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Detrás de los hast́ıos y los hondos pesares

Que abruman con su peso la neblinosa vida,

¡Feliz aquel que puede con brioso aleteo

Lanzarse hacia los campos luminosos y calmos!

Aquél cuyas ideas, cual si fueran alondras,

Levantan hacia el cielo matutino su vuelo

¡Que planea sobre todo, y sabe sin esfuerzo,

La lengua de las flores y de las cosas mudas!

Elevación - Charles Baudelaire





ABSTRACT

Nowadays, the applications based on video services are becoming very popular,

e.g., the transmission of video sequences over the Internet or mobile networks, or

the increasingly common use of the High Definition (HD) video signals in television

or Blu-Ray systems. Thanks to this popularity of video services, video coding has

become an essential tool to send and store digital video sequences.

The standardization organizations have developed several video coding standards,

being the most recent H.264/AVC and HEVC. Both standards achieve great results

compressing the video signal by virtue of a set of spatio-temporal predictive tech-

niques. Nevertheless, the efficacy of these techniques comes in exchange for a high

increase in the computational cost of the video coding process.

Due to the high complexity of these standards, a variety of algorithms attempting

to control the computational burden of video coding have been developed. The goal

of these algorithms is to control the coder complexity, using an specific amount of

coding resources while keeping the coding efficiency as high as possible.

In this PhD Thesis, we propose two algorithms devoted to control the complexity

of the H.264/AVC and HEVC standards. Relying on the statistical properties of the

video sequences, we will demonstrate that the developed methods are able to control

the computational burden avoiding relevant losses in coding efficiency. Moreover, our

proposals are designed to adapt their behavior according to the video content, as well

as to different target complexities.

The proposed methods have been thoroughly tested and compared with other

state-of-the-art proposals for a variety of video resolutions, video sequences and cod-

ing configurations. The obtained results proved that our methods outperform other

approaches and revealed that they are suitable for practical implementations of coding

standards, where the computational complexity becomes a key feature for a proper

design of the system.





RESUMEN

En la actualidad, la popularidad de las aplicaciones basadas en servicios de v́ıdeo,

como su transmisión sobre Internet o redes móviles, o el uso de la alta definición (HD)

en sistemas de televisión o Blu-Ray, ha hecho que la codificación de v́ıdeo se haya

convertido en una herramienta imprescindible para poder transmitir y almacenar

eficientemente secuencias de v́ıdeo digitalizadas.

Los organismos de estandarización han desarrollado diversos estándares de cod-

ificación de v́ıdeo, siendo los más recientes H.264/AVC y HEVC. Ambos consiguen

excelentes resultados a la hora de comprimir señales de v́ıdeo, gracias a una serie

de técnicas predictivas espacio-temporales. Sin embargo, la eficacia de estas técnicas

tiene como contrapartida un considerable aumento en el coste computacional del

proceso de codificación.

Debido a la alta complejidad de estos estándares, se han desarrollado una gran

cantidad de métodos para controlar el coste computacional del proceso de codifi-

cación. El objetivo de estos métodos es controlar la complejidad del codificador, uti-

lizando para ello una cantidad de recursos espećıfica mientras procuran maximizar la

eficiencia del sistema.

En esta Tesis, se proponen dos algoritmos dedicados a controlar la complejidad de

los estándares H.264/AVC y HEVC. Apoyándose en las propiedades estad́ısticas de

las secuencias de v́ıdeo, demostraremos que los métodos desarrollados son capaces de

controlar la complejidad sin incurrir en graves pérdidas de eficiencia de codificación.

Además, nuestras propuestas se han diseñado para adaptar su funcionamiento al

contenido de la secuencia de v́ıdeo, aśı como a diferentes complejidades objetivo.

Los métodos propuestos han sido ampliamente evaluados y comparados con otros

sistemas del estado de la técnica, utilizando para ello una gran variedad de secuencias,

resoluciones, y configuraciones de codificación, demostrando que alcanzan resultados

superiores a los métodos con los que se han comparado. Adicionalmente, se ha

puesto de manifiesto que resultan adecuados para implementaciones prácticas de los

estándares de codificación, donde la complejidad computacional es un parámetro

clave para el correcto diseño del sistema.
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Chapter 1

Introduction

In this PhD Thesis we address the problem of the high computational complexity

of modern video coding standards. Specifically, we focus on the latest H.264/AVC

and HEVC standards, which rely on a wide variety of coding options to obtain high

compression ratios at the expense of a large computational complexity. We face

this problem in the framework of the complexity control, where certain amount of

computational resources are available for the coding process.

This chapter is organized as follows. First, we provide a brief description to the

main concepts behind video coding in Section 1.1. The motivation of this Thesis is

presented in Section 1.2. The control complexity problem is discussed in Section 1.3.

The contributions of this Thesis are summarized in Section 1.4. Finally, the contents

of the remainder of this Thesis are outlined in Section 1.5.

1.1 Video Coding

Nowadays, by virtue of the great development of technologies related to communi-

cations networks and processing power, multimedia applications are gaining prepon-

derance. The majority of these applications can’t be understood without a video

component that must be compressed in order to be properly stored, transmitted, or

manipulated.

1



1.2. Motivation

Some of these applications can vary from digital television broadcasting, 3D

movies and TV sets, DVD and Blu-Ray players, TV-on-demand and video streaming

services over the Internet or mobile networks, cam-coders, PC-based editing systems,

video-conference systems, etc. Furthermore, higher video resolutions are increasingly

required. In fact, High Definition Television (HDTV) is today a very common reso-

lution in consumer electronic, and even higher resolutions are beginning to be used,

such as Ultra-High Definition TV (UHDTV) or Super Hi-Vision. Despite the growth

in the capacity of communication networks and storage devices, networks and pro-

cessors are not able yet to efficiently manage the large amounts of video signal data.

For this reason, the video compression algorithms are currently a necessity.

During the last 30 years a huge work has been carried out in the development of

video compression standards, facing the new requirements and promoting the inter-

operability among devices from different manufacturers, being both reasons essen-

tial to enable the global growth and success of the multimedia applications involving

video data. International organizations, such as the ISO/IECMoving Picture Experts

Group (ISO-MPEG) and the ITU-T Video Coding Experts Group (ITU-VCEG), have

been responsible for the development of standards for video compression. Both orga-

nizations jointly produced the H.264/MPEG-4 Advanced Video Coding (AVC) and

the High Efficiency Video Coding (HEVC) standards, which have had a strong impact

into all emerging applications, specially those involving increased video resolution,

where these standards have provided notable improvements in terms of compression

ratios. H.264/AVC and HEVC have incorporated more and more coding tools to

further increase the compression ratios, but their complexity have also grown accord-

ingly, being notably higher than that of previous standards and converting the video

coding process into the bottleneck of many applications.

1.2 Motivation

The operation of a video compression system is based on removing redundancy in the

spatial and temporal domains. Taking advantage of these redundancies, the video

2



Chapter 1. Introduction

compression systems significantly reduce the data required to efficiently represent

a video sequence by means of differential coding techniques, which rely on coding

the differences between the actual samples and the predicted ones based on these

redundancies.

The H.264/AVC- and HEVC-based encoders rely on a huge set of coding options to

build the predicted samples from the spatial and temporal redundancies. Every cod-

ing option results in a different prediction and generates a different Rate-Distortion

(R-D) operation point (a different bit rate vs distortion trade-off) depending on the

coding option and the video content. Among all these coding options the encoder has

to select the optimal one to carry out the encoding process through an optimization

method called Rate-Distortion Optimization (RDO).

The RDO process consists of minimizing the distortion subject to a rate con-

straint. This process is based on measurements of the actual rate and distortion

values, which imply to carry out the complete coding and decoding processes for

each coding option. To a large extent, the high computational complexity of these

standards comes from this optimization method.

The motivation of this work is to address the resulting high computational com-

plexity of the two latest video coding standards. This becomes essential for any

practical implementation of a video compression system. For example, to adapt the

system complexity to the available computational resources of a portable device, or to

accommodate the compression process to the network capabilities for video transmis-

sion. For this purpose, we aim to develop complexity control methods able to smartly

reduce the number of available coding options, alleviating the computational burden

of the video compression system with slight losses in the compression efficiency.

1.3 Complexity Control in Video Coding

There are two approaches to manage the complexity of a video coding system: com-

plexity reduction methods [Tourapis and Tourapis, 2003, Zhu et al., 2002, Zhang

et al., 2003, Choi et al., 2003, Li et al., 2005, Gonzalez-Diaz and Diaz-de Maria,
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2008,Grecos and Mingyuan, 2006,You et al., 2006,Kuo and Chan, 2006,Saha et al.,

2007, Zhou et al., 2009, Martinez-Enriquez et al., 2007, Martinez-Enriquez et al.,

2009,Martinez-Enriquez et al., 2010,Martinez-Enriquez et al., 2011,Lu and Martin,

2013, Kim et al., 2014, Yusuf et al., 2014, Leng et al., 2011, Shen et al., 2012, Shen

et al., 2013, Xiong et al., 2014, Choi et al., 2011, Tan et al., 2012, Zhang et al.,

2013,Ahn et al., 2015,Lee et al., 2015] and complexity control methods [Ates and Al-

tunbasak, 2008,Gao et al., 2010,Kannangara et al., 2008,Huijbers et al., 2011,Vanam

et al., 2007,Vanam et al., 2009, Su et al., 2009,Tan et al., 2010,Kannangara et al.,

2009, da Fonseca and de Queiroz, 2009, da Fonseca and de Queiroz, 2011, Li et al.,

2014, Correa et al., 2011, Correa et al., 2013, Ukhanova et al., 2013, Grellert et al.,

2013].

The complexity reduction methods are quite common techniques. They are de-

signed to reduce as much as possible the computational burden of the video compres-

sion systems, maintaining a reasonably good performance in terms of compression

ratio. However, the results of the complexity reduction methods depend heavily on

the coding system configuration and the video content and, therefore, these tech-

niques are not capable of guaranteeing that the complexity is kept around a given

target.

The strength of the complexity control methods is their ability to solve this prob-

lem adapting its performance to the available resources for the coding process. The

goal of a complexity control method is to reduce the number of available coding

options to be used by the video compression system in some smart way, which al-

lows for meeting certain target complexity according to the system capabilities while

maximizing the video coding performance.

These techniques are not so common as the those aiming at complexity reduction.

In fact, previous complexity management efforts in the literature still suffer several

drawbacks, e.g., some works are unable to adapt its performance to time varying

conditions in either complexity requirements or video content (e.g., [Tourapis and

Tourapis, 2003, Zhu et al., 2002, Choi et al., 2003, Leng et al., 2011, Choi et al.,

2011, Shen et al., 2012]; in fact, these are actually complexity reduction methods);
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other works require complex off-line trainings that hamper the generalization ability

necessary to serve to the wide range of visual features of video sequences (e.g., [Gao

et al., 2010,Kannangara et al., 2009,Correa et al., 2011]); in other cases, the coding

options are reduced without accounting for the potential impact on the performance

(e.g., [Vanam et al., 2007,Grellert et al., 2013, da Fonseca and de Queiroz, 2011]);

finally, some methods are unable to manage different video resolutions (e.g., [Tan

et al., 2010,Su et al., 2009,Kannangara et al., 2008,Ukhanova et al., 2013]).

Furthermore, the control of the computational complexity of a video coding sys-

tem faces a number of difficulties: the requirements of each application are far from

those of others; when the number of coding options allowed by the algorithm is too

much narrowed, the system efficiency may be compromised, incurring large losses in

compression efficiency; etc. To properly address these difficulties, is critical to design

a complexity control method able to manage all kind of requirements while achieving

a high compression efficiency.

1.4 Contributions

In this Thesis we propose two complexity control methods within the framework of

the two latest video compression standards, H.264/AVC and HEVC, since both are

widely used nowadays. These proposed methods solve some drawbacks of the state-

of-the-art proposals, in such a way that they are capable of serving to a wider variety

of real video applications.

To achieve a proper design, the latest video coding standards have been analyzed

in detail, identifying the contribution of each coding tool to both the compression

efficiency and the complexity of the system. Thus, a detailed statistical analysis has

been carried out to gain an insight into the behavior of the compression systems for

different types of sequences, covering a wide range of contents, characteristics and

resolutions.

It should be noted that, depending on the characteristics of the sequence, some

coding options become more efficient than others. Thus, the statistical analysis
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has allowed us to guide the design of our complexity control system, so that it is

capable of selecting the most adequate coding options for every sequence, system

capabilities, and application, solving the main problem of several state-of-the-art

proposals (e.g., [Vanam et al., 2007,Grellert et al., 2013,da Fonseca and de Queiroz,

2011]).

Another contribution of this Thesis, likely the most relevant, is the capability of

adapting the methods over time. The variability inherent to video sequences and the

potential changes in the available processing or communication resources undoubt-

edly demand adaptive methods. Otherwise, the developed methods would fail when

changes happened in the video content or in the requirements of the applications

(e.g., [Gao et al., 2010,Kannangara et al., 2009,Correa et al., 2011]).

Moreover, a complexity-aware design of our methods has allowed us to incorporate

them to the considered standards with a negligible computational impact, solving the

problem of complex designs (e.g., [Vanam et al., 2009,Ukhanova et al., 2013]).

Furthermore, the proposed methods have been thoroughly tested over a wide

variety of resolutions, overcoming a problem of several proposals in the state-of-the-

art (e.g., [Tan et al., 2010, Su et al., 2009,Kannangara et al., 2008,Ukhanova et al.,

2013]).

Finally, we have compared our proposals with other approaches in the state-of-

the-art with excellent results. In a few words, we have obtained adequate complexity

reductions without incurring significant losses in compression ratio or quality.

Summarizing, our main contributions are:

1. In-depth analysis of complexity-related issues in H.264/AVC and HEVC:

• Statistical analysis of the main compression tools in terms of coding per-

formance and complexity for a wide range of contents.

2. Design of novel complexity control methods for H.264/AVC and HEVC with

the following strengths:

• Use of statistical methods to select the most adequate coding option for

any video content, system capabilities, and application.
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• On the fly adaptation to varying contents or networks capabilities.

• Comprehensive experimental validation in terms of coding complexity and

efficiency.

• Notable performance improvement when compared with other approaches

in the state-of-the-art.

• Managing a large variety of resolutions.

• Entailing a very low operational load.

1.5 Thesis Outline

The remainder of this Thesis is organized as follows. First, in Chapter 2, we provide

a basic introduction to the main concepts in video coding. Then, in Chapter 3,

we explain the H.264/AVC and HEVC standards, focusing on the specific coding

tools that are relevant to our work. In Chapters 4 and 5, we describe in detail

the proposed complexity control algorithms for H.264/AVC and HEVC standards,

respectively. Finally, in Chapter 6, we present our conclusions and discuss future

lines of research.
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Chapter 2

A Basic Introduction to Video Coding

2.1 Introduction

The video coding systems have become an essential part of modern devices and

applications. The goal of these systems is to reduce the amount of digital data

necessary to represent a video sequence. Any coding system requires two devices: a

compressor (encoder) and a decompressor (decoder). The first is designed to reduce

the amount of data to represent a video sequence (coding process). The second is

devoted to invert the coding process and recover the video signal (decoding process).

Figure 2.1 summarizes these processes.

Figure 2.1: Coding and decoding processes.

The operation of a video coding system is based on removing redundancy in the

spatial and temporal domains. In Figure 2.2 an example of two consecutive video

frames is shown. In the highlighted region of the first frame the spatial redundancy

becomes evident, as the content variations within the bounding box are very low. If
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we pay attention to both frames, we can see that the differences between them are

very small, which denotes high temporal redundancy. In Figure 2.2(c) the difference

between both frames is shown; as it can be seen, there are many values close to

zero and only small differences appear in the edges of some objects. If we take into

account that a video sequence normally consists of 25 or 30 frames per second, we

can expect a strong temporal redundancy.

(a) Frame #1. A region
exhibiting spatial redun-

dancy is highlighted.

(b) Frame #2. (c) Difference between both
frames.

Figure 2.2: Two consecutive video frames of Container sequence at CIF resolution.

In this chapter we describe the main concepts and tools developed in video coding

to reduce the amount of data based on these features, focusing on the concepts

that will be required to understand the proposed methods on this Thesis. First, a

general description of the digitization process of a video sequence is presented. This

is necessary to understand the nature of the data that the coding system receives.

Then, the general procedures used by the video coding system are explained in detail.

2.2 Digital Video Representation

To obtain a proper digital representation of a video signal, a sampling process in the

temporal and spatial dimensions must be carried out. In the temporal domain, video

frames will be captured at regularly spaced time instants. In the spatial domain,

every frame is horizontally and vertically sampled in picture elements (pixels) to
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represent the scene inside the frame. Moreover, to digitize a color video sequence,

three components must be considered. Then, every pixel value must be quantized, i.e.,

the actual number is approximated by one value taken from a discrete set of values.

The digital representation of any signal entails certain losses due to the sampling

and quantization processes involved in the analog to digital conversion. However,

when this process is properly carried out, the losses are negligible from the human

perception point of view.

2.2.1 Temporal and spatial resolutions

To convert the original video signal into digital data, it should be sampled in both

the temporal and spatial domains (see Figure 2.3).

Figure 2.3: Sampling in temporal and spatial domains of a video sequence.

Typical temporal resolutions are 25 or 30 frames per second, although the HD

systems may use up to 60 or 120 frames per second. This parameter defines the quality

with which the movement is perceived: the higher the frame rate, the better the

movement representation. Regarding the spatial sampling, there are many different

standard resolutions, summarized in Table 2.1. The spatial resolution can vary from

a very low value of 176×144 pixels, adequate only for little devices with a very

limited processor, up to HD (1280×720), UHD (3840×2160), or Super Hi-Vision

(7680×4320), suitable for wide screens, professional applications, or high-end devices.
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Video format Frame size in pixels (width×height)
QCIF (Quarter-CIF) 176×144

CIF (Common Intermediate Format) 352×288
SD (Standard Definition) 704×576

HD (720) 1280×720
1080 1920×1080
2k 2048×1536

UHD (4k) 3840×2160
4000p 4096×3072

Super Hi-Vision (8k) 7680×4320

Table 2.1: Common spatial resolutions.

Just considering the resulting number of pixels per second, it becomes obvious

that digital video exhibits high redundancy in both temporal and spatial domains,

as it was illustrated in Figure 2.2.

2.3 Video Coding

2.3.1 The hybrid DPCM/DCT model

The main video coding standards are based on a generic model consisting of two

main blocks: the first, known as DPCM (Differential Pulse Code Modulation), aims

to obtain a prediction of the signal to then compute the difference (residue) between

the original and the predicted data; the second consists of a transform and an entropy

coder. Usually, the complete system is referred to as hybrid encoder DPCM/DCT,

as the Discrete Cosine Transform (DCT) is the most widely used transform.

The main advantage of coding the residue instead of the original signal is that,

as long as the prediction is good, the residue will have lower energy than the original

signal and, consequently, will be more efficiently encoded.

In Figures 2.4 and 2.5 we show the block diagram of a hybrid encoder and decoder

based on DPCM/DCT, respectively. Basically, these figures summarize the coding

and decoding processes of a frame Fn of a video sequence. In the encoding process, the

encoder produces a bit-stream that contains the compressed binary representation of

the frame Fn. In the decoding process, from this bit-stream, an approximate version
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of the original signal is obtained F ′
n. Usually, F ′

n is different from Fn, since the

encoding process entails certain losses (quantization). In the next subsections both

processes are explained in detail.

Figure 2.4: DPCM/DCT hybrid video encoder.

Figure 2.5: DPCM/DCT hybrid video decoder.

2.3.2 The encoding process of the hybrid DPCM/DCT model

As it can be seen in Figure 2.4, there are two data flows in the encoder block diagram:

from left to right, the encoding data flow, and, from right to left, the reconstruction

process. Let’s begin with the encoding data flow:

1. The frame to be coded Fn is divided into smaller work units. These work units

are blocks of pixels Bi that, depending on the standard considered, will have

different sizes.

2. Each block goes through a prediction process. In this stage, taking advantage of

the video redundancies, the encoder obtains a prediction P of the current block.

