with the {1, 1}-case suggests the
need of studying different and more stable representations for generating those ma-
trices and operating on them. We are currently working on this problem using the
description of the Givens-weight representation recently presented in [57].

The rest of the dissertation is organized as follows. In Chapter 2 we introduce the
notions of structures and rank structured matrices, define quasiseparable matrices
using the notation in [61], and recall some of its basic properties. The quasiseparable
and the Givens-vector representations for {1, 1}-quasiseparable matrices are also
presented in the way that they will be used trough the rest of the dissertation. In
addition, for the general class of {nL, nU}-quasiseparable matrices, an extension of
the quasiseparable representation is also provided. This chapter is based in the book
[61], and does not include original results from the author.
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Chapter 3 is organized in two different parts. The first one, Section 3.1, is de-
voted to the study of condition numbers for linear systems. In particular, in Section
3.1.1, the definitions of standard normwise and componentwise condition numbers
for the solution of a linear system of equations are presented together with explicit
expressions for their computations and some of their main properties. In Section
3.1.2, we introduce the notion of a structured condition number for the solution of a
linear system of equations with a parameterized matrix of coefficients with respect to
relative componentwise perturbations of the parameters defining the matrix, and we
provide an explicit expression for its computation. The second part of the chapter,
Section 3.2, is devoted to condition numbers for simple eigenvalues and is organized
in a similar way to the previous one, by presenting the analogous standard normwise
and componentwise unstructured eigenvalue condition numbers in Section 3.2.1 and
the structured eigenvalue condition number for parameterized matrices in Section
3.2.2. The results in Sections 3.1.1 and 3.2.1 are not original contributions of the
author of this thesis, and are based in the book by Higham [41], the reference [42]
by Higham & Higham, and standard references as [38] for the classical Wilkinson
eigenvalue condition number. On the other hand, the expressions for the condition
numbers of parameterized matrices in Sections 3.1.2 and 3.2.2 are original contribu-
tions of the author that are used in further chapters for getting explicit expressions
of the condition numbers for the representations of quasiseparable matrices covered
in this dissertation. The original results in Sections 3.1.2 and 3.2.2 are respectively
included in [23] and [22].

Chapter 4 is devoted to the conditioning of the solutions of linear systems of
equations with {1, 1}-quasiseparable matrices of coefficients with respect to relative
componentwise perturbations of the parameters generating the matrix. In particu-
lar, in Section 4.1, we deduce an expression for computing the structured condition
number for linear systems in the quasiseparable representation and we prove some
of its more important properties, like its invariance under different sets of quasisep-
arable parameters when the tolerances for the relative perturbations are measured
with respect to the set of parameters itself, its invariance under diagonal scaling
of the coefficient matrix on the left, and more important, that the structured con-
dition number can not be much greater than the unstructured one (but it can be
much smaller as we observed in the numerical experiments described in Section
4.5). In Section 4.2, we define the Givens-vector representation via tangents of a
{1, 1}-quasiseparable matrix and obtain an expression for the computation of the
structured condition number for linear systems in that representation. In Section
4.3, a comparison of the structured condition numbers under the quasiseparable
and the Givens-vector representation via tangents is provided, proving that, in the
{1, 1}-case, the Givens-vector is a more stable representation since it produces con-
dition numbers that are smaller than the ones for the quasiseparable representation.
In Section 4.4, we show how to estimate fast the structured condition numbers via
an effective condition number. In order to corroborate some of the results obtained
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trough the chapter, a brief description of some numerical experiments we have per-
formed is provided in Section 4.5. All the original results in this chapter are included
in [23].

Chapter 5 follows a similar structure to that of Chapter 4, but, in this case,
we consider eigenvalue condition numbers also for {1, 1}-quasiseparable matrices.
In Section 5.1, a formula for computing the structured eigenvalue condition num-
ber in the quasiseparable representation is deduced. We prove that this condition
number is also invariant under different quasiseparable representations when the
tolerances for the relative perturbations are measured against the set of parameters
itself, and under diagonal similarities as well. Furthermore, it is proved that in the
{1, 1}-case the quasiseparable structure plays a key role in the accuracy of eigenvalue
computations since the structured condition number can be much smaller than the
unstructured one but the opposite can not happen. In Section 5.2, it is proved that
this condition number can be computed fast via an algorithm with O(n) cost. In
Section 5.3 we provide an expression for computing the eigenvalue condition number
in the Givens-vector representation via tangents, and in Section 5.4, we provide an
algorithm with O(n) cost for its computation. In Section 5.5, a comparison of the
condition numbers in the quasiseparable and in the Givens-vector representations
have been carried out in order to prove that the Givens-vector representation is
also more stable for eigenvalue computations than the quasiseparable one since its
produces smaller eigenvalue condition numbers. The chapter is concluded by de-
scribing some numerical experiments in Section 5.6. All the original contributions
in this chapter are included in [22].

In Chapter 6, we start the study of the conditioning of simple eigenvalues for
general {nL, nU}-quasiseparable matrices. In particular, in Section 6.1, we obtain an
expression for computing the structured eigenvalue condition number in the general
quasiseparable representation for an {nL, nU}-quasiseparable matrix. In this case,
significant differences with the {1, 1}-case are pointed out since when nL > 1 or
nU > 1, the structured condition number does depend on the choice of the parame-
ters and more important, the structured condition number can be much larger than
the unstructured one. Therefore, we provide an interpretation of this fact and obtain
a bound in terms of an unstructured condition number. In Section 6.2, it is proved
that this structured condition number can be computed fast via an O((n2

L + n2
U)n)

algorithm, and in Section 6.3, a brief description of some numerical experiments is
provided. Most of the results in this chapter are original contributions of the author,
but have not been submitted yet for publication since we want to complete these
results with the study of eigenvalue condition numbers in the Givens-weight rep-
resentation for general {nL, nU}-quasiseparable matrices [17, 57]. We are currently
working on this problem, which is hard since the Givens-weight representation of
{nL, nU}-quasiseparable matrices is not easy to describe explicitly.

Notation. Given the field of scalars F ∈ {R,C}, we denote by Fm×n to the
set of matrices of size m × n with entries in F. We will follow a common notation



7

in Numerical Linear Algebra and use capital Roman letters A, B,. . . , for matrices,
lower case Roman letters x,y, . . . for column vectors, and Greek letters α, β, . . . , for
scalars. Except in the preliminary Section 3.2, only real matrices are considered, but
some eigenvalues and eigenvectors may be complex. We will denote by ei to the i-th
vector in the canonical basis of Rn, i.e., ei denotes the i-th column of the identity
matrix In in Rn×n. Given a complex column vector y of size n × 1, yT denotes
its transpose, and y∗ := (y)T its conjugate transpose, where α is the conjugate of
α and conjugation of vectors should be understood in a componentwise sense. We
consider the following usual norms

‖y‖1 :=
n∑
i=1

|yi| , ‖y‖2 :=

(
n∑
i=1

|yi|2
) 1

2

, and ‖y‖∞ := max
1≤i≤n

|yi|,

where yi denotes the i-th coordinate of the vector y, and the corresponding operator
norms for m× n matrices [38, 41]:

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij| , ‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij| , and ‖A‖2 = (ρ (A∗A))
1
2 = σmax(A),

where, for any square matrix M , ρ(M) denotes the spectral radius of M , i.e.:

ρ(M) = max{|λ| : λ is an eigenvalue of M},

and σmax(A) denotes the largest singular value of A.
For any square matrix M , we write the eigenvalue-eigenvector equations as

Mx = λx and y∗M = λy∗, where y and x denote, respectively, the left and right
eigenvectors associated to the eigenvalue λ of M .

Standard MATLAB notation for submatrices is used, i.e., given a matrix M ∈
Rm×n, the expressionM(i : j, k : l), where 1 ≤ i ≤ j ≤ m and 1 ≤ k ≤ l ≤ n, denotes
the submatrix of M consisting of the intersection of rows i up to and including j of
M and of columns k up to and including l of A.





Chapter 2

A brief review of quasiseparable
matrices

As its name suggests, this chapter is devoted to define quasiseparable matrices which
is the main class of matrices covered in this thesis, and to recall some of their basic
properties. In Section 2.1 we recall some concepts related to quasiseparable matri-
ces like the definitions of low-rank structured matrices, lower and upper triangular
structures, and the subclass of semiseparable matrices. In Section 2.2, quasisepara-
ble matrices are defined and some of their representations are introduced in Section
2.3. This chapter is mainly based on Chapters 1, 2 and 8 from the book by Vandebril,
Van Barel and Mastronardi [61].

2.1 Basics on low-rank structured matrices

A rank structured matrix is, in plain words, a matrix such that specific submatrices
of it (defined by the so called structure) satisfy certain rank properties. Typically,
a structured rank matrix A has many submatrices with ranks much smaller than
the matrix size and with sizes comparable to the size of the matrix. In that case we
can call A a low-rank structured matrix. In [33], Fiedler introduced the concept of
structure and structured rank in the sense it will be used throughout this dissertation,
and he studied different types of rank structures with regard to inversion and the
LU -decomposition.

Here we will use a similar notation to that in [61]. In Definitions 2.1 and 2.2,
which can be found in [61, Section 8.1], it is stated what is exactly meant by struc-
tured rank and low-rank structured matrices, respectively.

Definition 2.1 (Structures, structured rank). Let A be an m × n matrix. Denote
withM the set of numbers {1, 2, . . . ,m} and with N the set of numbers {1, 2, . . . , n},
both with the usual order in N. Let A and B be nonempty subsets of M and N ,
respectively, also with the usual order in N. Then, we denote by A(A,B) the subma-

9
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trix of A with row indices in A and columns indices in B. A structure Σ is defined
as a nonempty subset ofM×N . Based on a given structure Σ, the structured rank
r (Σ, A) of A is defined as

r (Σ, A) = max {rank (A(A,B)) |A×B ⊆ Σ} , (2.1)

where A×B denotes the set {(i, j)|i ∈ A, j ∈ B}.

Definition 2.2 (low-rank structured matrix). A matrix A is called a low-rank struc-
tured matrix if there exists a structure Σ of A such that the structured rank r (Σ, A)
is much smaller than the rank one would generically expect from the sizes of the
submatrices that are determined by the structure Σ.

In order to describe some examples of low-rank structured matrices, note that
for any matrix A of size m × n we can call its main diagonal {A(i, i), 1 ≤ i ≤ n},
as the 0th diagonal and therefore, for any natural number p ≥ 0, we call the p-
th superdiagonal of A, to the entries defined by {A(i, i + p), 1 ≤ i ≤ n − p}.
In an analogous way, we call the p-th subdiagonal of A to the entries defined by
{A(i+ p, i), 1 ≤ i ≤ n− p}.

Some examples of structures are presented in the following definition [61, p. 295].

Definition 2.3 (Lower triangular structures). For a matrix A, and for M =
{1, 2, . . . ,m} and N = {1, 2, . . . , n} we define the following structures:

• The subset
Σl = {(i, j)|i ≥ j, i ∈M, j ∈ N}

is called the lower triangular structure, since the elements of this structure
correspond to the indices from the lower triangular part of the matrix.

• The subset
Σwl = {(i, j)|i > j, i ∈M, j ∈ N}

is called the strictly lower triangular structure.

• The subset
Σ

(p)
l = {(i, j)|i > j − p, i ∈M, j ∈ N}

is called the p-lower triangular structure, and corresponds to the indices of
all the entries of the matrix A below the p-th diagonal. The 0th diagonal
corresponds to the main diagonal, while the p-th diagonal refers to the p-th
superdiagonal (for p > 0) and the −p-th diagonal refers to the p-th subdiagonal
(for p > 0).
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Note that the p-th lower triangular structure for p > 1 contains not only the
indices of the lower triangular part of the matrix but also the entries of the su-
perdiagonals below the p-th superdiagonal. In an analogous way to Definition 2.3,
we can define the structures Σu, Σwu and Σ

(p)
u for the upper triangular part of the

matrix A.
As one would expect, it is obvious from Definition 2.3 that any tridiagonal ma-

trix is a very simple example of a low-rank structured matrix since a matrix A is
tridiagonal if and only if:

r
(

Σ
(−1)
l , A

)
= 0 and r

(
Σ(1)
u , A

)
= 0.

Furthermore, according to Definition 2.3, all banded matrices are low-rank struc-
tured since they can be defined as follows.

Definition 2.4. An n × n matrix B is called a {p, q}-banded matrix, with p ≥ 0
and q ≥ 0, if the following two properties are satisfied:

r
(
Σ−pl , B

)
= 0 and r (Σq

u, B) = 0.

Obviously, the definition above means that a matrix B is a {p, q}-banded matrix
if and only if all of its entries below the p-th subdiagonal, and above the q-th
superdiagonal, are equal to zero.

The examples above correspond to sparse matrices. On the other hand, a low-
rank structured matrix may not be sparse. In fact, all the banded matrices are just
particular sparse examples of a more general class of low-rank structured matrices
named semiseparable matrices, which are generically dense.

The following definition can be found in [61, p. 300].

Definition 2.5 ({nL, nU}-semiseparable matrix). A matrix A ∈ Rn×n is called an
{nL, nU}-semiseparable matrix, with nL ≥ 0 and nU ≥ 0, if the following two prop-
erties are satisfied:

• every submatrix of A entirely located below the nLth superdiagonal of A has
rank at most nL, and there is at least one of these submatrices which has rank
equal to nL.

• every submatrix of A entirely located above the nU th subdiagonal of A has rank
at most nU , and there is at least one of these submatrices which has rank equal
to nU .

This is obviously equivalent, to

• maxi rank A(i : n, 1 : i+ nL − 1) = nL, ∀i ≤ n− nL + 1, and

• maxi rank A(1 : i+ nU − 1, i : n) = nU , ∀i ≤ n− nU + 1.
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Note that, in the notation of Definition 2.3 and from Definition 2.5, a ma-
trix A is an {nL, nU}-semiseparable matrix if and only if r

(
Σ

(nL)
l , A

)
= nL and

r
(

Σ
(−nU )
u , A

)
= nU .

A {1, 1}-semiseparable matrix is also often referred to as a {1}-semiseparable
matrix or simply as a semiseparable matrix.

Graphically, if we denote by × any possible entry of the matrix (note that, in
general, × has different numerical values for different entries), then for any matrix
of size 5× 5,

A =


× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 ,
we have that A is a {1, 1}-semiseparable matrix if and only if all of the following
marked submatrices corresponding to the upper triangular part of A have rank at
most 1,

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 ,

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 ,

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×


, 

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 ,

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 ,
and all of the following marked submatrices corresponding to the lower triangular
part of A must also have rank at most 1:

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 ,

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 ,

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 ,

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 ,

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 .
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Some other important classes of low rank structured matrices studied in [61, 62]
are listed below in Definitions 2.6, 2.7, and 2.8. We will use some notation from
Matlab, for any matrix A ∈ Rn×n, and for any natural number 0 ≤ p ≤ n − 1
we denote tril(A, p) to the lower triangular part of A below and including the p-th
subdiagonal, and triu(A, p) to the upper triangular part of A above and including
the p-th superdiagonal.

Definition 2.6 (generator representable semiseparable matrix). A matrix A ∈ Rn×n

is called a generator representable semiseparable matrix, if the lower and upper tridi-
agonal parts of the matrix are coming from a rank 1 matrix, i.e., if the following two
properties are satisfied:

tril(A, 0) = tril(uvT ) and triu(A, 0) = tril(pqT ),

where u,v,p, q ∈ Rn×1, such that uivi = piqi, for all i = 1, . . . , n.

The generator definition has been used sometimes as a definition for semisepara-
ble matrices [15, 31, 16, 64] (it is straigthforward from Definitions 2.6 and 2.5 that
a generator representable semiseparable matrix is also a semiseparable matrix), but
there are semiseparable matrices which are not generator representable (consider,
for instance, any diagonal matrix with all its diagonal entries different from zero).

Definition 2.7 (semiseparable plus diagonal matrix). A matrix A ∈ Rn×n is called
a semiseparable plus diagonal matrix if it can be expressed as the sum of a {1, 1}-
semiseparable and a diagonal matrix.

These semiseparable plus diagonal matrices are related, for example, with the
discretization of particular integral equations (see [47, 48] and [61, Section 3.3]).

Definition 2.8 ({nL, nU}-generator representable semiseparable matrix). A matrix
A ∈ Rn×n is called an {nL, nU}-generator representable semiseparable matrix, with
nL ≥ 1 and nU ≥ 1, if the following two properties are satisfied:

tril(A, nL − 1) = tril(UV T , nL − 1),

triu(A,−nU + 1) = triu(PQT ,−nU + 1),

where U, V ∈ Rn×nL and P,Q ∈ Rn×nU .

Note that {nL, nU}-generator representable semiseparable matrices are a gen-
eralization of the matrices in Definition 2.6, and that both of them, as well as
the semiseparable plus diagonal matrices in Definition 2.7, are particular cases of
semiseparable matrices with different orders of semiseparability.
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2.2 Quasiseparable matrices
According to Definition 2.5, it is obvious that the structure of a semiseparable matrix
crosses, in general, its diagonal. On the other hand, if for n × n matrices we only
consider strictly lower triangular and strictly upper triangular structures, then we
have a more general class of low-rank structured matrices, since for any natural
numbers 1 ≤ p < n and 1 ≤ q < n, any submatrix contained in the strictly lower
triangular part or in the upper triangular part of a matrix is also contained in the p-
lower triangular part or in the q-upper triangular part of the matrix, respectively, and
therefore, any constrain in the rank of the submatrices entirely located in the p-lower
triangular part or in the q-upper triangular part of a matrix, respectively, is also a
constraint in the rank of the submatrices in the strictly lower or upper triangular
parts of the matrix, respectively. This more general class of low-rank structured
matrices is named quasiseparable matrices, and we are specially interested on them
in this thesis. The following definition can be found in [61, p. 301].

Definition 2.9 ({nL, nU}-quasiseparable matrix). A matrix A ∈ Rn×n is called
an {nL, nU}-quasiseparable matrix, with nL ≥ 0 and nU ≥ 0, if the following two
properties are satisfied:

• every submatrix of A entirely located in the strictly lower triangular part of A
has rank at most nL, and there is at least one of these submatrices which has
rank equal to nL, and

• every submatrix of A entirely located in the strictly upper triangular part of A
has rank at most nU , and there is at least one of these submatrices which has
rank equal to nU .

This is obviously equivalent to

• maxi rank A(i+ 1 : n, 1 : i) = nL, and

• maxi rank A(1 : i, i+ 1 : n) = nU .

Note that, in the notation of Definition 2.3 and from Definition 2.9, a matrix A is
an {nL, nU}-quasiseparable matrix if and only if r (Σwl, A) = nL and r (Σwu, A) = nU .

A {1, 1}-quasiseparable matrix is often referred to as a {1}-quasiseparable matrix
or simply as a quasiseparable matrix. The next figures illustrate graphically the
preceding definition for any matrix A of size 5× 5,

A =


× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 .
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A is an {nL, nU}-quasiseparable matrix, if and only if the following marked subma-
trices of A have rank at most nL,

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 ,

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 ,

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 ,

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 ,
and the following marked submatrices of A have rank at most nU ,

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 ,

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 ,

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 ,

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 .
We conclude this section by remarking that from Definitions 2.5 and 2.9, every
{nL, nU}-semiseparable matrix is again an {nL, nU}-quasiseparable matrix (and also
are all the particular cases of semiseparable matrices in Definitions 2.6, 2.7, and 2.8),
but that the opposite is not true.

2.2.1 Inverses of quasiseparable matrices

A very useful result in the study of the relations between different types of structured
rank matrices and their inverses was stated for the first time in [40] and it is known
as the Nullity Theorem. We will present this theorem in the way it was formulated
by Fiedler in [34].

Definition 2.10. Given a matrix A ∈ Rm×n, we define the nullity of A, denoted
n(A), as the dimension of the right null space of A.
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Theorem 2.11. Let A ∈ Rn×n be a nonsingular matrix, and denote by B its inverse.
Consider the following partition of A:

A =

[
A11 A12

A21 A22

]
,

with A11 of size p× q, and the following partition of B:

B =

[
B11 B12

B21 B22

]
,

with B11 of size q × p. Then the nullities n(A11) and n(B22) are equal.

Proof. Let us suppose first that n(B22) ≥ n(A11). In this case, if n(B22) = 0 then
n(A11) = 0 and the theorem is true. Therefore let us consider n(B22) = c > 0. Then
we can construct a matrix F ∈ R(n−p)×c with its c columns linearly independent
and such that B22F = 0. Note that from the identity AB = I we can obtain the
following equations:

A11B12 + A12B22 = 0. (2.2)

A21B12 + A22B22 = I. (2.3)

Note that if we multiply equations (2.2) and (2.3) on the right by F , we obtain:

A11B12F = 0, (2.4)

A21B12F = F, (2.5)

respectively. Hence, from (2.4) we conclude that n(A11) ≥ rank(B12F ) and, from
(2.5), we conclude that rank(B12F ) ≥ rank(F ) = c. Thus, we have obtained that

n(A11) ≥ rank(B12F ) ≥ c = n(B22).

This last equation, together with the initial assumption n(B22) ≥ n(A11), proves the
theorem for this case.

On the other hand, if n(B22) ≤ n(A11), we can consider the matrix

C =

[
B22 B21

B12 B11

]
,

and note that its inverse is given by

D =

[
A22 A21

A12 A11

]
.

Then, since n(D22) = n(A11) ≥ n(B22) = n(C11), we are in the previous case and we
can conclude that n(A11) = n(B22), which completes the proof of the theorem.
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Corollary 2.12. Let A ∈ Rn×n and B ∈ Rn×n be matrices such that B = A−1, and
consider the following partitions:

A =

[
A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
,

with A11 of size p× q and B11 of size q × p. Then, we have

n(A12) = n(B12) and n(A21) = n(B21).

Proof. Consider the matrix P given by the following partition

P =

[
0 Iq

In−q 0

]
,

where Iq denotes the identity matrix of size q × q, and note that the matrices

P TB =

[
B21 B22

B11 B12

]
and AP =

[
A12 A11

A22 A21

]
,

are also each other’s inverse. Then, according to Theorem 2.11, it follows that
n(A12) = n(B12) and n(A21) = n(B21).

An important consequence of the nullity theorem was formulated in [34] and it is
stated in the following theorem. This is a useful result for proving rank properties of
the inverses of structured rank matrices. In the rest of this section we use a standard
notation for sets since for any two sets of natural numbers A and B we denote by
|A| the cardinality of A, i.e., |A| is the number of elements in A, and A\B denotes
the difference operation for sets, i.e., A \ B is the set of elements of A that are not
in B.

Theorem 2.13. Let A ∈ Rn×n be an invertible matrix, and A,B be subsets of
N = {1, 2, ..., n} such that their respective cardinalities |A| and |B| are both smaller
than n. Then

rank
(
A−1(A,B)

)
= rank (A(N \ B, N \ A)) + |A|+ |B| − n.

Proof. By permuting its rows and columns, the matrix A can be transformed into
a matrix A′ such that if we denote by B′ its inverse, they both can be partitioned
as in the nullity theorem in a way such that the upper left submatrix A′11 of A′
coincides with the submatrix A(N \ B, N \ A) of A and, consequently, the lower
right submatrix B′22 of B′ coincides with the submatrix B(A,B) of the inverse B of
A. Then, using the nullity theorem, we have

n(A′11) = n(B′22). (2.6)
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On the other hand, since A′11 is a matrix of dimension N \ B ×N \ A and B′22 has
dimension A× B, the following equalities hold:

n(A′11) = n− |A| − rank(A′11), (2.7)

n(B′22) = |B| − rank(B′22). (2.8)

From (2.6), (2.7), and (2.8), we end the proof of this theorem.

Corollary 2.14. Let A ∈ Rn×n be an invertible matrix, and A be a subset of N =
{1, 2, ..., n} such that its cardinality |A| is smaller than n. Then

rank
(
A−1(A, N \ A)

)
= rank (A(A, N \ A)) .

Proof. By choosing N \ B = A in Theorem 2.13, the result follows.

This last corollary states, in particular, that the ranks of all the submatrices
entirely located below or above the diagonal of an invertible matrix A will be the
same as the rank of the corresponding submatrices, in the same position, of the
inverse A−1.

Theorem 2.15 states the relation existing between the {nL, nU}-quasiseparable
matrices and their inverses.

Theorem 2.15. The inverse of an invertible {nL, nU}-quasiseparable matrix is
again an {nL, nU}-quasiseparable matrix.

Proof. This is a direct consequence of Corollary 2.14.

Theorem 2.15 establishes a key difference between quasiseparable matrices and
other classes of rank structured matrices, since the set of quasiseparable matrices
is closed under inversion. This property has important consequences in different
applications, as for instance, in the fast solution of linear systems whose coefficient
matrices are quasiseparable.

2.3 Representations
Structured matrices can often be represented by sets of parameters different than
the sets of their entries. As one would expect, these representations are especially
useful when they involve a much smaller number of parameters than the number
of entries of the matrix. In some cases like banded matrices, it is straightforward
to find such a representation, take, for instance, the set of all the entries of the
matrix that are non identically zero and organize them in a way that their position
in the matrix it is known, but, in general, representations are not always easy to
find. In Definition 2.16 (see [61, p. 56]) we will state what is exactly meant by a
representation of a class of matrices.
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Definition 2.16. Let V and W be vector spaces containing the sets V and W re-
spectively, and such that dim(V) ≤ dim(W). An element v ∈ V is said to be a
representation of another element w ∈ W if there exists a map r

r : V −→ W ,

such that
r(v) = w, and r(V) =W .

The map r is called a representation map of the set W.

It is important to remark that the definition of a representation involves its
existence not only for a single element w but for the whole given subset W . In
practical situations, the knowledge of a map s : W −→ V such that the map
r ◦ s = r(s) : W −→ W is bijective and r(s(w)) = w,∀w ∈ W , is also needed,
since this map will allow us to obtain the desired representation for any element
w ∈ W . We may also note from the previous definition that a representation of
a given element w ∈ W (consider for instance a matrix in a given matrix class)
may not be unique and, consequently, the choice of a representation for such class of
matrices will heavily depend in criteria such as the number of parameters used by the
representations and its stability with respect to the specific problem involving such
matrices that we would like to solve, etc. An extensive description of different useful
representation of low-rank structured matrices like semiseparable and quasiseparable
matrices (and many other classes) can be found in the book by Vandebril, van Barel
and Mastronardi [61, I.2, III.8.5].

In order to make Definition 2.16 clear, a representation for the very well known
class of Vandermonde matrices is given in Example 2.17.

Example 2.17. Let W ⊂ Rm×n be the set of all the Vandermonde matrices of size
m× n. Then, the map r : Rm −→W , such that:

r(α1, α2, . . . , αm) =


1 α1 α2

1 · · · αn−1
1

1 α2 α2
2 · · · αn−1

2

1 α3 α2
3 · · · αn−1

3
...

...
...
. . .

...
1 αm α2

m · · · αn−1
m

 , (2.9)

clearly satisfies the conditions in Definition 2.16 (recall that any m×n Vandermonde
matrix can be defined by the expression in the right-hand side of (2.9)). Therefore,
r can be considered as a representation map of the set W of Vandermonde matrices.
In addition, the map s described in the paragraph below Definition 2.16 can be easily
defined as the inverse of r, i.e., s = r−1.
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2.3.1 The quasiseparable representation for {1, 1}-quasisepa-
rable matrices

Theorem 2.18, stated for {1, 1}-quasiseparable matrices, is a particular case of a
theorem proved in [24] for {nL, nU}-quasiseparable matrices and shows how any
{1, 1}-quasiseparable matrix of size n×n can be represented with O(n) parameters
instead of its n2 entries. The reader can find the theorem for general {nL, nU}-
quasiseparable matrices in Section 2.3.3.

Theorem 2.18. A matrix A ∈ Rn×n is a {1, 1}-quasiseparable matrix if and only if
it can be parameterized in terms of the following set of 7n− 8 real parameters,

ΩQS = ({pi}ni=2, {ai}n−1
i=2 , {qi}n−1

i=1 , {di}ni=1, {gi}n−1
i=1 , {bi}n−1

i=2 , {hi}ni=2),

as follows:

A =



d1 g1h2 g1b2h3 · · · g1b2 . . . bn−1hn
p2q1 d2 g2h3 · · · g2b3 . . . bn−1hn

p3a2q1 p3q2 d3 · · · g3b4 . . . bn−1hn
p4a3a2q1 p4a3q2 p4q3 · · · g4b5 . . . bn−1hn

...
...

...
. . .

...
pnan−1an−2 . . . a2q1 pnan−1 . . . a3q2 pnan−1 . . . a4q3 · · · dn


,

or, in a more compact notation,

A =


d1

d2 gib
×
ijhj

pia
×
ijqj

. . .

dn

 ,
where a×ij = ai−1ai−2 · · · aj+1, for i−1 ≥ j+1, b×ij = bi+1bi+2 · · · bj−1, for i+1 ≤ j−1,
a×j+1,j = 1, and b×j,j+1 = 1 for j = 1, . . . , n− 1.