This prediction may be based on the neighborhood of the current block B′
neigh
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(taking advantage of the spatial redundancy), what it is called Intra prediction,

or may be based on the previous coded frames F ′
n−1 (exploiting the temporal

redundancy), what it is called Inter prediction. Both types of predictions will

be explained with more detail later.

3. Once the prediction of the current block is obtained, the residue Dn between

the predicted and the original blocks is calculated.

4. The residue Dn is then transformed. In the two standards considered in this

Thesis, the DCT is used to transform each residue block into another block (of

the same size) in the transformed domain, where the information is organized

according to its frequency content. Usually, the coefficients with the highest

energy correspond with the low frequencies, while is common to find close to

zero coefficients in high frequencies. In such a way, the DCT is able to compact

the information in a few (low frequency) coefficients. An example of the DCT

of an image block is shown in Figure 2.6. As it can be seen, the low frequency

coefficients (located in the top left corner) present higher energy and, as we

move away towards higher frequencies, we see lower energy.

(a) Original block. (b) DCT coefficients block.

Figure 2.6: Example of DCT transform of a 64×64 pixel block.

5. The next stage is the quantization (Quant in Figure 2.4). The DCT-coefficient

block is quantized to produce a new block denoted as X. The quantization

process approximates the original values of the DCT coefficients by means of a

set of discrete amplitudes. This stage is responsible for the coding losses, since
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once the coefficients are quantified, the original values could not be recovered

anymore. An uniform quantizer, which is a kind of quantizer very similar to

those used in H.264/AVC and HEVC, is illustrated in Figure 2.7.

Figure 2.7: Uniform quantizer.

6. Subsequently, the block of quantified DCT coefficients is scanned in the order

shown in Figure 2.8 (zig-zag scanning). Thanks to this reordering, most of non-

zero coefficients are grouped together at the beginning, favoring the appearance

of long runs of zero coefficients when the higher frequencies are scanned. The

entropy coders are able to encode more efficiently this kind of data exhibiting

long zero runs.

7. Finally, the quantified and reordered DCT coefficients go through the entropy

coder to obtain the final compressed bit-stream that represents the frame Fn.

The entropy coder also encodes some side information related to the way the

prediction is built along with some headers.

Once the encoding data flow has been explained, we will go through the recon-

struction path of the video encoder. The reason to include this reconstruction path

is that the predictions built by the encoder must be based on information previously
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Figure 2.8: Zig-zag scan order.

decoded, obtaining in this way the same reconstructed values as the decoder. Other-

wise, the decoder would incur additional errors because it would be unable to build

the same prediction than the encoder.

The reconstruction data flow follows these steps:

1. At the input to this reconstruction path, we have the quantized DCT coeffi-

cients X. The X values are rescaled, which is the inverse quantization process,

obtaining the reconstructed DCT coefficients, after the quantization losses.

2. Then, the reconstructed DCT coefficients go through an inverse DCT (IDCT)

process, to obtain a spatial-domain version of the reconstructed residue block

D′
n.

3. The reconstructed residue D′
n is added to the prediction P , calculated in previ-

ous stages, obtaining the reconstructed block B′
i. All these blocks B′

i will form

part of the reconstructed frame F ′
n. It must be noted that this frame F ′

n is a

lossy version of the original Fn, but it is exactly the same that the one obtained

by the decoder, whenever there are no transmission errors.

2.3.3 The decoding process of the hybrid DPCM/DCT model

The basic steps followed by the decoder are summarized next:
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1. The decoder receives the bit-stream generated by the encoder and it is entropy

decoded to obtain the quantized DCT coefficients and the side information

(headers and data to correctly build the prediction from previously decoded

data). From here, the processes followed to encode the information must be

inverted.

2. The coefficients are read following the inverse order to that shown in Figure

2.8, obtaining the block of quantified DCT coefficients (X in Figure 2.5), with

the lower frequencies in the top left corner and higher frequencies appearing as

we move away from that corner.

3. The remaining process is the same that we have described for the reconstruc-

tion data flow of the encoder. After the rescaling, we get the decoded DCT

coefficients.

4. The IDCT is applied to the decoded DCT coefficients to obtain the decoded

residue D′
n.

5. Relying on the side information of the bit-stream, the decoder can build the

prediction P from previously decoded data.

6. The decoded residue D′
n is added to the prediction P , obtaining the decoded

block B′
i that will form part of the decoded frame F ′

n.

2.3.4 The spatial and temporal predictions

Before explaining the specific coding tools defined in the standards considered in

this Thesis, we provide some insight into the procedures to construct a spatial or

temporal prediction. In this Section we present a summary of the main concepts and

procedures used in both kinds of predictions.

2.3.4.1 Spatial prediction

The prediction based on spatial redundancy is called Intra prediction. To obtain

a prediction using the spatial redundancy, it is necessary to use previously coded

17



2.3. Video Coding

samples in the same frame and in the neighborhood of the current block. As the

encoder scans the image on a block-by-block basis from left to right and from top

to bottom, the neighborhood consists of the blocks at the left, top, and upper left

positions relative to the block to be coded (as these blocks are already coded and

adjacent). It is important to remember that the Intra prediction must be build from

reconstructed pixels so that the encoder produces the same prediction as the decoder.

It should be noted that, depending on the considered video coding standard,

there are several ways to combine the information of the surrounding pixels to build

the Intra prediction. All these ways will be explained in the Chapter 3, devoted to

describe the coding tools of both H.264/AVC and HEVC.

In Figure 2.9 a simple example of how to combine the information of the sur-

rounding pixels (in gray color) is presented. Specifically, an average of the pixels

previously coded is used to build the prediction for a 2×2-pixel block (in white color)

and the residue block is obtained from this prediction.

Figure 2.9: Example of Intra prediction for a 2×2-pixel block.

If the Intra prediction is properly calculated, the residue block generated by this

process will have lower energy than the original block and, since lower energy signals

can be coded with fewer bits, the compression process will be more effective. In

the example presented in Figure 2.9, if the original pixel values were coded, 6 bits

would be required to represent this information. However, the residue information

would need only 2 bits. Therefore, we would require a total of 8 bits to represent the

information, instead of the 24 bits required by the original block.
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The Intra prediction is very useful in video coding standards, e.g., the first frame

of any video sequence must be coded using Intra prediction, as there are no previous

frames to use temporal prediction. Moreover, whenever we find a block with the pixels

values equal to or very similar to the neighboring blocks (e.g., in an homogeneous

area), the Intra prediction will allow a very efficient compression of that block.

2.3.4.2 Temporal prediction

The process dedicated to build predictions using the temporal redundancy is called

Inter prediction. This is one of the most powerful tools used by the encoder to achieve

high compression ratios.

To build Inter predictions the encoder follows two stages: first, the motion esti-

mation (ME) and, second, the motion compensation (MC).

In the ME process, for each block to be coded, a search in previously coded frames

is carried out to find the most similar block. In this way, the encoder minimizes the

energy of the residue, which results in fewer bits to encode the block. An example of

a ME process is shown in Figure 2.10.

Figure 2.10: Example of Inter prediction. Motion estimation process. B is the best
match for A. MV is the motion vector relating the location of B with respect to A.
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The search process can be carried out in several frames, called reference frames,

to achieve higher accuracy, selecting the best match between original and predicted

blocks. The reference frames must be reconstructed frames to guarantee that the

decoder produces exactly the same prediction. Once the position with the best match

has been found, it is stored as a Motion Vector (MV), which indicates the location of

the best match relative to the location of the block to be coded. The MC stage uses

the MV previously found to retrieve the best match block and to build the prediction

that will be subtracted from the block to be coded, obtaining the residue. The MV

and an index to identify the reference frame must be send to the decoder so that it

can produce the same prediction.

Thanks to the temporal prediction the number of bits required to represent a

video sequence can be reduced very efficiently. The main problem associated with

the Inter prediction is the computational burden required to carried it out.

2.3.4.3 Types of coded frames

Depending on the available predictions in every frame, there are several classes of

coded frames that can be used in the encoding process. Typically, there are three

types of frames: Intra (I), Predicted (P), and Bipredicted (B) frames.

The I-frames are those composed only for Intra-predicted blocks. Normally, these

kind of frames are used to code the first frame of a video sequence, where temporal

prediction is not feasible. Moreover, they are also useful to avoid the propagation

of errors and for issues related to random access (allowing the decoding process to

start at different points of the bit-stream); for these reasons, I-frames are usually

periodically inserted in the coded sequence.

The P-frames are pictures where the Inter prediction is also available, i.e., both

kinds of predictions are allowed and the encoder is responsible for selecting the best

prediction for each block (this process will be explained later). In the P-frames the

Inter prediction is carried out from previously coded frames that, in the display order,

are frames from past time, i.e., the coding and display order are the same. Figure 2.11

shows a simple example of a sequence coded with P-frames. This coding pattern is
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called IP, where the first frame is coded as I and the remainder are coded as P (until

the appearance of other periodic I frame). The numbers in the brackets indicate the

coding order and, as it can be seen, display and coding orders are the same. Since

the P-frames need information of previous frames, they can not be used for random

access.

Figure 2.11: Example of IP coding pattern.

Both, I- and P-frames can be used as reference frames for other frames in the

ME process. However, if there is some error in the decoding of the P-frames used

as references, this error will be propagated. The I-frames are able to stop this error

propagation problem.

The B-frames are pictures for which Inter prediction is also available, but, in

this case, each block can be predicted from one or two reference frames, taking into

account one frame from the past and one from the future. As the B-frames are not

used in this Thesis, we do not provide more details about them. The interested reader

is referred to [Richardson, 2003] for more information.
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Chapter 3

Video Coding Standards

3.1 Introduction

This chapter is devoted to the explanation of H.264/AVC and HEVC standards, as

both are considered in this Thesis. We begin with a brief historical introduction

to the development of video coding standards. Next, the H.264/AVC and HEVC

standards will be explained in detail, focusing on the coding processes more related

to the problem addressed in this Thesis.

3.2 A brief history of video coding standards

The H.261 recommendation of the ITU-VCEG standardization organization can be

considered the first video coding standard. Its final version was published in 1993

[ITU-T, 1993]. The target applications of this standard were the videophone and

the video-conference over ISDN networks with rates of p×64 kbps, where p takes the

values 1 to 30. This was the first standard with a hybrid DPCM/DCT block-based

structure. It was able to achieve bit rates down to 40 kbps, outperforming previous

efforts to compress video data.

Shortly after, also in 1993, ISO-MPEG published its first standard, the MPEG-

1 [ISO, 1993]. In this case, the target applications were those related to the digital

23



3.2. A brief history of video coding standards

video storage and transmission of standard definition television, with bit rates up to

1.5 Mbps. MPEG-1 was also based on the hybrid DPCM/DCT model and it already

involved I-, P-, and B-frames, achieving good compression ratios.

Both organizations, ISO-MPEG and ITU-VCEG, worked together in the standard

H.262/MPEG-2 [ISO/IEC, 1995] (1995). This standard outperformed the previous

ones defining new tools such as interlaced and scalable video coding, achieving higher

quality and compression ratios. The applications of this standard were mainly ori-

ented to storage, e.g., the DVD player, and to broadcast TV (it defined a video

transport specification that is used still today in Digital Video Broadcasting (DVB)).

All these reasons made MPEG-2 one of the most successful video coding standards

ever developed.

Then, the ITU-VCEG organization focused on the low bit rates applications and

developed the H.263 standard [ITU-T, 1998] (1998). It was based on H.261, but with

many more coding tools available, thanks to which it achieved improved compression

ratios and flexibility.

Moreover, ISO-MPEG also published in 1998 the MPEG-4 Part 2 standard [ISO,

1998], oriented to what was called the new generation video applications. It was

able to manage real world video sequences and computer generated graphics, and

gave support to object based video coding, in which each object in a scene could

be independently coded. It was oriented to video streaming over the Internet and

broadcast TV. However, this standard did not achieve a great success.

ITU-VCEG and ISO-MPEG worked together again for the development of the

ITU-H.264 or MPEG-4 Part 10 standard [ITU-T, 2003], usually called H.264/AVC,

that was finally published in 2003. In H.264/AVC a great variety of coding tools

were defined to achieve higher compression ratios and quality than previous stan-

dards. In doing so, it was able to cope with a lot of different applications, such as

Internet streaming, broadcast TV, storage, etc. The Blu-Ray discs and several fa-

mous streaming applications over the Internet adopted this standard, increasing its

popularity.

Continuing this line of work, both standardization organizations jointly released
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in 2013 the most recent video coding standard, called H.265 or HEVC [ISO, 2013].

This standard was able to achieve a 50% reduction of the bit rate for the same quality

compared with H.264/AVC [Vanne et al., 2012]. Several new tools were designed in

HEVC aiming to support the most recent applications, as well as video resolutions

above HD and the 3D video coding.

3.3 Overview of the H.264/AVC standard

The H.264/AVC standard [ITU-T, 2003] follows the hybrid DPCM/DCT block-based

model and includes new features with which is able to reduce by half the bit rate

generated by previous standards.

It should be noted that, similar to previous standards, H.264/AVC only specifies

the syntax of an encoded video bit-stream and the decoding process. There is no a

specification on the particular design of the video encoder and decoder. This helps

the interoperability of the video coding systems based on H.264/AVC since to gen-

erate a standard-compliant bit-stream the encoder does not require to implement all

the defined tools. However, the majority of the implementations of the H.264/AVC

coding system include some basic functional elements, e.g., prediction, transform,

and quantization. This flexibility allows each application to adapt the coding sys-

tem configuration to its specific requirements, e.g., processor, memory, or network

capabilities. Obviously, depending on the number of coding tools used, the coding

process will find a different balance between the resulting coding efficiency and the

complexity of the system.

3.3.1 H.264/AVC block diagram

The most typical H.264/AVC block diagrams are shown in Figures 3.1 and 3.2. The

first one shows the encoder and the second the decoder.

As it can be seen, these block diagrams are very similar to those presented in

Chapter 2. Now, the two prediction types (Intra and Inter prediction) are explicitly

included in the diagrams while the remaining blocks are the same as those shown
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Figure 3.1: H.264 video encoder block diagram.

Figure 3.2: H.264 video decoder block diagram.

in Figures 2.4 and 2.5. We can find an additional filter block in the decoder and

the reconstruction path of the encoder. This is usually called deblocking filter and

it is responsible for reducing the blocking distortion in the reconstructed or decoded

blocks.

3.3.2 Video format

The width and height of the luminance frames in the input of an H.264/AVC encoder

must be a multiple of 16 and the chroma frame size must be multiple of 8 or 16,

depending of the color sampling format considered (the interested reader is referred

to [Richardson, 2003] for more details about color formats). This is due to the fact

that the work unit in H.264/ACV is 16×16 pixels for the luminance component along

with the associated pixels for the chroma components. Thus, for coding purposes the

frame to be encoded will be divided into 16×16 pixel blocks, called macroblocks

(MBs).
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The encoder organizes the MBs in slices, each one containing an integer number

of MBs that must be coded in raster order. Moreover, each frame could contain one

or more slices that will be coded independently of the others, limiting in this way the

error propagation. In this Thesis we use slices of the same size as the frames; thus,

hereafter we will refer only to frames.

There exist several types of slices, as those types of frames described in Chapter

2 (Section 2.3.4.3); in fact, the I, P, and B types are all available in H.264/AVC.

Moreover, there are two additional types of slices, called SP and SI. These two last

are adequate in applications where transmission losses happen.

Figure 3.3 shows the data organization inside a slice. We find a slice header that

indicates if the slice is I, P, B, SP, or SI. We also find information related to the

coding process of every MB, e.g., the MB type (I, P, or B), the data required to build

the prediction for that MB, and the coded residue.

Figure 3.3: Slice data organization.
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3.3.3 Intra prediction

The Intra prediction is obtained from a combination of the previously coded and

reconstructed pixels in the neighborhood of the current MB (those located in the

left, top, and upper left positions).

The Intra prediction can be calculated for the complete 16×16 pixel MB, or it can

be further splitted down into 4×4 pixel blocks; both options are called Intra modes.

In the first mode, four Intra prediction types are defined to form the prediction for

the entire 16×16 pixel MB. In the second mode, there exist nine prediction types to

form the prediction for every 4×4 block. These prediction types are different ways

to combine the surrounding pixel values. Figures 3.4 and 3.5 illustrate these types

for the Intra 16×16 and Intra 4×4 modes, respectively.

Figure 3.4: Intra 16×16 prediction modes.

In general, as it can be seen, most of the prediction types are based on directional

predictions. Each direction is suitable to build a prediction in a block that presents

texture in that direction.

Commonly, the Intra 4×4 mode is more useful in areas with high detail content

or complicated textures. On the other hand, the Intra 16×16 mode is appropriate

for homogeneous areas or those showing smooth variations.

3.3.4 Inter prediction

The Inter prediction is calculated from previously coded and reconstructed pixels in

different frames. It should be noted that several tools included in this prediction
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Figure 3.5: Intra 4×4 prediction modes.

turn out to be key differences with respect to the previous standard, e.g., variable

block sizes to carry out the ME and MC processes, or quarter-sample resolution to

obtain the prediction. All these tools are responsible for the improved efficiency of

H.264/AVC. Next, these tools are described in detail.

3.3.4.1 Inter prediction modes

To carry out the Inter prediction, several partition sizes for the MB can be used,

called Inter modes. Specifically, the MB can be considered as a whole, or can be

divided into two 16×8, two 8×16, or four 8×8 pixel partitions, as it can be seen in

the upper part of the Figure 3.6. Additionally, when the 8×8 partition is evaluated,

it can be further splitted, as it can be seen in the lower part of the Figure 3.6, i.e.,

the block can be considered as a whole of 8×8 pixel block, or it can be partitioned in

8×4, 4×8, or 4×4 pixel blocks. These modes are called the sub-macroblock (sub-MB)
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partitions. The method of partitioning an MB into several blocks and sub-blocks of

different sizes is called tree-structured motion estimation.

(a) Inter MB modes: 16×16, 8×16, 16×8, and 8×8.

(b) Inter sub-MB modes: 8×8, 4×8, 8×4, and 4×4.

Figure 3.6: Inter modes.

The Inter prediction is assessed for every partition of the corresponding Inter

mode, e.g., if the 16×8 Inter mode is considered, the ME and MC processes are

carried out in both the upper and lower 16×8 resulting partitions. Therefore, a

different MV is obtained for each partition.

Thanks to this flexibility in the Inter prediction process, a high accuracy to rep-

resent the moving content is achieved, but at the expense of a very high complexity

since many different alternatives must be evaluated by the encoder. Regarding the

bit rate associated with every Inter mode, the large modes (Figure 3.6 (a)) require

less MV information (as they are partitioned in few blocks and thus less number of

MVs must be sent to the decoder), while the small modes (Figure 3.6 (b)) must send

more information related to the MVs. On other hand, considering the accuracy of

30



Chapter 3. Video Coding Standards

the prediction, large modes lead to less accuracy representing the details in the move-

ment of the objects, while small modes are more accurate. Reaching an appropriate

balance for the representation of each MB, which is the goal of the encoder, is not

an easy task.

To decide the best representation of the MB taking into account all the Intra and

Inter modes, the encoder needs to evaluate all the Intra and Inter predictions available

and select the optimal one. The encoder normally selects the best representation

of the MB through a Rate-Distortion Optimization (RDO) method, that will be

explained in Section 3.5.

3.3.4.2 Motion vector

The first step of the ME process is to calculate the MV for every considered MB

partition. The encoder also uses in this process the RDO method to seek, for each

partition, the optimal pixel block in previously coded frames. The position of the

selected block will be represented by means of the MV, which contains the relative

coordinates of the best matching with respect to the position of the current block.

Usually, the area where the encoder searches for the matching block is restricted

around the position of the current MB, avoiding the search in the complete frame.

Moreover, the search is performed in all the reference frames available; however,

typically, the number of reference frames is limited to avoid searching over frames

very distant in time.

One of the main features of the ME process in H.264/AVC is that the MV can

reach up to quarter-pixel resolution. The in-between pixel values have to be estimated

by the encoder. In Figure 3.7 an example of integer (when the MV points at an actual

pixel value) and fractional (when the MV points at a half or quarter-pixel position)

MEs are shown.

To obtain these values the encoder uses interpolation from the actual neighboring

pixels. First, the half-pixel positions must be calculated. To this end, the interpolated

values are calculated from the adjacent integer samples by means of a six-tap FIR

(Finite Impulse Response) filter with different weights depending on how far the
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(a) Original 4×4 block. (b) Predicted 4×4 block with
integer ME.

(c) Predicted 4×4 block with
fractional ME.

Figure 3.7: Example of integral and fractional predictions.

sample is from the position to be calculated. Then, the quarter-pixel values can

be calculated by means of linear interpolation between the two adjacent half-pixel

values.

With all these values calculated, the ME process can be carried out with very

high accuracy, obtaining precise representations of the movement of the objects in

the scene. This higher resolution notably improves the performance of previous stan-

dards, which only allowed half-pixel resolution. However, all these operations to

obtain the fractional pixel values and to search through them also implies a notable

increment of the computational complexity.

3.3.4.3 Motion vector prediction

The information concerning the MVs becomes a large proportion of the final bit

rate generated by the encoder. To reduce it, the encoder takes advantage of the high

correlation among MVs of neighboring blocks. Since nearby areas are likely to present

similar movement, the redundancy among their MVs could be high and the encoder

can profit from it to create an accurate prediction for each MV. Then, the difference

between the prediction and the actual MV is calculated. The resulting differential

MV will have lower magnitude than the original MV, and, consequently, will require

fewer bits. This predicted MV (MVp) is calculated from MVs of previously coded

neighboring blocks. In general, the median vector of the neighboring MVs is used as
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MVp.

The decoder, using the same neighboring MVs as the encoder, will build the same

MVp and, adding the differential MV that it is included in the bit-stream, will obtain

the resulting MV.

3.3.4.4 Skip prediction mode

The Skip mode is a particular type of prediction available in P-frames for which no

information is sent to the decoder, only a flag to signal that this MB is coded as Skip

is included in the bit-stream.

Specifically, the Skip mode has the following properties: (i) only one MV is con-

sidered, i.e., that of the 16×16 pixel partition size; (ii) the MV is the same as the

MVp, so there is no information in the bit-stream related to the differential MV; (iii)

the reference frame is considered the previous frame in display order; and (iv), all the

DCT coefficients of the residue are zero. In doing so, the decoder just needs to copy

the MB pointed by the MVp in the previous frame, and this will be the decoded MB.

This type of prediction is very suitable for areas without movement or, at least,

low and similar movement as the neighboring areas. This coding tool is quite powerful

since it significantly reduces the amount of bits necessary to represent MBs in quite

common situations, leading to high coding efficiency.

3.3.5 Transform

Once the prediction is calculated following some of the previously explained proce-

dures, it is subtracted from the MB to be encoded, obtaining a residual MB. This

residual MB goes through a transformation process carried out with the DCT trans-

form. The goal of the transform is to reduce the correlation in the residue data to

obtain a more compact representation.

The output of the DCT will be a matrix of the same size as the input residue

matrix but, now, each coefficient does not represent a residue pixel value, but the

energy associated with a basis function of certain spatial frequencies. These basis

functions are represented in Figure 3.8 for the 4×4 and 8×8 DCT transform.
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(a) 4×4 DCT. (b) 8×8 DCT.

Figure 3.8: DCT basis functions.

Normally, to represent a residue block, just a few frequencies are required, and it

is very common that higher frequencies have lower energies and vice-versa. Therefore,

just a few non-zero coefficients will be obtained after quantization and, likely, around

the low frequencies. In this way, the information is compacted and the bit rate

resulting from encoding the transformed coefficients will be low.

H.264/AVC allows 4×4 and 8×8 DCT transforms, although the most common is

the 4×4 size. Since this transform must be calculated for every possible representa-

tion of the MB (every block partition in all the available Inter and Intra prediction

modes, reference frames, etc.), this process could result in a very high computational

burden. To reduce it, H.264/AVC uses an approximation of the DCT based on addi-

tions and shifts, avoiding to use fractional operations and obtaining a very efficient

implementation of the transform.

3.3.6 Quantization

The quantizer used in the H.264/AVC standard is very similar to an uniform quan-

tizer, as that shown in Figure 2.7. Mathematically, the quantizer is defined as follows:

Xij = round (Zij/Qstep) , (3.1)
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where Zij is the actual DCT coefficient in the position ij of the transformed residue

matrix, Qstep is the quantization step, and Xij is the output of the quantizer, i.e., the

quantized DCT coefficient, in the same position ij.

The Qstep is a key parameter of the quantizer. The number of possible output

values changes depending on this parameter. As the Qstep grows, the amount of

possible output values is lower and the errors between the input and the output of

the quantizer will be larger, as it can be inferred from (3.1). Therefore, the coding

losses grow with Qstep, while the produced bit rate is lower, as fewer codewords are

required to represent the outputs. It should be noted that this balance is one key

issue in video coding; in fact, there is no a closed solution for the optimal balance

since it depends on the application.

In H.264/AVC, the parameter that the user can control to obtain different per-

formances of the quantizer is the Quantization Parameter (QP). This QP value is

not the same as Qstep, but there is a univocal relationship between both parameters;

thus, controlling the QP we also control the Qstep. Some of the specific values that

can be taken by both parameters are shown in Table 3.1.

Qstep 0.62 1.25 2.5 5 10 20 40 80 160 240
QP 0 6 12 18 24 30 36 42 48 51

Table 3.1: Relationship between Qstep and QP.

The rescaling process (the inverse of the quantization) that must be carried out

in the reconstruction path of the encoder (and also in the decoder) is simply defined

as:

Yij = Zij ×Qstep, (3.2)

where Yij is the reconstructed DCT coefficient in the position ij. The reconstructed

Y values are different from the original X DCT coefficients since, as it can be seen

in (3.1), there is a rounding operation that can not be reversed.

After the quantization process, the reordering of the quantized DCT coefficients is

carried out by the encoder. The scanning method in H.264/AVC follows the pattern

shown in Figure 2.8, except that this reordering is carried out for 4×4 pixel blocks.
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3.3.7 Entropy coding

There are two types of entropy coders in H.264/AVC: the first is based on Context-

based Adaptive Variable Length Coding (CAVLC) and the second is based on

Context-based Adaptive Binary Arithmetic Coding (CABAC).

1. Context-based Adaptive Variable Length Coding (CAVLC)

Some typical features of the quantized DCT coefficients after the reordering

are exploited by this method. CAVLC performs a run-level coding to compact

the zero coefficients that appear in the high frequencies of the block. Usually,

the number of non-zero coefficients in neighboring blocks is highly related and

this is exploited, by means of look-up tables, to encode them. Moreover, DC

coefficients of neighboring blocks tends to be quite similar. Thus, the entropy

coding of the DC coefficient is also carried out by means of look-up tables that

will be selected taking into account the previously coded DC coefficients.

2. Context-based Adaptive Binary Arithmetic Coding (CABAC)

This method divides the data to be encoded into binary syntax elements. For

each one, a probability model (called context) is selected and adapted by means

of local statistics. First, each element to be coded must be binarized. Then, the

encoder selects the context model depending on the statistics of the recently

coded elements. This context model indicates the probability of a bit being

0 or 1. Finally, the bit-stream for that element is generated using arithmetic

coding and the context is updated. Thanks to these tools, the CABAC entropy

coding method achieves higher compression ratios than CAVLC.

Following one of these two procedures, the encoder obtains the bit-stream represent-

ing the video sequence.

3.4 Overview of the HEVC standard

The latest video coding standard HEVC [ISO, 2013] also follows the block-based

hybrid coding paradigm. As in H.264/AVC, in HEVC only the syntax of the bit-
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stream is standardized, so that developers have total freedom when designing their

standard coders for specific applications. However, there are some basic coding tools

that are implemented in the majority of HEVC coders. In this Section we provide a

brief explanation of these fundamental tools, focusing on those that are novel relative

to the H.264/AVC standard and relevant for the development of our work.

3.4.1 HEVC block diagram

In Figure 3.9 we show a typical block diagram of the HEVC encoder.

Figure 3.9: HEVC video encoder block diagram.

As it can be seen, most of the blocks are the same as those illustrated in the

diagram of the H.264/AVC encoder. The Intra and Inter prediction blocks, along

with the transformation and quantization blocks, are again the main components of

the coding system. However, there are important differences in the performance and

functionalities of these blocks compared with H.264, as it will be explained later.

Again, there is a deblocking filter in the reconstruction path of the encoder.

Moreover, in HEVC, there is another filter called Sample Adaptive Offset (SAO) that

consists of adding an offset value to the reconstructed samples based on look-up

tables. The SAO filter aims to perform an additional refinement of the reconstructed

samples in smooth and edge areas.

Moreover, in HEVC there are several tools to facilitate parallel processing. HEVC

defines tiles, i.e., partitions of a frame into independent rectangular regions, Wave-

front Parallel Processing (WPP), which allows scanning the image using one thread
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per row while maintaining CTBs dependencies, and dependent slice segments, which

allow that associated data can be transported in different transport units.

3.4.2 Quadtree coding structure

In HEVC the work unit is called Coding Tree Block (CTB) and its size is selected by

the encoder as 16×16, 32×32, or 64×64 pixels. The CTBs can be processed as a whole

or can be further splitted into smaller blocks; whatever its size, the resulting block is

called coding unit (CU). The splitting is carried out by means of tree structures, called

quadtree coding structure. The encoder selects the more suitable CU size depending

on the features of the block through a RDO method. The dimensions of the CU can

vary from 8×8 pixels up to the CTB dimensions, depending on the tree depth at

which the CU is located. The higher depth, the lower the CU dimensions. Therefore,

a CTB can consist of either only one CU or multiple CUs. The quadtree structure is

illustrated in Figure 3.10.

The prediction for each CU can rely on different partition sizes, called predic-

tion units (PUs), being Intra or Inter depending on whether the CU uses spatial or

temporal prediction, respectively.

Regarding the transformation stage, the CU can be considered as the root of

another quadtree where the transformation of the residue is carried out. The size of

the transform units (TUs) can vary from 4×4 up to the CU size, depending on the

depth level at which the TU is located. In contrast to H.264/AVC, HEVC allows

that a TU spans across multiple PUs for Inter prediction to maximize the coding

efficiency.

3.4.3 Intra prediction

There are two possibilities to divide the CU into PUs: first, when the CU size is larger

than the minimum, the PU is always equal to the CU size; second, when the CU size

is the minimum, the PU can be the same size as the CU or it can be splitted into

four equal-size blocks. Following the typical HEVC notation, the PU size is denoted
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Figure 3.10: Quadtree coding structure of a CTB: from one 64×64 CU to 64 8×8
CUs.

as 2N×2N when the PU is not splitted and N×N otherwise.

The Intra prediction in HEVC has been significantly enhanced, increasing the

number of prediction directions. All the possible directions are shown in Figure 3.11.

Moreover, the planar and the DC modes are also available.

The angles defined for Intra prediction in HEVC are designed to provide a dense

cover in all the possible orientations, improving the accuracy of this kind of prediction.
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Figure 3.11: Orientations for Intra prediction in HEVC.

3.4.4 Inter prediction

3.4.4.1 PU partitioning

For Inter prediction, each CU can be divided into several PUs. Figure 3.12 shows all

the possible partitions.

Figure 3.12: PU partitions for Inter prediction mode.
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The Inter mode 2N×2N indicates the case in which the CU is considered as a

whole, while the N×2N and 2N×N modes refers to two equal-size vertical and hori-

zontal partitions. The N×N mode is only supported when the CU depth is the maxi-

mum (i.e., the CU size is minimum), and it refers to a four equal-size square division.

Moreover, there are some asymmetric partitions available, denoted as N/2×2N (L),

N/2×2N (R), 2N×N/2 (U), and 2N×N/2 (D) modes (where L, R, U, and D stand

for left, right, up, and down partition), which provide an increased versatility for

the encoder to accurately represent the movement. The asymmetric modes are only

available when N is larger or equal to 8. As it can be seen, in any asymmetric PU,

one partition has the height or width N/2, while the other partition has a height or

width of 3N/2.

In HEVC the available CU sizes and partitions are many more than those available

in H.264/AVC. In fact, for each CU size, the PU partitions shown in Figure 3.12 are

used to represent more suitably the movement of such CU; thus, this tool enhances the

accuracy of the ME process, but at the expense of a high increase of the computational

complexity with respect to H.264/AVC.

The HEVC encoder must select the best coding option among all the available

coding modes, and this is carried out through a RDO process.

3.4.4.2 Merge prediction mode

Similar to the Skip mode defined in H.264/AVC, HEVC includes a Merge prediction

mode to take advantage of the motion information from neighboring blocks, trying

to save bit rate in the coding process. However, there are several differences between

Merge and Skip modes.

The Merge mode needs to identify a reference frame and an MV candidate, so

it needs to transmit some index information, while the Skip mode assumed some

predefined values. In this mode there is a so called MV competition scheme, where

the best MV is selected among several candidates. The set of possible candidates

consists of MVs coming from spatial and temporal neighbors, and other generated

candidates. Figure 3.13 shows the positions of the five spatial candidates, evaluated
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in the illustrated order.

Figure 3.13: Positions of spatial candidates in the Merge mode.

For the MV temporal candidate, the right bottom position outside the collocated

PU in the reference frame is used if available. If not, the PU in the center position

is used. Furthermore, HEVC gives more flexibility to choose the temporal candidate

since allows for selecting the reference frame index.

The maximum number of candidates C is specified in the slice header. If the

number of spatial and temporal candidates is larger than the maximum, the temporal

candidate and C − 1 spatial candidates are considered, whereas if the number of

candidates is less than C, additional candidates are generated. The way to generate

additional candidates depends on the type of frame considered. For P frames, for

example, MVs with zero displacement associated with different reference indexes are

added to the candidate list. In HEVC, the Skip mode is considered a special type of

Merge mode.

3.4.4.3 Fractional sample interpolation

HEVC also supports MVs with up to quarter-pel accuracy. However, this process has

been improved compared to that of the H.264/AVC, avoiding rounding operations
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when generating the fractional locations, obtaining higher accuracy and simplifying

the interpolation step.

The fractional sample interpolation for luminance pixels uses an eight-tap filter

to calculate the half-pel positions and a seven-tap filter for the quarter-pel positions.

Figure 3.14 illustrates the fractional pixel locations. The samples Ai,j represent

the luminance values in integer positions, the remaining samples refer to half and

quarter-pel positions. The samples a0,j, b0,j, c0,j, di,0, hi,0, and ni,0 are obtained from

the Ai,j values with the corresponding eight or seven-tap filter, depending on whether

the corresponding sample is located in a half or quarter-pel position, respectively. The

samples e0,j, f0,j, g0,j, i0,j, j0,j, k0,j, p0,j, q0,j, and r0,j are obtained from the adjacent

values with the corresponding filters.

3.4.4.4 Motion vector prediction

The HEVC encoder also codes the difference between the MV found in the ME process

and a MVp (a predicted MV). Similar to the Merge mode, the encoder can select

the MVp from multiple candidates, thus an index to identify the selected candidate

must be also included in the bit-stream.

Only two spatial candidates are selected among the five candidates represented

in Figure 3.13. The first candidate is selected from the left neighbors (the blocks

numbered as 4 and 1 in the figure), and the second from the upper (the blocks 3, 2,

and 5 in the figure), depending on their availability. If several neighbors are available,

the candidate is selected in the order indicated by the labels.

When the number of candidates is lower than two, the temporal MV candidate is

included, or even a zero MV, if necessary.

3.4.5 Transformation and quantization

Once the predicted CU is obtained, the difference between the original and predicted

blocks is calculated, obtaining the residue. The residual CU can be considered as the

root of another quadtree structure where the transformation process is carried out. In

this way, the residue can be divided in multiple TUs, from the CU size down to 4×4
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Figure 3.14: Fractional sample positions for interpolation.

(it should be noted that the maximum size for a TU is 32×32; thus, if the selected

CU size is 64×64, the CU will be divided into 4 TUs to carry out the transformation).

The two-dimensional transform is calculated from two one-dimensional transforms

in the horizontal and vertical directions. The elements of the core transform matrix

are obtained by approximating scaled DCT basis functions, limiting their dynamic

range for computation purposes and simplifying the mathematical operations, while

the accuracy is maximized. The elements of the matrices of each transform size can

be derived from the 32×32 matrix, which is the only one specified in the standard.

Regarding the quantization step, HEVC uses the same scheme controlled by QP
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as in H.264/AVC. The range of the QP values is still from 0 to 51 and its relationship

with Qstep is the same shown in Table 3.1.

For the scanning of the quantified coefficients, HEVC uses an adaptive system to

select the most adequate scanning pattern for every specific situation. The coefficient

scanning is carried out always in 4×4 blocks, independently of the optimal TU size.

In Intra prediction with TU sizes of 4×4 or 8×8, the HEVC encoder can select

the scanning method among the three possibilities shown in Figure 3.15. As it can

be seen, they are directional scannings: diagonal up-right, horizontal, and vertical.

The selection of the scanning method depends on the optimal direction selected for

the Intra prediction. Specifically, the vertical scan is used when the optimal Intra

direction is near to horizontal, the horizontal scan is selected with directions near to

vertical, and the diagonal up-right scan is used for the remaining Intra directions.

(a) Diagonal up-right. (b) Horizontal. (c) Vertical.

Figure 3.15: Coefficient scanning methods in HEVC.

In Intra prediction with TU sizes of 16×16 or 32×32 and in the Inter prediction

with any TU size, the 4×4 diagonal up-right scanning method is used for all sub-

blocks.

3.4.6 Entropy coding

HEVC only defines CABAC as entropy coding method. The main steps for imple-

menting CABAC remain unaltered with respect to H.264/AVC; however, the differ-

ences in the coding process between both standards are exploited to improve the
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performance of the CABAC method.

For example, the depth of the CU and TU quadtress are used to derive the

context model of various syntax elements. The number of contexts used in HEVC

is lower than in H.264/AVC; however, the CABAC design in HEVC provides better

compression, as dependencies between the coded data are exploited to additionally

improve its performance.

Regarding the coding of the residue coefficients, HEVC codes the position of the

last non-zero coefficient, a significance map (that indicates which transform coeffi-

cients have non-zero values and their positions), sign bits, and levels for each non-zero

coefficient. Moreover, several changes have been made to manage the increased size

of the transform, exploiting the redundancy between adjacent 4×4 sub-blocks.

3.5 Rate-Distortion Optimization

The H.264/AVC and HEVC encoders need to find the optimal coding options among

all the available (QP, prediction mode, block size, MV, reference frame, etc.). Specif-

ically, the encoder will select the coding options that minimize the distortion subject

to a certain rate constraint. This means that the selected coding options must be

those that generate an amount of bits lower or equal than the rate constraint at the

same time that minimize the distortion.

To carry out this selection process, the implementations of the H.264/AVC and

HEVC standards usually use a RDO method. This process can be formulated as

follows:

m
θ
in {D(θ)} subject to R(θ) ≤ Rc, (3.3)

where θ is a combination of coding parameters (block size, prediction mode, MV,

reference frame, QP, etc.); D(θ) represents the distortion associated to this θ com-

bination; R(θ) is the amount of bits generated by the encoder with θ, including

residual transform coefficients, side information, and headers; and, finally, Rc is the

rate constraint.

Using Lagrange formulation, the constrained optimization problem stated in (3.3)
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can be expressed as an unconstrained optimization problem [Everett, 1963]. To that

purpose, a R-D cost function J is built that weights the distortion and the rate terms

by means of a Lagrange multiplier λ. The goal is to find the coding options θ that

minimize this J cost:

m
θ
in {J} ,where J(θ) = D(θ) + λR(θ), (3.4)

where the Lagrange multiplier λ balances the relative importance of distortion and

rate obtained with the coding options θ. Solving (3.4) for a particular λ value, we

obtain an optimal solution θ∗(λ) of the original RDO problem (3.3) for a particular

rate constraint Rc = R(θ∗).