Let us denote by Qn ⊂ Rn×n the set of all {1, 1}-quasiseparable matrices of size
n × n. From Definition 2.16 and the previous theorem, the set of parameters ΩQS

is a representation of the matrix A ∈ Qn and therefore we call ΩQS a quasiseparable
representation of A. Note that this representation is not unique as we can see in
the following example.

Example 2.19. Let A be a {1, 1}-quasiseparable matrix of size 5× 5 and consider
a quasiseparable representation of A:

ΩQS = ({pi}5
i=2, {ai}4

i=2, {qi}4
i=1, {di}5

i=1, {gi}4
i=1, {bi}4

i=2, {hi}5
i=2).
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Then,

A =


d1 g1h2 g1b2h3 g1b2b3h4 g1b2b3b4h5

p2q1 d2 g2h3 g2b3h4 g2b3b4h5

p3a2q1 p3q2 d3 g3h4 g3b4h5

p4a3a2q1 p4a3q2 p4q3 d4 g4h5

p5a4a3a2q1 p5a4a3q2 p5a4q3 p5q4 d5

 ,
and for every real number α 6= 0, 1, we also have

A =


d1 g1h2 g1b2h3 g1b2b3h4 g1b2b3b4h5

(αp2)
q1
α d2 g2h3 g2b3h4 g2b3b4h5

(αp3)a2
q1
α (αp3)

q2
α d3 g3h4 g3b4h5

(αp4)a3a2
q1
α (αp4)a3

q2
α (αp4)

q3
α d4 g4h5

(αp5)a4a3a2
q1
α (αp5)a4a3

q2
α (αp5)a4

q3
α (αp5)

q4
α d5

 ,

and we obtain a different quasiseparable representation of A:

Ω′QS = ({αpi}5
i=2, {ai}4

i=2, {qi/α}
4
i=1 , {di}

5
i=1, {gi}4

i=1, {bi}4
i=2, {hi}5

i=2).

There are many other ways in which the quasiseparable representation may be not
unique.

It is worth to mention that the class of quasiseparable matrices is often defined
in terms of its representations. In [61, Ch. 2, Sec. 8.5], the reader can find an
extensive description of different useful representations for quasiseparable matrices
and for some other low-rank structured matrices.

Remark 2.20. There are many important subsets of {1, 1}-quasiseparable matri-
ces arising in applications as, for instance, semiseparable matrices, generator rep-
resentable semiseparable matrices, semiseparable plus diagonal matrices, and their
corresponding symmetric versions [61, Ch. 1]. Although these particular subsets of
matrices can be represented via the quasiseparable representation introduced in The-
orem 2.18, they also admit other “more compressed” representations, i.e., in terms
of less parameters, which are special instances of the quasiseparable representation.
Such compressed representations can be found in [61, Chs. 1 and 2] and are the
ones to be used in practice when working with these particular {1, 1}-quasiseparable
matrices. The formalism presented later in Chapters 4 and 5 of this thesis can be
directly applied to develop condition numbers with respect to these compressed repre-
sentations. These condition numbers would reflect faithfully the particular structures
of the subsets of matrices mentioned above and, therefore, would be smaller than the
condition numbers developed in Chapters 4 and 5, since they restrict the possible
perturbations in order to preserve the additional structures. For the sake of brevity,
we do not develop such condition numbers in this thesis.
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2.3.2 The Givens-vector representation for {1, 1}-quasisepa-
rable matrices

Another important representation for {1, 1}-quasiseparable matrices is the Givens-
vector representation introduced in [59]. This representation was introduced to
improve the numerical stability of fast matrix computations involving quasiseparable
matrices with respect to other representations, but a rigorous proof that this is
indeed the case has never been given. The results in this dissertation are a first
contribution to the solution of this problem (see Sections 4.3 and 5.5 for results on
the sensitivities of the solution of linear systems whose coefficient matrices are {1, 1}-
quasiseparable and of eigenvalues of {1, 1}-quasiseparable matrices, respectively).
The next theorem shows that this representation is able of representing the complete
class of {1, 1}-quasiseparable matrices (see [61, Sections 2.4 and 2.8]).

Theorem 2.21. A matrix A ∈ Rn×n is a {1, 1}-quasiseparable matrix if and only if
it can be parameterized in terms of the following set of parameters,

• {ci, si}n−1
i=2 , where (ci, si) is a pair of cosine-sine with c2

i + s2
i = 1 for every

i ∈ {2, 3, · · · , n− 1},

• {vi}n−1
i=1 , {di}ni=1, {ei}n−1

i=1 all of them independent real parameters,

• {ri, ti}n−1
i=2 , where (ri, ti) is a pair of cosine-sine with r2

i + t2i = 1 for every
i ∈ {2, 3, · · · , n− 1},

as follows:

A =

d1 e1r2 e1t2r3 · · · e1t2 . . . tn 2rn 1 e1t2 . . . tn 1

c2v1 d2 e2r3 · · · e2t3 . . . tn 2rn 1 e2t3 . . . tn 1

c3s2v1 c3v2 d3 · · · e3t4 . . . tn 2rn 1 e3t4 . . . tn 1

...
...

...
. . .

...
...

cn 1sn 2 . . . s2v1 cn 1sn 2 . . . s3v2 cn 1sn 2 . . . s4v3 · · · dn 1 en 1

sn 1sn 2 . . . s2v1 sn 1sn 2 . . . s3v2 sn 1sn 2 . . . s4v3 · · · vn 1 dn


.

This representation is denoted by ΩGV
QS , i.e.,

ΩGV
QS :=

(
{ci, si}n−1

i=2 , {vi}n−1
i=1 , {di}ni=1, {ei}n−1

i=1 , {ri, ti}n−1
i=2

)
.

From Theorems 2.18 and 2.21, it is obvious that the Givens-vector representation
is a particular case of the quasiseparable representation for {1, 1}-quasiseparable
matrices by considering the following relations between the parameters in Theorems
2.18 and 2.21, respectively: {pi, ai}n−1

i=2 = {ci, si}n−1
i=2 , {qi}n−1

i=1 = {vi}n−1
i=1 , {di}ni=1 =

{di}ni=1, {gi}n−1
i=1 = {ei}n−1

i=1 , {bi, hi}n−1
i=2 = {ti, ri}n−1

i=2 , and pn = hn = 1. This fact can
be observed better by comparing the expression in Example 2.19 and the expression
in the following 5× 5 example.
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Example 2.22. Let A ∈ R5×5 be a {1, 1}-quasiseparable matrix, and let

ΩGV
QS :=

(
{ci, si}n−1

i=2 , {vi}n−1
i=1 , {di}ni=1, {ei}n−1

i=1 , {ri, ti}n−1
i=2

)
be a Givens-vector representation of A. Then,

A =


d1 e1r2 e1t2r3 e1t2t3r4 e1t2t3t4

c2v1 d2 e2r3 e2t3r4 e2t3t4
c3s2v1 c3v2 d3 e3r4 e3t4

c4s3s2v1 c4s3v2 c4v3 d4 e4

s4s3s2v1 s4s3v2 s4v3 v4 d5

 .
Note that the Givens-vector representation can be made unique if ci and ri are

taken to be nonnegative numbers (if ci = 0, take si = 1 and if ri = 0, take ti = 1)
[61, p.76].

2.3.3 The quasiseparable representation for {nL, nU}-quasisep-
arable matrices

The representation presented in Section 2.3.1 has a nice extension towards the more
general class of the {nL, nU}-quasiseparable matrices, as stated in the next theorem
from [24].

Theorem 2.23. A matrix A is an {nL, nU}-quasiseparable matrix if and only if it
can be parameterized in terms of the set of parameters defined as the entries of the
following matrices:

ΩQS := ({pi}ni=2, {ai}n−1
i=2 , {qj}n−1

j=1 , {di}ni=1, {gi}n−1
i=1 , {bi}n−1

i=2 , {hj}nj=2),

where:

{di}ni=1 ⊂ R1×1,

{pi}ni=2 ⊂ R1×nL , {ai}n−1
i=2 ⊂ RnL×nL , {qj}n−1

j=1 ⊂ RnL×1,

{gi}n−1
i=1 ⊂ R1×nU , {bi}n−1

i=2 ⊂ RnU×nU , {hj}nj=2 ⊂ RnU×1,

as follows:

A =



d1 g1h2 g1b2h3 · · · g1b2 . . . bn−1hn
p2q1 d2 g2h3 · · · g2b3 . . . bn−1hn

p3a2q1 p3q2 d3 · · · g3b4 . . . bn−1hn
p4a3a2q1 p4a3q2 p4q3 · · · g4b5 . . . bn−1hn

...
...

...
. . .

...
pnan−1an−2 . . . a2q1 pnan−1 . . . a3q2 pnan−1 . . . a4q3 · · · dn


.

(2.10)
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In a more compact notation, we can write:

A =


d1

d2 gib
×
ijhj

pia
×
ijqj

. . .

dn

 ,
where a×ij = ai−1ai−2 · · · aj+1, for i−1 ≥ j+1, b×ij = bi+1bi+2 · · · bj−1, for i+1 ≤ j−1,
and a×j+1,j = 1, b×j,j+1 = 1 for j = 1, 2, . . . , n− 1.



Chapter 3

Principles of condition numbers

This chapter is devoted to the definitions of the condition numbers that will be used
troughout the rest of this thesis and to establish some of their main properties. In
the first part of this chapter (Section 3.1), we study condition numbers for linear
systems, while in the second part (Section 3.2) we study condition numbers for
eigenvalues. The results in Sections 3.1.2 and 3.2.2 are original contributions of the
author and will be respectively used in Chapters 4 and 5. More precisely, the most
important results, in the context of this thesis, of this chapter are given in Theorems
3.10 and 3.25, where the expressions for the respective condition numbers for the
solution of linear systems and for eigenvalues are deduced with respect to relative
perturbations on the parameters generating the matrices involved in those problems.

3.1 Basics on condition numbers for linear systems

This section contains two subsections in order to separate the already known results
from the new ones. Section 3.1.1 includes the standard definitions and results about
unstructured condition numbers for the solution of linear systems, while in Section
3.1.2 we present some new definitions and results for structured condition num-
bers for the solution of linear systems whose coefficient matrices are differentiable
functions of a set of parameters.

3.1.1 Standard results

We start this section by presenting some well-known results about condition numbers
for the solution of a linear system of equations. Note first that any perturbation of
a matrix A ∈ Rn×n can be expressed as a sum A + δA, where δA ∈ Rn×n is called
the perturbation matrix, and let us define subordinate norms as in [41, Sec. 6.2].

Definition 3.1. For any vector norm ‖ · ‖ on Cn, the corresponding subordinate

25



26 CHAPTER 3. PRINCIPLES OF CONDITION NUMBERS

matrix norm on Cm×n is defined by

‖A‖ = max
x6=0

‖Ax‖
‖x‖

,

or, equivalently,
‖A‖ = max

‖x‖=1
‖Ax‖,

where x ∈ Cn and A ∈ Cm×n.

Associated with a normwise backward error we have the condition number in
Definition 3.2 [41, Sec. 7.1], valid for any vector norm and the corresponding sub-
ordinate matrix norm.

Definition 3.2. Let Ax = b, where A ∈ Rn×n is nonsingular, and 0 6= x ∈ Rn.
Then, for E ∈ Rn×n and f ∈ Rn, we define

κE,f (A,x) := lim
η→0

sup

{
‖δx‖
η‖x‖

: (A+ δA) (x + δx) = b + δb, ‖δA‖ ≤ η‖E‖,

‖δb‖ ≤ η‖f‖

}
.

Observe that κE,f (A,x) is a normwise relative condition number, i.e., it measures
the relative sensitivity of the solution x of the linear system Ax = b with respect to
relative normwise perturbations of the matrix and the right-hand side (note that,
in this case, the perturbations are measured against the tolerances E and f). This
condition number has the expression presented in the following theorem proved in
[41, Sec. 7.1].

Theorem 3.3. Under the same hypotheses of Definition 3.2,

κE,f (A,x) =
‖A−1‖‖f‖
‖x‖

+ ‖A−1‖‖E‖.

Recall that the usual matrix condition number is given by κ(A) := ‖A‖‖A−1‖
and note that if we take E = A and f = b, then we have κ(A) ≤ κE,f (A,x) ≤ 2κ(A),
and therefore they are numerically equivalent. On the other hand, it is well-known
that considering normwise perturbations of the matrix A and the vector b may lead
to pessimistic bounds on the forward errors, since there are matrices and vectors for
which we may have a small relative normwise perturbation that produces some large
relative perturbations over their small entries, and that may affect the zero pattern
of the matrix or the vector (see, for instance, the numerical example in [41, pp.
121,124]). Therefore, it makes sense to consider componentwise perturbations and
the corresponding componentwise condition number. We denote by |A| the matrix
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whose entries are the absolute values of the entries of A (i.e., |A|ij := |Aij|) and
we adopt a similar notation for vectors. In addition, inequalities |A| ≤ |B| mean
|Aij| ≤ |Bij| for all i, j. Definition 3.4 and Theorem 3.5 can both be found in [41,
Sec. 7.2], together with a brief discussion about how to choose the tolerances E and
f .

Definition 3.4. Let Ax = b, where A ∈ Rn×n is nonsingular, and 0 6= x ∈ Rn.
Then, for 0 ≤ E ∈ Rn×n and 0 ≤ f ∈ Rn, we define the relative componentwise
condition number as

condE,f (A,x) := lim
η→0

sup

{
‖δx‖∞
η‖x‖∞

: (A+ δA) (x + δx) = b + δb, |δA| ≤ ηE,

|δb| ≤ ηf

}
.

Theorem 3.5. Under the same hypotheses of Definition 3.4,

condE,f (A,x) =
‖|A−1|E|x|+ |A−1|f‖∞

‖x‖∞
.

A proof of this theorem is provided in [41, Sec. 7.2], but it can be seen as a
consequence of the more general Theorem 3.10 that we introduce in Section 3.1.2,
and, so, we will present a proof of Theorem 3.5 at the end of that section.

From the expression in Theorem 3.5, if we consider E = |A| and f = |b|, then it
is straightforward to prove that the condition number cond|A|,|b|(A,x) is invariant
under row scaling. This useful property is stated in the following proposition.

Proposition 3.6. Let Ax = b, where A ∈ Rn×n is nonsingular and 0 6= x ∈ Rn,
and let K ∈ Rn×n be an invertible diagonal matrix. Then, for KAx = Kb, we have

cond|A|,|b|(A,x) = cond|KA|,|Kb|(KA,x).

3.1.2 Condition numbers for parameterized linear systems

Since many interesting classes of matrices can be represented by sets of parameters
different from their entries (see Theorem 2.18, for example), we generalize the defini-
tions in Section 3.1.1 to these representations and, following the ideas in [32, 42, 43],
we will focus on componentwise relative condition numbers for representations.

Definition 3.7. Let Ax = b, where A ∈ Rn×n is a nonsingular matrix whose en-
tries are differentiable functions of a vector of parameters Ω = (ω1, ω2, . . . , ωm)T ∈
Rm, this is denoted by A(Ω), and 0 6= x ∈ Rn. Let 0 ≤ f ∈ Rn and E =
(e1, e2, . . . , em)T ∈ Rm with nonnegative entries. Then, we define

condE,f (A(Ω),x) := lim
η→0

sup

{
‖δx‖∞
η‖x‖∞

: (A(Ω + δΩ)) (x + δx) = b + δb,
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|δΩ| ≤ ηE, |δb| ≤ ηf

}
.

The main goal of this section is to find an explicit expression for the componen-
twise relative condition number with respect to a general representation introduced
in Definition 3.7. For such a purpose we will use differential calculus and we will
need Lemma 3.8. Recall ei denotes the i-th vector of the canonical basis of Rn.

Lemma 3.8. Let Ax = b, where A ∈ Rn×n is an invertible matrix whose entries
are differentiable functions of a vector of real parameters Ω = (ω1, ω2, . . . , ωm)T , and
0 6= x ∈ Rn. Then, the following equalities hold:

(a)
∂A−1

∂ωk
= −A−1 ∂A

∂ωk
A−1, for k ∈ {1, 2, . . . ,m},

(b)
∂x

∂bi
= A−1ei, for i ∈ {1, 2, . . . , n},

(c)
∂x

∂ωk
= −A−1 ∂A

∂ωk
x, for k ∈ {1, 2, . . . ,m}.

Proof. (a) Derivating in both sides of AA−1 = In, we get

∂A

∂ωk
A−1 + A

∂A−1

∂ωk
= 0.

(b) It follows trivially from derivating x = A−1b.

(c) From derivating x = A−1b and using (a), we obtain

∂x

∂ωk
=
∂A−1

∂ωk
b = −A−1 ∂A

∂ωk
A−1b = −A−1 ∂A

∂ωk
x.

Remark 3.9. In Lemma 3.8, we have used that the entries of A−1 are also differ-
entiable functions of (ω1, . . . , ωm). This follows from the facts that (1) each entry of
A−1 is a quotient of a cofactor of A divided by det(A) and that (2) products, sums,
and quotients of differentiable functions are differentiable whenever the denomina-
tors are not zero.

In Theorem 3.10, we provide the desired explicit expression of the componentwise
relative condition number introduced in Definition 3.7.
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Theorem 3.10. Let Ax = b, where A ∈ Rn×n is an invertible matrix whose entries
are differentiable functions of a vector of real parameters Ω = (ω1, ω2, . . . , ωm)T and
0 6= x ∈ Rn. Let 0 ≤ f ∈ Rn and E = (e1, e2, . . . , em)T ∈ Rm with nonnegative
entries. Then,

condE,f (A(Ω),x) =

∥∥∥∥|A−1|f +
∑m

k=1

∣∣∣∣A−1 ∂A

∂ωk
x

∣∣∣∣ ek∥∥∥∥
∞

‖x‖∞
.

Proof. Since the entries of the matrix A are differentiable functions of the parameters
in Ω and, from x = A−1b, it is clear that x is a function of Ω and b, we can use
differential calculus to obtain the following result:

δx =
n∑
i=1

∂x

∂bi
δbi +

m∑
k=1

∂x

∂ωk
δωk +O(‖(δΩ, δb)‖2),

where ‖(δΩ, b)‖ := max{‖δΩ‖∞, ‖δb‖∞}. Using (b) and (c) from Lemma 3.8 in the
previous equation, we obtain:

δx =
n∑
i=1

(
A−1ei

)
δbi +

m∑
k=1

(
−A−1 ∂A

∂ωk
x

)
δωk +O(‖(δΩ, δb)‖2). (3.1)

From (3.1), using standard properties of the∞-norm and the inequalities |δb| ≤
ηf and |δΩ| ≤ ηE, we get

‖δx‖∞ ≤ η

∥∥∥∥∥
n∑
i=1

∣∣A−1ei
∣∣ fi +

m∑
k=1

∣∣∣∣A−1 ∂A

∂ωk
x

∣∣∣∣ ek
∥∥∥∥∥
∞

+O(‖(δΩ, δb)‖2)

= η

∥∥∥∥∥∣∣A−1
∣∣f +

m∑
k=1

∣∣∣∣A−1 ∂A

∂ωk
x

∣∣∣∣ ek
∥∥∥∥∥
∞

+O(‖(δΩ, δb)‖2). (3.2)

Then, if η tends to zero, from (3.2) and from Definition 3.7, it is straightforward to
get

condE,f (A(Ω),x) ≤

∥∥∥∥∥∣∣A−1
∣∣f +

m∑
k=1

∣∣∣∣A−1 ∂A

∂ωk
x

∣∣∣∣ ek
∥∥∥∥∥
∞

‖x‖∞
. (3.3)

On the other hand, if we consider the perturbations:

δb = ηDf ,

where D is a diagonal matrix such that D(j, j) = sign (A−1(l, j)), for j = 1, 2, . . . , n,
and

δωk = −η
[
sign

(
A−1 ∂A

∂ωk
x

)
l

]
ek, for k = 1, . . . ,m,
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where l is such that∥∥∥∥∥∣∣A−1
∣∣f +

m∑
k=1

∣∣∣∣A−1 ∂A

∂ωk
x

∣∣∣∣ ek
∥∥∥∥∥
∞

=

(∣∣A−1
∣∣f +

m∑
k=1

∣∣∣∣A−1 ∂A

∂ωk
x

∣∣∣∣ ek
)
l

,

we can obtain, from (3.1) and from Definition 3.7, the desired equality in (3.3).

As a consequence of Theorem 3.10 we can deduce the very well-known expres-
sion in Theorem 3.5 for the condition number condE,f (A,x) by considering Ω as a
vectorization of the entries of A. Therefore, we conclude this section by providing
its proof.

Proof. (of Theorem 3.5 ) Note first that, in this case, we can rewrite the expression
in Theorem 3.10 as:

condE,f (A,x) =

∥∥∥∥∥|A−1|f +
n∑

j,k=1

∣∣∣∣A−1 ∂A

∂ajk
x

∣∣∣∣ ejk
∥∥∥∥∥
∞

‖x‖∞
.

Then, since it is obvious that ∂A/∂ajk = eje
T
k , we have:

n∑
j,k=1

∣∣∣∣A−1 ∂A

∂ajk
x

∣∣∣∣ ejk =
n∑

j,k=1

∣∣A−1(:, j)
∣∣ |xk| ejk =

n∑
k=1

(
n∑
j=1

∣∣A−1(:, j)
∣∣ ejk) |xk|

=
n∑
k=1

∣∣A−1
∣∣E(:, k) |xk| =

∣∣A−1
∣∣ n∑
k=1

E(:, k) |xk| =
∣∣A−1

∣∣E |x| ,
and the proof follows trivially.

3.2 Basics on eigenvalue condition numbers

In this section we will present some well-known and some not so well-known results
about eigenvalue condition numbers that are fundamental in Chapters 5 and 6 of
this dissertation. In particular, in Section 3.2.1, we recall some standard results and
definitions that are well described in the literature. On the other hand, Section 3.2.2
is devoted to the more general eigenvalue condition numbers for parameterizations,
and it includes some new results for their computation.

We will only consider simple eigenvalues since for a simple eigenvalue λ with left
and right eigenvectors y and x respectively, we have y∗x 6= 0.
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3.2.1 Standard results

Theorem 3.11 and its Corollary 3.12 can be found in [56]. They are the fundamental
results from which all the other results in this section are derived.

The results in this section are valid for complex matrices. Note that any per-
turbation of a matrix M ∈ Cn×n can be expressed as the sum M + δM , where
δM ∈ Cn×n is called the perturbation matrix.

Theorem 3.11. Let λ be a simple eigenvalue of M ∈ Cn×n, with left and right
eigenvectors y and x, respectively. Then, for any perturbation δM ∈ Cn×n of M ,
there is a unique eigenvalue λ̃ of M + δM such that

λ̃ = λ+
y∗(δM)x

y∗x
+O(‖δM‖2), (3.4)

where ‖δM‖ is any norm of δM .

Corollary 3.12. Let λ be a simple eigenvalue of M ∈ Cn×n with left and right
eigenvectors y = (y1, . . . , yn)T and x = (x1, . . . , xn)T , respectively. Then λ is a
differentiable function of the entries mij of M . Moreover,

∂λ

∂mij

(M) =
yixj
y∗x

.

On the other hand, in 1965, in [65], Wilkinson defined the notion of a condition
number for simple eigenvalues. In the modern notation used, for instance, in [42],
the Wilkinson condition number is defined as in Definition 3.13.

Definition 3.13. Let λ be a simple eigenvalue of M ∈ Cn×n. Then the Wilkinson
condition number of λ, denoted by κλ, is defined as

κλ := lim
η→0

sup

{
|δλ|
η

: (λ+ δλ) is an eigenvalue of (M + δM), ‖δM‖2 ≤ η

}
.

Based on this definition, if a left eigenvector and a right eigenvector of a simple
eigenvalue λ of M ∈ Cn×n are known, it is easy to compute the Wilkinson condition
number of λ [42] as it is proved in the next theorem.

Theorem 3.14. Let λ be a simple eigenvalue of M ∈ Cn×n, with left eigenvector
y ∈ Cn and right eigenvector x ∈ Cn. Then

κλ =
‖y‖2‖x‖2

|y∗x|
=

1

cos∠(y,x)
. (3.5)



32 CHAPTER 3. PRINCIPLES OF CONDITION NUMBERS

Proof. Observe that we can rewrite equation (3.4) as

δλ =
y∗δMx

y∗x
+O(‖δM‖2

2), (3.6)

where we have considered the 2-norm, since this is the norm used in Definition 3.13
for κλ. Then, from Definition 3.13, we get

|δλ| ≤ ‖y‖2‖x‖2

|y∗x|
η +O(η2)⇒ |δλ|

η
≤ ‖y‖2‖x‖2

|y∗x|
+O(η)⇒ κλ ≤

‖y‖2‖x‖2

|y∗x|
. (3.7)

In order to prove the first equality in (3.5) we consider

δM =
η

‖y‖2‖x‖2

yx∗,

and note that
‖δM‖2 =

η

‖y‖2‖x‖2

‖y‖2‖x‖2 = η.

Then, from (3.6), we have for this particular δM

δλ =
η‖y‖2

2‖x‖2
2

‖x‖2‖y‖2(y∗x)
+O(η2) =

η‖y‖2‖x‖2

y∗x
+O(η2),

from where we obtain ∣∣∣∣δλη
∣∣∣∣ =
‖y‖2‖x‖2

|y∗x|
+O(η).

Finally, by making η to tend to 0 in the expression above and from the definition of
the Wilkinson condition number we get

κλ ≥
‖y‖2‖x‖2

|y∗x|
. (3.8)

The desired result follows from (3.7) and (3.8), since the last equality in (3.5) is a
very well known fact from basic linear algebra.

It is obvious, from its definition, that the Wilkinson condition number is an
absolute-absolute normwise condition number, this means that it measures the ab-
solute sensitivity of a simple eigenvalue with respect to absolute normwise perturba-
tions of the matrix. In [10] the standard Wilkinson condition number was replaced
by a relative-relative condition number, which measures a relative variation of the
eigenvalues with respect to relative normwise perturbations of the matrix.

Definition 3.15. Let λ 6= 0 be a simple eigenvalue of M ∈ Cn×n. Then we denote
by κrelλ the relative Wilkinson condition number of λ defined as

κrelλ := lim
η→0

sup

{
|δλ|
η|λ|

: (λ+ δλ) is an eigenvalue of (M + δM), ‖δM‖2 ≤ η‖M‖2

}
.
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As before, this relative condition number can also be computed using a nice
expression as stated in Theorem 3.16. This theorem can be proved in an almost
identical way to Theorem 3.14 but, in this thesis, we prefer to use an alternative
proof based on using the definitions of the condition numbers and the previous result
for computing the Wilkinson condition number.

Theorem 3.16. Let λ 6= 0 be a simple eigenvalue of M ∈ Cn×n with left eigenvector
y ∈ Cn and right eigenvector x ∈ Cn. Then

κrelλ =
‖y‖2‖x‖2

|y∗x|
‖M‖2

|λ|
= κλ

‖M‖2

|λ|
.

Proof. Note that by considering the change of variable η′ = η‖M‖2 on the expression
in Definition 3.15 for the relative Wilkinson condition number, we have

κrelλ = lim
η′→0

sup

{
‖M‖2|δλ|
η′|λ|

: (λ+ δλ) is an eigenvalue of (M + δM), ‖δM‖2 ≤ η′
}

=
‖M‖2

|λ|
lim
η′→0

sup

{
|δλ|
η′

: (λ+ δλ) is an eigenvalue of (M + δM), ‖δM‖2 ≤ η′
}

= κλ
‖M‖2

|λ|
.

Following the ideas in [32], next we introduce a relative-relative componentwise
condition number, that is, a measure of the relative variation of an eigenvalue with
respect to the largest relative perturbation of each of the nonzero entries of the
matrix. As in Section 3.1.1, we denote by |M | ∈ Cn×n the matrix whose entries are
the absolute values of the entries of M (i.e., |M |ij := |Mij|) and we adopt a similar
notation for vectors.

Definition 3.17. Let λ 6= 0 be a simple eigenvalue of M ∈ Cn×n. We define the
relative componentwise condition number of λ as

cond(λ;M) := lim
η→0

sup

{
|δλ|
η|λ|

: (λ+ δλ) is an eigenvalue of (M + δM),

|δM | ≤ η|M |
}
.

The next theorem, stated for the first time in [37], gives an expression for com-
puting cond(λ;M) and it can be seen as a consequence of the more general Theorem
3.23 we prove in Section 3.2.2, so we present its proof after Theorem 3.23.
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Theorem 3.18. Let λ 6= 0 be a simple eigenvalue with left eigenvector y and right
eigenvector x of the matrix M ∈ Cn×n. Then

cond(λ;M) =
|y∗‖M‖x|
|λ‖y∗x|

. (3.9)

A useful property that is easy to prove about this condition number is that

cond(λ;M) ≤
√
nκrelλ ,

and, in many important situations, cond(λ;M) can be much smaller than κrelλ .
For example, if we consider an entrywise positive matrix P , then there exists a
positive eigenvalue r of P , known as the Perron-root, which is strictly greater in
absolute value than any other eigenvalue in the spectrum of P . Moreover, there
exist entrywise positive left and right eigenvectors yr and xr of λ. Thus, it is
obvious that

cond(λ;P ) =
y∗rPxr
λy∗rxr

= 1,

meanwhile, κrelλ can be arbitrary large [30].
Another important fact about cond(λ;M) is that it is invariant under diagonal

similarity while Wilkinson and relative Wilkinson condition numbers are not.