This solution involves to evaluate all the possible combinations for θ in each block

(MB or CTB, depending on the considered standard) to choose the optimal one, but

this is not feasible due to the incredibly high computational cost that this would

suppose (note that it would be necessary to evaluate the final distortion and rate for

each block and each combination of coding parameters). In practical implementations

of the H.264/AVC and HEVC standards, several simplifications are made in order to

obtain a lighter RDO process.

One of the simplifications is to consider the decisions in each block independent.

Although this hypothesis is not true because the θ∗ selected for a block actually

depends on those of the previously coded blocks, this simplification is necessary to

obtain a practical solution of the RDO process. Moreover, decisions at different

coding stages (e.g., prediction mode, MV, etc.) are also considered independent.

Furthermore, the practical implementations of the optimization process divide

the RDO process in two steps. The first is devoted to the selection of the optimal

reference frame and MV and the second is responsible for selecting the best prediction

mode.

The RDO process to select the best reference frame (Ref) and MV is mathemat-

ically defined as follows:

Jmotion = SAD(MV,Ref) + λmotionRmotion(MV,Ref), (3.5)
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where SAD is the sum of the absolute differences between the original and predicted

blocks, which is the distortion measure used in this first step; λmotion is the Lagrange

multiplier; and Rmotion is an estimation of the amount of bits required to code the

MVs. As it can be seen, in (3.5) there are several simplifications: the distortion is

calculated with the predicted block instead of the reconstructed one, and the rate is

only an approximation of the actual rate. Taking into account that this formulation

must be evaluated in every pixel location considered in the ME process (for all the

Inter prediction modes, partitions in a block, available positions in the search range,

and reference frames), this helps to alleviate the computational burden of this process.

Once the reference frames and MVs have been selected for each Inter prediction

mode, the encoder seeks for the optimal prediction mode k among all the Inter and

Intra modes, what is usually called mode decision (MD) process. In the H.264/AVC

standard, this process means to find the optimal MB prediction and partition size,

while in HEVC it refers to the optimal prediction and the complete arrangement in

the quadtree coding structure, including CU, PU, and TU sizes. For this second step

the encoder uses a different R-D cost function, defined as follows:

Jmode,k = SSD({MV }k , {Ref}k , k) + λmodeR({MV }k , {Ref}k , k), (3.6)

where SSD is the sum of the squared differences between the original and recon-

structed blocks, which is the distortion measure used in this second step; λmode is the

Lagrange multiplier (different from that used in (3.5)); and R is the rate to code the

headers, MVs, indexes of the reference frames, and the residual coefficients. As it can

be seen, this second step is more similar to the original formulation, as the distortion

and rate measures are calculated without simplifications.

Both RDO methods are related by means of their Lagrange multipliers as follows

[Sullivan and Wiegand, 1998]:

λmotion =
√
λmode. (3.7)

Moreover, in order to avoid checking every QP value available in the encoder,

48



Chapter 3. Video Coding Standards

a relationship between the Lagrange multiplier λmode and QP was experimentally

obtained [Sullivan and Wiegand, 1998]:

λmode = C × 2
QP
3 , (3.8)

where C is a constant value that depends on the slice type and the encoder config-

uration. Thus, for a given QP value, the encoder can easily obtain both Lagrange

multipliers λmode and λmotion. Although other relationships between QP, λmode and

λmotion values have been investigated in the state-of-the-art (e.g., [de Suso et al.,

2014,Li et al., 2009]), the formulations in (3.7) and (3.8) are usually applied in prac-

tical implementations of the standards.

As it can be seen, these simplifications allow the video coding system to obtain a

near optimal representation of each block, θ̂∗; however, the large amount of coding

options still involves a high computational burden of the RDO process, resulting in

the bottleneck in the video coding process.
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Chapter 4

Complexity Control in H.264/AVC

In this chapter we face the complexity control problem in the H.264/AVC stan-

dard, proposing a novel method that relies on a hypothesis testing that can handle

time-variant content and target complexities. Specifically, it is based on a binary

hypothesis testing that decides, in an MB basis, whether to use a low- or a high-

complexity coding model. Gaussian statistics are assumed so that the probability

density functions (PDFs) involved in the hypothesis testing can be easily adapted.

The decision threshold is also adapted according to the deviation between the actual

and the target complexities. The proposed method was published in IEEE Transac-

tions on Multimedia [Jimenez-Moreno et al., 2013].

This chapter is organized as follows. In Section 4.1 we present a brief introduction.

Section 4.2 gives a review of the most relevant contributions to the complexity control

problem in H.264/AVC. Section 4.3 explains in detail the proposed method. The

experiments conducted to prove the strengths of the method and a discussion of the

results are presented in Section 4.4. Finally, Section 4.5 summarizes our conclusions.

4.1 Introduction

The conception of algorithms capable of adapting their computational complexity

(obviously in exchange for performance, memory, delay, etc.) to those supported by
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specific devices becomes an important challenge that have received some attention

and that will continue to be of interest in years to come.

Video coding is one of the numerous signal processing systems that, in some sce-

narios, are required to be complexity-adaptive. Although many research efforts have

been devoted to reduce the complexity of video compression algorithms [Tourapis

and Tourapis, 2003, Zhu et al., 2002, Zhang et al., 2003, Choi et al., 2003, Li et al.,

2005,Gonzalez-Diaz and Diaz-de Maria, 2008,Grecos and Mingyuan, 2006,You et al.,

2006,Kuo and Chan, 2006,Saha et al., 2007,Zhou et al., 2009,Martinez-Enriquez et al.,

2007, Martinez-Enriquez et al., 2009, Martinez-Enriquez et al., 2010, Martinez-En-

riquez et al., 2011, Lu and Martin, 2013, Kim et al., 2014, Yusuf et al., 2014], only

a few works have been devoted to actually control the complexity [Ates and Altun-

basak, 2008,Gao et al., 2010,Kannangara et al., 2008,Huijbers et al., 2011,Vanam

et al., 2007,Vanam et al., 2009, Su et al., 2009,Tan et al., 2010,Kannangara et al.,

2009, da Fonseca and de Queiroz, 2009, da Fonseca and de Queiroz, 2011, Li et al.,

2014]. In this chapter, the problem of complexity control is tackled in the framework

of the H.264/AVC standard.

We propose an algorithm capable of keeping the H.264/AVC encoder complexity

around a certain externally provided target value with minimum losses in terms

of coding efficiency, even when the target complexity is very low. The proposed

approach has been devised to satisfy the following specifications: low miss-adjustment

error with respect to the target complexity, capability to adapt to a time-variant

complexity target and to the video content, and capability to operate on a large

dynamic range of target complexities and to work with any image resolution.

4.2 Review of the state-of-the-art

Some of our previous works were focused on the complexity reduction problem [Mar-

tinez-Enriquez et al., 2009,Martinez-Enriquez et al., 2010,Martinez-Enriquez et al.,

2011]. Despite not being able to achieve a target complexity, they establish a starting

point for our research work on complexity control. First, in these works we studied
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the design of several classifiers to reduce the encoder complexity, from decision thresh-

olds to linear classifiers, always obtaining reasonably good results in terms of time

saving and without incurring significant encoding efficiency losses. Moreover, several

statistical analysis of the input features to these classifiers were carried out, helping

us to understand the encoder behavior and to identify the more relevant variables in

the MD problem. This previous work motivates us to design a complexity control

algorithm.

Focusing now on the complexity control problem, the most common approach

involves adding a complexity term to the cost functions that are minimized in the

RDO process. In [Ates and Altunbasak, 2008], an estimation of the high frequency

content of a block and a target complexity are included in a novel cost function, so

that the ME process relies on it to decide which partitions are taken into account for

each MB. In [Gao et al., 2010], modified versions of both Jmotion and Jmode cost func-

tions were proposed by adding a complexity term that is based on the computation

time and the number of instructions required. Moreover, the modes are rearranged

according to a texture analysis, so that, given an available complexity for an MB,

the encoding process picks modes according to the resulting arrangement, and stops

whenever the accumulated complexity exceeds the target complexity. Once a subset

of modes has been selected in this manner, the modified cost functions are used to

decide on the best representation for the MB. It is also worth mentioning that this

method requires a costly off-line estimation of the Lagrange multipliers involved in

the cost functions. In [Kannangara et al., 2008], an algorithm that relies on encoding-

time statistics to reach a given complexity target was suggested. In particular, the

algorithm estimates the encoding complexity from a buffer occupancy measurement

and manages this complexity by means of a Lagrangian rate-distortion-complexity

cost. Additionally, the encoder drops frames when the complexity target cannot be

met. In [Huijbers et al., 2011] a complexity scalable video encoder that is capable of

adapting on the fly to the available computational resources was presented. Specif-

ically, this algorithm works at both frame and MB levels. At the frame level, the

algorithm decides the maximum number of SAD calculations according to the com-
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plexity budget. At the MB level, the complexity budget is allocated among the MBs

in proportion to the distortion of the co-located MBs in previous frames. In [Vanam

et al., 2007], an algorithm capable of finding an appropriate encoder configuration

was described. Given a working bit rate, it finds optimal operating points taking

into account distortion and complexity. The authors propose two fast approaches

that do not require an exhaustive evaluation of encoder configurations. An extension

of this work is presented in [Vanam et al., 2009] following the same principles. In [Su

et al., 2009], an allocation of computational resources based on a virtual buffer was

proposed. Additionally, to guarantee that the used resources do not exceed the es-

timated ones, two complexity control schemes are defined, one on the ME and the

other on the MD processes. For the ME, a search path and a termination point are

defined according to R-D considerations and the allocated complexity. For the MD,

a search order and a termination point are defined according to the most frequent

modes in neighboring MBs and the allocated complexity. In [Tan et al., 2010], the

MBs in a frame are encoded using only Intra and Skip modes. Then, the encoding

of the MBs producing the highest costs is further refined using additional modes.

The number of mode decisions is controlled by means of a parameter that allows this

method to be scaled for different complexity targets. In [Kannangara et al., 2009] the

Bayesian decision theory was used for complexity control. In particular, a threshold

to comply with an average target complexity level is determined using a probabil-

ity model where the corresponding cumulative density functions are estimated based

on motion measurements and the QP value. To this purpose, an off-line precom-

puted relationship among these parameters is required. This method is limited to

Skip/non-Skip decisions.

The works described so far were tested on QCIF and CIF resolutions, since com-

plexity control was considered attached to low-power devices, which were not able to

work with higher resolutions. Nowadays, however, the fast growth in computational

power has made even hand-held devices capable of working with higher resolutions.

The works by Queiroz et al. ( [da Fonseca and de Queiroz, 2009, da Fonseca and

de Queiroz, 2011]) tackle the complexity problem for higher resolutions. In [da Fon-
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seca and de Queiroz, 2009], the complexity is controlled by allowing only for a subset

of modes in the MD process. Specifically, the most likely modes are sorted, and only

those that do not exceed a pre-established complexity limit are evaluated. In [da Fon-

seca and de Queiroz, 2011] the values of distortion, rate, and complexity achieved by

a set of specific encoder configurations are collected by means of an off-line train-

ing process. These values are tabulated and a desired level of complexity is reached

by applying the corresponding encoder configuration. The weakness of this off-line

training process is the difficulty of adapting the model to time varying conditions in

both complexity requirements and video content.

The algorithm proposed in this Thesis, as a few of the previously mentioned

( [Kannangara et al., 2008,Huijbers et al., 2011]), relies on a parameter estimation

process that is carried out on the fly, avoiding both the generalization problems

inherent to an off-line estimation and the computational cost associated with the

training process. In this manner, the algorithm can easily adapt to changes in both

target complexity and video content. As a result, the proposed method is simple

and capable of efficiently operating on different video contents and resolutions and

on changing complexity targets, exhibiting quite remarkable convergence properties.

Furthermore, these high levels of simplicity and flexibility are achieved in exchange for

acceptable losses in coding efficiency. Moreover, our proposal deals with resolutions

from QCIF to HD.

4.3 Proposed method

4.3.1 Motivation and Overview

The proposed method to control the complexity of the H.264/AVC encoder is based

on a hypothesis testing in which the decision threshold is automatically set to reach

an externally-provided target complexity level. This approach has been adopted

for two reasons: 1) the mathematical definition of the hypothesis testing allows for

defining a cost policy adapted to the specific problem at hand, thus providing a

valuable flexibility and adaptability; and 2) as we will show in the following sections,
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this approach is effective to reduce the complexity while maintaining a high coding

efficiency level.

We propose to make a binary decision in each MB, deciding between low- or high-

complexity coding models; thus, the proposed algorithm relies on a binary hypothesis

testing. These two proposed coding models are defined as follows:

1. In the low-complexity model, the MB can be encoded as Skip, Inter 16×16,

or Intra 16×16. The reason to choose these three modes is the following: for

the algorithm to meet tough complexity constraints, the amount of modes in

the low-complexity level must be kept as low as possible. Therefore, it would

have been desirable for this hypothesis to involve only the Skip mode, which

does not require ME; however, considering only the Skip mode would have led

to significant losses in coding efficiency. Consequently, to avoid these efficiency

losses and still keep the complexity at reasonably low levels, the Inter 16×16

mode had to be included. Furthermore, the Intra 16×16 mode had to be

included as well to achieve a satisfactory performance in those cases where the

ME process does not work properly, i.e., when the penalty in coding efficiency

for not allowing Intra modes is high.

2. In the high-complexity model, the MB can be encoded as any of the available

Inter or Intra modes. In this case, as all the complexity resources are available

to encode a MB, all the modes are evaluated to select the optimal among them.

Once all MBs in a frame have been encoded, the complexity control algorithm

must check the achieved complexity and compute the deviation from the target.

From this deviation, the complexity control algorithm adjusts the decision threshold

of the hypothesis testing, so that this new threshold is used for the next frame to be

encoded. The flowchart in Figure 4.1 summarizes the whole process.

Mathematically, the formulation of the hypothesis testing derives from the

Bayesian decision theory, where the optimal decision given an observation x is the

one that provides the lowest mean cost, which can be expressed as follows:
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Figure 4.1: Flowchart of the proposed algorithm for complexity control in H.264.

Dj∗ = argmin
j

∑
i

Cji Pr
x
(x|Hi) Pr(Hi), (4.1)

where Dj∗ is the optimal decision, which is the one that minimizes a weighted sum

over all possible hypothesis i of the costs Cji of deciding j when the correct hypothesis

is i. The weights in the sum are given by the likelihoods of obtaining the observation

x given the hypothesis Hi (Prx(x|Hi)) and the a priori probability of each hypothesis

(Pr(Hi)).
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From this formulation, we can define a binary hypothesis testing with two possible

hypothesis H0 and H1, and the two corresponding decisions D0 and D1. For this

particular case, the mean costs associated with deciding either D0 or D1 are defined

as follows:

C0(x) = C00 Pr
x
(x|H0) Pr(H0) + C01 Pr

x
(x|H1) Pr(H1),

C1(x) = C10 Pr
x
(x|H0) Pr(H0) + C11 Pr

x
(x|H1) Pr(H1). (4.2)

Finally, according to the previous expressions, the Likelihood Ratio Test (LRT)

for this problem can be written as:

Prx(x|H1)

Prx(x|H0)
≷D1

D0

(C10 − C00)

(C01 − C11)

Pr(H0)

Pr(H1)
. (4.3)

The following subsections explain in detail the main building blocks of the pro-

posed method. First, we focus on a statistical analysis of the R-D costs to gain insight

into the feasibility of the proposal and make the best possible design.

4.3.2 Statistical Analysis

Different features have been used in the literature to make an early mode decision.

We proved in [Martinez-Enriquez et al., 2010] that the Jmode cost is one of the most

informative features for this purpose. The analysis in this regard is presented next.

With the aim of studying the viability of using Jmode to design early stops, the

conditional PDFs of Jmode for each particular mode k (Jmode,k), given that it is the

optimal one (k∗), i.e., PrJ(Jmode,k|k∗ = k), has been analyzed. In addition, the

a priori probability that the kth mode is the optimal one, Pr(k∗ = k), has been

estimated. For this purpose, we have used the JM reference software1 on a set of

eight CIF and six QCIF video sequences encoded with different QP values (28, 32,

36 and 40) and an IP GOP structure.

1JVT H.264/AVC reference software v.10.2 [Online]. Available:
http://iphome.hhi.de/suehring/tml/download/old jm/.
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(A) Mean value (B) Standard deviation (C) A priori probability
QP 28QP 32QP 36QP 40QP 28QP 32QP 36QP 40QP 28QP 32QP 36QP 40

Skip 5044 9493 17811 32648 2508 5348 11456 23262 0.600 0.655 0.709 0.766
16×16 7240 14030 27549 55647 4212 84095 16606 31991 0.107 0.102 0.105 0.107
16×8 7562 16032 32576 64743 4077 80403 15774 31705 0.043 0.044 0.043 0.039
8×16 7814 16602 34782 68942 4451 88141 17439 32442 0.043 0.044 0.044 0.039
P8×8 12780 25029 48633 91776 5427 10124 18441 32642 0.201 0.147 0.092 0.042
8×8 1290 2532 4938 9540 965 1959 4047 7998 0.825 0.865 0.904 0.941
8×4 2453 5046 10355 20007 1508 2986 5840 11255 0.067 0.056 0.041 0.028
4×8 2661 5600 11185 22465 1598 3107 5969 11655 0.078 0.062 0.047 0.028
4×4 3960 8195 16569 34219 1587 3015 5796 10103 0.029 0.016 0.006 0.001
Intra 1168 1866 3793 9537 435 315 827 2117 0.004 0.004 0.005 0.005

Table 4.1: Detailed R-D cost analysis for Paris (CIF).

ForemanAkiyoContainer Mobile News Mother
(CIF) (CIF) (CIF) (QCIF) (QCIF) (QCIF)

Skip 5651 3072 7044 22341 6929 5284
16×16 8978 9343 16611 26464 13091 10278
16×8 10824 10888 15852 26973 14213 11276
8×16 10291 11230 16782 26929 15161 11828
P8×8 16248 14798 22924 30560 21593 14425
8×8 1885 963 1976 5375 1856 1584
8×4 3549 3024 3972 6546 4389 2969
4×8 3419 3301 4263 6480 4571 3537
4×4 5565 5673 6580 7601 6984 5101

Table 4.2: Detailed R-D cost analysis for different video sequences. Mean values for
QP=32 and IP pattern.

Table 4.1 shows the results for the Paris video sequence at different QP values and

for an IP GOP structure. Part (A) shows the mean values of the R-D cost conditional

PDFs for each mode (P8×8 refers to the accumulated cost at sub-MB level); part

(B) shows the standard deviations; and part (C) shows the a priori probability for

each mode. In addition, the R-D cost statistics for each particular sub-MB mode

are given in the lower half of the table. Note that the costs at the sub-MB level are

proportionally lower than those at the MB level.

Considering these results, some conclusions (that are consistent for other video

sequences and formats too) can be drawn:

1. Skip mode exhibits the smallest mean costs. This mode is usually selected in

areas of the image that show either constant or no motion and produces low
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costs because it saves the transmission of motion-related information.

2. The larger the mode, the smaller the mean and standard deviation of its R-

D cost. This behavior is observed at both the MB and sub-MB levels. This

can be easily understood since large modes are usually more suitable for either

low-detail or stationary regions, which can be represented with very few bits.

3. Rectangular modes (16×8 and 8×16) exhibit similar statistics to each other.

The same conclusion is reached at the sub-MB level (8×4 and 4×8 modes).

4. Cost means and deviations generally increase with QP (low qualities). This is

due to the fact that, when increasing the QP, the rate term in (3.6) dominates

the encoder decisions (to generate lower bit rate); thus, both λmode and the

distortion term of (3.6) increase accordingly, leading to higher global costs.

5. The a priori probability of the Skip and 16×16 modes clearly dominates over

the remaining ones.

6. The a priori probability of the Skip mode increases with QP. Since the weight

of the rate term in (3.6) increases with QP, the Skip mode becomes the most

likely one.

Table 4.2 shows the mean values of the R-D costs for several well-known video

sequences at QP=32. As expected, R-D cost values depend heavily on the specific

video sequence.

For illustrative purposes, Figure 4.2 shows the results obtained for the P frames of

the video sequence Foreman in CIF format with a QP value of 32. The upper part of

the figure shows the conditional PDFs for every mode. J8×8 is the accumulated cost

of the best 8×8 mode for each sub-MB partition. As can be observed, the individual

PDFs (considering those of 16×8 and 8×16 as a whole) are different enough to

distinguish the optimal mode. The joint PDF counting all the modes, also depicted

in the upper part of Figure 4.2, has been computed as follows:

Pr
J
(Jmode,min) =

∑
k

Pr
J
(Jmode,k|k∗ = k) Pr(k∗ = k), (4.4)
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where Jmode,min is the minimum R-D cost, corresponding to the optimal coding mode

for each MB.

The lower left part of the figure shows the a priori probabilities of each mode

k being optimal. The lower right part of the figure shows the means and standard

deviations of the upper conditional PDFs.

Figure 4.2: Example of the statistical analysis for P frames of the Foreman video
sequence in CIF format at QP=32. The upper part shows the conditional PDFs
for individual modes, PrJ(Jmode,k|k∗ = k), and the joint distribution including all
the modes. The lower left part shows the a priori probabilities of the individual
modes. The lower right part shows the means and standard deviations of the upper
conditional PDFs.
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4.3.3 Feature Selection

The hypothesis test (4.3) is based on the PDFs, computed according to an obser-

vation x, conditioned to each considered hypothesis (Prx(x|Hi)), with i = {0, 1}.
Consequently, the selection of this input feature x becomes crucial to the success of

the proposed method.

Considering the previous conclusions regarding the R-D costs, it is clear that the

R-D cost for a specific mode provides valuable information about the likelihood that

this mode is the optimal one. Now, a comprehensive feature selection process is

conducted to choose the most appropriate Jmode for describing our decision domain,

i.e., the R-D cost Jmode that produces the most separable PDFs, Prx(x|H0) and

Prx(x|H1), considering the binary decision process where the hypothesis H0 entails a

low-complexity encoding model (Skip, Inter 16×16, or Intra 16×16) and H1 entails

a high-complexity encoding model (any available mode).

In particular, we seek the most appropriate Jmode cost to make an early detection

of the MBs that should be encoded as Skip, Inter 16×16, or Intra 16×16 (the modes

used in H0), without causing significant efficiency coding losses. For this purpose,

we compute the probability of the Jmode,k cost associated with the k partition mode

(hereafter simply Jk), when hypothesis Hi, with i = {0, 1}, is true: PrJ(Jk|Hi). In

our case, since the modes Skip, Inter 16×16, and Intra 16×16 are assessed for all the

MBs and their corresponding Jmode costs are always available, we consider the next

set of possible costs Jk as candidates for input feature x to our hypothesis testing:

JSkip, JInter16×16, JIntra16×16, and Jmin(Skip,Inter16), where min(Skip, Inter16) is the

minimum cost between the Skip and the Inter 16×16 modes.

To select the most appropriate input feature x out of the considered set of costs,

we rely on two different tests: the Bhattacharyya distance and the mutual information

(MI). The Bhattacharyya distance measures the distance between two PDFs and, for

the Gaussian case, is defined as follows:
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Dbhat =
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where µ1 and µ2 are the means and σ2
1 and σ2

2 are the variances of the two in-

volved PDFs. In our case, we have to compute the distance between PrJ(Jk|H0)

and PrJ(Jk|H1) for every Jk considered and choose as optimal the Jk that maximizes

the distance. In other words, the larger the difference between the distributions, the

better Jk is as an input feature for the hypothesis testing, since with larger distances

it would be easier to distinguish between samples coming from each distribution.

On the other hand, the MI between a set of n random variables X1, X2, ..., Xn

and the correct decision Y is formulated as:

MI (X1, X2, ..., Xn, Y ) = h (X1, X2, ..., Xn)− h (X1, X2, ..., Xn|Y ) =

=
∫ ∫

pxy (x1, x2, ..., xn, y) log
pxy(x1,x2,...,xn,y)

px(x1,x2,...,xn)py(y)
dxdy, (4.6)

where px (x1, x2, ..., xn) is the joint PDF of the n features, py (y) is the marginal PDF

of the correct decision Y , pxy (x1, x2, ..., xn, y) is the joint PDF of the features and the

decision, and h(·) is the Shannon differential entropy. Intuitively, MI measures how

much the knowledge of a set of features reduces the uncertainty about the correct

decision. In our case Y denotes our decision problem, i.e., if an MB is encoded at

either low or high complexity, and X denotes the Jk cost (we only have one feature,

so n = 1). Therefore, MI(Jk, Y ) represents the mutual information between the

optimal decision and the Jk cost. The higher the MI, the lower the uncertainty about

the decision, and the better Jk is as an input feature for the hypothesis testing. In

our experiments, we used the estimator described in [Kraskov et al., 2004] to compute

the MI.

To select the most suitable feature, we relied on a set of 10 video sequences

of different resolutions (4 QCIF, 4 CIF, and 2 HD), and we considered a variety
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of quality levels (QP = 24, 28, 32, 36, and 40) with an IP GOP structure. We

computed both the Bhattacharyya distance and the MI in all the cases. According

to the Bhattacharyya distance, the results achieved are remarkably consistent and

in favor of min(Skip, Inter16). When the MI is considered, the results are not so

consistent, but again min(Skip, Inter16) turns out to be the most voted. Tables 4.3,

4.4, and 4.5 illustrate these results for three selected examples: Rush Hour (HD) at

QP 24, Foreman (CIF) at QP 32, and Carphone (QCIF) at QP 36. In view of the

results in these tables, the Jk associated with min(Skip, Inter16), hereafter JSkip,16,

is the most suitable for our proposal and it is used as input feature in our hypothesis

testing (4.3).

Jmin(Skip,Inter16) JSkip JInter16×16 JIntra16×16

Dbhat 0.44 0.04 0.03 0.01
MI 0.20 0.19 0.17 0.10

Table 4.3: Dbhat and MI computed for each Jk considered for Rush Hour (HD) at
QP 24.

Jmin(Skip,Inter16) JSkip JInter16×16 JIntra16×16

Dbhat 0.21 0.10 0.02 0.01
MI 0.14 0.11 0.11 0.09

Table 4.4: Dbhat and MI computed for each Jk considered for Foreman (CIF) at QP
32.

Jmin(Skip,Inter16) JSkip JInter16×16 JIntra16×16

Dbhat 0.49 0.09 0.02 0.002
MI 0.18 0.10 0.15 0.08

Table 4.5: Dbhat and MI computed for each Jk considered for Carphone (QCIF) at
QP 36.

Figure 4.3 depicts the resulting PDFs for the same examples. The left part of

the figure shows PrJ(JSkip,16|H0), in dotted line, and PrJ(JSkip,16|H1), in line with

crosses, for the sequence Rush Hour (HD) at QP 24; the central part shows the same
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Figure 4.3: Examples of PrJ(JSkip,16|H0) and PrJ(JSkip,16|H1). a) Rush Hour (HD)
at QP 24; b) Foreman (CIF) at QP 32; and c) Carphone (QCIF) at QP 36.

PDFs for Foreman (CIF) at QP 32; and the right part shows them for Carphone

(QCIF) at QP 36. As can be observed, the separability of the distributions is enough

to make reliable decisions.

Furthermore, as it can be inferred from the previous analysis, the JSkip,16 cost

is a content-dependent feature that depends on the particular video content and on

the QP. Consequently, and following the conclusions of Section 4.3.2, the considered

PDFs must be estimated on the fly to accurately follow the changing properties of

the actual distributions. As it will be proved later, this content-adaptive property is

one of the main advantages of our proposal. On the other hand, this approach entails

two problems, namely, the computational cost associated with the PDF estimation,

and the time to reach the convergence. In order to arrive at a practical solution, the

PDFs have been assumed to be Gaussians, so that only their means and standard

deviations have to be computed. This hypothesis looks reasonable from the results

observed in Figures 4.2 and 4.3 (the same statistical behavior was found for all the

sequences and QP values analyzed). The convergence of the mean and standard

deviation estimation procedures is studied in following sections.
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4.3.4 Content-Adaptive Hypothesis Testing

Once the hypotheses H0 and H1 have been defined, the input feature x = JSkip,16

selected, and the resulting conditional PDFs PrJ(JSkip,16|H0) and PrJ(JSkip,16|H1)

modeled as Gaussian distributions, the LRT defined in (4.3) can be rewritten accord-

ingly:

exp(
−(JSkip,16−µ̂1)2

2σ̂2
1

)

exp(
−(JSkip,16−µ̂0)2

2σ̂2
0

)

σ̂2
0

σ̂2
1

≷D1
D0

P̂ (H0)

P̂ (H1)

C10

C01

, (4.7)

where µ̂0 and µ̂1 are the estimated means of the class conditional PDFs

(PrJ(JSkip,16|H0) and PrJ(JSkip,16|H1)), respectively; σ̂0 and σ̂1 are the estimated

standard deviations of the same distributions; P̂ (H0) and P̂ (H1) are the estimated a

priori probabilities of the hypothesis; and the cost associated with correct decisions

(C00 and C11) are considered to be zero. The parameters of the PDFs, µ̂0, µ̂1, σ̂0,

and σ̂1, as well as the a priori probabilities P̂ (H0) and P̂ (H1), are estimated on the

fly, so that the decision process is adapted to the specific video content.

In this Thesis, two different procedures have been studied to carry out the on the

fly estimation; specifically, an arithmetic and an exponential moving averages. Figure

4.4 shows the estimated mean value of the PDF PrJ(JSkip,16|H0), µ̂0, when using both

kinds of averages. Additionally, the expected mean values per blocks of 50 samples

are shown, helping to evaluate the tracking ability of both estimation methods. As

it can be observed, the exponential moving average performs better tracking than

the arithmetic, maintaining the mean value closer to the expected value, while the

arithmetic moving average gets stuck as the number of samples grows. This is due to

that the distant samples are less significant than current samples in the exponential

procedure.

According to this conclusion, we will use an exponential moving average for the

estimation of the PDFs parameters; in particular:

µ̂i(t) = αµ̂i(t− 1) + (1− α)JSkip,16(t), with i = {0, 1} (4.8)
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Figure 4.4: Estimation of µ̂0 with arithmetic and exponential moving averages. Paris
(CIF) IP, QP 32.

σ̂2
i (t) = βσ̂2

i (t− 1) + (1− β)(JSkip,16(t)− µ̂i(t))
2, with i = {0, 1}, (4.9)

where t denotes a index associated with the time instants for which the Hi hypothesis

is selected; µ̂i(t−1) and σ̂2
i (t−1) are the estimated mean and variance, respectively, at

the instant (t−1); µ̂i(t) and σ̂2
i (t) are the estimated mean and variance, respectively,

at the instant t; JSkip,16(t) is the cost of the involved MB at the instant t; and α and

β are the parameters defining the forgetting factors of the exponentially averaged

estimation process. Both α and β were experimentally set to 0.95.

The a priori probabilities P̂ (H0) and P̂ (H1) are also estimated on the fly by

simply counting the number of occurrences of every hypothesis. Additionally, their

maximum values are limited to avoid a very unbalanced ratio causing that one hy-

pothesis is always selected.

Finally, it is worth mentioning that the hypothesis test does not begin its operation

until a reasonable estimation of all of these parameters is reached; in particular, we

establish that the estimation process of the conditional PDFs must have at least 40

samples to start the early selection procedure.
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4.3.5 Content-Adaptive Decision Threshold

The most usual expression for the hypothesis test is obtained by taking logarithms

in (4.7):

−(JSkip,16 − µ̂1)
2

2σ̂2
1

+
(JSkip,16 − µ̂0)

2

2σ̂2
0

+ ln
σ̂2
0

σ̂2
1

≷D1
D0

ln(
P̂ (H0)

P̂ (H1)
) + ln(

C10

C01

). (4.10)

Furthermore, to simplify (4.10), hereafter we will refer to the left and right sides

of this equation as follows:

θ ≷D1
D0

η + ϵ, (4.11)

where θ is the left part of the inequality in (4.10), η refers to the logarithm of the

a priori probability ratio
(
ln(P̂ (H0)/P̂ (H1))

)
, and ϵ refers to the logarithm of the

cost ratio (ln(C10/C01)).

To control the complexity, we propose to act on ϵ (cost ratio) in (4.11). By

acting on ϵ, we are varying the threshold according to which the hypothesis testing

decides whether an MB is encoded using the low-complexity model (D0) or the high-

complexity model (D1). As can be seen in the inequality in (4.11), the larger the ϵ,

the higher the number of low-complexity encoded MBs.

It should be noticed that by acting on ϵ we are actually modifying the relative

importance of C01 and C10. When low complexity is required, the cost of deciding

the high complexity hypothesis when the other was the correct one is large. In such a

case, C10 takes a high value and, consequently, ϵ also takes a high value. In contrast,

when a high value of complexity is acceptable, the complexity control algorithm

should focus on coding efficiency. In this case, deciding low complexity when high

complexity was the correct decision becomes more relevant; C01 takes a high value,

and ϵ a low value. In summary, high values of C10 promote complexity saving, while

high values of C01 benefit coding efficiency.

The goal of the complexity control is to act on ϵ to achieve a certain Target

Complexity (TC). This TC is expressed as a percentage of the full complexity, i.e.,
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TC = 100 means that the target complexity is that of the full mode evaluation,

or TC = 20 means that the target complexity is 20% of the full mode evaluation.

This TC value could be given according to one or several parameters, as the current

battery level in a mobile device, the buffer occupancy in rate-controlled transmission

application, or the available CPU resources in non-dedicated multi-task systems.

TC is converted into an equivalent parameter that is directly managed by the

proposed algorithm: the number of MBs encoded in low complexity mode, MBlow.

Actually, each time the hypothesis testing decides D0, a low complexity MB is en-

coded. In this way, if TC is low, MBlow should be high and vice-versa.

Given a target complexity TC, MBlow is computed as follows. Let us define µhigh

and µlow as the average time spent for encoding an MB at high- or low-complexity,

respectively. These two parameters are computed by simply averaging the real en-

coding time spent on each type of MB over several MBs, and are initialized using

the first high- and low-complexity samples, respectively. Let us define now the target

time that should be spent per frame, TT , to meet TC:

TT = timeper−frame−full
TC

100
, (4.12)

where timeper−frame−full denotes the time spent encoding a whole frame at full com-

plexity. We rewrite the previous equation by expressing the time per frame as a

function of the number of MBs in a frame, MBper−frame:

TT = (µhighMBper−frame)
TC

100
. (4.13)

Likewise, the target time TT can be expressed in terms of the number of MBs

encoded at high complexity, MBhigh, the number of MBs encoded at low complexity,

MBlow, and the corresponding average coding times per MB, µhigh and µlow:

TT = (µhighMBhigh) + (µlowMBlow) . (4.14)

When equations (4.13) and (4.14) are combined, the number of MB encoded at

low complexity MBlow can be easily found as a function of TC:
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MBlow =
(µhighMBper−frame)

(
1− TC

100

)
µhigh − µlow

. (4.15)

Figure 4.5: An illustration of the relationship between the number of MBs encoded
at low complexity MBlow and the threshold ϵ for Paris and Foreman.

Once TC is converted intoMBlow, we can tackle the problem of selecting a specific

value for the threshold ϵ so that a given MBlow is met. The relationship between

ϵ and MBlow has been studied experimentally. Figure 4.5 illustrates the result by

means of two examples. One of the curves is derived from Paris and the other from

Foreman, both with CIF resolution, at QP=28. It can be observed that MBlow (the

number of early stops) increases with ϵ until saturation. The saturation of the curve

indicates that MBlow = MBper−frame, i.e., all the MBs (396 for the CIF sequences

of our example) are encoded at low complexity, reaching the lowest complexity level

achievable by the proposed method.

It is worth noting that the number of early stops obtained for a given ϵ actually

depends on the video content. For example, ϵ = −2 produces MBlow = 182 for

Paris and MBlow = 63 for Foreman. Furthermore, the differences between curves

are more significant for low values of ϵ due to the low slope of the curve. Moreover,

the statistics in (4.10) are time-variant; therefore, fixing a specific value of ϵ would

produce meaningful differences in the number of early stops MBlow from frame to

frame. So, the number MBlow produced by a value of ϵ is dependent of the video

content, which varies among different sequences and inside the same sequence.
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Because of these reasons, ϵ must be adjusted on the fly to follow the time-variant

statistics and meet the target MBlow. Specifically, we propose to update ϵ in a

frame-by-frame basis by means of a feedback algorithm, as follows:

ϵf = ϵf−1 + (ν ×∆MBlow) , (4.16)

where ϵf and ϵf−1 are the thresholds applied to the f − th and (f − 1)− th frames,

respectively; ∆MBlow is the difference between the MBlow target for the f−th frame

and the actual MBlow obtained for the (f − 1) − th frame; and ν is a parameter

experimentally determined as a function of ∆MBlow and the frame size.

The ν value allows for choosing an application-specific operating point that prop-

erly balances the adaptation speed versus the amplitude of the oscillations around

the target complexity. If a high value of ν is used, the target time per frame, TT ,

will be reached faster, but a larger oscillation around this TT will be observed, and

vice-versa. Figure 4.6 illustrates this behavior for Mobile (QCIF) at QP 28. The

resulting time evolution of MBlow (the number of MBs encoded at low complexity) is

shown for two values of ν. As can be seen, for ν = 0.005 (left part of the figure), some

frames are needed to reach the desired value of MBlow, but the oscillations around

it are moderated. In contrast, for ν = 0.1 (right part of the figure), the desired value

of MBlow is reached much faster, but at the expense of larger oscillations.

To properly manage this trade-off, the value of ν is varied adaptively according

to the magnitude of ∆MBlow: the higher ∆MBlow, the higher ν. In this manner,

when encoding time is far from TT , ϵ is adapted faster, and vice-versa. Further-

more, different ν values are used for each spatial resolution (QCIF, CIF, and HD),

specifically:

QCIF: |∆MBlow| > 20 ⇒ ν = 0.05; |∆MBlow| < 5 ⇒ ν = 0; other case: ν = 0.05.

CIF: |∆MBlow| > 50 ⇒ ν = 0.025; |∆MBlow| < 5 ⇒ ν = 0; other case: ν = 0.01.

HD: |∆MBlow| > 80 ⇒ ν = 0.001; |∆MBlow| < 5 ⇒ ν = 0; other case: ν =

0.0005.

71



4.3. Proposed method

(a) ν = 0.005. (b) ν = 0.1.

Figure 4.6: Illustration of the role of the ν parameter, which controls the balance
between complexity adaptation speed and oscillation amplitude. This results have
been obtained for Mobile (QCIF) at QP 28.

4.3.6 Summary of the Algorithm

Algorithm 1 summarizes the complete algorithm.
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Algorithm 1 Proposed complexity control algorithm.

Require: F : number of frames.
Require: M : number of MBs in a frame.
for ∀fi ∈ F do
Calculate MBlow based on the mean time measures and the demanded encoding
time (4.15).
Calculate the threshold ϵ based on the feedback algorithm (4.16).
for ∀mi ∈ M do
Evaluate Skip, Inter 16x16, and Intra 16x16 modes.
Calculate the input feature to the hypothesis testing JSkip16.
Apply the hypothesis testing (4.11).
if θ < η + ϵ then
Decide the best mode between Skip, Inter 16x16, and Intra 16x16.

else
Calculate all remaining modes.
Decide the best mode.

end if
Update µhigh and µlow, and statistics in (4.10).

end for
end for

4.4 Experimental results

4.4.1 Experimental Protocol

To assess the performance of the proposed method, it was integrated into the

H.264/AVC reference software JM10.2. The main test conditions were selected ac-

cording to the recommendations of the JVT [G.Sullivan, 2001], namely: main profile,

±32 pixel search range for QCIF and CIF and ±64 pixels for HD, 5 reference frames,

Hadamard transform, CABAC, and RDO. The experiments were conducted using

an IPPP GOP pattern, five QP values (24, 28, 32, 36 and 40), and 100 frames per

sequence. Table 4.6 summarizes these conditions.

The experiments involved a large set of sequences of different resolutions covering

a wide variety of contents. These sequences are listed in Tables 4.7, 4.8, and 4.9 for

QCIF, CIF, and HD resolutions, respectively.