Lemma 3.19. For any matrix K invertible and diagonal,

cond(λ;KMK−1) = cond(λ;M).

Proof. Let G = KMK−1. Note that if y and x are left and right eigenvectors
of the matrix M associated to the simple eigenvalue λ, then y∗K = y∗K−1 and
xK = Kx are the corresponding left and right eigenvectors of G associated to λ.
Furthermore, since K is diagonal, no addition occurs in KMK−1 and we have that
|KMK−1| = |K||M ||K−1|. Consequently, |y∗KxK | = |y∗K−1Kx| = |y∗x|, and

cond(λ;G) =
|y∗K ||G||xK |
|λ||y∗KxK |

=
|y∗K ||KMK−1||xK |

|λ||y∗x|
=
|y∗||M ||x|
|λ||y∗x|

= cond(λ;M).

3.2.2 Eigenvalue condition numbers for parameterized
matrices

As we have already commented, many interesting classes of matrices can be rep-
resented by sets of parameters different from its entries, whenever the entries are
functions of certain parameters. Widely known examples include Cauchy, Vander-
monde, and Toeplitz matrices [38, 41], among many others, and also the quasisep-
arable matrices considered in this thesis [24, 61]. This motivates us to extend the
definitions in the previous section to more general representations and to focus on
relative componentwise eigenvalue condition numbers for representations.
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Definition 3.20. Let M ∈ Cn×n be a matrix whose entries are differentiable func-
tions of a vector of parameters Ω = (ω1, ω2, . . . , ωN)T ∈ CN . This is denoted by
M(Ω). Let λ 6= 0 be a simple eigenvalue of M(Ω) with left eigenvector y and right
eigenvector x. Then define

cond(λ,M ; Ω) := lim
η→0

sup

{
|δλ|
η|λ|

: (λ+ δλ) is an eigenvalue of M(Ω + δΩ),

|δΩ| ≤ η|Ω|
}
.

If the matrix M is clear from the context, then we will usually denote by cond(λ; Ω)
the condition number cond(λ,M ; Ω).

In order to find an explicit formula that allows us to calculate cond(λ; Ω), as it
can be done with cond(λ;M), the next definitions are convenient.

Definition 3.21. Let M ∈ Cn×n be a matrix whose entries are differentiable func-
tions of a vector of parameters Ω = (ω1, ω2, . . . , ωN)T ∈ CN . Let λ 6= 0 be a simple
eigenvalue of M(Ω) with left eigenvector y and right eigenvector x. We define the
relative gradient of λ with respect to Ω as the vector:

relgradΩ(λ) :=

(
ω1

λ

∂λ

∂ω1

, . . . ,
ωN
λ

∂λ

∂ωN

)T
and the relative perturbation of Ω as the vector

rel δΩ :=

(
δω1

ω1

, . . . ,
δωN
ωN

)T
,

where if wi = 0 for some i, then we define δwi/wi ≡ 0 in agreement with Definition
3.20.

Taking into account our goals, the main result of this section is given in Theorem
3.23. But for proving that theorem, we will need the next proposition, which will also
play an important role by itself in calculating the componentwise relative eigenvalue
condition number for quasiseparable matrices with respect to parameters.

Proposition 3.22. Let M ∈ Cn×n be a matrix whose entries are differentiable
functions of a vector of parameters Ω = (ω1, ω2, . . . , ωN)T ∈ CN . This is denoted
by M(Ω). Let λ be a simple eigenvalue of M(Ω) with left eigenvector y and right
eigenvector x. Then

∂λ

∂ωi
=

1

y∗x

(
y∗
∂M(Ω)

∂ωi
x

)
, i ∈ {1, ..., N}. (3.10)
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Proof. Compute explicitly the partial derivative of M(Ω)x = λx to get

∂M(Ω)

∂ωi
x +M(Ω)

∂x

∂ωi
=

∂λ

∂ωi
x + λ

∂x

∂ωi
,

then, we multiply on the left the last equation by y∗ and cancel out equal terms to
find

y∗
∂M(Ω)

∂ωi
x =

∂λ

∂ωi
y∗x,

which completes the proof.

Theorem 3.23. Under the same hypotheses of Definition 3.20:

cond(λ; Ω) =
N∑
i=1

∣∣∣∣ωiλ ∂λ

∂ωi

∣∣∣∣ = ‖relgradΩ(λ)‖1 (3.11)

and
ωi
λ

∂λ

∂ωi
=

1

λ(y∗x)
y∗
(
ωi
∂M(Ω)

∂ωi

)
x, for i = 1, . . . , N. (3.12)

Proof. We can form the absolute gradient vector by considering all the partial deriva-
tives of λ with respect to ωi:

gradΩ(λ) =

(
∂λ

∂ω1

, . . . ,
∂λ

∂ωk
, . . . ,

∂λ

∂ωN

)T
,

and, for infinitesimal absolute perturbations, δΩ := (δω1, . . . , δωk, . . . , δωN)T , we
have

δλ = gradΩ(λ)T · δΩ + higher order terms (h.o.t). (3.13)

Since, according to Definition 3.20, δωi = 0 whenever ωi = 0, following the conven-
tion in Definition 3.21, we rewrite (3.13) as

δλ

λ
=

(
ω1

λ

∂λ

∂ω1

, . . . ,
ωN
λ

∂λ

∂ωN

)
·
(
δω1

ω1

, . . . ,
δωN
ωN

)T
+ (h.o.t), (3.14)

which can be rewritten in the notation from Definition 3.21 as

δλ

λ
= relgradΩ(λ)T · rel δΩ + (h.o.t). (3.15)

Note that |δΩ| ≤ η|Ω| implies |rel δΩ| ≤ η(1, 1, . . . , 1)T , where 0 < η � 1. Thus,
||rel δΩ||∞ ≤ η, and by applying the Hölder inequality (|uTv| ≤ ||u||1||v||∞) in
equation (3.15), we obtain∣∣∣∣δλλ

∣∣∣∣ ≤ ||relgradΩ(λ)||1||rel δΩ||∞ + (h.o.t.) ≤ η||relgradΩ(λ)||1 + (h.o.t.). (3.16)



3.2. E. C. N. FOR PARAMETERIZED MATRICES 37

From standard properties of norms (see [41, Ch. 6]), there exist particular vectors
rel δΩ with infinity norm η such that |relgradΩ(λ)T ·rel δΩ| = ‖relgradΩ(λ)‖1‖rel δΩ‖∞.
Hence, for these vectors rel δΩ, we have∣∣∣∣δλλ

∣∣∣∣ = ||relgradΩ(λ)||1||rel δΩ||∞ + (h.o.t.) = η||relgradΩ(λ)||1 + (h.o.t.). (3.17)

From (3.16), (3.17) and Definition 3.20 we prove immediately that if λ 6= 0, then
(3.11) holds. Equation (3.12) follows from Proposition 3.22.

Next, we prove Theorem 3.18 as a particular case of Theorem 3.23, when the
representation is given by the entries of M themselves (i.e., Ω = (mij), with the
entries of M written as a long vector). In this case,

mij
∂M

∂mij

= mijeiej
T ,

where ei and ej are the respective i-th and jth canonical vectors in Cn. Then, we
can rewrite equations (3.12) and (3.11), respectively, as

mij

λ

∂λ

∂mij

=
1

λ(y∗x)
ȳimijxj,

cond(λ;M) =
n∑

i=1,j=1

1

|λ||(y∗x)|
|ȳi||mij||xj| =

|y∗||M ||x|
|λ||y∗x|

,

which is Theorem 3.18.
In this section, for practical purposes and in order to keep consistency with the

results presented in [32], we have only considered, so far, relative perturbations
with respect to the parameters in the representation Ω. Nevertheless, if we consider
relative perturbations on the parameters in Ω but with respect to a general vector
of parameters E we obtain the more general condition number in Definition 3.24
and the consequent expression for its computation given in Theorem 3.25.

Definition 3.24. Let M ∈ Cn×n be a matrix whose entries are differentiable func-
tions of a vector of parameters Ω = (ω1, ω2, . . . , ωN)T ∈ CN . This is denoted by
M(Ω). Let E = (e1, e2, . . . , eN)T ∈ RN with nonnegative entries and λ 6= 0 be a
simple eigenvalue of M(Ω) with left eigenvector y and right eigenvector x. Then
define

condE(λ,M ; Ω) := lim
η→0

sup

{
|δλ|
η|λ|

: (λ+ δλ) is an eigenvalue of M(Ω + δΩ),

|δΩ| ≤ ηE

}
.

If the matrix M is clear from the context, then we will usually denote by condE(λ; Ω)
the condition number condE(λ,M ; Ω).
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Theorem 3.25. Under the same hypotheses of Definition 3.24:

condE(λ; Ω) =
1

|λ (y∗x)|

N∑
i=1

∣∣∣∣y∗(∂M(Ω)

∂ωi

)
x

∣∣∣∣ ei. (3.18)

Proof. Since λ is a differentiable function of the entries of the matrix M , and those
entries are differentiable functions of the parameters in Ω, we have that λ is a
differentiable function of the parameters in Ω, and, using differential calculus, we
have:

δλ =
N∑
i=1

∂λ

∂ωi
δωi + higher order terms (h.o.t),

and therefore:

δλ

λ
=

N∑
i=1

(
ωi
λ

∂λ

∂ωi

)
δωi
ωi

+ (h.o.t), (3.19)

where even in the case ωi = 0 we consider formally
ωi
ωi

= 1.

From (3.19), using equation (3.12) from Theorem 3.23, standard properties of
the absolute value, and the inequality |δΩ| ≤ ηE, we get∣∣∣∣δλλ

∣∣∣∣ ≤ η
N∑
i=1

∣∣∣∣ 1

λ(y∗x)
y∗
(
ωi
∂M(Ω)

∂ωi

)
x

∣∣∣∣ ∣∣∣∣ eiωi
∣∣∣∣+ (h.o.t). (3.20)

Then, if η tends to zero, from (3.20) and from Definition 3.24, it is straightforward
to get

condE(λ; Ω) ≤ 1

|λ (y∗x)|

N∑
i=1

∣∣∣∣y∗(∂M(Ω)

∂ωi

)
x

∣∣∣∣ei. (3.21)

On the other hand, if we consider the perturbations:

δωi = η

[
sign

(
1

λ(y∗x)
y∗
(
ωi
∂M(Ω)

∂ωi

)
x

)]
ei, for i = 1, . . . , N,

we can obtain, from (3.19) and from Definition 3.24, the desired equality in (3.21).

Remark 3.26. It is obvious that Theorem 3.23 can be seen as a particular case of
Theorem 3.25 when E = Ω, but since this is the most natural, and important in
practice, choice for E, and the proof of Theorem 3.25 has the same flavor of the
proof of Theorem 3.10, we have stated and proved Theorem 3.23 independently in
order to provide an alternative proof using properties of norms, scalar products, and
the notation in Definition 3.21, which we consider useful for future tasks.



Chapter 4

Structured condition numbers for
linear systems with parameterized
quasiseparable coefficient matrices

In this chapter we study condition numbers for the solution of a linear system of
equations whose coefficient matrix is {1, 1}-quasiseparable with respect to relative
componentwise perturbations on the parameters in the quasiseparable and in the
Givens-vector representations of the {1, 1}-quasiseparable coefficient matrix. Sec-
tions 4.1, 4.2, 4.3 and 4.4 include our original contributions for these condition num-
bers. In particular, in Sections 4.1 and 4.2 we provide expressions for the respective
condition numbers in the quasiseparable and the Givens-vector representations (see
Theorems 4.2 and 4.11 respectively), and prove in Proposition 4.5 that the struc-
tured condition number in the quasiseparable representation can not be much larger
than the unstructured standard one but it can be much smaller as we have observed
in our numerical experiments described in Section 4.5. In Section 4.3, we compare
these condition numbers and prove that the Givens-vector representation is a more
stable representation (see Theorem 4.13) for the solution of linear systems since
produces smaller condition numbers, but that the differences between the respective
structured condition numbers can not be too large (see Theorem 4.16) and therefore
both representations can be considered numerically equivalent. In Section 4.4, it is
shown how to estimate both condition numbers via an effective condition number
which can be computed fast, i.e., in O(n) operations, as proved in Proposition 4.20.

39
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4.1 Condition number of the solution of {1, 1}-quasi-
separable linear systems in the quasiseparable
representation

Taking into account that our goal is to obtain explicit expressions of structured con-
dition numbers for the solution of a linear system involving a quasiseparable matrix
in the quasiseparable representation by using differential calculus via Theorem 3.10,
the next lemma will become useful.

Lemma 4.1. Let A ∈ Rn×n be a {1, 1}−quasiseparable matrix and A = AL +
AD + AU , with AL strictly lower triangular, AD diagonal, and AU strictly up-
per triangular. Let ΩQS be a quasiseparable representation of A, where ΩQS =
({pi}ni=2, {ai}n−1

i=2 , {qi}n−1
i=1 , {di}ni=1, {gi}n−1

i=1 , {bi}n−1
i=2 , {hi}ni=2). Then the entries of A

are differentiable functions of the parameters in ΩQS and:

a)
∂A

∂di
= eie

T
i , for i = 1, . . . , n.

b) pi
∂A

∂pi
= eiAL(i, :), for i = 2, . . . , n.

c) ai
∂A

∂ai
=

[
0 0

A(i+ 1 : n, 1 : i− 1) 0

]
, for i = 2, . . . , n− 1.

d) qi
∂A

∂qi
= AL(:, i)eTi , for i = 1, . . . , n− 1.

e) gi
∂A

∂gi
= eiAU(i, :), for i = 1, . . . , n− 1.

f) bi
∂A

∂bi
=

[
0 A(1 : i− 1, i+ 1 : n)
0 0

]
, for i = 2, . . . , n− 1.

g) hi
∂A

∂hi
= AU(:, i)eTi , for i = 2, . . . , n,

where ei, for i = 1, . . . , n, denotes the i-th canonical vector in the basis of Rn.

Proof. That the entries of A are differentiable with respect to the parameters in
ΩQS it is straightforward from the explicit expression given in Theorem 2.18 for the
entries of A in terms of such parameters. Furthermore, the expressions in a), b),
c), d), e), f), and g), are easily obtained by considering the corresponding partial
derivatives in the expression for A in Theorem 2.18.
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Since from Lemma 4.1 we have that the entries of a quasiseparable matrix A are
differentiable functions of the parameters in a quasiseparable representation of A,
we can deduce relative-relative componentwise condition numbers of the solution of
linear systems with respect to these representations by using Theorem 3.10. This
leads to Theorem 4.2.

Theorem 4.2. Let Ax = b, where 0 6= x ∈ Rn, A ∈ Rn×n is a nonsingular
{1, 1}-quasiseparable matrix with a quasiseparable representation ΩQS, and such that
A = AL +AD +AU , with AL strictly lower triangular, AD diagonal, and AU strictly
upper triangular. Let 0 ≤ f ∈ Rn and 0 ≤ EQS ∈ R7n−8. Then

condEQS ,f (A(ΩQS),x) =
1

‖x‖∞

∥∥∥∥∥ ∣∣A−1
∣∣f + |A−1|Qd|x|+ |A−1||Qp||ALx|

+ |A−1AL||Qq||x|+ |A−1||Qg||AUx|+ |A−1AU ||Qh||x|

+
n−1∑
i=2

∣∣∣∣A−1

[
0 0

A(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣ ∣∣∣∣eaiai
∣∣∣∣

+
n−1∑
j=2

∣∣∣∣A−1

[
0 A(1 : j − 1, j + 1 : n)
0 0

]
x

∣∣∣∣ ∣∣∣∣ebibi
∣∣∣∣
∥∥∥∥∥
∞

,

where:

ΩQS = ({pi}ni=2, {ai}n−1
i=2 , {qi}n−1

i=1 , {di}ni=1, {gi}n−1
i=1 , {bi}n−1

i=2 , {hi}ni=2),

EQS = ({epi}ni=2, {eai}n−1
i=2 , {eqi}n−1

i=1 , {edi}ni=1, {egi}n−1
i=1 , {ebi}n−1

i=2 , {ehi}ni=2),

Qd = diag(ed1 , . . . , edn), Qp = diag
(

1,
ep2
p2

, . . . ,
epn
pn

)
,

Qq = diag
(
eq1
q1

, . . . ,
eqn−1

qn−1

, 1

)
, Qg = diag

(
eg1
g1

, . . . ,
egn−1

gn−1

, 1

)
,

Qh = diag
(

1,
eh2
h2

, . . . ,
ehn
hn

)
,

and each quotient whose denominator is zero must be understood as zero if the
numerator is also zero and, otherwise, the zero parameter in the denominator should
be formally cancelled out with the same parameter in the corresponding piece of A.

Proof. We will proceed by calculating the contribution of each subset of parameters
to the expression for condEQS,f

(A(ΩQS),x) given in Theorem 3.10 as follows.
Derivatives with respect to {di}ni=1. By using a) in Lemma 4.1 we get:

κd :=
n∑
i=1

∣∣∣∣A−1 ∂A

∂di
x

∣∣∣∣ edi =
n∑
i=1

∣∣A−1eie
T
i x
∣∣ edi =

n∑
i=1

∣∣A−1(:, i)
∣∣ |xi| edi =

∣∣A−1
∣∣ |Qd| |x| .
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Derivatives with respect to {pi}ni=2. From b) in Lemma 4.1 we have:

κp :=
n∑
i=2

∣∣∣∣A−1 ∂A

∂pi
x

∣∣∣∣ |epi| = n∑
i=2

∣∣∣∣A−1pi
∂A

∂pi
x

∣∣∣∣ ∣∣∣∣epipi
∣∣∣∣ =

n∑
i=2

∣∣A−1eiAL(i, :)x
∣∣ ∣∣∣∣epipi

∣∣∣∣
=

n∑
i=2

∣∣A−1(:, i)AL(i, :)x
∣∣ ∣∣∣∣epipi

∣∣∣∣ =
n∑
i=2

∣∣A−1(:, i)
∣∣ ∣∣∣∣epipi

∣∣∣∣ |AL(i, :)x| =
∣∣A−1

∣∣ |Qp| |ALx| .

Derivatives with respect to {ai}n−1
i=2 . From c) in Lemma 4.1 we have:

κa :=
n−1∑
i=2

∣∣∣∣A−1ai
∂A

∂ai
x

∣∣∣∣ ∣∣∣∣eaiai
∣∣∣∣ =

n−1∑
i=2

∣∣∣∣A−1

[
0 0

A(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣ ∣∣∣∣eaiai
∣∣∣∣.

Derivatives with respect to {qj}n−1
j=1 . From d) in Lemma 4.1 we have:

κq :=
n−1∑
j=1

∣∣∣∣A−1 ∂A

∂qj
x

∣∣∣∣ ∣∣eqj ∣∣ =
n−1∑
j=1

∣∣∣∣A−1qj
∂A

∂qj
x

∣∣∣∣ ∣∣∣∣eqjqj
∣∣∣∣ =

n−1∑
j=1

∣∣A−1AL(:, j)eTj x
∣∣ ∣∣∣∣eqjqj

∣∣∣∣
=

n−1∑
j=1

∣∣A−1AL(:, j)
∣∣ |xj| ∣∣∣∣eqjqj

∣∣∣∣ =
∣∣A−1AL

∣∣ |Qq| |x| .

Analogously, we can find the contribution to condEQS ,f (A(ΩQS),x) of the derivatives
of A with respect to the parameters {gi}n−1

i=1 , {bi}n−1
i=2 , and {hi}ni=2, which describe

the strictly upper triangular part of A. The results are the following.
Derivatives with respect to {gi}n−1

i=1 . By using e) in Lemma 4.1 we obtain:

κg :=
n−1∑
i=1

∣∣∣∣A−1∂A

∂gi
x

∣∣∣∣ |egi| = ∣∣A−1
∣∣ |Qg| |AUx| .

Derivatives with respect to {bi}n−1
i=2 . By using f) in Lemma 4.1 we obtain:

κb :=
n−1∑
i=2

∣∣∣∣A−1∂A

∂bi
x

∣∣∣∣ |ebi| = n−1∑
i=2

∣∣∣∣A−1

[
0 A(1 : i− 1, i+ 1 : n)
0 0

]
x

∣∣∣∣ ∣∣∣∣ebibi
∣∣∣∣ .

Derivatives with respect to {hj}nj=2. By using g) in Lemma 4.1 we obtain:

κh :=
n∑
j=2

∣∣∣∣A−1 ∂A

∂hj
x

∣∣∣∣ ∣∣ehj ∣∣ =
∣∣A−1AU

∣∣ |Qh| |x| .

This proof is completed by observing that according to Theorem 3.10 we have:

condEQS ,f (A(ΩQS),x) =
‖|A−1|f + κd + κp + κa + κq + κg + κb + κh‖∞

‖x‖∞
.
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As it is easy to see from its expression in Theorem 4.2, condEQS ,f (A(ΩQS),x)
depends in general on the quasiseparable representation ΩQS of the matrix A. More
specifically, that condition number depends on the ratios between the parameters in
the representation and the corresponding tolerances in EQS. Next, we will restrict
ourselves to the case EQS = |ΩQS| in Theorem 4.3, which is the most natural election
for EQS. In this situation we adopt for brevity in the rest of this work, the following
notation:

condf (A(ΩQS),x) ≡ cond|ΩQS |,f (A(ΩQS),x),

since the parameters ΩQS are already shown in A(ΩQS).

Theorem 4.3. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsingular
{1, 1}-quasiseparable matrix such that A = AL + AD + AU , with AL strictly lower
triangular, AD diagonal, and AU strictly upper triangular. Let 0 ≤ f ∈ Rn. Then

condf (A(ΩQS),x) =
1

‖x‖∞

∥∥∥∥∥ ∣∣A−1
∣∣f + |A−1||AD||x|+ |A−1||ALx|

+ |A−1AL||x|+ |A−1||AUx|+ |A−1AU ||x|

+
n−1∑
i=2

∣∣∣∣A−1

[
0 0

A(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣
+

n−1∑
j=2

∣∣∣∣A−1

[
0 A(1 : j − 1, j + 1 : n)
0 0

]
x

∣∣∣∣
∥∥∥∥∥
∞

.

Proof. It follows directly from the expression in Theorem 4.2 for condEQS ,f (A(ΩQS),x)
by observing that, in this case, we are considering EQS = |ΩQS| and, therefore, us-
ing the notation in Theorem 4.2, the following equalities hold: Qd = |AD|, |Qp| =
|Qq| = |Qg| = |Qh| = I, and |eai/ai| = |ebi/bi| = 1.

Proposition 4.4 proves that condf (A(ΩQS),x) depends only on A, x and f , but
not on the particular choice of quasiseparable parameters.

Proposition 4.4. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsingular
{1, 1}-quasiseparable matrix. Let 0 ≤ f ∈ Rn. Then, for any two vectors ΩQS and
Ω′QS of quasiseparable parameters of A,

condf (A(ΩQS),x) = condf (A(Ω′QS),x).

Proof. It is obvious from the fact that the expression in Theorem 4.3 does not depend
on the parameters of the representation ΩQS but on the entries of the matrix A and
the entries of the vectors x and f .

Proposition 4.5 states another important property of this relative componentwise
condition number that arises from the natural comparison with the unstructured
relative entrywise condition number for the solution of linear systems defined in
Definition 3.4 and further developed in Theorem 3.5.
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Proposition 4.5. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsingular
{1, 1}-quasiseparable matrix, and let ΩQS be a quasiseparable representation of A.
Then, for 0 ≤ f ∈ Rn, the following relation holds,

condf (A(ΩQS),x) ≤ n cond|A|,f (A,x).

Proof. From Theorem 4.3 and using standard properties of absolute values and
norms we obtain:

condf (A(ΩQS),x) ≤ 1

‖x‖∞

∥∥∥∥∥ ∣∣A−1
∣∣f +

∣∣A−1
∣∣ |AD| |x|+ ∣∣A−1

∣∣ |AL| |x|
+
∣∣A−1

∣∣ |AL| |x|+ ∣∣A−1
∣∣ |AU | |x|+ ∣∣A−1

∣∣ |AU | |x|
+

n−1∑
i=2

∣∣A−1
∣∣ |AL| |x|+ n−1∑

i=2

∣∣A−1
∣∣ |AU | |x|

∥∥∥∥∥
∞

=
1

‖x‖∞

∥∥∥∥ ∣∣A−1
∣∣f +

∣∣A−1
∣∣ |AD| |x|

+ n
∣∣A−1

∣∣ |AL| |x|+ n
∣∣A−1

∣∣ |AU | |x|∥∥∥∥
∞

≤ n

‖x‖∞

∥∥∥∥ ∣∣A−1
∣∣f +

∣∣A−1
∣∣ |A| |x|∥∥∥∥

∞
= n cond|A|,f (A,x).

According to this proposition, the structured condition number condf (A(ΩQS),x)
is smaller than the unstructured condition number cond|A|,f (A,x), except for a fac-
tor n. In addition, we will see in the numerical experiments presented in Section 4.5
that it can be much smaller.

From Proposition 3.6 we know that the unstructured componentwise condition
number is invariant under row scaling, which is a very convenient property (see [41,
Secs. 7.2 and 7.3]). Therefore, it makes sense to study the behavior of the structured
condition number under row scaling for the natural choice f = |b| as well. This is
done in Proposition 4.7, for which we will need Lemma 4.6. Proposition 4.7 proves
that the structured componentwise condition number is also invariant under row
scaling.

Lemma 4.6. Let K = diag (k1, k2, · · · , kn) be an invertible diagonal matrix and
A ∈ Rn×n be a {1, 1}-quasiseparable matrix with a quasiseparable representation
ΩQS =

(
{pi}ni=2, {ai}n−1

i=2 , {qi}n−1
i=1 , {di}ni=1, {gi}n−1

i=1 , {bi}n−1
i=2 , {hi}ni=2

)
, as in Theo-

rem 2.18. Then, the matrix KA is also a {1, 1}-quasiseparable matrix and Ω′QS =

({kipi}ni=2, {ai}n−1
i=2 , {qi}n−1

i=1 , {kidi}ni=1, {kigi}n−1
i=1 , {bi}n−1

i=2 , {hi}ni=2) is a quasiseparable
representation of KA.
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Proof. It follows from Theorem 2.18 and from (KA)(i, j) = kiA(i, j).

Proposition 4.7. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsingular
{1, 1}-quasiseparable matrix with a quasiseparable representation ΩQS, such that A =
AL+AD+AU , with AL strictly lower triangular, AD diagonal, and AU strictly upper
triangular. Let K ∈ Rn×n be an invertible diagonal matrix. Then

cond|Kb|((KA)(Ω′QS),x) = cond|b|(A(ΩQS),x),

where Ω′QS is any quasiseparable representation of KA.

Proof. Since K is a diagonal matrix, all the following equalities are straightforward:

1. |(KA)−1| |Kb| = |A−1| |K−1| |K| |b| = |A−1| |b|,

2. |(KA)−1| |(KAD)| |x| = |A−1| |K−1| |K| |AD| |x| = |A−1| |AD| |x|,

3. |(KA)−1| |(KAL)x| = |A−1| |K−1| |K| |ALx| = |A−1| |ALx|,

4. |(KA)−1(KAL)| |x| = |A−1AL| |x|,

5. |(KA)−1| |(KAU)x| = |A−1| |K−1| |K| |AUx| = |A−1| |AUx|,

6. |(KA)−1(KAU)| |x| = |A−1AU | |x|,

7. (KA)−1

[
0 0

(KA)(i+ 1 : n, 1 : i− 1) 0

]
x = A−1

[
0 0

A(i+ 1 : n, 1 : i− 1) 0

]
x,

8. (KA)−1

[
0 (KA)(1 : j − 1, j + 1 : n)
0 0

]
x = A−1

[
0 A(1 : j − 1, j + 1 : n)
0 0

]
x.

The result follows trivially from 1)-8), KA = KAL+KAD+KAU , Theorem 4.3,
and the fact that condf (A(ΩQS),x) does not depend on the particular quasiseparable
parameterization used.