To evaluate the capability of the algorithm to meet a certain target complexity
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Coding options
Profile Main

RD Optimization Enabled
Use Hadamard Enabled
Symbol Mode CABAC

Search Range (QCIF, CIF) ±32
Search Range (HD) ±64

QP 24, 28, 32, 36, 40
Number of Reference Frames 5

Frames to be encoded 100
GOP pattern IPPP

Table 4.6: Test conditions.

TC, a measurement of computational time saving TS was calculated as follows:

TS =
Time(JM10.2)− Time(Proposed)

T ime(JM10.2)
× 100. (4.17)

Thus, the higher the measured TS, the lower the reached complexity. In particular,

the proposed algorithm was assessed for seven different target complexities, TC(%) =

{80, 70, 60, 50, 40, 30, 20}.
Furthermore, to evaluate the coding efficiency losses incurred by the proposed

method due to the complexity control, average bit rate increments (BDBR), with

respect to reference software, were calculated as described in [G.Bjontegaard, 2001].

4.4.2 Performance Assessment

Tables 4.7, 4.8, and 4.9 show the results for QCIF, CIF, and HD resolutions, respec-

tively. Specifically, for each of the TCs considered, the mean values of TS(%) and

BDBR(%) across the five considered QP values are given. Furthermore, the last row

of each table shows the average results for all the sequences.

As can be observed, the achieved complexity was very close to TC. Therefore,

the method is successful in fulfilling the main goal of having a precise complexity

control. Moreover, the coding efficiency was maintained very close to that of the

reference implementation when medium or high TCs were sought. Obviously, when

low TCs were demanded, these were achieved in exchange for more significant losses
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in coding efficiency.

It is worth mentioning that, exceptionally, bit rate reductions were found. These

unexpected results were achieved because the encoder decisions are sub-optimal in

the sense that they are made assuming independence between MBs. Thus, in some

cases, a decision that is not locally- optimal (in the sense that only explores a subset

of modes) could produce better overall performance.
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4.4. Experimental results

(a) R-D performance. (b) Zoom of the Figure on the left.

Figure 4.7: R-D performance for a representative subset of the target complexities
considered. Coastguard at QCIF resolution.

(a) R-D performance. (b) Zoom of the Figure on the left.

Figure 4.8: R-D performance for a representative subset of the target complexities
considered. Tempete at CIF resolution.

To illustrate how the coding efficiency depends on TC, Figures 4.7, 4.8, and

4.9 show the R-D performance for Coastguard (QCIF), Tempete (CIF), and Rush

hour (HD) for TC(%) = {30, 50, 70} (not all the TCs are depicted to make the

graph clearer). The left part of each figure presents the complete R-D curves, while

the right part presents a zoom of a selected area. As can be observed, the coding

efficiency is very close to that of the reference software for high and medium TCs

and slightly degrades as the TC decreases.

Although the results in terms of objective R-D measurements are good, we also
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(a) R-D performance. (b) Zoom of the Figure on the left.

Figure 4.9: R-D performance for a representative subset of the target complexities
considered. Rush Hour at HD resolution.

checked that the proposed method does not have negative effects on the subjective

quality. To this end, we carefully watched some of the resulting encoded sequences

and concluded that there are not perceptual differences with respect to those gen-

erated by the reference encoder. Moreover, we labeled the MBs according to the

complexity level assigned by the algorithm (low or high) to visually check whether

its decisions were as expected. Figure 4.10 shows an illustrative example where the

encoder must comply with a tough complexity constraint (TC = 30). As can be

observed, only a few MBs are encoded with high complexity (light-colored in the

figure) and are those related to moving parts.

Moreover, the proposed algorithm was assessed in comparison with the complex-

ity control algorithm proposed in [da Fonseca and de Queiroz, 2009]. Table 4.10

shows the average results achieved by the compared algorithms for several target

complexities (TC(%) = {80, 70, 60, 50, 40, 30, 20}). In particular, for each one of the

image resolutions considered (QCIF, CIF, and HD), an average result was computed

taking into account the five QP values and all the test video sequences. As can be

seen, for low complexities (20, 30, and 40), the proposed algorithm generates a com-

plexity closer to the target. The same happens for high complexities (70 and 80),

where the algorithm in [da Fonseca and de Queiroz, 2009] generates lower complexi-

ties than those actually demanded (because it works by selecting a subset of modes
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4.4. Experimental results

Figure 4.10: Illustration of the decisions made by the proposed algorithm. For a
tough target complexity, Paris (CIF) with TC = 30, we have highlighted those MBs
encoded with high complexity. As expected, in general, these MBs belong to moving
parts.

and, sometimes, this procedure does not allow for finer complexity control), usually

in exchange for a higher increment of bit rate. Furthermore, in general, the proposed

algorithm produces significantly lower bit rate increments for the same TC.

To gain an insight into the differences between the performance of the compared

algorithms, some graphical examples are shown for several representative sequences.

In particular, we show the bit rate increments of the compared algorithms with re-

spect to the reference software as a function of the computational TS. Obviously,

for higher TSs, the losses in coding efficiency and, consequently, the bit rate incre-

ments are more relevant. Figure 4.11 shows these results for two QCIF sequences,

Coastguard and Mother & Daughter ; Figure 4.12 shows the results for two CIF se-

quences, Foreman and Waterfall ; and Figure 4.13 shows the results for two HD

sequences, Pedestrian and Rush Hour. As can be observed, the proposed algorithm

clearly outperformed that proposed in [da Fonseca and de Queiroz, 2009], especially

for high computational TSs, where the bit rate increment generated by the proposed

algorithm was significantly lower.
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To provide an additional reference, we also compared the proposed algorithm with

a fixed mode reduction, i.e., a method that simply explores a predetermined subset

of modes. Specifically, we tested three different subsets of Inter modes (Intra modes

are always available), namely:

• Skip and Inter 16×16;

• Skip, Inter 16×16, Inter 16×8, and Inter 8×16; and

• Skip, Inter 16×16, Inter 16×8, Inter 8×16, and Inter 8×8.

The results achieved by this method have been added to Figures 4.11, 4.12, and 4.13.

In particular, each subset of modes generates a (Bit rate increment, T ime saving)

point in these figures (these points have been linked by straight lines to improve

visualization). As can be observed, the proposed method achieved better performance

for QCIF and CIF resolutions, especially for high TSs. On the other hand, for HD

resolution, the results were slightly better for the fixed mode reduction method for

low TSs. This last result was expected since the impact on the R-D performance of

the small modes (8×4, 4×8, and 4×4) is not significant for HD, and the proposed

method explores all of them for high-complexity MBs. However, with higher TSs the

results are very similar or better with our proposal as the impact of removing bigger

partitions is more relevant. Finally, although this fixed mode reduction is provided as

an alternative benchmark, it should be noticed that, actually, it is not a complexity

control algorithm (a fixed subset of modes are explored in all the MBs and, therefore,

the encoder is not capable of adapting to any target complexity).
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Chapter 4. Complexity Control in H.264/AVC

(a) Coastguard (QCIF). (b) Mother & Daughter (QCIF).

Figure 4.11: Performance evaluation of the proposed complexity control method in
H.264 in comparison to that in [da Fonseca and de Queiroz, 2009] and to that of a
fixed mode reduction for two representative QCIF sequences. The graphs show bit
rate increment as a function of the computational time saving.

(a) Foreman (CIF). (b) Waterfall (CIF).

Figure 4.12: Performance evaluation of the proposed complexity control method in
H.264 in comparison to that in [da Fonseca and de Queiroz, 2009] and to that of a
fixed mode reduction for two representative CIF sequences. The graphs show bit rate
increment as a function of the computational time saving.

4.4.3 Illustrations of the algorithm convergence properties

Since the capability to adapt to a time-variant complexity target and to the video

content is one of the main goals of the proposed algorithm, some illustrations regard-

ing the algorithm convergence properties are in order.
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4.4. Experimental results

(a) Pedestrian (HD). (b) Rush Hour (HD).

Figure 4.13: Performance evaluation of the proposed complexity control method in
H.264 in comparison to that in [da Fonseca and de Queiroz, 2009] and to that of a
fixed mode reduction for two representative HD sequences. The graphs show bit rate
increment as a function of the computational time saving.

First, we provide two graphical examples of the capability of the algorithm to

converge to a certain TC. Specifically, Figure 4.14 illustrates, for Carphone (QCIF) at

QP = 28, how the number of low-complexity MBs evolves with time (frame number)

for two different TCs: 20 (Figure 4.14a) and 50 (Figure 4.14b). As can be observed,

when TC was set to a low value, 20 in Figure 4.14a, the actual number of early

stops (MBlow) reached a value very close to the desired one in just a few frames.

Furthermore, the variance with respect to the desired value was low. When TC was

set to a higher value, 50 in Figure 4.14b, the convergence time was again very small,

but in this case the variance around the desired value of MBlow was higher. A very

similar behavior was observed for almost all the sequences.

Second, Figure 4.15 shows two illustrative examples of a time-variant TC for

Paris (CIF) at QP=28. On the left part of the figure, we illustrate the behavior of

the proposed algorithm when TC changed from 50 to 20 at frame 50. On the right

part of the figure, two changes happened: TC went from 20 to 50 at frame 25 and

to 30 at frame 50. As shown, the proposed algorithm was able to reach the desired

complexity quickly even when fast changes in TC happened.

Finally, to provide a more solid proof of the convergence properties of the al-

gorithm than the previous illustrative examples, we computed average results for
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Chapter 4. Complexity Control in H.264/AVC

(a) Time evolution of MBlow for TC = 20. (b) Time evolution of MBlow for TC = 50.

Figure 4.14: Illustrative examples of the algorithm convergence properties for Car-
phone (QCIF) at QP 28.

TC = 20 TC = 50 TC = 80
Sequence Desired MBlow Actual MBlow Desired MBlow Actual MBlow Desired MBlow Actual MBlow

Carphone QP 28 (QCIF) 97 96 66 66 34 34
Container QP 32 (QCIF) 99 98 68 69 34 35

M&D QP 36 (QCIF) 99 94 66 64 32 36
Akiyo QP 28 (CIF) 396 387 271 271 139 139
Mobile QP 36 (CIF) 392 388 261 260 132 131
Silent QP 40 (CIF) 396 394 281 282 141 141

Pedestrian QP 28 (HD) 3528 3453 2368 2377 1189 1191

Table 4.11: Assessment of the convergence properties of the proposed algorithm.

several sequences covering all the image resolutions considered. Specifically, Ta-

ble 4.11 shows, for some listed sequences and three different target complexities

(TC(%) = {20, 50, 80}), the actual value of MBlow and the desired value of MBlow

averaged over all the encoded frames. It is worth noticing that these measurements

are totally independent of the implementation. These results allow us to conclude

that, on average, the proposed algorithm is able to reach TC with a remarkable

precision.
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4.5. Conclusions

(a) Time evolution of MBlow for a time-
variant TC, which changes from 50 to

20 at frame 50.

(b) Time evolution of MBlow for a time-
variant TC, which changes from 20 to
50 at frame 25 and to 30 at frame 50.

Figure 4.15: Illustrative examples of the algorithm convergence for a time-variant
TC, for Paris (CIF) at QP 28.

4.5 Conclusions

In this chapter we have proposed a novel algorithm to control the complexity of an

H.264/AVC encoder.

The proposed method relies on the application of a hypothesis testing to meet

a target complexity with minimum losses in coding efficiency. Assuming Gaussian

distributions, the hypothesis testing paradigm allows us to formulate the problem in

a simple form that depends on some statistics that can be estimated on the fly. As a

result, we have shown that the proposed algorithm fulfills the desired requirements:

low miss-adjustment error with respect to the target complexity, capability to adapt

to a time-variant complexity target and to the video content, and capability to operate

on a large dynamic range of target complexities and image resolutions. Furthermore,

the proposed algorithm is computationally simple.

To assess its performance, the proposed algorithm was implemented on the refer-

ence software JM10.2. The experimental evaluation was carried out on a large set of

sequences of several spatial resolutions, and a comprehensive set of potential target

complexities. The results obtained allow us to conclude that the proposed algorithm

can reach any target complexity with remarkable precision, adapt to time-variant

target complexities, and work properly with any spatial resolution, having negligi-
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Chapter 4. Complexity Control in H.264/AVC

ble bit rate increments for high and medium complexities and acceptable bit rate

increments for very low complexities. When compared with the complexity control

method in [da Fonseca and de Queiroz, 2009], the proposed method was able to reach

complexities closer to the target and to provide a better trade-off between complexity

reduction and coding efficiency, especially for low and medium target complexities.
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Chapter 5

Complexity Control in HEVC

In this chapter we present an effective complexity control algorithm for HEVC. Our

proposal is based on a hierarchical approach. An early termination condition is de-

fined at every CU depth to determine whether subsequent CU depths should be

explored. The actual encoding times are also considered to satisfy the target com-

plexity in real time. Moreover, all parameters of the algorithm are estimated on the

fly to adapt its behavior to the video content, the encoding configuration, and the

target complexity over time. This method was published in IEEE Transactions on

Multimedia [Jiménez-Moreno et al., 2016].

The remainder of this chapter is organized as follows. Section 5.1 gives a brief

introduction. In Section 5.2, an overview of the state-of-the-art methods that ad-

dress complexity control for the HEVC standard is presented along with the main

contributions of our proposal. Section 5.3 provides a detailed explanation of the pro-

posed method. In Section 5.4, the experimental results supporting the proposal are

presented and discussed. Finally, Section 5.5 summarizes our conclusions.
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5.1. Introduction

5.1 Introduction

As HEVC is the most recent standard, it is receiving great attention in the research

community [Kim et al., 2012, Zhao et al., 2013, Choi and Jang, 2012, Teng et al.,

2011,Correa et al., 2011,Grellert et al., 2013,Leng et al., 2011,Shen et al., 2012,Ahn

et al., 2015,Lee et al., 2015]. However, there is still a great room for the development

of computationally efficient coding algorithms.

The extremely high computational complexity of the HEVC standard, due to its

quadtree coding structure, makes especially relevant the design of algorithms capable

of adapting its complexity to that required by specific devices and applications. Thus,

the motivation of this work is to design an algorithm that is able to control the

computational complexity of an HEVC video encoder and, consequently, enables more

efficient implementations of the HEVC standard. Using the statistical properties of

the sequences and time measures of the encoder, we can adjust the encoding process

to satisfy the required target complexity. Moreover, we propose to adaptively adjust

the parameters of our method, in an attempt to avoid the generalization problem

associated with the use of a fixed configuration coming from an off-line training

stage.

5.2 Review of the state of the art

The complexity reduction and complexity control problems in HEVC have typically

been addressed by providing fast solutions to different sub-problems concerned with

the determination of the CU depths, PU modes, TU sizes, or combinations thereof.

Relevant works exist to achieve efficient solutions for PU mode selection (e.g.,

[Kim et al., 2012,Zhao et al., 2013,Gweon et al., 2011,Blasi et al., 2013]) or TU size

selection (e.g., [Choi and Jang, 2012] and [Teng et al., 2011]). Nevertheless, we focus

here on describing the state-of-the-art methods for fast CU depth determination and

the complexity control problem itself, as our goal is to design a method to control

the complexity of an HEVC encoder based on fast CU depth determination.

In [Correa et al., 2011], a complexity control method for HEVC was proposed. The
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method relies on the observation that in co-located regions of consecutive frames in

which certain features (motion, texture, etc.) remain unaltered, the same CU depths

tend to be selected as optimal. Thus, this information can be used in subsequent

frames, which the authors called “constrained frames”, thereby avoiding the necessity

of assessing the remaining CUs. The complexity control is achieved by estimating the

number of constrained frames between each pair of regularly encoded frames that is

required to meet the complexity target. Furthermore, the same authors presented an

extension of this work [Correa et al., 2013] with the intent of improving the previous

solution for the case of fast-motion video sequences with low target complexities.

Specifically, they proposed to estimate the maximum CU depth to be explored in

the constrained frames based on both spatial and temporal correlations, such that

spatial neighboring CTBs are also used along with the CTBs of previous frames to

estimate the CU depths for the current constrained frame. In [Ukhanova et al., 2013],

a rate-distortion and complexity optimization method was proposed for the selection

of quantization and depth parameters. Using predictive techniques and game-theory-

based methods, the maximum CU depths for certain frames are restricted to allow the

encoding to be performed within a given complexity budget. In [Grellert et al., 2013],

a workload management scheme was suggested. The underlying idea of this scheme

is to dynamically control the complexity by estimating a complexity budget for each

frame. Specifically, this method acts on different parameters of the encoder, such as

the maximum CU depth assessed, the search range, etc., to achieve the complexity

target. To minimize the R-D losses, a set of different encoding configurations was

designed, as well as a control feedback loop to dynamically update the available

computational resources.

[Ahn et al., 2015] presented a fast CU encoding scheme based on the spatio-

temporal encoding parameters of HEVC. This method utilizes spatial encoding pa-

rameters such as SAO filter data to estimate the texture complexity in a CU partition.

Moreover, the temporal complexity is estimated by means of temporal encoding pa-

rameters such as MVs or TU sizes. All these parameters were used to design an early

CU Skip mode detection and a fast CU split decision methods. [Lee et al., 2015]
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proposed three methods to save complexity: a Skip mode detection, an early CU ter-

mination, and a CU skip estimation. The first one determines for each CU whether

the Skip mode should be the only mode tested. The second and third methods aim

to decide if either a larger or a smaller CU size should be evaluated, respectively.

The three methods are based on PDFs of the RD costs and use the Bayes’ rule to

make the corresponding decisions. In [Leng et al., 2011], a fast CU depth decision

method was described. Based on an analysis of the CU depths selected in the last

frame, the least-used CU depths are disabled in the current frame. Moreover, for

every CTB, the depths of neighboring and co-located CTBs are analyzed to avoid

unnecessary checking of the CU depths. The decisions at the frame level depend

on certain thresholds, and the decisions at the CU level depend on the number of

neighboring CTBs that fulfill certain requirements. The thresholds and the number

of neighbors are determined experimentally. In [Shen et al., 2012], a fast CU depth

selection method relying on a Bayesian approach was presented. The algorithm is

based on the off-line estimation of several class-conditional PDFs that are then stored

in a look-up table. Subsequently, using a Bayesian decision rule, the thresholds to

determine whether to check the next CU depth are estimated (also off-line) for dif-

ferent encoding settings and sequence resolutions. [Shen et al., 2013] also presented

a method that is able to constrain the CU depths by predicting the optimal depth

from spatially neighboring and co-located CTBs. Moreover, three early termination

methods for selecting a suitable PU partitioning were also described. [Xiong et al.,

2014] presented a method based on so-called “pyramid motion divergence” for the

early skipping of certain CU depths. First, the optical flow is estimated from a

down-sampled original (non-encoded) frame. Then, for each CTB, the pyramid mo-

tion divergence is calculated as the variance of the optical flow of the current CTB

with respect to that of the CTBs of smaller size. Finally, because CTBs with similar

pyramid motion divergence values tend to use similar splittings, an algorithm based

on Euclidean distances is used to select a suitable CU quadtree structure. In [Choi

et al., 2011], a simple early termination method for CUs was suggested. Specifically,

the authors proposed to terminate the CTB splitting process when the selected PU
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mode for the current CU depth is the Skip mode. In [Tan et al., 2012], a method

was presented that addresses decisions at the CU and PU levels. The PU mode

decision is terminated if the R-D cost is below a certain threshold. This threshold

is calculated as the average R-D cost of certain blocks previously encoded using the

Skip mode. The early CU depth decision is made by comparing the R-D cost at the

current depth with the sum of the best four R-D costs of the CUs of the subsequent

depth. If the latter is higher, then the CTB is not split further. [Zhang et al., 2013]

presented a CU depth decision method based on the depth correlation information

between adjacent CTBs in the same spatial and temporal neighborhoods. The depth

search range is adaptively selected for each CTB based on the information regarding

the most frequently selected CU depths among spatially and temporally neighboring

CTBs. Using such information for the CTB to be encoded, a similarity degree is

selected, from which different depth search ranges are available.

Several previous complexity control efforts suffer from slow convergence to the tar-

get complexity (e.g., [Correa et al., 2011] and [Correa et al., 2013]). In other cases,

the complexity is controlled by means of the dynamic selection of encoding config-

uration parameters without accounting for the potential impact of every parameter

on the performance (e.g., [Grellert et al., 2013]). Other methods are unable to adapt

to the video content (e.g., [Leng et al., 2011] or [Shen et al., 2012]; these are actually

complexity reduction methods that rely on either fixed thresholds or statistics that

are calculated off-line).

The main contribution of this work is the use of a CU early termination method

that is based on an R-D cost analysis for the design of a complexity control method.

These techniques are commonly used in complexity reduction frameworks, but they

have not usually been applied to address the complexity control problem in HEVC.

Our proposal relies on adaptive thresholds computed based on R-D cost statistics

and actual encoding time measures to control the complexity on the fly. In this

way, the behavior of the method adapts over time to the video content, the encoder

configuration, and variations in the target complexity. Finally, our method requires

only simple mathematical operations to update the parameters; in other words, there

93



5.3. Proposed method

is no additional complexity associated with the method itself.

5.3 Proposed method

This work is inspired by that presented in the previous Chapter 4 in the H.264/AVC

standard. The method described in Chapter 4 proposed a hypothesis test that is used

to choose either a low- or a high-complexity encoding mode and the threshold for this

test is adapted with respect to the target complexity. Although the MD process in

H.264 is more closely related to the PU selection task in HEVC, the method proposed

in this chapter focuses on the CU depth decision, which is a more effective process

from which to tackle the complexity control problem in HEVC. Consequently, a com-

prehensive “ad hoc” analysis was conducted to understand the encoder performance

with regard to the CU depth decision method. Moreover, because the decision process

must cover all available CU depths, we propose to make a split or non-split decision

at every depth level that must be managed to achieve a given target complexity.

5.3.1 Overview

The proposed method establishes an early termination condition at each CU depth

based on a set of dynamically adjusted thresholds. Figure 5.1 shows a flowchart that

summarizes the main steps of the method. For every frame f and every CTB c, the

method begins exploring all possible PU modes at the lowest CU depth level i = 0.

If the early termination condition is satisfied, then higher depth levels are not tested,

saving the corresponding computational time. By contrast, if early termination does

not occur, the encoder continues evaluating the next CU depth i = i+1, again check-

ing the corresponding termination condition. In summary, the goal of the proposed

method is to determine a suitable number of depths to explore such that a given com-

plexity constraint is met and the encoder does not incur significant losses in coding

efficiency. To that end, the proposed method must be content-dependent, i.e., must

adapt to the actual video sequence content; moreover, the bit rate and quality must

be maintained near those achieved in the regular coding process.
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Figure 5.1: Flowchart of the proposed method for complexity control in HEVC.

The thresholds depend on the statistics of the R-D costs and the actual time

encoding measures. The R-D costs (3.6) help us to select an appropriate CU depth

while not incurring significant losses in coding efficiency. The time encoding measures
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allow us to adjust the encoding process to satisfy the target complexity requirement

in real time. In other words, by virtue of having real-time measures of the time spent

in the encoding process, we are able to dynamically adjust the thresholds to achieve

a suitable number of early terminations to meet the target complexity.

5.3.2 Feature selection

In this section we study whether the R-D costs are adequate variables to design a fast

CU decision algorithm intended to control the complexity in HEVC. The objective of

our analysis is threefold: first, to study the relationships between the CU depths and

both the actual video content of the sequences and the QP; second, to check whether

the R-D costs are useful for making early CU depth decisions in HEVC; and third,

to determine which of the available R-D costs is most suitable for our purposes.

Relationship between CU depth and QP

First, we study the a priori probabilities of every CU depth in several video sequences

and for different quality targets. In this manner, we intend to gain some insight into

the relationships between the optimal CU depths and the contents of the sequences

and the QP. For this purpose, we used the HM13.0 software1 with the configuration

file encoder lowdelay P main (with this configuration, the maximum CU size is 64×64

pixels, corresponding to depth 0, and the minimum is 8×8 pixels, corresponding to

depth 3; moreover, an IP coding pattern is used). Following the specifications given

in [Bossen, 2011], a subset of the recommended test sequences was encoded with

QP values of 22, 27, 32, and 37. Under these conditions, we estimated the a priori

probabilities of every CU depth considering the complete encoded sequence. For

brevity, we show in Table 5.1 the results for only three representative sequences

because similar conclusions can be drawn from the others.

As can be observed, for the sequences with smooth or little movement and static

regions (such as FourPeople), the encoder selects the lower depths with high proba-

bility for all QP values. However, the probability of selecting lower depths decreases

1High Efficiency Video Coding [Online]. Available: http://hevc.hhi.fraunhofer.de/.
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Depth 0 Depth 1 Depth 2 Depth 3

B
a
s
k
e
t
b
a
ll
D

r
il QP 22 0.17 0.33 0.25 0.19

QP 27 0.33 0.29 0.21 0.11
QP 32 0.44 0.27 0.18 0.05
QP 37 0.54 0.16 0.13 0.03

B
Q

M
a
ll

QP 22 0.16 0.25 0.30 0.23
QP 27 0.26 0.27 0.25 0.15
QP 32 0.35 0.29 0.22 0.09
QP 37 0.44 0.29 0.17 0.05

F
o
u
r
P
e
o
p
le QP 22 0.50 0.27 0.16 0.06

QP 27 0.71 0.18 0.08 0.02
QP 32 0.81 0.13 0.04 0.01
QP 37 0.86 0.09 0.03 0.01

Table 5.1: A priori probabilities (%) of every CU depth.

notably when the sequence is more complex. Moreover, the a priori probability of

depth 0 (or even depth 1 in BQMall) increases with an increasing QP. This means

that a coarser coding process results in a larger number of CUs being encoded at

large sizes (such as 64×64 or 32×32). In view of these results, which indicate that

low CU depths tend to be optimal for several types of sequences and QP values, an

early determination of the optimal CU depth favoring low depths should undoubt-

edly contribute to reducing the complexity of the encoding process. Moreover, it

seems reasonable to design an algorithm that is able to adapt its behavior on the

fly with respect to the content and the encoder configuration, considering that the

optimal depth exhibits a strong dependence on both the particular sequence and the

QP value.

Analysis of the RD costs

We study whether the R-D costs are suitable variables to make early decisions re-

garding the CU depth in the HEVC standard. At every CU depth, several PU modes

will be evaluated by the encoder in R-D terms to select the best mode for that depth.

We denote by JPU=a,depth=i the R-D cost associated with PU mode a at depth i.

Specifically, we analyze the statistics (means and standard deviations) of the R-D

costs associated with every mode a at depth i when depth i is optimal and when it
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is not, i.e., JPU=a,depth=i|depth∗ = i and JPU=a,depth=i|depth∗ ̸= i, respectively.

The experimental setup was the same as for the previous analysis. In Table 5.2,

we show the results for two sequences (BasketballDrill and FourPeople) at the four

recommended QP values for depth 0. JMerge,0 refers to the R-D cost associated with

the Merge PU mode at depth 0, JMin,0 refers to the minimum cost obtained after all

available PU modes have been checked (depth 0), J2N×2N,0 refers to the cost for the

2N×2N PU mode (depth 0), and so on. µ|d∗ = 0 and σ|d∗ = 0 denote the mean and

standard deviation, respectively, when the optimal depth is 0, whereas µ|d∗ ̸= 0 and

σ|d∗ ̸= 0 denote the same statistics when the optimal depth is other than 0.

JMerge,0 J2N×2N,0 J2N×N,0 JN×2N,0 JMin,0

B
a
sk

e
tb

a
ll
D
ri
ll

Q
P

2
2 µ|d∗ = 0 27242 27465 27224 27237 26986

σ|d∗ = 0 4422 4742 4427 4464 4383
µ|d∗ ̸= 0 59646 59136 57142 56345 54722
σ|d∗ ̸= 0 35805 34893 32894 31973 30841

Q
P

2
7 µ|d∗ = 0 52231 52530 52411 52396 51713

σ|d∗ = 0 11363 11186 10967 10952 10886
µ|d∗ ̸= 0 138970 134770 129340 127230 123050
σ|d∗ ̸= 0 87177 82628 77502 75642 72824

Q
P

3
2 µ|d∗ = 0 98320 99380 99605 99376 96781

σ|d∗ = 0 38847 36279 35970 35895 35421
µ|d∗ ̸= 0 295040 281590 268250 263810 253540
σ|d∗ ̸= 0 180690 169120 156780 153640 147240

Q
P

3
7 µ|d∗ = 0 205820 208940 209950 208570 199530

σ|d∗ = 0 137410 129050 129360 128330 127230
µ|d∗ ̸= 0 568130 541880 515360 506030 482480
σ|d∗ ̸= 0 338160 318710 295790 289790 277560

F
o
u
rP

e
o
p
le

Q
P

2
2 µ|d∗ = 0 14940 15106 15088 15071 14911

σ|d∗ = 0 6668 6651 6654 6637 6644
µ|d∗ ̸= 0 29571 29466 28974 28959 28489
σ|d∗ ̸= 0 15777 15674 14983 14953 14426

Q
P

2
7 µ|d∗ = 0 25449 26117 26025 25970 25344

σ|d∗ = 0 15031 14940 14952 14917 14925
µ|d∗ ̸= 0 62849 62140 60130 60165 58397
σ|d∗ ̸= 0 39621 39044 36588 36405 34723

Q
P

3
2 µ|d∗ = 0 47860 50539 50227 50011 47545

σ|d∗ = 0 33492 33115 33232 33151 33014
µ|d∗ ̸= 0 134010 131760 126510 126930 122180
σ|d∗ ̸= 0 89218 86372 80503 79659 75947

Q
P

3
7 µ|d∗ = 0 100610 109720 109340 108720 99958
σ|d∗ = 0 76376 75367 75805 75896 75265
µ|d∗ ̸= 0 281280 278290 267870 268910 256700
σ|d∗ ̸= 0 170070 166500 156110 154610 146940

Table 5.2: Means and standard deviations of the R-D costs associated with every PU
mode when depth 0 is optimal and when it is not.
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To visually check whether the two conditional PDFs of the R-D costs (when depth

i is optimal and when it is not) are truly separable, we estimated the following PDFs:

PrJ (JPU=a,depth=i|depth∗ = i)

PrJ (JPU=a,depth=i|depth∗ ̸= i) , (5.1)

which represent the probabilities of a certain cost JPU=a,depth=i when the optimal CU

depth is i and when it is not, respectively. Figure 5.2 shows the PDFs thus obtained

for depth 0 (for higher depths, the results are similar). The sequences BasketballDrill

at QP 37 and FourPeople at QP 22 are used for illustration. From this figure, we

gain some insight into the shape and actual separability of these PDFs.

The results presented in both Table 5.2 and Figure 5.2 show that the statistics

of the two compared PDFs (those corresponding to when a certain depth is optimal

or not) are significantly different and reasonably separable for all analyzed R-D costs

and that all analyzed JPU=a,depth=i costs exhibit very similar behavior. In particular,

we draw two conclusions: 1) the CU depth decision problem can be addressed based

on the updated statistical information regarding these R-D costs, and 2) any of the

considered R-D costs would be suitable for this purpose.

Selection of the best R-D cost

From the results in the previous section it can be seen that there are relevant differ-

ences between the PDFs corresponding to the scenarios in which a certain depth is

optimal or is not optimal (i.e., between whether a split decision is made at a certain

depth). Moreover, each pair of PDFs of the form given in (5.1) can be separated

with the establishment of a proper threshold. However, because of these differences

are consistent for different R-D costs (i.e., similar behavior is observed in Figure 5.2

for JMerge,0, J2N×2N,0, and JMin,0), it is difficult to conclude which of these R-D costs

could be the optimal in the CU depth decision problem. For this reason, to find the

best possible design for our complexity control proposal, we numerically measure the

encoding results that are obtained using these three J costs. Specifically, we imple-
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(a) BasketballDrill at QP 37

(b) FourPeople at QP 22

Figure 5.2: An illustration of the PDFs for several R-D costs at CU depth 0 for two
sequences, BasketballDrill and FourPeople.

ment three versions of our proposal, each one using one R-D cost among JMerge,i,

J2N×2N,i, and JMin,i. The experimental setup is maintained as previously. To eval-

uate the coding performance we measure the bit rate increment BDBR(%) and the

PSNR loss BDPSNR(dB) following the recommendations in [G.Bjontegaard, 2001].

The time saving TS(%) is calculated as follows:

TS =
Time(HM13.0)− Time(Proposed)

Time(HM13.0)
× 100. (5.2)

As it can be seen in Table 5.3 for some selected examples (the results are obtained
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BDBR BDPSNR TS

C
a
c
tu

s

JMerge,i 3.04 0.06 48.02
J2N×2N,i 1.87 0.03 47.34
JMin,i 1.88 0.04 46.49

K
r
is
te

n

JMerge,i 0.66 0.01 45.96
J2N×2N,i 0.30 0.01 45.83
JMin,i 0.49 0.01 45.56

P
a
r
k

JMerge,i 2.94 0.09 35.32
J2N×2N,i 1.75 0.05 33.80
JMin,i 1.75 0.05 33.67

V
id

y
o
4

JMerge,i 1.78 0.05 47.85
J2N×2N,i 1.33 0.04 48.61
JMin,i 1.44 0.04 47.61

Table 5.3: BDBR, BDPSNR, and TS for three versions of our proposal using
JMerge,i, J2N×2N,i, or JMin,i R-D costs, respectively.

for the sequences Cactus, KristenAndSara, ParkScene, and Vidyo4 averaging the

obtained values for all the considered QPs), slightly better results are achieved with

J2N×2N,i. So, we decided to use this cost as input feature.

5.3.3 Designing the early termination conditions

To control the complexity of the encoding process, the thresholds are updated on the

fly such that the fast CU depth decision process is actually content-dependent.

To simplify the process, we rely on only one PDF to make our decision; i.e., instead

of seeking an optimal threshold while accounting for both, the conditional PDF given

depth∗ = i and the conditional PDF given depth∗ ̸= i, we make our decision at every

depth level by considering only (PrJ (JPU=a,depth=i|depth∗ = i)), as we successfully

proposed in [Martinez-Enriquez et al., 2010] for the H.264/AVC framework. Though,

generally, taking into account both PDFs would result in more accurate decisions, we

checked the two proposals and we obtained slightly better results with the thresholds

built from just one PDF. This is probably due to a convergence issue. Working

with two PDFs, the number of samples required to obtain an accurate estimation of

both PDFs for every CU depth will be higher than working with just one PDF and,

therefore, the encoding time without applying the early decisions will be also higher.
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Thus, for every CU depth i, we set a threshold that directly depends on the mean

and standard deviation of the PDF (PrJ (JPU=a,depth=i|depth∗ = i)), i.e.,

THdepth=i = µJ2N×2N,i
+
(
ndepth=i × σJ2N×2N,i

)
, (5.3)

where THdepth=i is the threshold for depth level i; µJ2N×2N,i
and σJ2N×2N,i

are the

mean and standard deviation, respectively, of PrJ (J2N×2N,i|depth∗ = i); and ndepth=i

is the control parameter, which allows us to adapt the threshold for every depth i.

Defining the threshold in this manner provides two essential advantages with respect

to other proposals in the state-of-the-art: 1) because the mean and standard deviation

are updated on a CU-by-CU basis (see details below), the thresholds are content-

adaptive, and 2) the ndepth=i parameter allows us to set more or less demanding

thresholds depending on the target complexity.

For each CTB at CU depth level i, if the actual cost J2N×2N,i is below the thresh-

old, then the early termination condition is satisfied and the process of encoding that

CTB is stopped. Otherwise, if J2N×2N,i is above the threshold, the encoding process

for that CTB continues to explore higher CU depth levels. In other words, an early

termination actually occurs at a particular depth level i if the likelihood of the actual

cost J2N×2N,i coming from the conditional PDF given that depth∗ = i is sufficiently

high (relative to the threshold).

Finally, the parameter ndepth=i establishes a balance in the complexity-coding effi-

ciency trade-off for a given sequence, encoding configuration, and complexity target.

In particular, the control of this trade-off allows us to manage how often an early

termination at depth i actually occurs and, consequently, allows us to dynamically

control the complexity. Further details concerning how to manage this parameter are

given in Section 5.3.4.

5.3.3.1 On the fly estimation of the statistics

The fact that the thresholds that define the early termination conditions are content-

adaptive is one of the main contributions of this proposal with respect to other
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state-of-the-art approaches. In this subsection, we describe how the PDF parameters

are estimated on the fly to adapt the threshold to the content throughout the video

sequence.

We model the PDFs based on their means and variances. Thus, following the

same reasoning presented in Chapter 4, we apply a simple procedure for updating

these two parameters on a CU-by-CU basis based on an exponential moving average:

µ̂J2N×2N,i
(t) = αµ̂J2N×2N,i

(t− 1) + (1− α)J2N×2N,i(t), (5.4)

σ̂2
J2N×2N,i

(t) = ασ̂2
J2N×2N,i

(t− 1) + (1− α)(J2N×2N,i(t)− µ̂J2N×2N,i
(t))2, (5.5)

where t is an index associated with the number of times that depth level i is selected

as optimal; µ̂J2N×2N,i
(t− 1) and µ̂J2N×2N,i

(t) are the estimated means at times (t− 1)

and t, respectively (the variances are σ̂2
J2N×2N,i

(t − 1) and σ̂2
J2N×2N,i

(t), following the

same notation); J2N×2N,i(t) is the R-D cost at time t; and α is the parameter defining

the forgetting factor of the exponential averaging process. Specifically, α was set to

0.95 in our experiments.

Figure 5.3: Illustration of the estimation of the exponential average µ̂J2N×2N,i
over

time for BasketballDrill at QP 32.
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Figure 5.3 provides an example illustrating the behavior of the exponential av-

erage. Specifically, we show the estimated means (µ̂J2N×2N,i
) for 350 consecutive

samples. Furthermore, the expected mean values considering blocks of 50 samples

are also shown as control points representing the trend that the average estimator

should follow. As it was expected from the results in the previous chapter, the expo-

nential average produces a good approximation. The behavior of the estimation of

the variances is nearly identical.

5.3.4 Controlling the complexity

As stated previously, ndepth=i controls the number of early terminations occurring

at depth level i. In particular, according to (5.3), a higher ndepth=i results in a

higher threshold and a greater likelihood of early termination (because the likelihood

of obtaining a J2N×2N,i cost that is lower than THdepth=i increases). Therefore, by

modifying ndepth=i, we will be able to manage the computational complexity to reach

a certain target. Hereafter, we will use the encoding time as a practical measure of

the computational complexity.

Following a strategy similar to that proposed for H.264/AVC (Chapter 4), we rely

on a simple feedback algorithm for updating ndepth=i:

nf=j
depth=i = nf=j−1

depth=i + λdepth=i

(
timef=j−1 − timetarget

)
, (5.6)

where f = j and f = j − 1 represent frame numbers j and j − 1, respectively;

thus, nf=j
depth=i varies from its previous value (that of frame j − 1) according to the

deviation of the actual encoding time for frame j − 1 with respect to the target, i.e.,(
timef=j−1 − timetarget

)
. Furthermore, the parameter λdepth=i controls the trade-off

between the speed and accuracy of the algorithm.

In short, ndepth=i is updated on the fly on a frame-by-frame basis to satisfy the

complexity constraint. For example, if timef=j−1 is higher than timetarget, more

than the targeted resources were allocated to frame j − 1, and the threshold must

be increased to induce more early terminations. This occurs because timef=j−1 −
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timetarget becomes positive.

It should be noted that the parameter λdepth=i must depend on the depth level

i. In doing so, we aim to produce smoother transitions of ndepth=i when i is low,

which is desirable because if we make an incorrect early termination decision at a

low depth, we will incur a significant loss in coding efficiency. Thus, we allow only

smooth transitions of ndepth=i at low depths and relax this constraint as the depth

increases. In particular, λdepth=i is computed as follows:

λdepth=i = λ0 × (timedepth=i/timeCTB) , (5.7)

where λ0 is an initial value experimentally set to 0.2, timedepth=i is the time required

to encode a CTB with an early termination at CU depth i, and timeCTB is the

time required to encode a CTB when all available depths are explored. It is readily

apparent that timeCTB is the maximum value of timedepth=i and that timedepth=i+1 >

timedepth=i. Therefore, when depth i is lower, λdepth=i will also be lower. It should be

noted that timedepth=i and timeCTB are computed on a frame-by-frame basis as the

average time spent encoding a CTB with an early termination at CU depth i and

the average time devoted to a CTB when all depths are explored, respectively.