4.2 Condition number of the solution of {1, 1}-quasi-
separable linear systems in the Givens-vector
representation

The main goal of this section is to find an explicit expression for computing the
componentwise condition number for the solution of a linear system of equations
with a quasiseparable matrix of coefficients with respect to the Givens-vector repre-
sentation. In Section 4.2.1, we define the Givens-vector representation via tangents
and in Section 4.2.2, we provide the desired expression for evaluating the condition
number with respect to that representation.
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4.2.1 The Givens-vector representation via tangents for {1, 1}-
quasiseparable matrices

Since the Givens-vector representation is a particular case of a quasiseparable repre-
sentation, one might think that it makes no sense to study again condition numbers
for the solution of a linear system because we know, from Proposition 4.4, that they
are independent of the particular choice of ΩQS. However, the subtle point here is
that the Givens-vector representation presented in Theorem 2.21 has correlated pa-
rameters since the pairs {ci, si} are not independent; the same happens for {ri, ti}.
Since arbitrary componentwise perturbations of ΩGV

QS (see Theorem 2.21) destroy the
cosine-sine pairs, and we want to restrict ourselves to perturbations that preserve
the cosine-sine pairs, an additional parametrization of these pairs is needed.

Avoiding the use of trigonometric functions, we essentially have two options for
these additional parameters:

(a) We can consider {ci, si} =
{√

1− s2
i , si

}n−1

i=2
and {ri, ti} =

{√
1− t2i , ti

}n−1

i=2
,

but this is not convenient because if si is too close to 1, then tiny relative
variations of si may produce large relative variations of ci, since:

si
ci

∂ci
∂si

= − s2
i

ci
√

1− s2
i

= −
(
si
ci

)2

.

This is reflected in the following derivative appearing in the condition number
developed in Theorem 3.10 (recall from the proof of Theorem 4.2 that we
rewrite the terms |A−1 (∂A/∂ωk)x| ek in the expression in Theorem 3.10 as
|A−1 ωk(∂A/∂ωk)x| |ek/ωk|),

si
∂A

∂si
=

 0 0

−
(
si
ci

)2

A(i, 1 : i− 1) 0

A(i+ 1 : n, 1 : i− 1) 0

x,

which may be huge if
(
si
ci

)2

is huge. The same happens for ri.

(b) On the other hand, we can use tangents as parameters in the following way:

ci =
1√

1 + l2i
, si =

li√
1 + l2i

, and ri =
1√

1 + u2
i

, ti =
ui√

1 + u2
i

,

for i = 2, . . . , n− 1.
Observe that when using the tangents as parameters, the value ci = 0 (resp.
ri = 0) corresponds to li = ∞ (resp. ui = ∞). In addition, recall that,
since we are interested in calculating relative-relative componentwise condition
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numbers, the parameters that are zero must remain zero. This is consistent
with the fact that ∂ci

∂li
and ∂si

∂li
both tend to zero when li → ∞. The same

happens with ∂ri
∂ui

and ∂ti
∂ui

when ui →∞.

Since it is obvious from (b) that tiny relative perturbations of the tangent parameters
li and ui produce tiny relative perturbations of the cosine-sine parameters {ci, si} and
{ri, ti}, respectively, it is natural to use tangent parameters in practical numerical
situations. This is related to and inspired by the fact that Givens rotations are
computed in practice by using tangents or cotangents. See on this point the classical
reference [38, Algorithm 5.1.3] and the state-of-the-art algorithm in [8].

Definition 4.8. For any Givens-vector representation

ΩGV
QS =

(
{ci, si}n−1

i=2 , {vi}n−1
i=1 , {di}ni=1, {ei}n−1

i=1 , {ti, ri}n−1
i=2

)
of a {1, 1}-quasiseparable matrix C ∈ Rn×n, we define the Givens-vector representa-
tion via tangents as

ΩGV :=
(
{li}n−1

i=2 , {vi}n−1
i=1 , {di}ni=1, {ei}n−1

i=1 , {ui}n−1
i=2

)
∈ R5n−6, where

ci =
1√

1 + l2i
, si =

li√
1 + l2i

, and ri =
1√

1 + u2
i

, ti =
ui√

1 + u2
i

,

for i = 2, . . . , n− 1.

4.2.2 The condition number for {1, 1}-quasiseparable
matrices in the Givens-vector representation
via tangents

In order to use differential calculus to deduce an explicit expression of the structured
condition number of the solution of a linear system with respect to the tangent-
Givens-vector representation, we will need Lemma 4.9.

Lemma 4.9. Let A ∈ Rn×n be a {1, 1}-quasiseparable matrix and let ΩGV be the
tangent-Givens-vector representation of A, where ΩGV =

(
{li}n−1

i=2 , {vi}n−1
i=1 , {di}ni=1,

{ei}n−1
i=1 , {ui}n−1

i=2

)
. Then the entries of A are differentiable functions of the parame-

ters in ΩGV and

a) li
∂A

∂li
=

 0 0
−s2

iA(i, 1 : i− 1) 0
c2
iA(i+ 1 : n, 1 : i− 1) 0

, for i = 2, . . . , n− 1,

b) ui
∂A

∂ui
=

[
0 −t2iA(1 : i− 1, i) r2

iA(1 : i− 1, i+ 1 : n)
0 0 0

]
, for i = 2, . . . , n−1.
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Proof. For the derivatives with respect to the parameters {li}n−1
i=2 , note first that

li
∂ci
∂li

= − l2i
(1 + l2i )

3/2
= −s2

i ci , li
∂si
∂li

=
li

(1 + l2i )
3/2

= c2
i si,

and, therefore, from Theorem 2.21, we obtain

li
∂A

∂li
=

 0 0
−s2

iA(i, 1 : i− 1) 0
c2
iA(i+ 1 : n, 1 : i− 1) 0

, for i = 2, . . . , n− 1.

Analogously, for the derivatives with respect to the parameters {ui}n−1
i=2 , we have

uj
∂rj
∂uj

= −
u2
j

(1 + u2
j)

3/2
= −t2jrj , uj

∂tj
∂uj

=
uj

(1 + u2
j)

3/2
= r2

j tj,

from which we obtain that

ui
∂A

∂ui
=

[
0 −t2iA(1 : i− 1, i) r2

iA(1 : i− 1, i+ 1 : n)
0 0 0

]
, for i = 2, . . . , n− 1.

Remark 4.10. For the partial derivatives with respect to the parameters in {di}ni=1,
{vi}n−1

i=1 , and {ei}n−1
i=1 see a), d), e) in Lemma 4.1. Recall that those parameters

can also be respectively seen as the parameters {di}ni=1, {qi}n−1
i=1 , and {gi}n−1

i=1 in a
quasiseparable representation of A, as we explained in the paragraph after Theorem
2.21.

Theorem 4.11 is the main result of Section 4.2.2 and it presents an explicit
expression of the componentwise condition number for the solution of a linear system
of equations with a quasiseparable matrix of coefficients with respect to the Givens-
vector representation via tangents. This result is based again in Theorem 3.10.

Theorem 4.11. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsingular
{1, 1}-quasiseparable matrix with a tangent-Givens-vector representation ΩGV , and
such that A = AL + AD + AU , with AL strictly lower triangular, AD diagonal, and
AU strictly upper triangular. Let 0 ≤ f ∈ Rn and 0 ≤ EGV ∈ R5n−6. Then

condEGV ,f (A(ΩGV ),x) =
1

‖x‖∞

∥∥∥∥∥ ∣∣A−1
∣∣f + |A−1|Qd|x|+ |A−1AL||Qv||x|

+ |A−1||Qe||AUx|+
n−1∑
i=2

∣∣∣∣∣∣A−1

 0 0
−s2

iA(i, 1 : i− 1) 0
c2
iA(i+ 1 : n, 1 : i− 1) 0

x

∣∣∣∣∣∣
∣∣∣∣elili
∣∣∣∣
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+
n−1∑
j=2

∣∣∣∣A−1

[
0 −t2jA(1 : j − 1, j) r2

jA(1 : j − 1, j + 1 : n)
0 0 0

]
x

∣∣∣∣ ∣∣∣∣eujuj
∣∣∣∣
∥∥∥∥∥
∞

,

where

ΩGV =
(
{li}n−1

i=2 , {vi}n−1
i=1 , {di}ni=1, {ei}n−1

i=1 , {ui}n−1
i=2

)
, as in Definition 4.8,

EGV =
(
{eli}n−1

i=2 , {evi}n−1
i=1 , {edi}ni=1, {eei}n−1

i=1 , {eui}n−1
i=2

)
,

Qd = diag (ed1 , . . . , edn) , Qv = diag
(
ev1
v1

, . . . ,
evn−1

vn−1

, 1

)
,

Qe = diag
(
ee1
e1

, . . . ,
een−1

en−1

, 1

)
,

and each quotient whose denominator is zero must be understood as zero if the
numerator is also zero and, otherwise, the zero parameter in the denominator should
be formally cancelled out with the same parameter in the corresponding piece of A.

Proof. The proof is straightforward from Theorem 3.10, Lemma 4.9, Remark 4.10,
and the proof of Theorem 4.2. Therefore, we omit the proof.

For the most natural choice EGV = |ΩGV |, we adopt the shorter notation

condf (A(ΩGV ),x) ≡ cond|ΩGV |,f (A(ΩGV ),x),

and get Theorem 4.12 as a corollary of Theorem 4.11.

Theorem 4.12. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsingular
{1, 1}-quasiseparable matrix with a tangent-Givens-vector representation ΩGV , and
such that A = AL + AD + AU , with AL strictly lower triangular, AD diagonal, and
AU strictly upper triangular. Let 0 ≤ f ∈ Rn. Then

condf (A(ΩGV ),x) =

1

‖x‖∞

∥∥∥∥∥ ∣∣A−1
∣∣f + |A−1||AD||x|+ |A−1AL||x|+ |A−1||AUx|

+
n−1∑
i=2

∣∣∣∣∣∣A−1

 0 0
−s2

iA(i, 1 : i− 1) 0
c2
iA(i+ 1 : n, 1 : i− 1) 0

x

∣∣∣∣∣∣
+

n−1∑
j=2

∣∣∣∣A−1

[
0 −t2jA(1 : j − 1, j) r2

jA(1 : j − 1, j + 1 : n)
0 0 0

]
x

∣∣∣∣
∥∥∥∥∥
∞

.

Note, from the expressions in Theorems 4.12 and 4.3, that there exists an im-
portant difference between the structured condition number in the Givens-vector
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representation and the structured condition number in the quasiseparable represen-
tation for a given {1, 1}-quasiseparable matrix A, since condf (A(ΩGV ),x) depends
not only on the entries of the matrix A but on the parameters {ci, si} and {ri, ti}
as well, while condf (A(ΩQS),x) only depends on the matrix entries. Furthermore,
since the cosine-sine parameters in the Givens-vector representation do not change
trivially under diagonal scalings, we have that, for the natural choice f = |b|,
condf (A(ΩGV ),x) is not invariant under row scaling while condf (A(ΩQS),x) is in-
variant under row scaling (recall Proposition 4.7).

4.3 Comparison of condition numbers in the qua-
siseparable and the Givens-vector representa-
tions

It is natural to expect the Givens-vector representation via tangents to be a more
stable representation than the general quasiseparable representation for computing
the solution of a quasiseparable linear system of equations, in the sense that the
Givens-vector representation should lead to smaller condition numbers. This is due
to the fact that any Givens-vector representation is also a quasiseparable repre-
sentation and the perturbations considered in the condition numbers preserve the
structure of the tangent-Givens-vector parametrization. In Theorem 4.13, the cor-
responding result is proved for linear systems, that is, that condf (A(ΩGV ),x) can
not be larger than condf (A(ΩQS),x).

Theorem 4.13. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsingular
{1, 1}-quasiseparable matrix, and let ΩGV be the vector of tangent-Givens-vector
parameters of A. Then, for 0 ≤ f ∈ Rn, and for any vector ΩQS of quasiseparable
parameters of A, the following inequality holds:

condf (A(ΩGV ),x) ≤ condf (A(ΩQS),x).

Proof. Throughout the proof, we use the decomposition A = AL + AD + AU intro-
duced in Theorems 4.2 and 4.11. For the sums in the last two terms of the expression
for condf (A(ΩGV ),x) we have,

S1 :=
n−1∑
i=2

∣∣∣∣∣∣A−1

 0 0
−s2

i A(i, 1 : i− 1) 0
c2
i A(i+ 1 : n, 1 : i− 1) 0

x

∣∣∣∣∣∣
≤

n−1∑
i=2

∣∣∣∣∣∣A−1

 0 0
A(i, 1 : i− 1) 0

0 0

x

∣∣∣∣∣∣+
n−1∑
i=2

∣∣∣∣∣∣A−1

 0 0
0 0

A(i+ 1 : n, 1 : i− 1) 0

x

∣∣∣∣∣∣
=

n−1∑
i=2

∣∣A−1(:, i)
∣∣ |AL(i, :)x|+

n−1∑
i=2

∣∣∣∣A−1

[
0 0

A(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣
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≤
∣∣A−1

∣∣ |ALx|+ n−1∑
i=2

∣∣∣∣A−1

[
0 0

A(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣ (4.1)

and, in an analogous way,

S2 :=
n−1∑
j=2

∣∣∣∣A−1

[
0 −t2j A(1 : j − 1, j) r2

j A(1 : j − 1, j + 1 : n)
0 0 0

]
x

∣∣∣∣
≤

∣∣A−1AU
∣∣ |x|+ n−1∑

j=2

∣∣∣∣A−1

[
0 A(1 : j − 1, j + 1 : n)
0 0

]
x

∣∣∣∣. (4.2)

From (4.1) and (4.2) the proof is straightforward by comparing the expressions
in Theorem 4.3 and Theorem 4.12 for condf (A(ΩQS),x) and condf (A(ΩGV ),x),
respectively.

On the other hand, as we prove in Theorem 4.16 below, the Givens-vector repre-
sentation via tangents can only improve the relative condition number for the solu-
tion of a {1, 1}-quasiseparable linear system of equations up to a factor of 3n with
respect to the quasiseparable representation. Therefore, we conclude that, when
computing solutions of {1, 1}-quasiseparable linear systems of equations, these rep-
resentations can be considered numerically equivalent in terms of expected accuracy.

For proving Theorem 4.16, we need the simple Lemma 4.14. It is worth to observe
that results in the spirit of Lemma 4.14 can be found in the detailed error analysis
of Givens rotations presented in [4].

Lemma 4.14. Let l 6= 0 be a real number representing a tangent and c be the corre-
sponding positive cosine. Then, for any positive value η < 1, a relative perturbation
of l by at most η produces a relative perturbation of c of the order of η, i.e.,∣∣∣∣δll

∣∣∣∣ ≤ η =⇒
∣∣∣∣δcc
∣∣∣∣ ≤ (η +O(η2)

)
, where c+ δc =

1√
1 + (l + δl)2

.

Proof. Consider l′ = l+ δl as the perturbed tangent and c′ = c+ δc = 1/
√

1 + (l′)2

as the respective perturbed cosine . Then, for 1 > η > 0 sufficiently small we have
that if (1− η)|l| ≤ |l′| ≤ (1 + η)|l|, then

c

1 + η
=

1

(1 + η)(
√

1 + l2)
≤ c′ ≤ 1

(1− η)(
√

1 + l2)
=

c

1− η
,

from where we can conclude that |δl| ≤ η|l| ⇒ |δc| ≤ (η +O(η2))|c|.

In order to prove Theorem 4.16, we develop a proof based on Definition 3.7.
Recall that from the Givens-vector representation via tangents ΩGV of A we can
obtain the Givens-vector representation ΩGV

QS of A as in Definition 4.8, and that
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ΩGV
QS is also a quasiseparable representation of A. Therefore, in order to use the

componentwise relative condition numbers for representations in Definition 3.7, let
us consider a quasiseparable perturbation δΩGV

QS of the parameters in ΩGV
QS such that

|δΩGV
QS | ≤ η|ΩGV

QS |, and the resulting quasiseparable matrix Ã = A(ΩGV
QS + δΩGV

QS )
(note that the perturbations δΩGV

QS do not respect in general the pairs cosine-sine of
ΩGV
QS ). We will refer to η as the level of the relative perturbation of the parameters in

the representation ΩGV
QS . Moreover, note that Ã can also be represented by a vector

Ω′GV :=
(
{l′i}n−1

i=2 , {v′i}n−1
i=1 , {d′i}ni=1, {e′i}n−1

i=1 , {u′i}n−1
i=2

)
of tangent-Givens-vector parameters and let us consider the perturbations δ′ΩGV :=
Ω′GV − ΩGV . Then, Lemma 4.15 states a bound for the level η′ of the respective
relative perturbation over the parameters in Ω′GV produced by a relative perturbation
of level η over the quasiseparable parameters in ΩGV

QS .

Lemma 4.15. Let A be a {1, 1}-quasiseparable matrix with Givens-vector represen-
tation via tangents ΩGV . Then, using the notation in the previous paragraph, and
for η sufficiently small, we have:

|δΩGV
QS | ≤ η|ΩGV

QS | =⇒ |δ′ΩGV | ≤ (3(n− 2)η +O(η2))|ΩGV |.

Proof. Let us proceed by analyzing each subset of parameters as follows.

• For the parameters in {d′i}ni=1 it is obvious that δ′di = δdi.

• For the parameters in {v′j}n−1
j=1 note that v′j =

√√√√ n∑
i=j+1

(Ã(i, j))2 from where it

is easy to see that if |δΩGV
QS | ≤ η|ΩGV

QS |, then√√√√ n∑
i=j+1

[(1− η)nA(i, j)]2 ≤ v′j ≤

√√√√ n∑
i=j+1

[(1 + η)nA(i, j)]2,

(1− η)n

√√√√ n∑
i=j+1

[A(i, j)]2 ≤ v′j ≤ (1 + η)n

√√√√ n∑
i=j+1

[A(i, j)]2,

(1− η)nvj ≤ v′j ≤ (1 + η)nvj,

and, consequently, we have that |δ′vj| ≤ (nη+O(η2))|vj|, for j = 1, . . . , n−1.

• For studying the level of perturbation in the parameters {l′i}n−1
i=2 produced by

the level η of perturbation in ΩGV
QS +δΩGV

QS , recall first that the parameter pn = 1

of ΩGV
QS is also perturbed. Next, taking into account which are the entries of Ã
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in the representations ΩGV
QS + δΩGV

QS and Ω′GV according to Theorems 2.18 and
2.21, observe

l′n−1 =
s′n−1

c′n−1

=
C̃(n, n− 2)

C̃(n− 1, n− 2)
=

(1 + εn−1)sn−1(1 + αn−1)

cn−1(1 + βn−1)
, and

l′i =
s′i
c′i

=
C̃(i+ 1, i− 1)

C̃(i, i− 1)

1

c′i+1

=
ci+1(1 + εi)si(1 + αi)

ci(1 + βi)c′i+1

,

(4.3)

for i = n− 2, n− 3, . . . , 2, where

|εi| ≤ η, |αi| ≤ η, |βi| ≤ η, for i = n− 1, n− 2, . . . , 2.

From Lemma 4.14, we know that if |δ′li+1| = |l′i+1 − li+1| ≤ κi+1|li+1|, then
|δ′ci+1| = |c′i+1−ci+1| ≤

(
κi+1 +O(κ2

i+1)
)
|ci+1|, or equivalently c′i+1 = ci+1(1+

θi+1), with |θi+1| ≤ κi+1 + O(κ2
i+1). Therefore, the second equation in (4.3)

implies

|δ′li| = |l′i−li| ≤ (3η+κi+1+O(η2+κ2
i+1))|li| for i = n−2, n−3, . . . , 2, (4.4)

and the first equation in (4.3) implies |δ′ln−1| ≤ (3η + O(η2))|ln−1|, i.e., up
to first order in η, we can take κn−1 = 3η. So, equation (4.4) provides a
recurrence relation for κi+1 and we get

|δ′li| ≤ (3(n− i)η +O(η2))|li|.

• For the parameters in {e′i}n−1
i=1 , we can proceed in an analogous way to that for

the parameters in {v′j}n−1
j=1 , and we obtain that |δ′ei| ≤ (nη+O(η2))|ei|, for i =

1, . . . , n− 1.

• For the parameters in {u′j}n−1
j=2 , we can also proceed in an analogous way to

that for the parameters in {l′i}n−1
i=2 , and we obtain that |δ′uj| ≤ (3(n − j)η +

O(η2))|uj|, for j = 2, . . . , n− 1.

The proof is completed by pointing out that the desired result follows trivially from
the bounds obtained above for the levels of relative perturbations with respect to
the different sets of parameters in Ω′GV .

Theorem 4.16. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsingu-
lar {1, 1}-quasiseparable matrix with tangent-Givens-vector representation ΩGV . Let
0 ≤ f ∈ Rn. Then, for any quasiseparable representation ΩQS of A:

condf (A(ΩQS),x)

condf (A(ΩGV ),x)
≤ 3(n− 2).
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Proof. Note that from Definition 3.7 and from Lemma 4.15 we have

condf (A(ΩQS),x) ≤ lim
η→0

sup
{
‖δx‖∞
η‖x‖∞

: (A(ΩGV + δΩGV )) (x + δx) = b + δb,

|δΩGV | ≤ (3(n− 2)η +O(η2))|ΩGV |,
|δb| ≤ (3(n− 2)η +O(η2))f

}
.

By considering the change of variable η′ = (3(n− 2)η +O(η2)), we obtain

condf (A(ΩQS),x) ≤ lim
η′→0

sup
{

3(n− 2)‖δx‖∞
η′‖x‖∞

: (A(ΩGV + δΩGV )) (x + δx) = b + δb,

|δΩGV | ≤ η′|ΩGV |, |δb| ≤ η′f

}
= 3(n− 2)condf (A(ΩGV ),x).

4.4 Fast estimation of condition numbers: the
effective condition number

To compute condf (A(ΩQS),x) and condf (A(ΩGV ),x) fast, i.e., in O(n) flops, is
not easy because of the two sums that appear in the expressions in Theorems 4.3
and 4.12, respectively, since they require to compute a sum of n vectors, which
cost O(n2) flops, in addition to other computations. Then, a natural question now
is to determine whether or not the contributions of these sums to the condition
numbers in which they arise are significant. This question is answered in Theorems
4.18 and 4.19, in which we provide upper and lower bounds for condf (A(ΩQS),x)
and condf (A(ΩGV ),x) respectively, in terms of the effective condition number in
Definition 4.17. We will show in this way that such effective condition number
contains the essential terms in the expressions given in Theorems 4.3 and 4.12.

Definition 4.17. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsingular
{1, 1}-quasiseparable matrix such that A = AL+AD+AU , with AL strictly lower tri-
angular, AD diagonal, and AU strictly upper triangular. Let 0 ≤ f ∈ Rn. Then, for
any quasiseparable representation ΩQS of A, we define the effective relative condition
number condefff (A(ΩQS),x) for the solution of Ax = b as

condefff (A(ΩQS),x) :=
1

‖x‖∞

∥∥∥∥∥ ∣∣A−1
∣∣f + |A−1||AD||x|+ |A−1||ALx|

+ |A−1AL||x|+ |A−1||AUx|+ |A−1AU ||x|

∥∥∥∥∥
∞

.
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Recall from Proposition 4.4 that the condition number condf (A(ΩQS),x) does
not depend on the choice of a quasiseparable representation ΩQS, and note from
Definition 4.17 that the same holds for condefff (A(ΩQS),x). Therefore, this effective
condition number is always the same for any vector of quasiseparable parameters
representing the matrix.

Theorem 4.18. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsingu-
lar {1, 1}-quasiseparable matrix. Let 0 ≤ f ∈ Rn. Then, for any quasiseparable
representation ΩQS of A, the following relations hold:

condefff (A(ΩQS),x) ≤ condf (A(ΩQS),x) ≤ (n− 1)condefff (A(ΩQS),x).

Proof. Throughout the proof, we use the decomposition A = AL + AD + AU in-
troduced in Definition 4.17. Note first that the left hand side inequality is triv-
ial from the respective expressions of condefff (A(ΩQS),x) in Definition 4.17 and
condf (A(ΩQS),x) in Theorem 4.3. On the other hand, note that∣∣∣∣A−1

[
0 0

A(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣ =

∣∣∣∣A−1

[
0 0

AL(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣
=

∣∣∣∣A−1

[
0 0

AL(i+ 1 : n, 1 : i− 1) AL(i+ 1 : n, i : n)

]
x

+ A−1

[
0 0
0 −AL(i+ 1 : n, i : n)

]
x

∣∣∣∣
≤
∣∣A−1

∣∣ ∣∣∣∣[ 0
AL(i+ 1 : n, :)

]
x

∣∣∣∣
+

∣∣∣∣A−1

[
0 0
0 AL(i+ 1 : n, i : n)

]∣∣∣∣ |x|
≤
∣∣A−1

∣∣ |ALx|+ ∣∣A−1AL
∣∣ |x| ,

from where we obtain:
n−1∑
i=2

∣∣∣∣A−1

[
0 0

A(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣ ≤ (n−2)
∣∣A−1

∣∣ |ALx|+(n−2)
∣∣A−1AL

∣∣ |x| .
(4.5)

In an analogous way, it can be proved that
n−1∑
j=2

∣∣∣∣A−1

[
0 A(1 : j − 1, j + 1 : n)
0 0

]
x

∣∣∣∣ ≤ (n−2)
∣∣A−1

∣∣ |AUx|+(n−2)
∣∣A−1AU

∣∣ |x| .
(4.6)

Finally, note that from the inequalities in (4.5) and (4.6), and from Theorem 4.3, it
is straightforward that

condf (A(ΩQS),x) ≤(n− 1)

∥∥∥∥∥ ∣∣A−1
∣∣f + |A−1||AD||x|+ |A−1||ALx|
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+ |A−1AL||x|+ |A−1||AUx|+ |A−1AU ||x|

∥∥∥∥∥
∞

/‖x‖∞

= (n− 1) condefff (A(ΩQS),x).

Theorem 4.19. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsingu-
lar {1, 1}-quasiseparable matrix with tangent-Givens-vector representation ΩGV . Let
0 ≤ f ∈ Rn. Then, for any quasiseparable representation ΩQS of A, the following
relations hold:

condefff (A(ΩQS),x)

3(n− 2)
≤ condf (A(ΩGV ),x) ≤ (n− 1)condefff (A(ΩQS),x).

Proof. It follows trivially from Theorems 4.13, 4.16 and 4.18.

Note that from Theorems 4.18 and 4.19 we can conclude that the structured
condition numbers condf (A(ΩQS),x) and condf (A(ΩGV ),x) can be both estimated,
“up to a factor of order n”, by computing the easier expression in Definition 4.17 for
the effective condition number. Next, we prove in Proposition 4.20 that this effective
condition number can be computed fast by using, for instance, some previous results
from [24] and [25].

Proposition 4.20. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsin-
gular {1, 1}-quasiseparable matrix with a quasiseparable representation ΩQS which
is assumed to be known. Let 0 ≤ f ∈ Rn. Then, the effective condition number
condefff (A(ΩQS),x) can be computed in O(n) operations, i.e., with linear complex-
ity.

Proof. This assertion is a consequence of the results in [24] and [25]. Using [25,
Algorithm 5.1] we can obtain in O(n) flops the quasiseparable representation for
the inverse of the {1, 1}-quasiseparable matrix A which is also {1, 1}-quasiseparable
([24, Theorem 5.2]). In addition, in [24, Algorithm 4.4] it is shown how to compute
the matrix-vector product y = Rz for the general case when R is an {nL, nU}-
quasiseparable matrix with a given quasiseparable representation, with linear com-
plexity in the size n of the vector. Therefore, we can use this algorithm (twice when
necessary) for computing each of the products |A−1|f , |A−1| (|AD| |x|), |A−1| (|ALx|),
and |A−1| (|AUx|) (in practice, the contribution of these terms to condefff (A(ΩQS),x)
is computed as |A−1| (f + |AD| |x|+ |ALx|+ |AUx|)). On the other hand in [24, The-
orem 4.1] it is proved that the product R1R2 of an {n1,m1}-quasiseparable matrix
R1 times an {n2,m2}-quasiseparable matrix R2 is, in general, an {n1 +n2,m1 +m2}-
quasiseparable matrix, and in [24, Algorithm 4.3] it is shown how to compute with
linear complexity a quasiseparable representation for this product given the repre-
sentations of the factors. Therefore, since our matrix A is a {1, 1}-quasiseparable
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matrix, we have that the products A−1AL and A−1AU are both quasiseparable ma-
trices of orders {2, 1} and {1, 2}, respectively, at most, and we can compute via
[24, Algorithm 4.3] their quasiseparable representations. Then, once we have ob-
tained such representations, we can use again [24, Algoritm 4.4] for calculating the
products |A−1AL| |x| and |A−1AU | |x| also with a linear cost. Then, from Definition
4.17, it is straightforward that condefff (A(ΩQS),x) can be computed with linear
complexity.

Finally, note that from Definition 4.17 and from the proof of Proposition 4.7, it
is straightforward to prove that the effective condition number is invariant under
row scaling for f = |b|, as cond|b|(A(ΩQS),x). This is stated without proof in
Proposition 4.21.

Proposition 4.21. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a {1, 1}-
quasiseparable matrix, and let K ∈ Rn×n be an invertible diagonal matrix. Then

condeff|b|(A(ΩQS),x) = condeff|Kb|((KA)(Ω′QS),x),

where ΩQS is any quasiseparable representation of A and Ω′QS is any quasiseparable
representation of KA.

4.5 Numerical experiments
This section is devoted to describe briefly some numerical experiments that have
been performed in order to complete our comparison between the structured effec-
tive condition number condeff|b|(A(ΩQS),x) in Definition 4.17 and the unstructured
one cond|A|,|b|(A,x) in Definition 3.4. We have used MATLAB for running sev-
eral random numerical tests. First, the command randn from MATLAB has been
used for generating the random parameters in a quasiseparable representation for
a {1, 1}-quasiseparable matrix of size n × n, i.e., the following random vectors of
parameters are generated:

pΩ ∈ Rn−1,aΩ ∈ Rn−2, qΩ ∈ Rn−1,dΩ ∈ Rn, gΩ ∈ Rn−1, bΩ ∈ Rn−2, and hΩ ∈ Rn−1.
(4.7)

We also generate the random right-hand side vector b ∈ Rn by using the com-
mand randn. Then, we construct the matrix A described by the parameters in (4.7)
by using the expression in Theorem 2.18, obtain the vector of solutions x using the
command A\b from MATLAB, and compute the structured effective condition num-
ber condeff|b|(A(ΩQS),x) and the unstructured condition number cond|A|,|b|(A,x) by
using direct matrix-vector multiplication and the inv command of MATLAB.

In general, when using just random parameters, we have obtained similar, often
moderate, values for the effective condition number and the unstructured condition
number for the solution of linear systems, i.e., condeff|b|(A(ΩQS),x) ≈ cond|A|,|b|(A,x).



58 CHAPTER 4. CONDITION NUMBERS FOR LINEAR SYSTEMS

Therefore, we have performed several tests using different kinds of scalings over the
generated quasiseparable parameters in order to obtain unbalanced quasiseparable
matrices which may be very ill conditioned.

In particular, after generating the vectors of parameters in (4.7) and the vector
b, we have modified pΩ and hΩ as follows

pΩ = k1 ∗ pΩ and hΩ = k2
−1 ∗ hΩ,

where k1 and k2 are fixed natural numbers not greater than 103. This scaling, com-
bined with the randomness of pΩ and hΩ and the rest of parameters, produces some-
times matrices with unbalanced lower left and upper right corners (see the matrix at
the end of this section for an example), for which the unstructured condition number
cond|A|,|b|(A,x) can be much larger than the structured one condeff|b|(A(ΩQS),x).
In fact, for n = 5, n = 10, n = 50, and n = 100, we have obtained vectors of
parameters generating particular matrices A and vectors b such that:

n
cond|A|,|b|(A,x)

condeff|b|(A(ΩQS),x)
cond|A|,|b|(A,x) condeff|b|(A(ΩQS),x)

5 1.6139 · 104 6.5318 · 104 4.0471
10 1.9980 · 106 3.1788 · 107 15.8768
50 1.4107 · 107 8.7762 · 108 62.2104
100 1.6804 · 109 6.0297 · 1010 35.8823

,

where x = A\b in each case.
From these numerical experiments we conclude that the structured effective con-

dition number condeff|b|(A(ΩQS),x) may be indeed much smaller than the unstruc-
tured one cond|A|,|b|(A,x), in other words, that there exist linear systems of equations
with {1, 1}-quasiseparable matrices of coefficients that have solutions which are very
ill conditioned with respect to perturbations of the entries of the matrix, but that
are very well conditioned with respect to perturbations on the quasiseparable pa-
rameters representing the matrix. The particular structure observed in the matrices
that produced such huge differences between the structured and the unstructured
condition numbers is illustrated in the following matrix and the respective vector b,
which are the ones that produced the results in the table above for n = 5:

A =


−7.8876 · 10−2 −1.3485 · 10−2 −7.8066 · 10−3 2.7951 · 10−3 5.1089 · 10−5

3.0423 · 10−1 −5.6399 · 10−1 1.6206 · 10−1 −5.8026 · 10−2 −1.0606 · 10−3

5.5451 · 101 −2.5873 · 10−1 1.3525 · 100 −1.5088 · 10−3 −2.7578 · 10−5

−3.8947 · 105 1.8172 · 103 −1.7047 · 100 3.0944 · 10−3 −6.7069 · 10−3

1.7714 · 108 −8.2653 · 105 7.7535 · 102 8.3875 · 10−1 −2.0998 · 100

 ,

b =
[
−8.8528 · 10−1 −1.3154 · 10−1 −1.5711 · 100 −7.8284 · 10−1 −1.0898 · 100

]T
.

Note that there is an obvious unbalance in the matrix entries, since the absolute
values of the entries near the lower left corner are large compared with the absolute
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values of the entries in the opposite upper right corner of the matrix (compare the
absolute values of the entries of the submatrix A(4 : 5, 1 : 2) versus those from
A(1 : 2, 4 : 5)).





Chapter 5

Structured eigenvalue condition
numbers for parameterized
quasiseparable matrices

In this chapter we study eigenvalue condition numbers for {1, 1}-quasiseparable ma-
trices with respect to perturbations on the parameters in the quasiseparable repre-
sentation and in the Givens vector representation. In the case of the quasiseparable
representation, in Sections 5.1 and 5.2 we present the original results that we have
obtained for these eigenvalue condition numbers, and they include the procedure
and the main techniques that will be used through the rest of the chapter in order
to obtain analogous results for the condition number with respect to the Givens-
vector representation, which is covered in Sections 5.3 and 5.4. More precisely, in
Theorems 5.1 and 5.11, we obtain the respective expressions for the eigenvalue con-
dition numbers for the quasiseparable and the Givens-vector representations. In
Proposition 5.4 we prove that for {1, 1}-quasiseparable matrices, the structure plays
an important role in the sensitivity of eigenvalues, since the quasiseparable repre-
sentation yields an structured condition number which can not be much larger than
the standard unstructured one, but that can be much smaller, as it is observed
in the numerical experiments described in Section 5.6. In Section 5.5 we compare
the eigenvalue condition numbers in the quasiseparable and in the Givens-vector
representation and prove that both representations can be considered numerically
equivalent in terms of the accuracy of eigenvalue computations as it is deduced from
Theorems 5.15 and 5.16. That is, we obtain a result similar to the one obtained for
the solutions of linear systems.

61
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5.1 Eigenvalue condition numbers for {1, 1}-quasise-
parable matrices in the quasiseparable repre-
sentation

In this section we will deduce an explicit expression for the eigenvalue condition
number for {1, 1}-quasiseparable matrices in the quasiseparable representation. This
representation was introduced in [24] together with the definition of quasiseparable
matrices, which are described in the previous Sections 2.2 and 2.3.1 of this disser-
tation.

From Example 2.19 it seems natural to consider relative componentwise per-
turbations of the vector of parameters ΩQS introduced in Theorem 2.18 instead
of normwise perturbations of ΩQS, because the norm of the vector of parameters
ΩQS does not determine the norm of the matrix. Since any {1, 1}-quasiseparable
matrix is differentiable with respect to these parameters, we can deduce eigenvalue
relative-relative componentwise condition numbers for this parametrization by using
Theorem 3.23. This is done in Theorem 5.1 for relative perturbations in the qua-
siseparable parameters ΩQS with respect to a general vector of nonnegative entries.

Theorem 5.1. Let C ∈ Rn×n be a {1, 1}-quasiseparable matrix and let us express C
as C = CL+CD+CU , with CL strictly lower triangular, CD diagonal, and CU strictly
upper triangular. Suppose λ 6= 0 is a simple eigenvalue of C with left and right
eigenvectors y and x, respectively. Denote by ΩQS a quasiseparable representation
of C as in Theorem 2.18 and let 0 ≤ EQS ∈ R7n−8. Then,

condEQS
(λ; ΩQS) =

1

|λ||y∗x|

{
|y∗|Qd|x|+ |y∗| |Qp| |CLx|+ |y∗CL| |Qq| |x|

+ |y∗| |Qg| |CUx|+ |y∗CU | |Qh| |x|

+
n−1∑
i=2

∣∣∣∣y∗ [ 0 0
C(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣ ∣∣∣∣eaiai
∣∣∣∣

+
n−1∑
j=2

∣∣∣∣y∗ [ 0 C(1 : j − 1, j + 1 : n)
0 0

]
x

∣∣∣∣ ∣∣∣∣ebibi
∣∣∣∣
}
,

where

ΩQS = ({pi}ni=2, {ai}n−1
i=2 , {qi}n−1

i=1 , {di}ni=1, {gi}n−1
i=1 , {bi}n−1

i=2 , {hi}ni=2),

EQS = ({epi}ni=2, {eai}n−1
i=2 , {eqi}n−1

i=1 , {edi}ni=1, {egi}n−1
i=1 , {ebi}n−1

i=2 , {ehi}ni=2),

Qd = diag (ed1 , ed2 , . . . , edn) , Qp = diag
(

1,
ep2
p2

, . . . ,
epn
pn

)
,

Qq = diag
(
eq1
q1

, . . . ,
eqn−1

qn−1

, 1

)
, Qg = diag

(
eg1
g1

, . . . ,
egn−1

gn−1

, 1

)
,
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Qh = diag
(

1,
eh2
h2

, . . . ,
ehn
hn

)
,

and each quotient whose denominator is zero must be understood as zero if the
numerator is also zero and, otherwise, the zero parameter in the denominator should
be formally cancelled out with the same parameter in the corresponding piece of C.

Proof. In order to use the expression in Theorem 3.25, we will proceed by parts by
calculating the contribution of each subset of parameters as follows.

Derivatives with respect to {di}ni=1. By using a) in Lemma 4.1 we get:

Kd =
n∑
i=1

∣∣∣∣y∗∂C∂dix
∣∣∣∣ edi =

n∑
i=1

∣∣y∗eieTi x∣∣ edi =
n∑
i=1

|yi| |xi| edi = |y∗|Qd|x|.

Derivatives with respect to {pi}ni=2. From b) in Lemma 4.1 we have:

Kp =
n∑
i=2

∣∣∣∣y∗∂C∂pix
∣∣∣∣ epi =

n∑
i=2

∣∣∣∣y∗pi∂C∂pix
∣∣∣∣ ∣∣∣∣epipi

∣∣∣∣ =
n∑
i=2

|y∗eiCL(i, :)x|
∣∣∣∣epipi

∣∣∣∣
=

n∑
i=2

|yiCL(i, :)x|
∣∣∣∣epipi

∣∣∣∣ =
n∑
i=2

|yi|
∣∣∣∣epipi

∣∣∣∣ |CL(i, :)x| = |y∗| |Qp| |CLx| .

Derivatives with respect to {ai}n−1
i=2 . From c) in Lemma 4.1 we have:

Ka =
n−1∑
i=2

∣∣∣∣y∗∂C∂aix
∣∣∣∣ eai =

n−1∑
i=2

∣∣∣∣y∗ [ 0 0
C(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣ ∣∣∣∣eaiai
∣∣∣∣.

Derivatives with respect to {qj}n−1
j=1 . From d) in Lemma 4.1 we have:

Kq =
n−1∑
j=1

∣∣∣∣y∗ ∂C∂qjx
∣∣∣∣eqj =

n−1∑
j=1

∣∣∣∣y∗qj ∂C∂qjx
∣∣∣∣ ∣∣∣∣eqjqj

∣∣∣∣ =
n−1∑
j=1

∣∣y∗CL(:, j)eTj x
∣∣ ∣∣∣∣eqjqj

∣∣∣∣
=

n−1∑
j=1

|y∗CL(:, j)| |xj|
∣∣∣∣eqjqj

∣∣∣∣ = |y∗CL| |Qq| |x| .

For the parameters {gi}n−1
i=1 , {bi}n−1

i=2 , and {hi}ni=2, which describe the strictly up-
per triangular part of C, we can proceed analogously and find the contribution to
condEQS

(λ; ΩQS) of the derivatives of C with respect to those parameters. The re-
sults are the following.
Derivatives with respect to {gi}n−1

i=1 . By using e) in Lemma 4.1 we obtain:

Kg =
n−1∑
i=1

∣∣∣∣y∗∂C∂gix
∣∣∣∣ egi = |y∗| |Qg| |CUx| .



64 CHAPTER 5. E. C. N. FOR QUASISEPARABLE MATRICES

Derivatives with respect to {bi}n−1
i=2 . By using f) in Lemma 4.1 we obtain:

Kb =
n−1∑
i=2

∣∣∣∣y∗∂C∂bix
∣∣∣∣ ebi =

n−1∑
i=2

∣∣∣∣y∗ [ 0 C(1 : i− 1, i+ 1 : n)
0 0

]
x

∣∣∣∣ ∣∣∣∣ebibi
∣∣∣∣ .

Derivatives with respect to {hj}nj=2. By using g) in Lemma 4.1 we obtain:

Kh =
n∑
j=2

∣∣∣∣y∗ ∂C∂hjx
∣∣∣∣ ehj = |y∗CU | |Qh| |x| .

We complete this proof by observing that

cond(λ; ΩQS) =
1

|λ||y∗x|
(Kd +Kp +Ka +Kq +Kg +Kb +Kh) .

Again, as it happens for the condition number condEQS ,f (A(ΩQS),x) in Theorem
4.2 for linear systems, it is easy to see from the expression in Theorem 5.1 that
when considering relative perturbations with respect to a general nonnegative vector
EQS, the eigenvalue condition number condEQS

(λ; ΩQS) depends in general on the
quasiseparable representation ΩQS of the matrix C. In fact, this condition number
also depends on the ratios between the parameters in the representation and the
corresponding tolerances in EQS. Therefore, we will restrict ourselves to the case
EQS = |ΩQS| in Theorem 5.2, which is again the most natural election for EQS. In
this situation we adopt, for brevity in the rest of this thesis, the following notation:

cond(λ; ΩQS) ≡ cond|ΩQS |(λ; ΩQS).

Theorem 5.2. Let C ∈ Rn×n be a {1, 1}-quasiseparable matrix and let us express
C as C = CL + CD + CU , with CL strictly lower triangular, CD diagonal, and CU
strictly upper triangular. Suppose λ 6= 0 is a simple eigenvalue of C with left and
right eigenvectors y and x, respectively, and denote by ΩQS a quasiseparable repre-
sentation of C. Then, the componentwise relative condition number cond(λ; ΩQS)
of λ with respect to ΩQS is given by the following expression:

cond(λ; ΩQS) =
1

|λ||y∗x|

{
|y∗||CD||x|+ |y∗||CLx|+ |y∗CL||x|+ |y∗||CUx|

+ |y∗CU ||x|+
n−1∑
i=2

∣∣∣∣y∗ [ 0 0
C(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣
+

n−1∑
j=2

∣∣∣∣y∗ [ 0 C(1 : j − 1, j + 1 : n)
0 0

]
x

∣∣∣∣
}
.
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Proof. It follows directly from the expression in Theorem 5.1 for cond|ΩQS |(λ; ΩQS)
by observing that, in this case, we are considering EQS = |ΩQS| and, therefore, using
the notation in Theorem 5.1, the following equalities hold: Qd = |CD|, |Qp| = |Qq| =
|Qg| = |Qh| = I, and |eai/ai| = |ebi/bi| = 1.

The explicit formula given in Theorem 5.2 for cond(λ; ΩQS) does not depend on
the parameters of the chosen quasiseparable representation; it only depends on the
matrix entries, the simple eigenvalue λ, and the left and right eigenvectors. This
important property allows us to state the following proposition.

Proposition 5.3. Let C ∈ Rn×n be a {1,1}-quasiseparable matrix and λ 6= 0 be a
simple eigenvalue of C. Then, for any two vectors ΩQS and Ω′QS of quasiseparable
parameters of C,

cond(λ; ΩQS) = cond(λ; Ω′QS).

Another important property for this relative componentwise condition number
appears from the natural comparison with the unstructured relative entrywise con-
dition number defined in Definition 3.17 and whose explicit expression is given in
Theorem 3.18. This comparison is established in the next proposition.

Proposition 5.4. Let C be a {1,1}-quasiseparable matrix and consider a set of
quasiseparable parameters ΩQS of C. Let λ 6= 0 be a simple eigenvalue of C. Then,
the following relation holds,

cond(λ; ΩQS) ≤ n cond(λ;C).

Proof. From Theorem 5.2, and standard inequalities of absolute values we get:

cond(λ; ΩQS) ≤ 1

|λ||y∗x|

{
|y∗||CD||x|+ |y∗||CL||x|+ |y∗||CL||x|+ |y∗||CU ||x|

+ |y∗||CU ||x| +
n−1∑
i=2

|y∗||CL||x|+
n−1∑
j=2

|y∗||CU ||x|

}

≤ 1

|λ||y∗x|

{
|y∗||CD||x|+ n|y∗||CL||x|+ n|y∗||CU ||x|

}

≤ n
|y∗||C||x|
|λ||y∗x|

= n cond(λ;C).

According to Proposition 5.4, the structured condition number cond(λ; ΩQS) is
smaller than the unstructured condition number cond(λ;C), except for a factor of n,
but it can be potentially much smaller, as we will see in our numerical experiments
(see Section 5.6). The factor n comes from the entries C1n and Cn1. For instance,
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Cn1 = pnan−1 · · · a2q1, implies that an entrywise relative perturbation of size η over
the representation ΩQS will generate a perturbation on the entry Cn1 of the matrix C
involving n factors of the form (1 + δ), where δ represents the relative perturbations
on the parameters.

On the other hand, the exact expression of cond(λ; ΩQS) deduced in Theorem
5.2 is complicated, especially because of the summations appearing in the last two
terms. Surprisingly, these two summations can be removed in order to define the ef-
fective condition number introduced in Definition 5.5, which can be used to estimate
cond(λ; ΩQS) reliably up to a factor n. This is proved in Proposition 5.6.

Definition 5.5. Under the same hypotheses of Theorem 5.2, we define the effective
relative condition number condeff(λ; ΩQS) of λ with respect to the quasiseparable
representation ΩQS of C as,

condeff(λ; ΩQS) :=
1

|λ||y∗x|

{
|y∗||CD||x|+ |y∗||CLx|+ |y∗CL||x|

+ |y∗||CUx|+ |y∗CU ||x|

}
.

Proposition 5.6. Let C ∈ Rn×n be a {1, 1}-quasiseparable matrix with a simple
eigenvalue λ 6= 0 with left and right eigenvectors y and x, respectively. Let ΩQS be
a quasiseparable representation of C. Then

condeff (λ; ΩQS) ≤ cond(λ; ΩQS) ≤ (n− 1)condeff (λ; ΩQS).

Proof. The first inequality is trivial from the definitions of condeff (λ; ΩQS) and
cond(λ; ΩQS), respectively. On the other hand, note that∣∣∣∣y∗ [ 0 0

C(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣ ≤ ∣∣∣∣y∗ [ 0 0
CL(i+ 1 : n, 1 : i− 1) CL(i+ 1 : n, i : n)

]
x

∣∣∣∣
+

∣∣∣∣y∗ [ 0 0
0 −CL(i+ 1 : n, i : n)

]
x

∣∣∣∣
≤|y∗|

∣∣∣∣[ 0
CL(i+ 1 : n, :)

]
x

∣∣∣∣
+

∣∣∣∣y∗ [ 0 0
0 CL(i+ 1 : n, i : n)

]∣∣∣∣ |x|
≤|y∗||CLx|+ |y∗CL||x|,

from where we obtain:
n−1∑
i=2

∣∣∣∣y∗ [ 0 0
C(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣ ≤ (n−2)|y∗||CLx|+(n−2)|y∗CL||x|. (5.1)
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In an analogous way, we can prove that

n−1∑
j=2

∣∣∣∣y∗ [ 0 C(1 : j − 1, j + 1 : n)
0 0

]
x

∣∣∣∣ ≤ (n−2)|y∗CU ||x|+(n−2)|y∗||CUx|. (5.2)

Finally, from (5.1) and (5.2) it is straightforward that

cond(λ; ΩQS) ≤ n− 1

|λ||y∗x|

{
|y∗||CD||x|+|y∗||CLx|+|y∗CL||x|+|y∗||CUx|+|y∗CU ||x|

}
,

which completes the proof.

Another important property of eigenvalue condition numbers that must be stud-
ied is their behavior under diagonal similarities since many algorithms for computing
eigenvalues of matrices start by balancing the matrix, i.e., by performing a diagonal
similarity that for each i makes the norm (‖ · ‖1, ‖ · ‖2, or ‖ · ‖∞) of the ith row
equal to the norm (‖ · ‖1, ‖ · ‖2, or ‖ · ‖∞) of the ith column (see [52], [38, p. 360-
361]). For such purpose, Lemmas 5.7 and 5.8 will be useful for proving Theorem
5.9, which will establish the invariance of cond(λ; ΩQS) under diagonal similarities.
In the following, we will denote by K = diag (k1, k2, · · · , kn) any diagonal matrix
K ∈ Rn×n such that Kii = ki. For any matrix C and any two ordered sets I and J ,
we will denote by C(I,J ) the submatrix of C consisting of rows and columns with
indices in I and J , respectively.

Lemma 5.7. Let K = diag (k1, k2, · · · , kn) be an invertible diagonal matrix, and let
A, B ∈ Rn×n be matrices such that B = KAK−1. Then, the following assertions
hold.

(a) For any two ordered subsets Ip = {i1, i2, · · · , ip} and Jq = {j1, j2, · · · , jq} of
indices such that 1 ≤ i1 < i2 < · · · < ip ≤ n and 1 ≤ j1 < j2 < · · · < jq ≤ n,
we have that

B (Ip,Jq) = diag
(
ki1 , ki2 , . . . , kip

)
· A (Ip,Jq) · diag

(
1/kj1 , 1/kj2 , . . . , 1/kjq

)
.

(b) For any matrix C ∈ Rn×n, let us denote by C̃i1:p,j1:q ∈ Rn×n a matrix such
that C̃i1:p,j1:q (Ip,Jq) = C (Ip,Jq) , and C̃i1:p,j1:q (i, j) = 0, for any other entry.
Then

B̃i1:p,j1:q = KÃi1:p,j1:qK
−1.

(c) If we decompose the matrices A = AL+AD+AU and B = BL+BD+BU , where
AL and BL are strictly lower triangular matrices, AD and BD are diagonal
matrices, and AU and BU are strictly upper triangular matrices, then

BL = KALK
−1 , BD = KADK

−1 = AD, and BU = KAUK
−1.
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(d) A vector xA ∈ Rn×1 is a right eigenvector of A associated to the eigenvalue λ
if and only if the vector xB = KxA is a right eigenvector of B associated to
λ. Similarly, a vector yA ∈ Rn×1 is a left eigenvector of A associated to λ if
and only if the vector yB = (y∗AK

−1)
∗ is a left eigenvector of B associated to

λ.

Proof. The proofs of (a), (b), and (c) are straightforward. So, we only prove part
(d). The result follows from the equivalences:

AxA = λxA ⇔ K−1BKxA = λxA ⇔ B (KxA) = λ (KxA) , and
y∗AA = λy∗A ⇔ y∗AK

−1BK = λy∗A ⇔ (y∗AK
−1)B = λ (y∗AK

−1) .

Lemma 5.8. Let K = diag (k1, k2, · · · , kn) be an invertible diagonal matrix and
C ∈ Rn×n be a {1, 1}-quasiseparable matrix. Then, the following two assertions
hold.

(a) The matrix KCK−1 is also a {1, 1}-quasiseparable matrix.

(b) If the vector of parameters

ΩQS = ({pi}ni=2, {ai}n−1
i=2 , {qi}n−1

i=1 , {di}ni=1, {gi}n−1
i=1 , {bi}n−1

i=2 , {hi}ni=2)

is a quasiseparable representation of C, then the vector of parameters

Ω′QS =
(
{kipi}ni=2, {ai}n−1

i=2 , {qi/ki}n−1
i=1 , {di}ni=1, {kigi}n−1

i=1 , {bi}n−1
i=2 , {hi/ki}ni=2

)
,

is a quasiseparable representation of KCK−1.

Proof. (a) It follows from (a) in Lemma 5.7 that for any two subsets {i1, i2, · · · , ip}
and {j1, j2, · · · , jq} of indices such that 1 ≤ i1 < i2 < · · · < ip ≤ n and
1 ≤ j1 < j2 < · · · < jq ≤ n, we have that

rankKCK−1 ({i1, i2, · · · , ip} , {j1, j2, · · · , jq})
= rankC ({i1, i2, · · · , ip} , {j1, j2, · · · , jq}) ,

and the result follows from Definition 2.9.

(b) It follows from Theorem 2.18 and from KCK−1 (i, j) = kiC (i, j) 1
kj
.

Theorem 5.9. Let C ∈ Rn×n be {1, 1}-quasiseparable, λ 6= 0 be a simple eigenvalue
of C, K ∈ Rn×n be diagonal and nonsingular, ΩQS be any vector of quasiseparable
parameters of C, and Ω′QS be any vector of quasiseparable parameters of KCK−1.
Then

cond(λ,C; ΩQS) = cond(λ,KCK−1; Ω′QS).
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Proof. Note first that for any two matrices A ∈ Rn×n and B ∈ Rn×n we have
that |AK| |B| = |A| |K| |B| = |A| |KB|, since K is diagonal. Let us consider B =
KCK−1 and let us analyze the expression given in Theorem 5.2 for cond (λ,C; ΩQS),
term by term. Using Lemma 5.7 we see that:

1) |y∗CxC | = |y∗CK−1KxC | = |y∗BxB| ,

2) |y∗C | |CD| |xC | = |y∗BK| |CD| |K−1xB| = |y∗B| |KCDK−1| |xB| = |y∗B| |BD| |xB| ,

3) |y∗C | |CLxC | = |y∗BK| |CLK−1xB| = |y∗B| |KCLK−1xB| = |y∗B| |BLxB| ,

4) |y∗CCL| |xC | = |y∗BKCL| |K−1xB| = |y∗BKCLK−1| |xB| = |y∗BBL| |xB| ,

5) |y∗C | |CUxC | = |y∗BK| |CUK−1xB| = |y∗B| |KCUK−1xB| = |y∗B| |BUxB| ,

6) |y∗CCU | |xC | = |y∗BKCU | |K−1xB| = |y∗BKCUK−1| |xB| = |y∗BBU | |xB| ,

7)
∣∣∣∣y∗C [ 0 0

C(i+ 1 : n, 1 : i− 1) 0

]
xC

∣∣∣∣ =

∣∣∣∣y∗B [ 0 0
B(i+ 1 : n, 1 : i− 1) 0

]
xB

∣∣∣∣ ,
8)
∣∣∣∣y∗C [ 0 C(1 : j − 1, j + 1 : n)

0 0

]
xC

∣∣∣∣ =

∣∣∣∣y∗B [ 0 C(1 : j − 1, j + 1 : n)
0 0

]
xB

∣∣∣∣ .
The result follows from Theorem 5.2, and from items 1) through 8) above.

5.2 Fast computation of the eigenvalue condition
number in the quasiseparable representation

The main contribution of this section is that, via Proposition 5.10, we will provide
an algorithm for computing the eigenvalue condition number cond (λ; ΩQS) for any
simple eigenvalue of any {1, 1}-quasiseparable matrix C of size n× n in O(n) oper-
ations. Taking into account that fast algorithms for computing all the eigenvalues
of a quasiseparable matrix cost O(n2) flops [62], our result allows us to compute the
condition numbers of all the eigenvalues of a quasiseparable matrix also in O(n2)
flops.

We remark that the difficulty of computing cond (λ; ΩQS) fast comes mainly from
the terms:
n−1∑
i=2

∣∣∣∣y∗ [ 0 0
C(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣ and
n−1∑
j=2

∣∣∣∣y∗ [ 0 C(1 : j − 1, j + 1 : n)
0 0

]
x

∣∣∣∣ ,
that appear in the formula given in Theorem 5.2. Note that the computation of
these terms may be avoided, as a consequence of Proposition 5.6, if we estimate
cond (λ; ΩQS) via condeff (λ; ΩQS).
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Proposition 5.10. Let C ∈ Rn×n be a {1, 1}-quasiseparable matrix with a sim-
ple eigenvalue λ 6= 0 with left eigenvector y and right eigenvector x, and assume
that λ,x,y, and a quasiseparable representation ΩQS of C are all known. Then,
cond (λ; ΩQS) can be computed in 42n− 66 flops.

Proof. This proof consists of giving an algorithm for calculating cond (λ; ΩQS). We
will count the number of flops needed for calculating the expression of cond (λ; ΩQS),
term by term as follows.

(a) The factor |λ| |y∗x| =

∣∣∣∣∣λ
n∑
i=1

yixi

∣∣∣∣∣ requires 2n flops.

(b) Since every product yixi has already been calculated in (a), the term

|y∗| |CD| |x| =
n∑
i=1

|di| |yixi|,

can be calculated in 2n− 1 flops.

(c) For the term |y∗| |CLx| , we will calculate the products CLx and C
(−2)
L x si-

multaneously, where C(−2)
L denotes the matrix that is obtained from CL by

setting to zero the entries (CL)i+1,i for i = 1, 2, . . . , n − 1, and that will be
used later for calculating the term in (g). For simplicity, let us denote the vec-
tors wlx = C

(−2)
L x and zlx = CLx. Notice that wlx1 = wlx2 = 0 and zlx1 = 0.