The target complexity can be specified by the user or by the application running

the video encoder, and it depends on the resources available for a specific device and

the time that the user/application allocates for the encoding process. In the pro-

posed method, the target complexity is specified as a percentage with respect to the

complexity of the full-search encoding process, TC(%), and the method transforms

this percentage into a target encoding time timetarget to be used in (5.6). Specifically,

if we know the time that is required to encode a CTB using the full-search approach

(timeCTB) and the total number of CTBs per frame M , then we can easily obtain

timetarget as follows:

timetarget = timeCTB ×M × (TC/100) . (5.8)
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5.3.5 Summary of the algorithm

The complete method is summarized in Algorithm 2.

Algorithm 2 Proposed coding process.

Require: F : number of frames to be encoded
Require: M : number of CTBs per frame
Require: D: number of available CU depths in a CTB
1: for ∀f ∈ F do
2: Retrieve the time required to encode the previous frame timef=f−1

3: Obtain average values timeCTB and timedepth=d

4: Calculate timetarget to encode frame f (5.8)
5: Calculate λdepth=d (5.7) and ndepth=i (5.6)
6: for ∀m ∈ M do
7: for ∀d ∈ D do
8: Evaluate all PU partitioning modes at depth d
9: Calculate µ̂J2N×2N,d

(5.4) and σ̂2
J2N×2N,d

(5.5)

10: Obtain THdepth=d (5.3)
11: if J2N×2N,d < THdepth=d then
12: Go to 15
13: end if
14: end for
15: Determine the best coding options among all evaluated CU depths and PU

partitioning modes
16: end for
17: end for

5.4 Experiments and results

5.4.1 Experimental setup

To assess the performance of the proposed method, it was implemented in the HM13.0

software. The test conditions were chosen following the recommendations given

in [Bossen, 2011], and the configuration file was “encoder lowdelay P main”. A com-

prehensive set of sequences at several resolutions and covering a variety of video

contents (motion, textures, etc.) was used (see Table 5.4).

106



Chapter 5. Complexity Control in HEVC

5.4.2 Achieving a target complexity

To measure the ability of our proposed method to achieve different target complexities

and the possible losses in coding efficiency, we use the measures of TS, BDBR(%),

and BDPSNR(dB) defined in Section 5.3.2. Moreover, we evaluated our proposal

for four different target complexities, TC(%) = {90, 80, 70, 60}.
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Table 5.4 shows the results for all considered target complexities in terms of

BDBR, BDPSNR, and TS, averaged over the four QP values recommended in

[Bossen, 2011] (QP values of 22, 27, 32, and 37). From these results, we can conclude

that the proposed method achieves notable accuracy for all the considered target

complexities. In particular, the mean values of TS obtained when considering all

video sequences show a very small deviation from the target values (the highest

deviation is 2.23%, for TC=60%). Moreover, the complexity savings are obtained in

exchange for very limited losses in coding performance. The mean values of BDBR

are 0.23%, 0.69% and 2.2% for TCs of 90, 80, and 70%, respectively. However, when

TC is 60%, the average BDBR reaches 6.8%; this is expected because the proposed

method acts only on the CU depth, and low target complexities necessarily involve

large CU sizes and, therefore, a coarser encoding process.

Selected numerical results in Table 5.4 are further illustrated in Figures 5.4 and

5.5 to demonstrate the R-D performance of the proposed method for different target

complexities. On the left-hand side of each figure, the complete R-D curves are

shown, whereas on the right-hand side, we have zoomed in on the curves to show a

segment in greater detail. As can be observed, the conclusions do not change with

respect to those already drawn from Table 5.4.

(a) R-D performance. (b) Zoomed view of the Figure on the left.

Figure 5.4: R-D performance for the 4 considered target complexities for the sequence
BasketballPass.
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(a) R-D performance. (b) Zoomed view of the Figure on the left.

Figure 5.5: R-D performance for the 4 considered target complexities for the sequence
BQTerrace.

5.4.3 Comparison with a state-of-the-art complexity control

method

In this subsection, we compare the proposed method with a state-of-the-art method

[Correa et al., 2013]. The configuration file and QPs used to perform this compar-

ison were the same as those used in the previous experiment, and the focus of the

comparison is placed on target complexities of TC = {80, 70} because the method

described in [Correa et al., 2013] is not able to achieve TC = 60%. The obtained

results are shown in Table 5.5 where the values of BDBR, BDPSNR, and TS are

averaged over the four QP values.
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5.4. Experiments and results

As it can seen in this table, the method presented in [Correa et al., 2013] is not as

accurate as the proposed method in terms of achieving the target complexity for low

TC values. In particular, for TC = 80%, the deviation from the target is less than 2%

in both cases; for TC = 70%, the deviation of the proposed method remains below

2% whereas in the case of [Correa et al., 2013] it increases to 3.6%. Furthermore,

for TC = 70% and certain specific sequences, such as Johnny, BasketballPass, and

BlowingBubbles, [Correa et al., 2013] is not able to achieve the required TC; in fact,

for these sequences, the proposed method yields significantly higher time savings

(28.84, 27.82, and 32.95 %, respectively) compared with those of [Correa et al., 2013]

(21.55, 21.39, and 21.11%, respectively).

Regarding losses in coding efficiency, the average BDBR of [Correa et al., 2013]

is higher than that of the proposed method; specifically, the results of [Correa et al.,

2013] are approximately 3% worse than those of the proposed method.

As can be inferred from the results given in Table 5.5, the method presented

in [Correa et al., 2013] experiences greater difficulty when attempting to reach lower

target complexities. In fact, no comparison was performed for TC = 60% because of

the difficulty of achieving higher TSs. This difficulty can be attributed to the fact

that this method is not able to reach the high number of constrained frames required

to achieve low target complexities. Moreover, if a sequence exhibits high motion

content, then the optimal CU depths that are stored to be used in the constrained

frames will probably be high depths, and consequently, the potential complexity

savings are limited. By contrast, the proposed method does not suffer from this

problem because it can always set higher thresholds to reach any required target

complexity.

In Figure 5.6, we present BDBR as a function of TS for the two algorithms.

Specifically, we show the results obtained for the two representative sequences Bas-

ketballDrive (Figure 5.6(a)) and Vidyo4 (Figure 5.6(b)). As it can be seen, the

method of [Correa et al., 2013] is not able to achieve TSs greater than 30%, whereas

the proposed method can produce TSs of nearly 40%. In terms of BDBR, our pro-

posal is able to achieve the same target complexities in exchange for notably smaller
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losses in coding efficiency, as is evident in Figure 5.6 for both sequences.

(a) BasketballDrive. (b) Vidyo4.

Figure 5.6: Performance evaluation of the proposed complexity control algorithm in
HEVC in comparison with [Correa et al., 2013]. The bit rate increment is plotted as
a function of the computational time savings.

5.4.4 Comparison with a state-of-the-art complexity reduction

method

In this subsection, we compare our proposal with a state-of-the-art method of com-

plexity reduction [Zhang et al., 2013], which strives to reduce the complexity of the

HEVC encoder but is not capable of meeting a specified complexity target. The

configuration file and QPs used to conduct this comparison were the same as those

used in the previous experiments. The obtained BDBR, BDPSNR, and TS values,

averaged over the four QP values, are shown in Table 5.6. To fairly compare both

methods, we provide in Table 5.6 the results of the proposed method that are most

similar to those of [Zhang et al., 2013] in terms of TS.

Several interesting conclusions can be extracted from this experiment. First, the

method presented in [Zhang et al., 2013] is not a complexity control method and,

consequently, provides very different results in terms of TS depending on the content

of the video sequence (e.g., in KristenAndSara, the TS is 54%, whereas that in

BlowingBubbles is 8%). Therefore, it does not provide a solution that is capable of
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Proposed method [Zhang et al., 2013]

Sequence BDBR (%) BDPSNR (dB) TS (%) BDBR (%) BDPSNR (dB) TS (%)

BasketballPass
0.42 0.02 13.68 0.48 0.01 10.06

(416×240)
BlowingBubbles

0.90 0.02 12.62 0.03 0.00 8.49
(416×240)
BQSquare

0.54 0.01 11.56 0.12 0.00 8.78
(416×240)
RaceHorses

0.12 0.01 5.60 0.07 0.00 7.78
(416×240)

BasketballDrill
0.79 0.02 17.06 0.97 0.02 17.96

(832×480)
BasketballDrillText

0.75 0.03 17.28 1.21 0.02 18.11
(832×480)
BQMall

0.71 0.03 20.78 0.56 0.01 17.12
(832×480)
PartyScene

1.13 0.05 9.97 0.13 0.00 12.66
(832×480)
ChinaSpeed

0.89 0.07 21.15 0.18 0.01 19.68
(1024×768)
FourPeople

0.66 0.02 44.46 7.86 0.11 46.58
(1280×720)

Johnny −0.10 0.00 39.44 4.20 0.05 46.96
(1280×720)

KristenAndSara
0.12 0.00 39.08 14.28 0.25 54.15

(1280×720)
SlideEditing

0.48 0.07 42.49 53.95 2.66 64.81
(1280×720)
SlideShow

6.97 0.54 35.56 42.66 2.21 51.30
(1280×720)

Vidyo1
0.26 0.01 39.48 9.97 0.17 49.21

(1280×720)
Vidyo3

0.46 0.01 41.46 3.05 0.04 42.94
(1280×720)

Vidyo4
0.87 0.04 44.83 6.55 0.07 42.78

(1280×720)
BasketballDrive

0.83 0.02 26.51 0.97 0.01 26.79
(1920×1080)
BQTerrace

1.77 0.06 33.65 0.95 0.01 28.76
(1920×1080)

Cactus
0.74 0.03 25.22 0.93 0.01 29.29

(1920×1080)
Kimono

0.29 0.01 19.69 0.42 0.01 24.47
(1920×1080)
ParkScene

0.57 0.03 19.51 1.31 0.02 24.89
(1920×1080)

Average 0.91 0.05 26.41 6.85 0.25 29.70

Table 5.6: Performance evaluation of the proposed complexity control method in
HEVC in comparison with [Zhang et al., 2013].

running on a fixed-resource platform, whereas our approach is perfectly suitable for

this purpose, as already proved in Table 5.4.

Second, the results obtained for SlideEditing and SlideShow are particularly wor-

thy of note. In these two sequences, the content is quite uniform until a sudden

change occurs. This is difficult for the algorithm of [Zhang et al., 2013] to cope with;

this algorithm suffers when a scene change occurs because only a few depths are ac-

tually allowed for such frames, incurring huge BDBRs (approximately doubling the

original rate). By contrast, our method does not suffer from this problem because of
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the adaptive statistics used to define our early termination thresholds.

Third, in general terms, the results of our proposed method are superior to those

of [Zhang et al., 2013] when compared at the same level of complexity reduction (e.g.,

BasketballDrillText and Vidyo3 ). For certain sequences, the results of our method

are slightly worse than those of [Zhang et al., 2013] (e.g., RaceHorses). However, on

average, our proposal outperforms [Zhang et al., 2013], as similar complexity savings

are achieved at the expense of a markedly lower BDBR (0.91% vs. 6.85%).

5.4.5 Convergence properties

The ability to reach the required target complexity with a certain accuracy level and

in the shortest possible time is a relevant performance indicator. In this section we

prove that our method is able to adapt its behavior on the fly throughout the coding

process to any type of content, coding configuration, or complexity target.

The convergence properties of our algorithm are reported in Tables 5.7 and 5.8.

The average time actually spent on encoding the frames is denoted by t̂ime
f
, and the

average target time is denoted by t̂imetarget. All results are given in units of seconds.

The results given in Table 5.7 were obtained using a QP value of 32, and for those

given in Table 5.8 the QP value used was 27.

Table 5.7 shows the results for three different sequences (Blowing Bubbles, BQ-

Mall, and Four People) exhibiting very different contents, each one encoded with

four target complexities, TC(%) = {90, 80, 70, 60} (the TC values are specified on

the left-hand side of the table). It is evident that the proposed algorithm achieves

an encoding time that is very similar to the target; specifically, the highest devia-

tion from the target is only 0.63 seconds. Thus, we can conclude that our proposed

algorithm achieves very good accuracy.

In Table 5.8, we present several results that illustrate the behavior of the proposed

method when the target complexity varies throughout the coding process. The aver-

age values of t̂ime
f
and t̂imetarget were obtained for the same three sequences in two

different cases: first, with TC = 60% from frames 0 to 49 and TC = 80% from frames

50 to 100, and second, with TC = 90% for the first fifty frames and TC = 70% for
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BlowingBubbles BQMall FourPeople
(416×240) (832×480) (1280×720)

9
0 t̂imetarget 6.48 22.41 30.50

t̂ime
f

5.85 22.09 30.20
8
0 t̂imetarget 5.13 20.28 28.35

t̂ime
f

4.90 20.11 28.04

7
0 t̂imetarget 3.85 16.51 24.49

t̂ime
f

3.78 16.44 24.32

6
0 t̂imetarget 3.46 12.88 19.95

t̂ime
f

3.48 12.98 19.86

Table 5.7: Convergence performance evaluation of the proposed complexity control
algorithm in HEVC. Evaluation with a fixed complexity target value.

the remaining frames (these sets of frames are represented in the table as “Fs 1 - 49”

and “Fs 50 - 100”, respectively). As observed from these examples, when a change

occurs in the target complexity, the proposed algorithm is able to adapt its behavior

to reach the new target complexity.

BlowingBubbles BQMall FourPeople
(416×240) (832×480) (1280×720)

Fs 1 - 49 Fs 50 - 100 Fs 1 - 49 Fs 50 - 100 Fs 1 - 49 Fs 50 - 100

6
0

-
8
0 t̂imetarget 4.24 5.13 14.89 24.59 21.72 32.37

t̂ime
f

4.81 5.57 15.41 23.96 21.70 31.97

9
0

-
7
0 t̂imetarget 7.22 6.22 23.60 23.28 32.09 28.13

t̂ime
f

7.24 6.04 23.64 23.25 31.50 28.51

Table 5.8: Convergence performance evaluation of the proposed complexity control
algorithm in HEVC. Evaluation with a variable complexity target value.

5.5 Conclusions

In this chapter, we have proposed a complexity control method for the HEVC stan-

dard. The proposed method is based on a set of early termination conditions, one at

each CU depth level, that rely on a set of thresholds that are adjusted dynamically.

These thresholds are based on R-D cost statistics that are estimated on the fly, allow-

ing the proposed method to adapt to different video contents, encoder configurations

and target complexity requirements, which can vary throughout the coding process.
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Our proposal has been extensively tested, and the results prove that it works

effectively for a wide variety of sequences and complexity requirements, outperforming

the results achieved by a state-of-the-art complexity control method in terms of both

accuracy in reaching the target complexity and coding efficiency, and also illustrating

the advantages of the complexity control approach compared with the more common

complexity reduction approach. Moreover, we have shown that our proposal is able

to adapt its behavior when the complexity requirements vary over time.

117





Chapter 6

Conclusions and Future Lines of

Research

6.1 Conclusions

In this Thesis two complexity control methods have been proposed in the context of

the latest video coding standards, H.264/AVC and HEVC. These standards achieve

a high compression efficiency at the expense of a great computational burden due to

the need to select an appropriate coding option from a very large set of candidates.

The algorithms presented in this Thesis aim to control the complexity, i.e., to

adapt the video coding system behavior to the available computational resources,

trying to maximize the compression performance given such resources. To properly

manage this matter is critical to take into account the time-varying statistical prop-

erties of the sequences to be coded. To this purpose, the first step to reach this goal

was to conduct a thorough statistical analysis of the behavior of the coding systems

and, then, relying on this statistical basis, to develop the algorithms. Our proposals

are focused on the partition size decision in the H.264/AVC standard and on the

coding unit depth decision in the HEVC standard, as these stages are some of the

most computationally demanding of these video coding standards.

The R-D costs have been found to be proper input features to feed the decision
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systems in both standards. In general terms, the complexity control is achieved by

updating the decision thresholds according to the available and consumed resources

in the coding process. Furthermore, an on the fly estimation of the parameters that

define the decision thresholds has been proposed, so that our proposals are able to

follow the time-varying content inherent to video sequences and the time-varying

resources available in every application.

Finally, the proposals were extensively tested to prove its efficiency, comparing

them with some methods of the state-of-the-art.

Regarding the specific contributions of this Thesis to the complexity control in

H.264/AVC, they can be summarized as follows:

1. The main features of the proposed method are the following:

• A hypothesis testing has been used to decide between low- and high-

complexity models in a block basis.

• R-D costs have been selected as input features to the hypothesis test.

• Gaussian distributions have been assumed to make the problem tractable.

• An on the fly estimation of the statistical parameters has been used to

update the distributions.

• An on the fly adaptation of the cost ratio of the hypothesis test has been

proposed, according to the actual encoding times, to meet the complexity

target.

2. As a result, the proposed algorithm fulfills the following requirements:

• Negligible bit rate increments for high and medium complexities and ac-

ceptable bit rate increments for very low complexities.

• Capability to reach any target complexity with higher accuracy and a bet-

ter trade-off between complexity reduction and coding efficiency compared

with other state-of-the-art approach.

• Capability to adapt to a time-varying complexity target and video content.

120



Chapter 6. Conclusions and Future Lines of Research

• Capability to operate on a large dynamic range of target complexities with

low miss-adjustment error.

• Proper performance with any spatial resolution.

• Low computational burden of the algorithm.

Concerning the specific contributions to the complexity control in HEVC:

1. This method is based on the following premises and features:

• A set of early termination conditions have been designed at each CU depth

level.

• The early termination conditions have been designed as a set of thresholds,

which are adjusted dynamically.

• R-D costs are selected as input features to the statistical decision makers.

• An on the fly estimation of the statistical parameters has been used to

adjust the thresholds.

• An on the fly adaptation of the thresholds has been proposed, according

to the actual encoding times, to meet the complexity target.

2. The following requirements have been met by virtue of the previous features:

• Significant complexity savings have been obtained in exchange for very

limited losses in coding performance.

• The results achieved by our method outperform those of a state-of-the-art

proposal in terms of both accuracy in reaching the target complexity and

coding efficiency.

• Excellent performance for a wide variety of sequences and complexity re-

quirements.

• Capability to adapt its behavior when the complexity requirements or the

video content vary over time.

• High accuracy meeting a wide range of target complexities.
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• Low computational burden of the algorithm.

Finally, it should be highlighted that the proposed methods turn out to be very

adequate for a wide variety of applications, such as video-conference, where the per-

formance of the video coding system must change with the time-dependent network

conditions, or a mobile video application, where the resources of the mobile device

changes depending on the number of applications running at the same time.

6.2 Future Lines of Research

We have identified several interesting future lines of research. First, the use of more

complex classifiers to achieve higher accuracy in the fast decision processes is one

of the most promising possibilities. Though we have already done some work in

this direction, e.g. [Martinez-Enriquez et al., 2011] (in the context of complexity

reduction), there is still room for improvement. Neural networks, support vector

machines, or random forests are only a few examples of classifiers that could be

implemented in this framework.

Other engaging future line of research would be to extend the complexity man-

agement design to take early decisions at other coding stages. In particular, in both

standards the motion estimation process could also be addressed in a future design.

Moreover, in the system designed for the HEVC standard, it would be interesting to

extend our design to act at the PU and TU decision levels, which would undoubtedly

lead to additional computational savings.

Furthermore, it would be possible to extend these proposals to work with other

coding patterns including B-frames.

Finally, we could also look for alternative manners to mitigate the quality losses

derived from limiting the coding options. To achieve this goal, filters could be devel-

oped, similar to the deblocking or SAO filters included in the standards, or to that

proposed in [Jiménez-Moreno et al., 2014], since they are focused on reducing the

artifacts caused by the coding process.
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