The fast method for calculating CLx is given by the following algorithm.

Routine 1 (Computes zlx = CLx and wlx = C
(−2)
L x taking as inputs the

quasiseparable parameters {pi}ni=2, {ai}n−1
i=2 , {qi}n−1

i=1 , and the entries {xi}ni=1 of
x.)

zlx1 = wlx1 = wlx2 = 0
tlx1 = q1 · x1

zlx2 = p2 · tlx1

for i = 3 : n

tlx2 = ai−1 · tlx1
wlxi = pi · tlx2
tlx1 = tlx2 + qi−1 · xi−1

zlxi = pi · tlx1

endfor

The fact that Routine 1 indeed computes zlx = CLx and wlx = C
(−2)
L x can

be proved easily by induction. Observe that Routine 1 uses the temporary
variables tlx1 and tlx2, in addition to the entries of the vectors zlx and wlx.
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We warn the reader that these variables will be used also in Algorithm 1 for
computing cond(λ; ΩQS), which is developed and presented in Section 5.2.1,
and are described in the table right before Algorithm 1. From Routine 1, we
see that the cost of calculating CLx and C

(−2)
L x is 5n − 8 flops, and taking

into account that (CLx)1 = 0 it is straightforward that the cost of calculating
|y∗| |CLx| and |C(−2)

L x| simultaneously is 7n− 11 flops.

(d) For the term |y∗CL| |x| , we can use a similar procedure to that in Routine 1 to
compute zly = y∗CL and wly = y∗C

(−2)
L by starting with the last components

of these two row vectors. As before, this can be done at the cost of 5n − 8
flops, and then, the cost of calculating |y∗CL| |x| and y∗C

(−2)
L is 7n− 11 flops.

(e) For the term |y∗| |CUx| , we can also calculate zux = CUx and wux = C
(+2)
U x

(where C(+2)
U denotes the matrix that is obtained from CU by setting to zero the

entries (CU)i,i+1) by using an analogous process to that in Routine 1. Note
that calculating CUx is similar to computing y∗CL since (y∗CL)∗ = CT

Ly.
Therefore, the cost of calculating |y∗| |CUx| and C(+2)

U x is of 7n− 11 flops.

(f) The term |y∗CU | |x| , can also be computed simultaneously with wuy = y∗C
(+2)
U

at a cost of 7n − 11 flops, since the computation of zuy = y∗CU is similar to
the calculation of CLx, since (y∗CU)∗ = CT

Uy.

(g) Denote αi = y∗
[

0 0
C(i+ 1 : n, 1 : i− 1) 0

]
x, and note that

αi =y∗
[

0 0
C(i+ 2 : n, 1 : i) 0

]
x + y∗

 0 0
C(i+ 1, 1 : i− 1) 0

0 0

x

− y∗
[

0 0 0
0 C(i+ 2 : n, i) 0

]
x.

We have obtained the following recursive equation,

αi = αi+1 + yi+1

(
C

(−2)
L x

)
i+1
−
(
y∗C

(−2)
L

)
i
xi. (5.3)

Recall that C(−2)
L x and y∗C

(−2)
L were already calculated in (c) and (d), respec-

tively. Then, the recurrence above is completed with the following fact:

αn−1 = y∗
[

0 0
C(n, 1 : n− 2) 0

]
x = yn

(
C

(−2)
L x

)
n
.

Therefore, we can calculate the set {αn−1, αn−2, · · · , α2} in 4n− 11 flops and
the cost of calculating

∑n−1
i=2 |αi| , is 5n− 14 flops.
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(h) Analogously to the term above, the last sum in the formula for cond (λ; ΩQS)
can be computed in 5n− 14 flops via a similar recurrence relation for

βj = y∗
[

0 C(1 : j − 1, j + 1 : n)
0 0

]
x,

as we see below

βj = βj−1 + yj−1

(
C

(+2)
U x

)
j−1
−
(
y∗C

(+2)
U

)
j
xj, and

β2 = y1

(
C

(+2)
U x

)
1
.

Finally, by summing all the costs in (a)-(h), and considering the expression for
cond (λ; ΩQS), we conclude that the cost of computing it is 42n− 66 flops.
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5.2.1 Pseudocode for computing cond (λ; ΩQS) fast

Based on the proof of Proposition 5.10 one can construct an algorithm for computing
cond (λ; ΩQS) fast. In this section we present, in Algorithm 1, the pseudocode for
implementing such computations. If the reader is not interested in technical details,
this section may be omitted in a first reading. In the pseudocode we present, we will
use the notation of the proof of Proposition 5.10. We will also use the functions ’ze-
ros’ (zeros(m,n) returns an m× n matrix with zero entries), ’sum’ (sum(z) returns
the sum of the entries of the input vector z) and ’conj’ (conj(z) returns an array of
the same size of z such that its entries are the conjugates of the respective entries
of z) from Matlab. We denote by d the column vector of size n, such that di = di,
where di is the i-th diagonal entry of C. In the following table, we briefly describe
the different variables that appear in Algorithm 1.

Variable Description
zlx zlx = CLx

wlx wlx = C
(−2)
L x

zly zly = y∗CL

wly wly = y∗C
(−2)
L

zux zux = CUx

wux wux = C
(+2)
U x

zuy zuy = y∗CU

wuy wuy = y∗C
(+2)
U

tlx1 temporary variable introduced for the fast computation of zlx = CLx

tly1 temporary variable introduced for the fast computation of zly = y∗CL
tux1 temporary variable introduced for the fast computation of zux = CUx

tuy1 temporary variable introduced for the fast computation of zuy = y∗CU

tlx2 temporary variable introduced for the fast computation of wlx = C
(−2)
L x

tly2 temporary variable introduced for the fast computation of wly = y∗C
(−2)
L

tux2 temporary variable introduced for the fast computation of wux = C
(+2)
U x

tuy2 temporary variable introduced for the fast computation of wuy = y∗C
(+2)
U

α vector such that α(i) = αi with αi as in (g) in the proof of Proposition 5.10
β vector such that β(i) = βi with βi as in (h) in the proof of Proposition 5.10



74 CHAPTER 5. E. C. N. FOR QUASISEPARABLE MATRICES

Algorithm 1 Fast computation of the eigenvalue condition number cond (λ; ΩQS)

Input: quasiseparable parameters {pi}ni=2, {ai}n−1
i=2 , {qi}n−1

i=1 , {di}ni=1, {gi}n−1
i=1 ,

{bi}n−1
i=2 , {hi}ni=2, the eigenvalue λ of C, the respective left and right eigen-

vectors y and x.
Set zlx= zeros (n, 1), wlx= zeros (n, 1), zly= zeros (1, n), wly= zeros (1, n),
zux = zeros (n, 1), wux = zeros (n, 1), zuy = zeros (1, n), wuy = zeros (1, n);
tlx1 = q1 · x1, zlx2 = p2 · tlx1, tly1 = yn · pn, zlyn−1 = qn−1 · tly1,
tux1 = xn · hn, zuxn−1 = gn−1· tux1, tuy1 = g1 · y1, zuy2 = h2 · tuy1.
for i=3 to n do

tlx2 = ai−1 · tlx1, wlxi = pi · tlx2, tlx1 = tlx2 + qi−1 · xi−1, zlxi = pi · tlx1;
tly2 = an−i+1 · tly1, wlyn−i+1 = qn−i+1 · tly2, tly1 = tly2 + pn−i+2 · yn−i+2,
zlyn−i+1 = qn−i+1 · tly1;
tux2 = bn−i+1 · tux1, wuxn−i+1 = gn−i+1 · tux2, tux1 = tux2 + hn−i+2 · xn−i+2,
zuxn−i+1 = gn−i+1 · tux1;
tuy2 = bi−1 · tuy1, wuyi = hi · tuy2, tuy1 = tuy2 + gi−1 · yi−1, zuyi = hi · tuy1.

end for
Set α = zeros (1, n), β = zeros (1, n), αn−1 = yn · wlxn, β2 = y1 · wux1.
for i=3 to n-1 do
αn−i+1 = αn−i+2 + yn−i+2 · wlxn−i+2 − wlyn−i+1 · xn−i+1;
βi = βi−1 + yi−1 · wuxi−1 − wuyi · xi;

end for
Set yx = conj(y) . ∗ x;
cond (λ; ΩQS) =

(
|d′| · |yx|+ |y′| · |zlx|+ |zly| · |x|+ |y′| · |zux|+ |zuy| · |x|
+sum (|α|) + sum(|β|)

)
/(|λ| · |sum(yx)|).

Output: cond (λ; ΩQS).

We remark that the temporary variables tlx1, tlx2, tly1, tly2, tux1, tux2, tuy1,
and tuy2 have been introduced in order to save operations.

5.3 Eigenvalue condition numbers for {1, 1}-quasise-
parable matrices in the Givens-vector represen-
tation via tangents

This section has, partially, a similar structure to that in Section 5.1. The next
theorem is the main result of this section and it presents an explicit expression for
the componentwise eigenvalue condition number in the Givens-vector representation
via tangents introduced in Definition 4.8. The proof of Theorem 5.11 follows from
the key Theorem 3.25.

Theorem 5.11. Let C ∈ Rn×n be a {1, 1}-quasiseparable matrix, let λ 6= 0 be
a simple eigenvalue of C with right eigenvector x and left eigenvector y, and let
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C = CL + CD + CU , with CL strictly lower triangular, CD diagonal, and CU strictly
upper triangular. Denote by ΩGV the tangent-Givens-vector representation of C and
let 0 ≤ EGV ∈ R5n−6. Then

condEGV
(λ; ΩGV ) =

1

|λ||y∗x|

{
|y∗|Qd|x|+ |y∗CL| |Qv| |x|+ |y∗| |Qe| |CUx|

+
n−1∑
i=2

∣∣∣∣∣∣y∗
 0 0

−s2
i C(i, 1 : i− 1) 0

c2
i C(i+ 1 : n, 1 : i− 1) 0

x

∣∣∣∣∣∣
∣∣∣∣elili
∣∣∣∣

+
n−1∑
j=2

∣∣∣∣y∗ [ 0 −t2jC(1 : j − 1, j) r2
jC(1 : j − 1, j + 1 : n)

0 0 0

]
x

∣∣∣∣ ∣∣∣∣eujuj
∣∣∣∣
}
.

where

ΩGV =
(
{li}n−1

i=2 , {vi}n−1
i=1 , {di}ni=1, {ei}n−1

i=1 , {ui}n−1
i=2

)
, as in Definition 4.8,

EGV =
(
{eli}n−1

i=2 , {evi}n−1
i=1 , {edi}ni=1, {eei}n−1

i=1 , {eui}n−1
i=2

)
,

Qd = diag (ed1 , . . . , edn) , Qv = diag
(
ev1
v1

, . . . ,
evn−1

vn−1

, 1

)
,

Qe = diag
(
ee1
e1

, . . . ,
een−1

en−1

, 1

)
,

and each quotient whose denominator is zero must be understood as zero if the
numerator is also zero and, otherwise, the zero parameter in the denominator should
be formally cancelled out with the same parameter in the corresponding piece of A.

Proof. As in the proof of Theorem 5.1, we will proceed term by term, using the
formula (3.18) in Theorem 3.25.
Derivatives with respect to the parameters {li}n−1

i=2 : Recall first that, from a) in
Lemma 4.9, we have

li
∂C

∂li
=

 0 0
−s2

i C(i, 1 : i− 1) 0
c2
i C(i+ 1 : n, 1 : i− 1) 0

 , i = 2 : n− 1.

Derivatives with respect to the parameters {vj}n−1
j=1 : Note that

vj
∂C

∂vj
=

[
0 · · · 0 0 0 · · · 0
0 · · · 0 C(j + 1 : n, j) 0 · · · 0

]
= CL(:, j)eTj .

Derivatives with respect to the parameters {di}ni=1:

∂C

∂di
= eie

T
i .
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Derivatives with respect to the parameters {ei}n−1
i=1 :

ei
∂C

∂ei
= eiCU(i, :).

Derivatives with respect to the parameters {uj}n−1
j=2 : Recall that, from b) in Lemma

4.9, we have

uj
∂C

∂uj
=

[
0 −t2jC(1 : j − 1, j) r2

jC(1 : j − 1, j + 1 : n)
0 0 0

]
, j = 2 : n− 1.

Again, as in the proof of Theorem 5.1, we consider the sums involving the partial
derivatives with respect to each subset of parameters:

• kl =
n−1∑
i=2

∣∣∣∣y∗∂C∂li x
∣∣∣∣ eli =

n−1∑
i=2

∣∣∣∣∣∣y∗
 0 0

−s2
i C(i, 1 : i− 1) 0

c2
i C(i+ 1 : n, 1 : i− 1) 0

x

∣∣∣∣∣∣
∣∣∣∣elili
∣∣∣∣;

• kv =
n−1∑
j=1

∣∣∣∣y∗ ∂C∂vjx
∣∣∣∣ evj =

n−1∑
j=1

|y∗CL(:, j)xj|
∣∣∣∣evjvj

∣∣∣∣ = |y∗CL| |Qv| |x|;

• kd =
n∑
i=1

∣∣∣∣y∗∂C∂dix
∣∣∣∣ edi =

n∑
i=1

|yixi| edi = |y∗|Qd |x|;

• ke =
n−1∑
i=1

∣∣∣∣y∗∂C∂eix
∣∣∣∣ eei =

n−1∑
i=1

|yiCU(i, :)x|
∣∣∣∣eeiei

∣∣∣∣ = |y∗| |Qe| |CUx|;

• ku =
n−1∑
j=2

∣∣∣∣y∗ ∂C∂ujx
∣∣∣∣ euj =

n−1∑
j=2

∣∣∣∣y∗ [ 0 −t2jC(1 : j − 1, j) r2
jC(1 : j − 1, j + 1 : n)

0 0 0

]
x

∣∣∣∣ ∣∣∣∣eujuj
∣∣∣∣.

The proof is concluded by observing that, from Theorem 3.25, we have

condEGV
(λ; ΩGV ) =

1

|λ(y∗x)|
(kl + kv + kd + ke + ku) .

Through the rest of this chapter, we will consider the most natural choice EGV =
|ΩGV | for the condition number considered in Theorem 5.11. We adopt the shorter
notation cond(λ; ΩGV ) ≡ cond|ΩGV |(λ; ΩGV ), and we get Theorem 5.12 as a corollary
of Theorem 5.11.
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Theorem 5.12. Let C ∈ Rn×n be a {1, 1}-quasiseparable matrix, let λ 6= 0 be
a simple eigenvalue of C with right eigenvector x and left eigenvector y, and let
C = CL + CD + CU , with CL strictly lower triangular, CD diagonal, and CU strictly
upper triangular. Then

cond(λ; ΩGV ) =
1

|λ||y∗x|

{
|y∗||CD||x|+ |y∗CL||x|+ |y∗||CUx|

+
n−1∑
i=2

∣∣∣∣∣∣y∗
 0 0

−s2
i C(i, 1 : i− 1) 0

c2
i C(i+ 1 : n, 1 : i− 1) 0

x

∣∣∣∣∣∣
+

n−1∑
j=2

∣∣∣∣y∗ [ 0 −t2jC(1 : j − 1, j) r2
jC(1 : j − 1, j + 1 : n)

0 0 0

]
x

∣∣∣∣
}
.

From the expression in Theorem 5.12 for the relative condition number in the
Givens-vector representation for a given {1, 1}-quasiseparable matrix C ∈ Rn×n,
we see that it does not only depend on the matrix entries, the eigenvalue λ and
on the eigenvectors x and y, but it does also depend on the parameters {ci, si}
and {ri, ti}, which are uniquely determined by the entries of C. Therefore, we
have obtained an important difference with respect to the relative condition number
in a quasiseparable representation presented in Theorem 5.2. Since the Givens-
vector representation does not change trivially under diagonal similarities, because of
these cosines-sines parameters, this condition number is not invariant under diagonal
similarities as we can see from Example 5.13.

Example 5.13. Let C ∈ R3×3 be the {1, 1}-quasiseparable matrix generated as in
Theorem 2.21 by the set of Givens-vector parameters given by {c2, s2} = {2.3768×
10−1,−9.7134×10−1}, {v1, v2} = {9.8355,−2.9770}, {d1, d2, d3} = {11.437,−5.3162,
9.7257}, {e1, e2} = {1.7658, 9.7074}, {t2, r2} = {−9.8216 × 10−1, 1.8806 × 10−1},
and denote by ΩC

GV the respective tangent-Givens-vector representation. Consider
the matrix K = diag(−1,−1, 6), and denote by ΩKCK−1

GV the tangent-Givens-vector
representation of the matrix KCK−1. Then, for the simple eigenvalue λ = 14.120
and the respective left and right eigenvectors y = [ 0.96472, 0.055889, −0.25728 ]T

and x = [−0.47887, 0.34548, 0.80705 ]T , of C, we have:

cond(λ,C; ΩC
GV ) = 1.1706 6= cond(λ,KCK−1; ΩKCK−1

GV ) = 1.2485.

Note that for computing cond(λ,KCK−1; ΩKCK−1

GV ), we only need the cosine-sine pa-
rameters in ΩKCK−1

GV , which can be obtained from the respective tangents parameters
computed from the entries of KCK−1 as in equation (4.3) in the proof of Lemma
4.15.

Nevertheless, we will prove in Proposition 5.17 that eigenvalue condition num-
bers with respect to the tangent-Givens-vector representation can not suffer large
variations under diagonal similarities.
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5.4 Fast computation of the eigenvalue condition
number in the Givens-vector representation via
tangents

In this section we prove that cond(λ; ΩGV ) can be computed fast. This fact is stated
in Proposition 5.14, which will be proved by providing an algorithm for computing
cond(λ; ΩGV ) in O(n) operations.

Proposition 5.14. Let C ∈ Rn×n be a {1, 1}-quasiseparable matrix with a simple
eigenvalue λ 6= 0 with left eigenvector y and right eigenvector x, and assume that
λ,x,y, and the Givens-vector representation via tangents ΩGV of C are all known.
Then, cond (λ; ΩGV ) can be computed in 60n− 106 flops.

Proof. As we did in the proof of Proposition 5.10, we will find the cost of calculating
each term in the expression for cond (λ; ΩGV ) in Theorem 5.12.

(a) In the first place, note that the cost of calculating ci = 1√
1+l2i

is obviously 4

flops, and the cost of computing si = li√
1+l2i

, is only 1 flop because we have

already calculated the denominator
√

1 + l2i . Since the same holds for ri and
ti, we conclude that the total cost of calculating {ci, si}n−1

i=2 and {ri, ti}n−1
i=2 is

10n− 20 flops.

(b) The total cost of computing {c2
i }n−1
i=2 ,{s2

i }n−1
i=2 ,{r2

i }n−1
i=2 , and {t2i }n−1

i=2 is 4n − 8
flops.

(c) The factor |λy∗x| =

∣∣∣∣∣λ
n∑
i=1

yixi

∣∣∣∣∣ can be computed in 2n flops.

(d) Since every product yixi has already been calculated in (c), the term

|y∗| |CD| |x| =
n∑
i=1

|di| |yixi|,

can be calculated in 2n− 1 flops.

(e) For computing the products y∗CL, CUx (that explicitly appear in the expres-
sion for cond (λ; ΩGV )) and CLx, y∗CU (which will be, respectively, needed in
(g) and (h) in this proof) we can proceed as in (d), (e), (c), (f) in the proof
of Proposition 5.10, respectively. In these processes, we obtain simultaneously
y∗C

(−2)
L , C(+2)

U x, C(−2)
L x, and y∗C

(+2)
U (which will also be needed for the fast

computation of the last two sums in cond (λ; ΩGV )). The total cost of these
computations is 20n− 32 flops.
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(f) The products |y∗CL| |x| and |y∗| |CUx|, can be calculated at a cost of 2n− 3
flops each.

(g) Denote α̃i := y∗

 0 0
−s2

i C(i, 1 : i− 1) 0
c2
i C(i+ 1 : n, 1 : i− 1) 0

x, and note that

α̃i = y∗

 0 0
−s2

i C(i, 1 : i− 1) 0
0 0

x + y∗

 0 0
0 0

c2
i C(i+ 1 : n, 1 : i− 1) 0

x

= −s2
i yi(CLx)i + c2

i

(
y∗
[

0 0
C(i+ 1 : n, 1 : i− 1) 0

]
x

)
.

The expression −s2
i yi(CLx)i can be calculated in 2 flops since s2

i and CLx have
been calculated already. On the other hand, all the expressions(

y∗
[

0 0
C(i+ 1 : n, 1 : i− 1) 0

]
x

)
can be calculated via a recurrence relation as in (g) in the proof of Proposition
5.10, in 4n − 11 flops. Consequently, the vector {α̃i}n−1

i=2 can be calculated in
8n− 19 flops, and the cost of computing

∑n−1
i=2 |α̃i| is 9n− 22 flops.

(h) If we denote

β̃j := y∗
[

0 −t2j C(1 : j − 1, j) r2
j C(1 : j − 1, j + 1 : n)

0 0 0

]
x,

then we can proceed in an analogous way to that in (g), and obtain also a cost
for computing

∑n−1
j=2

∣∣∣β̃j∣∣∣ of 9n− 22 flops.

Finally, by summing all the costs obtained above, and from the expression for
cond(λ; ΩGV ) we obtain a total cost of 60n− 106 flops for computing cond(λ; ΩGV ).

5.4.1 Pseudocode for computing cond (λ; ΩGV ) fast

In this section we present the pseudocode in Algorithm 2 for computing cond (λ; ΩGV )
fast. Again, if the reader is not interested in such technical details then this section
may be omitted in a first reading.

Since any set of Givens-vector parameters can also be considered as a set of
quasiseparable parameters, and since from the proof of Proposition 5.14 we know
that cond (λ; ΩGV ) can be calculated in a very similar way to cond (λ; ΩQS), we have
that Algorithms 1 and 2 are also similar. Therefore we do not describe Algorithm 2
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in detail. We will use the standard functions ’zeros’, ’sum’, ’conj’, and ’ones’ from
MATLAB. The vectors d, zlx, wlx, zly, wly, zux, wux, zuy, wuy, α, β, and the
temporary variables tlx1, tly1, tux1, tuy1, tlx2, tly2, tux2, tuy2, are all defined as
in Algorithm 1. In the following table, we briefly describe the new variables that
appear in the pseudocode of Algorithm 2.

Variable Description

α̃ vector such that α̃(i) = α̃i with α̃i as in the proof of Proposition 5.14

β̃ vector such that β̃(i) = β̃i with β̃i as in the proof of Proposition 5.14

Algorithm 2 Fast computation of the eigenvalue condition number cond (λ; ΩGV )

Input: Givens-vector parameters {li}n−1
i=2 , {vi}n−1

i=1 , {di}ni=1, {ei}n−1
i=1 , {ui}n−1

i=2 , the
eigenvalue λ of C, the respective left and right eigenvectors y and x.
Set c = [ones(n− 2, 1)./(sqrt(ones(n− 2, 1) + l.2))], s = l. ∗ c, c = [c; 1];
r = [ones(n− 2, 1)./(sqrt(ones(n− 2, 1) + u.2))], t = u. ∗ r, r = [r; 1];
zlx = zeros (n, 1), wlx= zeros (n, 1), zly= zeros (1, n), wly= zeros (1, n),
zux = zeros (n, 1), wux = zeros (n, 1), zuy = zeros (1, n), wuy = zeros (1, n);
tlx1 = v1 · x1, zlx2 = c2 · tlx1, tly1 = yn · cn, zlyn−1 = vn−1 · tly1,
tux1 = xn · rn, zuxn−1 = en−1· tux1, tuy1 = e1 · y1, zuy2 = r2·tuy1.
for i=3 to n do

tlx2 = si−1 · tlx1, wlxi = ci · tlx2, tlx1 = tlx2 + vi−1 · xi−1, zlxi = ci · tlx1;
tly2 = sn−i+1 · tly1, wlyn−i+1 = vn−i+1 · tly2, tly1 = tly2 + cn−i+2 · yn−i+2,
zlyn−i+1 = vn−i+1 · tly1;
tux2 = tn−i+1 · tux1, wuxn−i+1 = en−i+1 · tux2, tux1 = tux2 + rn−i+2 · xn−i+2,
zuxn−i+1 = en−i+1 · tux1;
tuy2 = ti−1 · tuy1, wuyi = ri · tuy2, tuy1 = tuy2 + ei−1 · yi−1, zuyi = ri · tuy1.

end for
Set α = zeros (1, n), β = zeros (1, n), αn−1 = yn · wlxn, β2 = y1 · wux1.
α̃ = zeros (1, n), β̃ = zeros (1, n), α̃n−1 = −s2

n−1 · yn−1 · zlxn−1, β̃2 = −t22 · zuy2 · x2.

for i=3 to n-1 do
αn−i+1 = αn−i+2 + yn−i+2 · wlxn−i+2 − wlyn−i+1 · xn−i+1,
α̃n−i+1 = −s2

n−i+1 · yn−i+1 · zlxn−i+1 + c2
n−i+1 · αn−i+1,

βi = βi−1 + yi−1 · wuxi−1 − wuyi · xi,
β̃i = −t2i · zuyi · xi + r2

i · βi.
end for
Set yx = conj(y). ∗ x;
cond (λ; ΩGV ) =

(
|d′| · |yx| + |zly| · |x| + |y′| · |zux| + sum (|α̃|) +

sum(
∣∣∣β̃∣∣∣))/(|λ·| |sum(yx)|).

Output: cond (λ; ΩGV ).



5.5 COMPARISON OF THE CONDITION NUMBERS 81

5.5 Comparison of the condition numbers in the
quasiseparable and the Givens-vector represen-
tation

As we know, the Givens-vector representation is a particular case of the quasisepa-
rable representation which imposes additional constraints on the parameters. Since
we will only consider perturbations respecting such constraints, that is, preserving
the cosine-sine relations in the parameters {ci, si} and {ri, ti} of ΩGV

QS , it is natu-
ral to expect cond(λ; ΩGV ) not to be larger than cond(λ; ΩQS). In Theorem 5.15,
we prove that the Givens-vector representation via tangents is a “more stable” rep-
resentation than the quasiseparable representation for eigenvalue computations for
{1, 1}-quasiseparable matrices. This is the first time that a rigorous proof is given
in such direction.

Theorem 5.15. Let C ∈ Rn×n be a {1, 1}-quasiseparable matrix, ΩGV be the tangent-
Givens-vector parameters of C, ΩQS be any vector of quasiseparable parameters of
C, and λ 6= 0 be a simple eigenvalue of C. Then,

cond(λ; ΩGV ) ≤ cond(λ; ΩQS).

Proof. We compare for the same matrix C, the expression given for cond(λ; ΩQS) in
Theorem 5.2 and the expression given in Theorem 5.12 for cond(λ; ΩGV ). Starting
from the sums in the last two terms of the expression for cond(λ; ΩGV ), we have:

S1 =
n−1∑
i=2

∣∣∣∣∣∣y∗
 0 0

−s2
i C(i, 1 : i− 1) 0

c2
i C(i+ 1 : n, 1 : i− 1) 0

x

∣∣∣∣∣∣
≤

n−1∑
i=2

|yiCL(i, :)x|+
n−1∑
i=2

∣∣∣∣y∗ [ 0 0
C(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣
= |y∗| |CLx|+

n−1∑
i=2

∣∣∣∣y∗ [ 0 0
C(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣. (5.4)

Analogously, we obtain:

S2 =
n−1∑
j=2

∣∣∣∣y∗ [ 0 −t2j C(1 : j − 1, j) r2
j C(1 : j − 1, j + 1 : n)

0 0 0

]
x

∣∣∣∣
≤ |y∗CU | |x|+

n−1∑
j=2

∣∣∣∣y∗ [ 0 C(1 : j − 1, j + 1 : n)
0 0

]
x

∣∣∣∣. (5.5)

From (5.4) and (5.5) we have

cond(λ; ΩGV ) ≤ 1

|λ||y∗x|

{
|y∗||CD||x|+ |y∗||CLx|+ |y∗CL||x|
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+ |y∗||CUx|+ |y∗CU ||x|

+
n−1∑
i=2

∣∣∣∣y∗ [ 0 0
C(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣
+

n−1∑
j=2

∣∣∣∣y∗ [ 0 C(1 : j − 1, j + 1 : n)
0 0

]
x

∣∣∣∣
}

= cond(λ; ΩQS).

On the other hand, we are going to show now that the Givens-vector repre-
sentation via tangents can only improve, with respect to a general quasiseparable
representation, the relative condition number of a simple eigenvalue of a quasisepa-
rable matrix, up to a factor of 3n. Therefore, both representations can be considered
equivalent from the point of view of the accuracy of the eigenvalue computations
that they allow. This is proved in Theorem 5.16.

Theorem 5.16. Let λ 6= 0 be a simple eigenvalue of a {1, 1}-quasiseparable matrix
C ∈ Rn×n and ΩGV be the tangent-Givens-vector representation of C. Then for any
quasiseparable representation ΩQS of C:

cond(λ; ΩQS)

cond(λ; ΩGV )
≤ 3(n− 2).

Proof. The proof of this theorem is based on Definition 3.20 instead of on the explicit
expressions for cond(λ; ΩQS) and cond(λ; ΩGV ). Recall that from the Givens-vector
representation via tangents ΩGV of C we can obtain the Givens-vector representation
ΩGV
QS of C as in Definition 4.8, and that ΩGV

QS is also a quasiseparable representation
of C as we explained after Theorem 2.21. Therefore, in order to use the definition
of the componentwise relative eigenvalue condition number for representations, i.e.,
Definition 3.20, let us consider a quasiseparable perturbation δΩGV

QS of the parameters
in ΩGV

QS such that |δΩGV
QS | ≤ η|ΩGV

QS |, and the resulting quasiseparable matrix C̃ :=
C(ΩGV

QS + δΩGV
QS ). We will refer to η as the level of the relative perturbation of the

parameters in the representation ΩGV
QS . We emphasize that the perturbation δΩGV

QS

does not respect in general the pairs cosine-sine.
On the other hand, note that C̃ can also be represented by a vector

Ω′GV :=
(
{l′i}n−1

i=2 , {v′i}n−1
i=1 , {d′i}ni=1, {e′i}n−1

i=1 , {u′i}n−1
i=2

)
of tangent-Givens-vector parameters and let us consider the perturbations

δ′ΩGV := Ω′GV − ΩGV .



5.5. COMPARISON OF THE CONDITION NUMBERS 83

For simplicity, we will denote

C̃ := C(ΩGV
QS + δΩGV

QS ) = C(Ω′GV ).

In Lemma 4.15, we provided the upper bound in (5.6) for the level η′ of the re-
spective relative perturbations in the parameters in Ω′GV produced by the level η of
relative perturbation in the quasiseparable parameters in ΩGV

QS . More precisely, for
a {1, 1}-quasiseparable matrix C := C(ΩGV ) = C(ΩGV

QS ), it is proved that given any
quasiseparable perturbation |δΩGV

QS | ≤ η|ΩGV
QS |, there exists a perturbation δ′ΩGV of

the tangent-Givens-vector parameters of C, such that

C(ΩGV
QS + δΩGV

QS ) = C(ΩGV + δ′ΩGV )

and
|δ′ΩGV | ≤ (3(n− 2)η +O(η2))|ΩGV |. (5.6)

Then, from Definition 3.20, we have:

cond(λ; ΩQS) ≤ lim
η→0

sup

{
|δλ|
η|λ|

: (λ+ δλ) is an eigenvalue of C(ΩGV + δΩGV ),

|δΩGV | ≤ (3(n− 2)η +O(η2))|ΩGV |
}
.

By considering the change of variable η′ = (3(n− 2)η +O(η2)), we obtain

cond(λ; ΩQS) ≤ lim
η′→0

sup

{
3(n− 2)|δλ|

η′|λ|
: (λ+ δλ) is an eigenvalue of C(ΩGV + δΩGV ),

|δΩGV | ≤ η′|ΩGV |
}

= 3(n− 2)cond(λ; ΩGV ).

From Example 5.13 in Section 5.3 we know that the eigenvalue condition num-
ber with respect to the tangent-Givens-vector representation is not invariant under
diagonal similarities. However, the variations that may be obtained in the condition
number under these similarities are not significant from a numerical point of view.
This is stated in Proposition 5.17.

Proposition 5.17. Let λ 6= 0 be a simple eigenvalue of a {1, 1}-quasiseparable ma-
trix C ∈ Rn×n, ΩGV be the tangent-Givens-vector representation of C, K ∈ Rn×n be
diagonal and nonsingular and ΩKCK−1

GV be the tangent-Givens-vector representation
of KCK−1. Then

1

3(n− 2)
≤ cond(λ,C; ΩGV )

cond
(
λ,KCK−1; ΩKCK−1

GV

) ≤ 3(n− 2).

Proof. The proof is straightforward from Theorems 5.15, 5.16, and 5.9.
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5.6 Numerical experiments
In this section, we will discuss briefly some numerical experiments that have been
performed in order to confirm some of the results for eigenvalue condition numbers
obtained in Sections 5.1, 5.3, and 5.5. We have run several random numerical tests in
MATLAB for comparing the unstructured componentwise condition number cond(λ)
in Theorem 3.18 and the structured ones cond(λ; ΩQS) and cond(λ; ΩGV ). We have
started by generating the vectors

l ∈ Rn−2,v ∈ Rn−1,d ∈ Rn, e ∈ Rn−1, and u ∈ Rn−2, (5.7)

containing the randomly generated parameters of the tangent-Givens-vector repre-
sentation in Definition 4.8, by using the command randn from MATLAB. In addi-
tion, in some tests we have scaled the parameters in v and e as explained in (5.8).
Then, we build the quasiseparable matrix C of size n×n generated by these parame-
ters and we obtain its eigenvalues and eigenvectors using the standard command eig
from MATLAB. The parameters in ΩQS := ΩGV

QS in Definition 4.8 are also computed.
Finally, we compute the structured eigenvalue condition numbers cond(λ; ΩQS) and
cond(λ; ΩGV ), using our fast Algorithms 1 and 2 respectively, and the unstructured
condition number cond(λ) using direct matrix-vector multiplication with a resulting
cost of order 2n2 + O(n) operations (note that cond(λ) can also be computed in
O(n) operations since |C| is also a quasiseparable matrix), and we compare these
three condition numbers.

When the generated parameters are completely random (i.e., no scaling has been
introduced), we have not observed large differences between the eigenvalue condition
numbers, i.e., cond(λ) ≈ cond(λ; ΩQS) ≈ cond(λ; ΩGV ), and all of them are very
often moderate.

On the other hand, as announced above, we have also performed tests where
some scalings over the randomly generated parameters of the tangent-Givens-vector
representation have been introduced in order to build an unbalanced quasiseparable
matrix. After generating the random vectors as in (5.7), we have scaled the param-
eters in v and e by creating the vectors (using MATLAB standard notation):

scv = (10.ˆ(k : −(k − 1)/(n− 2) : 1)) and sce = (10.ˆ(1 : (k − 1)/(n− 2) : k)) ,

where k is a fixed natural number not greater than 10 in our experiments, and
considering

v = 102 ∗ scv. ∗ v and e = 102 ∗ sce. ∗ e , (5.8)

which may produce unbalanced rows and columns in the lower and upper triangular
parts of the matrix generated by these parameters (see Example 2.22). Therefore,
we may expect large unstructured eigenvalue condition numbers. In this way, for
different values of k and different sizes n, we have found distributions of the tangent-
Givens-vector parameters that produce {1, 1}-quasiseparable matrices such that the
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unstructured condition number cond(λ) is much larger than the structured ones,
cond(λ; ΩQS) and cond(λ; ΩGV ). In fact, for n = 200 and n = 300, with k = 5 in
both cases, we have obtained particular matrices such that:

n λmin λmax max
λ

{ cond(λ)

cond(λ;ΩQS)

}
max
λ

{ cond(λ;ΩQS)

cond(λ;ΩGV )

}
200 555.2761 −2.4628 · 104 + 1.6840 · 105i 4.7847 · 1011 3.3337
300 60.5936 −1.3533 · 105 + 2.6060 · 105i 2.4201 · 1010 3.2570

,

where λmin and λmax denote the respective minimum and maximum eigenvalues

in absolute value, while max
λ

{
cond(λ)

cond(λ;ΩQS)

}
and max

λ

{ cond(λ;ΩQS)

cond(λ;ΩGV )

}
denote the re-

spective maximum values of the quotients, both taken over the corresponding sets of
the eigenvalues of the particular considered matrices for n = 200 and n = 300. Fur-
thermore, if we denote by λopt the eigenvalue where the maximum of the quotient{

cond(λ)

cond(λ;ΩQS)

}
occurs, we have:

n λopt cond(λopt) cond(λopt; ΩQS)

200 −2.4569 · 103 + 3.7791 · 102i 2.4780 · 1013 51.7901
300 −1.0088 · 104 1.8703 · 1011 7.7281

.

It is worth mentioning that, as one would expect, repeating these experiments for
values of k greater than 5 (which produce matrices with strongly unbalanced lower
and upper triangular parts), we obtained similar results to the ones above.

These examples show not only that the structured eigenvalue condition number
cond(λ; ΩQS) (and, therefore, cond(λ; ΩGV )) may be much smaller than the unstruc-
tured one cond(λ), but also that there exist {1, 1}-quasiseparable matrices having
eigenvalues that are very ill conditioned with respect to perturbations of its entries,
but that are very well conditioned with respect to perturbations of its quasiseparable
parameters.

In addition, as one would expect from Theorems 5.15 and 5.16, there is not much
difference between the values of cond(λ; ΩQS) and cond(λ; ΩGV ), therefore we have
omitted the corresponding column for the quotient cond(λ;ΩQS)

cond(λ;ΩGV )
in the second table

above. In fact, in all our tests we have obtained that

cond(λ; ΩQS)

cond(λ; ΩGV )
< 15,

which suggests that the bound in Theorem 5.16 may be improved up to a constant.





Chapter 6

Structured eigenvalue condition
numbers for {nL, nU}-quasiseparable
matrices

In this chapter we will study structured eigenvalue condition numbers for {nL, nU}-
quasiseparable matrices in an analogous way as we did for {1, 1}-quasiseparable
matrices in Chapter 5, but with respect to the general quasiseparable representa-
tion described in Section 2.3.3. This representation has important differences with
respect to the {1, 1}-case, since its parameters are the entries of certain vectors
and matrices. This means that we are in a more complicated scenario, since the
interactions (via products) between the parameters that generate the matrix are
no longer trivial because they involve matrix and vector multiplications. Conse-
quently, in Section 6.1, we will provide an expression for computing the eigenvalue
condition number with respect to the quasiseparable representation of an {nL, nU}-
quasiseparable matrix (see Theorem 6.2), and we will note that this structured
eigenvalue condition number may be much larger than the usual unstructured one
in Definition 3.17, as observed in the numerical experiments described in Section
6.3. This result represents an important difference with respect to the one obtained
in Proposition 5.4 for the {1, 1}-case and suggests the use of a representation differ-
ent than the quasiseparable one for general {nL, nU}-quasiseparable matrices which
can be potentially more stable. Nevertheless, we provide a bound for the structured
eigenvalue condition number in the quasiseparable representation in terms of an
unstructured eigenvalue condition number defined by Higham and Higham in [42].
In addition, in Section 6.2, we describe how to compute the structured eigenvalue
condition number fast.

87
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6.1 Eigenvalue condition numbers for {nL, nU}-quasi-
separable matrices in the quasiseparable repre-
sentation

In an analogous way to the quasiseparable representation for {1, 1}-quasiseparable
matrices, we can deduce relative eigenvalue condition numbers with respect to com-
ponentwise perturbations of the parameters in the quasiseparable representation for
{nL, nU}-quasiseparable matrices, although the corresponding expressions are con-
siderably more involved that in the {1, 1}-case. For simplicity, we will only consider
relative perturbations with respect to the parameters in the representation. There-
fore, we will use Theorem 3.23 for proving Theorem 6.2, where the new condition
number is deduced. First, in order to avoid very complicated expressions, we need
to define the Kronecker product. This is done in Definition 6.1 [44].

Definition 6.1. For any two matrices A = [aij] ∈ Cm×n and B = [bij] ∈ Cp×q, we
define the Kronecker product of A and B (in that order) as the block matrix:

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ∈ Cmp×nq.

On the other hand, before Theorem 6.2 we need to introduce some notation.
For an {nL, nU}-quasiseparable matrix C = CL + CD + CU , with CL strictly lower
triangular, CD diagonal, CU strictly upper triangular, of size n × n, and with a
quasiseparable representation ΩQS as in Theorem 2.23, we denote:

• P ∈ R1×nLn the vector partitioned as P = [01×nL
|p2| · · · |pn],

• diag(P ) the diagonal matrix of size nLn×nLn that is obtained by placing the
elements of P on its diagonal entries, i.e.:

diag(P ) =



0nL×nL

(p2)1

. . .

(p2)nL

. . .

(pn)nL


,

• CL[p] the matrix of size nLn× n, partitioned into n× n blocks of size nL × 1,
which is obtained by removing the parameters pi from CL, adding nL rows of
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zeros on the top and 1 column of zeros on the right, i.e.:

CL[p] =


0nL×1

0nL×1 0

a×ijqj
. . .

0nL×1

 ,
• Q ∈ RnLn×1 the vector partitioned as

Q =


q1

...
qn−1

0nL×1

 ,

• diag(Q) the diagonal matrix of size nLn×nLn that is obtained by placing the
elements of Q on its diagonal entries, i.e.:

diag(Q) =



(q1)1

. . .

(q1)nL

. . .

(qn−1)nL

0nL×nL


,

• CL[q] the matrix of size n× nnL, partitioned into n× n blocks of size 1× nL,
which is obtained by removing the parameters qj from CL, adding nL columns
of zeros on the right and 1 row of zeros on the top, i.e.:

CL[q] =


01×nL

01×nL
0

pia
×
ij

. . .

01×nL

 ,
• A ∈ RnLn×nLn a block diagonal matrix partioned into n × n blocks of size
nL × nL, such that the nL × nL diagonal block Aii is given by the matrix ai
for i in {2, . . . , n− 1}, and such that the nL×nL blocks A11 and Ann are both
zero matrices, i.e.:

A =



0nL×nL

a2

a3

. . .

an−1

0nL×nL


,
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• G ∈ R1×nUn the vector partitioned as G = [g1| · · · |gn−1|01×nU
],

• diag(G) a diagonal matrix of size nUn × nUn that is obtained by placing the
elements of G on its diagonal entries, i.e.:

diag(G) =



(g1)1

. . .

(g1)nU

. . .

(gn−1)nU

0nU×nU


,

• CU [g] the matrix of size nUn× n, partitioned into n× n blocks of size nU × 1,
which is obtained by removing the parameters gi from CU , adding nU rows of
zeros on the bottom, and one column of zeros on the left, i.e.:

CU [g] =


0nU×1

0nU×1 b×ijhj

0
. . .

0nU×1

 ,

• H ∈ RnUn×1 the vector partitioned as follows

H =


0nU×1

h2

...
hn

 ,

• diag(H) a diagonal matrix of size nUn× nUn that is obtained by placing the
elements of H on its diagonal entries, i.e.:

diag(H) =



0nU×nU

(h2)1

. . .

(h2)nU

. . .

(hn)nU


,
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• CU [h] the matrix of size n× nnU , partitioned into n× n blocks of size 1× nU ,
which is obtained by removing the parameters hj from CU and adding nU
columns of zeros on the left and one row of zeros on the bottom, i.e.:

CU [h] =


01×nU

01×nU
gib
×
ij

0
. . .

01×nU

 , and
• B ∈ RnUn×nUn a block diagonal matrix partioned into n × n blocks of size
nU × nU , such that the nU × nU diagonal block Bii is given by the matrix bi
for i in {2, . . . , n−1}, and such that the nU ×nU blocks B11 and Bnn are both
zero matrices, i.e.

B =



0nU×nU

b2

b3

. . .

bn−1

0nU×nU


.

Theorem 6.2. Let C ∈ Rn×n be an {nL, nU}-quasiseparable matrix and C =
CL + CD + CU , with CL strictly lower triangular, CD diagonal, and CU strictly upper
triangular. Suppose λ 6= 0 is a simple eigenvalue of C with left and right eigenvec-
tors y and x respectively, and denote by ΩQS a quasiseparable representation of C
as in Theorem 2.23. Then, using the notation above, the componentwise relative
condition number cond(λ; ΩQS) of λ with respect to ΩQS is given by the following
expression:

cond(λ; ΩQS) =
1

|λ||y∗x|

{
|y∗||CD|||x|+ |y∗ ⊗ eTnL

||diag(P )||CL[p]x|

+ |y∗CL[q]||diag(Q)||x⊗ enL
|

+ |y∗ ⊗ eTnU
||diag(G)||CU [g]x|

+ |y∗CU [h]||diag(H)||x⊗ enU
|

+ |y∗CL[q]| |A| |CL[p]x|

+ |y∗CU [h]| |B| |CU [g]x|

}
,

where:
eTnL
∈ R1×nL denotes the vector eTnL

= [1, 1, . . . , 1] and eTnU
∈ R1×nU denotes the

vector eTnU
= [1, 1, . . . , 1].
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Proof. Using Theorem 3.23 and following the ideas in the proofs of Theorems 5.2
and 5.12, we will proceed by calculating the partial derivatives of the eigenvalue
with respect to the different parameters, term by term, as follows.

Contribution of the derivatives with respect to {di}ni=1 :
From

di
λ

∂λ

∂di
=

1

λ(y∗x)
yidixi,

we have
n∑
i=1

∣∣∣∣diλ ∂λ

∂di

∣∣∣∣ =
1

|λ(y∗x)|
|y∗||CD||x|.

Contribution of the derivatives with respect to the entries of {pi}ni=2 :
Recall that pi = [(pi)1, (pi)2, . . . , (pi)nL

]. Then

(pi)l
λ

∂λ

∂(pi)l
=

(pi)l
λ(y∗x)


y∗



0
0

. . .
∂Ci1

∂(pi)l
· · · ∂Ci,i−1

∂(pi)l
0

. . .

0


x


=

(pi)l
λ(y∗x)

yi

[
∂Ci1
∂(pi)l

, . . . ,
∂Ci,i−1

∂(pi)l
, 0, . . . , 0

]
x,

and
nL∑
l=1

∣∣∣∣(pi)lλ

∂λ

∂(pi)l

∣∣∣∣ =
|yi|

|λ(y∗x)|
|pi|
∣∣[a×i1q1| · · · |a×i,i−1qi−1|0| · · · |0]x

∣∣ .

Therefore, the global contribution of the derivatives with respect to the pa-
rameters in {pi}ni=2 is stated in the following expression:

n∑
i=2

nL∑
l=1

∣∣∣∣(pi)lλ

∂λ

∂(pi)l

∣∣∣∣ =
1

|λ(y∗x)|

n∑
i=2

|yi| |pi|
∣∣[a×i1q1| · · · |a×i,i−1qi−1|0| · · · |0]x

∣∣,
which can be rewritten as:

n∑
i=2

nL∑
l=1

∣∣∣∣(pi)lλ

∂λ

∂(pi)l

∣∣∣∣ =
1

|λ(y∗x)|
∣∣y∗ ⊗ eTnL

∣∣ |diag(P )| |CL[p]x| .
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Contribution of the derivatives with respect to the entries of {ai}n−1
i=2 :

Recall that ai = {(ai)lm}nL
l,m=1 and let us denote C[(ai)lm] to the matrix of size

n × n that it is obtained from C by replacing the matrix ai by the matrix
(ai)lmElm, where Elm ∈ RnL×nL , and (Elm)st = δlsδmt, where δls denotes the
Kronecker delta, i.e.:

δls =

{
1 if l = s
0 if l 6= s

.

Then, using the notation above, the following equalities are straightforward.

(ai)lm
λ

∂λ

∂(ai)lm
=

(ai)lm
λ(y∗x)

y∗

[
0 0

∂C(i+1:n,1:i−1)
∂(ai)lm

0

]
x

=
1

λ(y∗x)
y∗
[

0 0
C[(ai)lm](i+ 1 : n, 1 : i− 1) 0

]
x.

Therefore
n−1∑
i=2

nL∑
l,m=1

∣∣∣∣(ai)lmλ ∂λ

∂(ai)lm

∣∣∣∣ =
1

|λ(y∗x)|

n−1∑
i=2

nL∑
l,m=1

∣∣∣∣y∗ [ 0 0
C[(ai)lm](i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣ .
Let us focus on the matrix in the sum above, and denote:

Ai;lm =

[
0 0

C[(ai)lm](i+ 1 : n, 1 : i− 1) 0

]
.

Let us rewrite Ai;lm in a more explicit way:

Ai;lm =

0 · · · 0 0
pi+1 ((ai)lmElm) ai−1 · · · a2q1 · · · pi+1 ((ai)lmElm) qi−1 0

...
. . .

...
...

pi+kai+k−1 · · · ai+1 ((ai)lmElm) ai−1 · · · a2q1 · · · pi+kai+k−1 · · · ai+1 ((ai)lmElm) qi−1 0
...

. . .
...

...
pnan−1 · · · ai+1 ((ai)lmElm) ai−1 · · · a2q1 · · · pnan−1 · · · ai+1 ((ai)lmElm) qi−1 0


,

which can be rewritten again, as the following product:

Ai;lm =

0
pi+1

...
pi+kai+k−1 . . . ai+1

...
pnan−1 · · · ai+1


[(ai)lmElm]

[
ai−1 . . . a2q1 · · · ai−1 . . . aj+1qj · · · qi−1 0

]
.



94 CHAPTER 6. E. C. N. FOR {NL, NU}-QUASISEPARABLE MATRICES

Note now that from the respective definitions of the matrices CL[q] and CL[p],
we have:

CL[q](:, i) =



0
pi+1

...
pi+kai+k−1 . . . ai+1

...
pnan−1 · · · ai+1


and

CL[p](i, :) =
[
ai−1 . . . a2q1 · · · ai−1 . . . aj+1qj · · · qi−1 0

]
,

from where we obtain

Ai;lm = CL[q](:, i) [(ai)lmElm]CL[p](i, :).

Then, since no additions occur in the multiplication by [(ai)lmElm] in the
equation above, it is easy to see that

nL∑
l,m=1

|y∗Ai;lmx| =
nL∑

l,m=1

|y∗CL[q](:, i) [(ai)lmElm]CL[p](i, :)x|

= |y∗CL[q](:, i)| |ai| |CL[p](i, :)x| ;

and we conclude that
n−1∑
i=2

nL∑
l,m=1

∣∣∣∣(ai)lmλ ∂λ

∂(ai)lm

∣∣∣∣ =
1

|λ(y∗x)|

n−1∑
i=2

|y∗CL[q](:, i)| |ai| |CL[p](i, :)x|

=
1

|λ(y∗x)|
|y∗CL[q]| |A| |CL[p]x| .

Contribution of the derivatives with respect to the entries of {qj}n−1
j=1 :

Recall that qj = [(qj)1, . . . , (qj)nL
]T . Then,

(qj)l
λ

∂λ

∂(qj)l
=

(qj)l
λ(y∗x)


y∗



0
. . .

0
∂Cj+1,j

∂(qj)l
0

...
. . .

∂Cn,j

∂(qj)l
0


x
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=
(qj)l
λ(y∗x)

y∗



0
...
0

∂Cj+1,j

∂(qj)l
...

∂Cn,j

∂(qj)l


xj.

Therefore, the global contribution of the derivatives with respect to the pa-
rameters in {qj}n−1

j=1 is stated in the following expression.

n−1∑
j=1

nL∑
l=1

∣∣∣∣(qj)lλ

∂λ

∂(qj)l

∣∣∣∣ =
1

|λ(y∗x)|

n−1∑
j=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y∗



0
...
0

pj+1a
×
j+1,j
...

pna
×
n,j



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|(qj)| |xj|,

which can be rewritten as:
n−1∑
j=1

nL∑
l=1

∣∣∣∣(qj)lλ

∂λ

∂(qj)l

∣∣∣∣ =
1

|λ(y∗x)|
|y∗CL[q]| |diag(Q)| |x⊗ enL

|.

By proceeding in an analogous way to what it has been done above for the parameters
in {pi}ni=2, {ai}n−1

i=2 , and {qj}n−1
j=1 representing the strictly lower triangular part of C,

we can obtain the corresponding contribution to cond(λ; ΩQS) of the parameters in
{gi}n−1

i=1 , {bi}n−1
i=2 , and {hj}nj=2 representing the strictly upper triangular part of C.

Contribution of the derivatives with respect to the entries of {gi}n−1
i=1 :

n−1∑
i=1

nU∑
l=1

∣∣∣∣(gi)lλ

∂λ

∂(gi)l

∣∣∣∣ =
1

|λ(y∗x)|
∣∣y∗ ⊗ eTnU

∣∣ |diag(G)| |CU [g]x| .

Contribution of the derivatives with respect to the entries of {bi}n−1
i=2 :

Denote C[(bi)lm] to the matrix of size n × n that it is obtained from C by
replacing the matrix bi by the matrix (bi)lmElm, where Elm ∈ RnU×nU , and
(Elm)st = δlsδmt. Then,

n−1∑
i=2

nU∑
l,m=1

∣∣∣∣(bi)lmλ ∂λ

∂(bi)lm

∣∣∣∣ =
1

|(λy∗x)|

n−1∑
i=2

nU∑
l,m=1

∣∣∣∣y∗ [ 0 C[(bi)lm](1 : i− 1, i+ 1 : n)
0 0

]
x

∣∣∣∣
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=
1

|λ(y∗x)|
|y∗CU [h]| |B| |CU [g]x| .

Contribution of the derivatives with respect to the entries of {hj}nj=2 :

n∑
j=2

nU∑
l=1

∣∣∣∣(hj)lλ

∂λ

∂(hj)l

∣∣∣∣ =
1

|λ(y∗x)|
|y∗CU [h]| |diag(H)| |x⊗ enU

|.

The proof is completed by summing all the global contributions obtained above for
the derivatives of the parameters in ΩQS.

Remark 6.3. Note that Theorem 6.2, stated for {nL, nU}-quasiseparable matrices,
is a generalization of Theorem 5.2, stated for {1, 1}-quasiseprable matrices . In fact,
for nL = nU = 1, the following equalities are straightforward,

y∗ ⊗ eTnL
= y∗, x⊗ enU

= x, y∗ ⊗ eTnU
= y∗, x⊗ enU

= x,

|diag(P)| |CL[p]x| = |CLx| , |y∗CL[q]| |diag(Q)| = |y∗CL| ,
|diag(G)| |CU [g]x| = |CUx| , |y∗CU [h]| |diag(H)| = |y∗CU | .

(6.1)

In addition, in the {1, 1}-case, it is easy to see that:

|y∗CL[q]| |A| |CL[p]x| = |y∗CL[q]|


0
|a2|

. . .

|an−1|
0

 |CL[p]x|

=
n−1∑
i=2

|y∗ (CL[q](:, i)aiCL[p](i, :))x|

=
n−1∑
i=2

∣∣∣∣y∗ [ 0 0
C(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣, (6.2)

and analogously,

|y∗CU [h]| |B| |CU [g]x| =
n−1∑
j=2

∣∣∣∣y∗ [ 0 C(1 : j − 1, j + 1 : n)
0 0

]
x

∣∣∣∣ . (6.3)

From (6.1), (6.2), and (6.3), we conclude that the respective condition numbers in
Theorems 5.2 and 6.2 are the same in the {1, 1}-case.

On the other hand note that, from the expression obtained in Theorem 6.2
for {nL, nU}-quasiseparable matrices, cond(λ; ΩQS) depends, for values of nL or nu
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greater than 1, on the parameters in the quasiseparable representation ΩQS, and not
only on the matrix entries, as it does in the {1, 1}-case.

Another important difference between the {1, 1}-case and higher order cases is
that, in general,

cond(λ; ΩQS) � n cond(λ;C) = n
|y∗| |C| |x|
|λ| |y∗x|

, (6.4)

where cond(λ;C) is the unstructured eigenvalue condition number in Theorem 3.18,
and potentially cond(λ; ΩQS) � cond(λ;C) may happen for nL > 1 or nU > 1.
This means that the unstructured condition number can be much smaller than the
structured one in those cases, as we have observed in our numerical tests described
in Section 6.3.

In order to find a bound for cond(λ; ΩQS) for an {nL, nU}-quasiseparable matrix
C with a quasiseparable representation given by ΩQS as in Theorem 2.23, let us
consider the set of all the absolute values of all the parameters in ΩQS by using the
following notation:

|ΩQS| = ({|pi|}ni=2, {|ai|}n−1
i=2 , {|qj|}n−1

j=1 , {|di|}ni=1, {|gi|}n−1
i=1 , {|bi|}n−1

i=2 , {|hj|}nj=2),

where all |·| must be understood componentwise, and the respective {nL, nU}-
quasiseparable matrix C(|ΩQS|) generated by such parameters.

Proposition 6.4. Let C be an {nL, nU}-quasiseparable matrix with a quasiseparable
representation ΩQS. Then,

cond(λ; ΩQS) ≤ n
|y∗|C(|ΩQS|) |x|
|λ| |y∗x|

.

Proof. We will proceed by giving a bound for each term in the expression for
cond(λ; ΩQS) presented in Theorem 6.2 as follows:

∣∣y∗ ⊗ eTnL

∣∣ |diag(P )| |CL[p]x| =
n∑
i=2

|yi| |pi|
∣∣[ a×i1q1 · · · a×i i−1qi−1 0

]
x
∣∣

≤
n∑
i=2

|yi|CL(|ΩQS|)(i, :) |x| = |y∗|CL(|ΩQS|) |x| ,

|y∗CL[q]| |diag(Q)| |x⊗ enL
| =

n−1∑
j=1

|y∗


0

pj+1a
×
j+1,j

· · ·
pna

×
n,j

 | |qj| |xj|
≤

n−1∑
j=1

|y∗|CL(|ΩQS|)(:, j) |xj| = |y∗|CL(|ΩQS|) |x| ,
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∣∣y∗ ⊗ eTnU

∣∣ |diag(G)| |CU [g]x| =
n−1∑
i=1

|yi| |gi|
∣∣[ 0 b×i i+1hi+1 · · · b×i nhn

]
x
∣∣

≤
n−1∑
i=1

|yi|CU(|ΩQS|)(i, :) |x| = |y∗|CU(|ΩQS|) |x| ,

|y∗CU [h]| |diag(H)| |x⊗ enU
| =

n∑
j=2

|y∗


g1b
×
i,j

· · ·
gj−1b

×
j−1,j

0

 | |hj| |xj|
≤

n∑
j=2

|y∗|CU(|ΩQS|)(:, j) |xj| = |y∗|CU(|ΩQS|) |x| ,

|y∗CL[q]| |A| |CL[p]x| =
n−1∑
i=2

nL∑
l,m=1

∣∣∣∣y∗ [ 0 0
C[(ai)l m](i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣
≤

n−1∑
i=2

|y∗|
[

0 0
C(|ΩQS|)(i+ 1 : n, 1 : i− 1) 0

]
|x|

≤ (n− 2)|y∗|CL(|ΩQS|)|x|,

|y∗CU [h]| |B| |CU [g]x| =
n−1∑
i=2

nU∑
l,m=1

∣∣∣∣y∗ [ 0 C[(bi)l m](1 : i− 1, i+ 1 : n)
0 0

]
x

∣∣∣∣
≤

n−1∑
i=2

|y∗|
[

0 C(|ΩQS|)(1 : i− 1, i+ 1 : n)
0 0

]
|x|

≤ (n− 2)|y∗|CU(|ΩQS|)|x|,

where, in the last expressions above, C[(ai)l m] and C[(bi)l m] are defined as in the
proof of Theorem 6.2. Consequently, we have that

cond(λ; ΩQS) ≤ 1

|λ(y∗x)|
{|y∗|CD(|ΩQS|)|x|+ n |y∗|CL(|ΩQS|)|x|

+n |y∗|CU(|ΩQS|)|x|}

≤ n
|y∗|C(|ΩQS|) |x|
|λ| |y∗x|

.

In order to obtain a clear interpretation of Proposition 6.4, we will use the
following lemma, which is an extension to rectangular matrices of a result presented
in the book by Higham [41, Lemma 3.8].
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Lemma 6.5. Let Xj ∈ Rnj−1×nj and Xj + ∆Xj ∈ Rnj−1×nj be such that |∆Xj| ≤
δj|Xj| for j ∈ {0, 1, . . . ,m}. Then,∣∣∣∣∣

m∏
j=0

(Xj + ∆Xj)−
m∏
j=0

Xj

∣∣∣∣∣ ≤
(

m∏
j=0

(1 + δj)− 1

)
m∏
j=0

|Xj|.

Proof. We will proceed by induction. Note first that this result is true for m = 0
since:

|X0 + ∆X0 −X0| = |∆X0| ≤ δ0 |X0| .
Suppose this is a true result for m− 1 and let us prove it for m. Note that∣∣∣∣∣

m∏
j=0

(Xj + ∆Xj)−
m∏
j=0

Xj

∣∣∣∣∣ =

∣∣∣∣∣
(
m−1∏
j=0

(Xj + ∆Xj)

)
(Xm + ∆Xm)−

(
m−1∏
j=0

Xj

)
Xm

∣∣∣∣∣
=

∣∣∣∣∣
(
m−1∏
j=0

(Xj + ∆Xj)−
m−1∏
j=0

Xj

)
Xm

+

(
m−1∏
j=0

(Xj + ∆Xj)

)
∆Xm

∣∣∣∣∣ .
Then, using the induction hypothesis, we have∣∣∣∣∣

m∏
j=0

(Xj + ∆Xj)−
m∏
j=0

Xj

∣∣∣∣∣ ≤
(
m−1∏
j=0

(1 + δj)− 1

)
m∏
j=0

|Xj|+
m−1∏
j=0

(1 + δj) δm

m∏
j=0

|Xj|

≤

(
m−1∏
j=0

(1 + δj)− 1 +

(
m−1∏
j=0

(1 + δj)

)
δm

)
m∏
j=0

|Xj|

=

(
m∏
j=0

(1 + δj)− 1

)
m∏
j=0

|Xj|,

which completes the proof.

Using Lemma 6.5, we can bound the perturbations of the {nL, nU}-quasiseparable
matrix C under tiny relative perturbations on the parameters in the quasiseparable
representation ΩQS described in Theorem 2.23. We denote such perturbations on
the parameters as:

ΩQS + δΩQS = ({pi + δpi}ni=2, {ai + δai}n−1
i=2 , {qj + δqj}n−1

j=1 , {di + δdi}ni=1,

{gi + δgi}n−1
i=1 , {bi + δbi}n−1

i=2 , {hj + δhj}nj=2),

and we will consider |δΩQS| ≤ η |ΩQS|. i.e.,

|δpi| ≤ η|pi|, |δai| ≤ η|ai|, |δqj| ≤ η|qj|, |δdi| ≤ η|di|,
|δgi| ≤ η|gi|, |δbi| ≤ η|bi|, |δhj| ≤ η|hj|.
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Lemma 6.6. With the notation above, we have

|C(ΩQS + δΩQS)− C(ΩQS)| ≤ [(1 + η)n − 1]C(|ΩQS|).

Proof. Since each entry of C(ΩQS) is a product of at most n matrices, as a conse-
quence of Lemma 6.5, we have that∣∣∣[C(ΩQS + δΩQS)]i j − [C(ΩQS)]i j

∣∣∣ ≤ [(1 + η)n − 1] [C(|ΩQS|)]i j .

Note that the bound in Lemma 6.6 is not always attained for all entries, but it is
the best that we can say for all the entries of C. The key point to this matter is that
the parameters in ΩQS may not determine well the matrix under tiny perturbations
if C(|ΩQS|)ij � |C(ΩQS)ij| for some entry C(ΩQS)ij not far from maxkl |C(ΩQS)kl|.

These comments allow us to give a clear interpretation of Proposition 6.4, since
Lemma 6.6 suggests the use of the unstructured condition number introduced by
Higham and Higham in [42], with respect to C(|ΩQS|):

cond|ΩQS |(λ;C) := lim
η→0

sup

{
|δλ|
η|λ|

: (λ+ δλ) is eigenvalue of (C + δC),

|δC| ≤ η|C (|ΩQS|) |
}

=
|y∗|C (|ΩQS|) |x|
|λ| |y∗x|

,

which is, essentially, the bound given for cond(λ; ΩQS) in Proposition 6.4, up to a
factor n.

Remark 6.7. The condition number cond|ΩQS |(λ;C), defined above, is also a par-
ticular case of the general condition number in Definition 3.24. This is observed
by considering Ω = C and E = |ΩQS| in Definition 3.24, i.e.: cond|ΩQS |(λ;C) =
cond|ΩQS |(λ,C;C).

On the other hand, it is easy to check that the relative condition number
cond(λ; ΩQS) for {nL, nU}-quasiseparable matrices is also invariant under diagonal
similarities.

Proposition 6.8. Let K = diag (k1, k2, · · · , kn) be an invertible diagonal matrix
and C ∈ Rn×n be an {nL, nU}-quasiseparable matrix. Then, the following assertions
hold.

(a) The matrix KCK−1 ∈ Rn×n is also an {nL, nU}-quasiseparable matrix.
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(b) If the set of parameters

ΩQS = ({pi}ni=2, {ai}n−1
i=2 , {qi}n−1

i=1 , {di}ni=1, {gi}n−1
i=1 , {bi}n−1

i=2 , {hi}ni=2),

defines a quasiseparable representation of C, then the set of parameters

Ω′QS = ({p′i}ni=2, {a′i}n−1
i=2 , {q′i}n−1

i=1 , {d′i}ni=1, {g′i}n−1
i=1 , {b′i}n−1

i=2 , {h′i}ni=2)

= ({kipi}ni=2, {ai}n−1
i=2 , {qi/ki}n−1

i=1 , {di}ni=1, {kigi}n−1
i=1 , {bi}n−1

i=2 , {hi/ki}ni=2),

defines a quasiseparable representation of KCK−1.

(c) For the quasiseparable representations ΩQS and Ω′QS of the matrices C and
KCK−1 respectively defined above, the relative eigenvalue condition number is
invariant, i.e.,

cond(λ,C; ΩQS) = cond(λ,KCK−1; Ω′QS).

Proof. The assertions in (a) and (b) are proved just as in Lemma 5.8 for {1, 1}-
quasiseparable matrices, while the invariance under diagonal similarities for
cond(λ; ΩQS) stated in (c), is a direct consequence of (a) and (b). Let C ′ = KCK−1

and consider Ω′QS as in (b). Then, using (d) from Lemma 5.7, we have that if y
and x are left and right eigenvectors of C, respectively, then yC′ = (y∗K−1)∗ and
xC′ = Kx are left and right eigenvectors of C ′, respectively. Furthermore, from
the proof of Theorem 5.9, we have |y∗x| = |y∗C′xC′ |, and since {a′i}n−1

i=2 = {ai}n−1
i=2 ,

{d′i}ni=1 = {di}ni=1, and {b′i}n−1
i=2 = {bi}n−1

i=2 , we only need to compare the respec-
tive contributions of the other parameters in ΩQS and Ω′QS to cond(λ,C; ΩQS) and
cond(λ,C ′; Ω′QS).We will only develop the comparison for the parameters represent-
ing the lower triangular parts of C and C ′ because the comparison for the parameters
representing the respective upper triangular parts of these matrices can be done in
an analogous way. If, for the matrix C ′ and the representation Ω′QS, we define C ′L[p],
P ′, C ′L[q], and Q′ in an analogous way to CL[p], P , CL[q], and Q, for the matrix
C and the representation ΩQS, as in Definition 6.1, then, using the expression in
Theorem 2.23 for representing {nL, nU}-quasiseparable matrices, we have

|y∗ ⊗ eTnL
||diag(P )||CL[p]x| = |(y∗C′K)⊗ eTnL

||diag(P )||CL[p](K−1xC′)|
= |(y∗C′ ⊗ eTnL

)(K ⊗ InL
)||diag(P )||(CL[p]K−1)xC′|

= |y∗C′ ⊗ eTnL
||(K ⊗ InL

)diag(P )||(C ′L[p])xC′|
= |y∗C′ ⊗ eTnL

||diag(P ′)||(C ′L[p])xC′|,

and

|y∗CL[q]||diag(Q)||x⊗ enL
| = |(y∗C′K)CL[q]||diag(Q)||(K−1xC′)⊗ enL

|
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= |y∗C′(KCL[q])||diag(Q)||(K−1 ⊗ InL
)(xC′ ⊗ enL

)|
= |y∗C′C ′L[q]||diag(Q)(K−1 ⊗ InL

)||(xC′ ⊗ enL
)|

= |y∗C′C ′L[q]||diag(Q′)||(xC′ ⊗ enL
)|,

where we have used the mixed-product property of the Kronecker product, that is,
(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD), for any matrices A, B, C and D such that one
can form the matrix products AC and BD [44].

The proof follows by considering the expression in Theorem 6.2 for cond(λ,C; ΩQS)
and cond(λ,KCK−1; Ω′QS).

6.2 Fast computation of the eigenvalue condition
number in the quasiseparable representation

In this section, we prove that the eigenvalue condition number cond(λ; ΩQS), pre-
sented in Theorem 6.2 for general {nL, nU}-quasiseparable matrices, can be com-
puted fast as in the {1, 1}-case. Furthermore, in the proof of Proposition 6.9, we
provide an algorithm for its computation.

Proposition 6.9. Let C ∈ Rn×n be an {nL, nU}-quasiseparable matrix with a sim-
ple eigenvalue λ 6= 0 with left eigenvector y and right eigenvector x. Assume
that λ,x,y, and the quasiseparable representation ΩQS of C are all known. Then,
cond (λ; ΩQS) can be computed in O ((n2

L + n2
U)n) flops.

Proof. We already know from Proposition 5.10 that the factor |λ(y∗x)|−1 and the
term |y∗| |CD| |x| in the expression in Theorem 6.2 for cond(λ; ΩQS) can both be
computed in O(n) flops. Therefore, we will only focus on the main cost of computing
the other terms in Theorem 6.2 as follows.

(a) In the case of the term |y∗⊗ eTnL
||diag(P )||CL[p]x|, the main cost comes from

computing the product CL[p]x. For such a purpose, we can use a similar
algorithm to the one used in the proof of Proposition 5.10. Consider the vec-
tor z = CL[p]x, where z is partitioned in n block rows of size nL each. Recall
that in the ith position of z there is a vector zi of size nL×1. The fast method
for computing z is described in the following routine.

Routine 2 (Computes z = CL[p]x.)
z1 = 0
z2 = q1x1

for i = 3 : n

zi = ai−1zi−1 + qi−1xi−1

endfor
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For checking the validity of this algorithm for finding z, note first that z1 and
z2 are found correctly. Then, by using induction, suppose that Routine 2 has
computed correctly z1, z2, . . . , zi and let us check that it computes correctly
zi+1. Observe that at step i we have

zi = ai−1ai−2 · · · a2q1x1 + ai−1ai−2 · · · a3q2x2 + · · ·+ ai−1qi−2xi−2 + qi−1xi−1.

Therefore, at step i+ 1, we have

aizi + qixi = aiai−1ai−2 · · · a2q1x1 + aiai−1ai−2 · · · a3q2x2 + · · ·+ aiai−1qi−2xi−2

+ aiqi−1xi−1 + qixi

= zi+1,

which is also correct.
Since ai is a real matrix of size nL × nL and qi is a real column vector of size
nL, using Routine 2 for computing the product CL[p]x, it is easy to see that
the cost of computing the term in (a) is O(n2

Ln) flops.

(b) For the term |y∗CL[q]||diag(Q)||x ⊗ enL
|, we can use a similar procedure to

that in (a), and compute it also with a cost of O(n2
Ln) flops.

(c) The terms |y∗ ⊗ eTnU
||diag(G)||CU [g]x| and |y∗CU [h]||diag(H)||x ⊗ enU

| can
both be computed in an analogous way to the terms in (a) and (b), respectively,
with a cost of O(n2

Un) flops.

(d) The term |y∗CL[q]| |A| |CL[p]x| =
∑n−1

i=2 |y∗CL[q](:, i)| |ai| |CL[p](i, :)x| can ob-
viously be computed in O(n2

Ln) flops, since the products y∗CL[q] and CL[p]x
have been already respectively computed in (b) and (a).

(e) The term |y∗CU [h]| |B| |CU [g]x| =
∑n−1

i=2 |y∗CU [h](:, i)| |bi| |CU [g](i, :)x| can
also be computed in O(n2

Un) flops, since the products y∗CU [h] and CU [g]x
have been already computed in (c).

Finally, we prove the desired result by summing all the costs obtained above.

Remark 6.10. Note that for {1, 1}-quasiseparable matrices we can also use the
procedure described in the proof of Proposition 6.9 for computing the parameter-
ized eigenvalue condition number. In particular, computing, in the way described
above, the terms in (d) and (e) from Proposition 6.9 can simplify the more involved
computations described in (g) and (h) from Proposition 5.10 for the {1, 1}-case.

6.3 Numerical experiments
In this section we provide a brief description of some numerical experiments that
have been performed in order to compare the structured eigenvalue condition number
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cond(λ; ΩQS) presented in Theorem 6.2 for a general quasiseparable representation
of an {nL, nU}-quasiseparable matrix C, with the unstructured one cond(λ;C) in
Definition 3.17 and computed using Theorem 3.18. We have used MATLAB for
running several random numerical tests. First, the command randn from MATLAB
has been used for generating the random parameters in a quasiseparable representa-
tion for an {nL, nU}-quasiseparable matrix of size n× n, i.e., the following random
vectors and matrices of parameters are generated:

d ∈ R1×n, {pi}ni=2 ⊂ R1×nL , {ai}n−1
i=2 ⊂ RnL×nL , {qj}n−1

j=1 ⊂ RnL×1,

{gi}n−1
i=1 ⊂ R1×nU , {bi}n−1

i=2 ⊂ RnU×nU , {hj}nj=2 ⊂ RnU×1. (6.5)

Then, we build the quasiseparable matrix C of size n×n generated by these param-
eters and the quasiseparable matrix C(|ΩQS|) of size n×n generated by the absolute
values of these parameters. We obtain the eigenvalues and eigenvectors of C using
the standard command eig from MATLAB. Finally, we compute the structured
eigenvalue condition number cond(λ; ΩQS), using the fast Algorithm described in
Section 6.2, and the unstructured condition numbers cond(λ;C) and cond|ΩQS |(λ;C),
using direct matrix-vector multiplication with a resulting cost of order 2n2 +O(n)
operations each (note that cond(λ;C) and cond|ΩQS |(λ;C) could also be computed
in O(n) operations each since C and C(|ΩQS|) are also quasiseparable matrices).

In order to verify the inequality (6.4) in Section 6.1, we compare the condition
numbers cond(λ; ΩQS) and cond(λ;C) obtaining similar, often moderate, values,
i.e., cond(λ; ΩQS) ≈ cond(λ;C), for strictly random generated parameteres as in
(6.5). Therefore, in order to maximize de quotient (cond(λ; ΩQS))/(cond(λ;C)), we
used the multidirectional search method for direct search optimization mdsmax from
the Matrix Computation Toolbox (see [41, Appendix D]), using as input a linear
vector lpar constructed by concatenating all vectors and matrices in ΩQS reshaped
as linear vectors by using the reshape function from MATLAB. In this way, we
obtained particular sets of quasiseparable parameters that generated matrices with
simple eigenvalues for which cond(λ;C) � cond(λ; ΩQS). In those cases we also
computed the condition number cond|ΩQS |(λ;C). In fact, for (n, nL, nU) = (10, 2, 2)
and (n, nL, nU) = (15, 3, 3), we obtained the following results:

(n, nL, nU ) λ cond(λ; ΩQS) cond(λ;C) cond|ΩQS |(λ;C)

(10, 2, 2) 2.9781 · 102 − 6.7413 · 102i 1.6910 · 105 1.7827 1.9687 · 105

(15, 3, 3) 1.3244 · 105 − 3.4536 · 105i 7.9502 · 105 1.3455 9.0614 · 106

.

These examples show not only that the structured eigenvalue condition number
cond(λ; ΩQS) may be much larger than the unstructured one cond(λ;C), but also
that there exist {nL, nU}-quasiseparable matrices having eigenvalues that are very
well conditioned with respect to relative entrywise perturbations on the matrix but
that are ill conditioned with respect to relative componentwise perturbations on
the parameters of certain quasiseparable representations of the matrix. In addition,
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note that this large differences occurred when cond(λ;C) � cond|ΩQS |(λ;C). This
fact, reinforces our interpretation of Proposition 6.4, given in the paragraphs below
Lemma 6.6.





Chapter 7

Conclusions, publications, and open
problems

In this chapter we summarize the main results and original contributions of this
dissertation. We discuss some future work motivated by this thesis, list the pub-
lished papers including most of the original results presented in this thesis, and the
conferences where they have been presented.

7.1 Conclusions and original contributions

A summary of the main original results in the chapters of this thesis is provided
below.

Chapter 3: A general expression for the condition number of the solution of a
linear system of equations whose coefficient matrix is a differentiable function
of a vector of parameters with respect to relative componentwise perturbations
of such parameters has been presented. This expression involves the partial
derivatives of the matrix with respect to the parameters.

In addition, we have also provided a general formula for the relative condition
number of a simple eigenvalue of any matrix that can be represented by a vector
of parameters, in a differentiable way, with respect to relative componentwise
perturbations of these parameters. The results in this chapter can be generalized
to other conditioning problems and matrices depending on parameters.

Chapter 4: The general expression introduced in Section 3.1.2 from Chap-
ter 3, for the condition number of the solution of a linear system of equations
whose coefficient matrix is a differentiable function of a vector of parameters
with respect to relative componentwise perturbations of such parameters, has
been used to deduce formulas for the componentwise condition numbers of the
solutions of linear systems whose coefficient matrices are {1, 1}-quasiseparable

107
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of size n × n with respect to perturbations of the parameters in any quasisep-
arable representation and in the tangent-Givens-vector representation of the
coefficient matrices. We have compared theoretically these two structured con-
dition numbers and we have proved that they differ at most by a factor 3n and,
therefore, that they are numerically equivalent, though the one with respect
to the tangent-Givens-vector representation is always the smallest. Moreover,
it has been shown that these structured condition numbers can be estimated
in O(n) operations via an effective condition number. We have also proved
rigorously that these structured condition numbers are always smaller, up to a
factor n, than the componentwise unstructured condition number. In addition,
the performed numerical experiments illustrate that the structured condition
numbers can be much smaller than the unstructured one in practice. This
means that the structure of {1, 1}-quasiseparable matrices may play a key role
in the accuracy of computed solutions of linear systems of equations, since these
solutions can be much less sensitive to relative perturbations of the parameters
representing the matrices than to relative perturbations of the matrix entries.
The techniques used in this chapter can be generalized to obtain structured
condition numbers for the solution of linear systems involving other classes of
low-rank structured matrices and they can be extended to study the structured
conditioning of other problems involving low-rank structured matrices like, for
instance, least squares problems.

Chapter 5: Based on the formula introduced in Section 3.2.2 from Chapter
3, we have obtained expressions for the eigenvalue condition numbers of {1, 1}-
quasiseparable matrices with respect to relative componentwise perturbations
of the parameters in the quasiseparable and the Givens-vector representations,
and we have developed fast algorithms with cost O(n) operations for comput-
ing these condition numbers. As far as we know, these results are the first ones
available in the literature dealing with structured perturbations of low-rank
structured matrices (the results for the structured conditioning of eigenvalues
in this chapter where obtained and published before those in Chapter 4 for
linear systems, but we decided to describe them in the reverse order in this
dissertation for keeping consistency with the order in most of the books in Li-
near algebra, that is, the results for linear systems are explained before those
for eigenvalues). Numerical tests comparing the new structured eigenvalue con-
dition numbers with the unstructured componentwise condition number have
been performed and have revealed that the eigenvalues of quasiseparable matri-
ces may be very well-conditioned under relative perturbations of the parameters,
but very ill-conditioned under general unstructured relative perturbations of the
matrix entries. In contrast, it has been proved theoretically that the opposite
cannot happen. Therefore, for {1, 1}-quasiseparable matrices, we have estab-
lished that the structure should play a key role in the accuracy of eigenvalue
computations since the sensitivity of their simple eigenvalues is potentially much



7.2. PUBLICATIONS 109

smaller to perturbations of the parameters in the covered representations than
to perturbations of the matrix entries. In addition, we have proved that all
considered representations of {1, 1}-quasiseparable matrices are equivalent with
respect to the eigenvalue sensitivity and that the Givens-vector representation
is the one leading to the smallest eigenvalue condition numbers.

Chapter 6: Using the formula for the eigenvalue condition number for pa-
rameterized matrices given in Section 3.2.2 from Chapter 3, we have obtained
an explicit expression for the condition number for a simple eigenvalue of an
{nL, nU}-quasiseparable matrix with respect to relative perturbations on the
parameters in the general quasiseparable representation that generates the ma-
trix. We have also proved that this condition number can be computed fast via
an algorithm of cost O((n2

L + n2
U)n) flops. On the other hand, for the general

{nL, nU}-case, significant differences have been observed with respect to the
{1, 1}-case studied in Chapter 5, for the quasiseparable representation. In fact,
we noted that if nL > 1 or nU > 1 then the structured eigenvalue condition
number depends on the parameters in the quasiseparable representation of the
matrix and, what it is more important, this structured condition number can be
significantly larger than the unstructured one, as we have observed in our nu-
merical experiments described in Section 6.3. Consequently, we have provided
an interpretation of such differences, and suggested the use of an unstructured
condition number given in terms of the entries of the quasiseparable matrix
generated by the absolute values of the parameters in the general quasisepara-
ble representation of the original matrix. To summarize, we have proved that
describing the structure of a quasiseparable matrix with a high order of qua-
siseparability by using the general quasiseparable representation may lead to
much larger eigenvalue condition numbers than the unstructured ones. This
suggests the convenience of studying a different way of describing high order
quasiseparable structures, i.e., to study other representations for such matrices,
in order to exploit the structure and obtain smaller condition numbers. This
remains as a future research project.

7.2 Publications

The results in Section 3.1.2 and Chapter 4 are contained in:

Dopico, F. M., Pomés, K., Structured condition numbers for linear sys-
tems with parameterized quasiseparable coefficient matrices, published elec-
tronically in Numerical Algorithms, DOI 10.1007/s11075-016-0133-
8, 2016.
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The results in Section 3.2.2 and Chapter 5 are contained in:

Dopico, F. M., Pomés, K., Structured eigenvalue condition numbers for pa-
rameterized quasiseparable matrices, published electronically in Numeris-
che Mathematik, DOI 10.1007/s00211-015-0779-5, 2015.

7.3 Contributions to Conferences
The results in this dissertation were described by its author in the following presen-
tations:

Structured condition numbers for the solution of parameterized quasiseparable linear
systems. Presented as a contributed talk in the Society for Industrial and Applied
Mathematics (SIAM) Conference on Applied Linear Algebra, October 26-30, At-
lanta, USA. In this talk, most of the original results from Chapters 3 and 4 on
structured condition numbers for linear systems with {1, 1}-quasiseparable matrices
of coefficients were presented.

Parameterized condition numbers for the solution of quasiseparable linear systems.
Presented in the Young Researchers Sessions in the Red de Álgebra Lineal, Análisis
Matricial y Aplicaciones (ALAMA) Meeting, June 20-22, León, Spain. In this talk,
most of the original results from Chapters 3 and 4 on condition numbers for linear
systems with {1, 1}-quasiseparable matrices of coefficients were also presented.

Parameterized condition numbers for quasiseparable matrices. Presented as a con-
tributed talk in the 20-th Conference of the International Linear Algebra Society
(ILAS), July 11-15, KU Leuven, Belgium. In this talk, most of the original results
obtained for parameterized condition numbers for {1, 1}-quasiseparable matrices,
included in Chapters 3, 4, and 5, were presented together with a comparison on
the results for the condition number for eigenvalues in the general {nL, nU}-case,
included in Chapter 6 of this thesis. Some partial results on eigenvalue condition
numbers for {nL, nU}-quasiseparable matrices in the Givens-weight representation,
which are not included in this dissertation, were also commented.

7.4 Future Work
In this section, we provide a description of some open problems related to the results
included in this dissertation.

One of the main objectives of this work was to establish a framework for com-
paring the quasiseparable and the Givens-vector representations in terms of the
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sensitivity of the solutions of different problems involving quasiseparable matrices.
For the {1, 1}-case, this comparison has been completed for simple eigenvalues of
quasiseparable matrices and for the solution of linear systems of equations with a
quasiseparable matrix of coefficients, by proving that the Givens-vector representa-
tion produces smaller condition numbers than the quasiseparable one, but that there
are not significant relative differences among them, and that, therefore, they can be
considered numerically equivalent. On the other hand, for the general {nL, nU}-case
we have only covered the eigenvalue condition number in the general quasiseparable
representation. In this case we have proved that this structured condition number
can be much larger than the unstructured one, and , probably, this will also happen
for the solution of linear systems because this representation might not represent
well the entries of the matrix under certain circumstances, as we commented in
Section 6.1, this obviosly suggests the use of a different and more stable represen-
tation. In [17], a generalization of the Givens-vector representation for high orders
of quasiseparability, named the Givens-weight representation, was introduced. That
representation can be used, for instance, for computing the Hessenberg reduction,
the QR-factorization, the solution of linear systems, and the eigenvalues of {nL, nU}-
quasiseparable matrices, as described in [18, 19, 20]. Therefore, the first step in the
future is to extend the results covered in this work to general quasiseparable matrices
in the Givens-weight representation. In particular, we expect to obtain structured
condition numbers for linear systems ans eigenvalues in the Givens-weight represen-
tation, using the symbolic formalism introduced in the recent and still unpublished
paper [57] for describing sequences of transformations instead of the more graphical
approaches in some previous works [17, 54, 63]. In a second step, we plan to compare
these condition numbers in the Givens-weight representation with the unstructured
ones and to prove that they are never much larger than the unstructured ones, but
that they can be much smaller.

In other context, there are still many problems in numerical linear algebra in-
volving rank structured matrices (or more in general, parameterized matrices) for
which the structured conditioning of the solutions may be studied. In particular,
it would be very interesting to extend the results obtained in Chapters 4 and 5 for
linear systems and eigenvalues, respectively, to other classical problems in this area
and obtain structured condition numbers for singular values, eigenvectors and the
solutions of least squares problems for quasiseparable matrices. In order to achieve
this, the general approach in Sections 3.1.2 and 3.2.2 for parameterized condition
numbers must be extended to those classical problems.
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