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Abstract

This thesis is based on modeling and predicting expected equity returns and volatility. In

the first step, it focus on multivariate conditional volatility models, where multivariate GARCH

(MGARCH) models are the most traditional approach considered in literature. However, the tra-

ditional MGARCH models need to be restricted so that their estimation is feasible in large sys-

tems and covariance stationarity and positive definiteness of conditional covariance matrices are

guaranteed. To overcome this gap, this thesis analyzes the limitations of some very popular re-

stricted parametric MGARCH models often implemented to represent the dynamics observed in

real systems of financial returns. These limitations are illustrated using simulated data and a

five-dimensional system of exchange rate returns. We show that the restrictions imposed by the

BEKK model are very unrealistic generating potentially missleading forecasts of condicional cor-

relations. On the contrary, models based on the DCC specification provide appropriate forecasts.

Alternative estimators of the parameters are important to simplify the computations but do not

have implications on the estimates of conditional correlations.

In the second step, this thesis focus on predicting the mean of equity risk premium. In particu-

lar, we show that existing equity premium forecasts can be improved by combining parsimonious

state-dependent regression models, where well-known macroeconomic predictors are interacted

with an economic state variable based on technical indicators. The combining forecasts proposed

deliver statistically and economically out-of-sample gains vis-a-vis the historical average, tradi-

tional univariate regressions and equal-weighted (EW) combination of macroeconomic forecasts.

The EW combination is widely reported to be not worse than combining forecasts using estimated

weights in equity-premium literature. However, given the relative large set of macroeconomic

variables available as candidate predictors, we show that sparse combining method produces

promising results for equity risk premium prediction.
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Resumen

Esta tesis se basa en modelar y predecir el rendimiento esperado de las acciones y su volatili-

dad. En la primera etapa se analizan los modelos multivariantes de volatilidad condicional. Los

modelos GARCH multivariantes (MGARCH) son los más utilizados en la literatura. Sin embargo,

estos modelos necesitan ser restringidos para que su estimación sea factible en grandes sistemas

y para que la estacionariedad de segundo orden ası́ como la positividad de las matrices de cova-

rianzas condicionales estén garantizadas. Para poder proponer una solución a este problema, la

tesis analiza las limitaciones de algunos modelos MGARCH paramétricos restringidos, los cuales

son muy utilizados para representar la dinámica observada en los sistemas reales de rentabili-

dad financiera. Estas limitaciones se ilustran usando datos simulados y un sistema de cinco series

de rendimientos de tipos de cambio. Mostramos que las restricciones impuestas por el modelo

BEKK son muy poco realistas, lo que puede generar una mala especificación de las previsiones de

correlaciones condicionales. Por el contrario, los modelos DCC generan previsiones apropiadas.

Los estimadores alternativos de parámetros son importantes para simplificar los cálculos, pero no

tienen implicaciones en las estimaciones de las correlaciones condicionales.

En la segunda etapa, la tesis estudia la predicción de la media de la prima de riesgo. En

particular, se muestra que las previsiones de la prima de riesgo se pueden mejorar mediante la

combinación de modelos de regresión state-dependent parsimoniosos, donde los predictores ma-

croeconómicos interactúan con una variable de estado econmico basada en indicadores técnicos.

Las combinaciones de previsiones propuestas otorgan estadı́stica y económicamente ganancias

out-of-sample con relación a la media histórica, modelos de regresión univariantes y la media de

la combinación de previsiones macroeconómicas utilizando iguales pesos (EW). La combinación

EW es generalmente aceptada en la literatura de prima de riesgo por no ser peor que la combina-

ción de pronósticos utilizando pesos estimados. Sin embargo, dado el gran conjunto de variables

macroeconómicas disponibles como posibles predictores, demostramos que la combinación par-

simoniosa del método produce resultados prometedores para la predicción de la prima de riesgo.
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Chapter 1

Introduction

1.1. Motivation

Modeling and predicting the mean, volatilities and conditional covariances and correlations

of financial time series have been attracting increasing interest of researchers and practitioners in

areas such as asset pricing, asset allocation, hedging strategies, option pricing and risk manage-

ment. In particular, investors and banks wish to measure the risk (volatility) and the risk premia

(expected mean in excess of risk free rate) to decide whether or not invest in a risky asset. They

have been addressing three important decisions: choosing the best model, selecting the most im-

portant predictors and using the most efficient estimator.

Forecasting the equity risk premia have attracted a great deal of attention specially in asset

allocation, which requires real-time forecasts of stock returns. Although the crescent interest for

academics and practitioners and the plethora of variables proposed as predictors, stock return

forecasting can be frustrating as argued by Rapach and Zhou (2012). Indeed, the unpredictable

component of stock returns are much larger than the predictable part, so any forecasting model

can explain only a relatively small part of stock returns. Furthermore, some authors argue that the

stock return predictability is restricted to in-sample evaluations and support its unstable out-of-

sample performance; see, for example, Bossaerts and Hillion (1999), Goyal and Welch (2003) and

Butler et al. (2005).

Regarding the predictability of multivariate conditional volatility, the multivariate general-

ized autoregressive conditional heteroscedastic GARCH (MGARCH) models are the more tradi-

tional approach considered in literature since the extension, proposed by Bollerslev et al. (1988),

of univariate GARCH models of Engle (1982) and Bollerslev (1986) to a multivariate framework.
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2 CHAPTER 1. INTRODUCTION

Nowadays, MGARCH models plays a fundamental role in several financial implementations that

require estimates of conditional variances, covariances and correlations of multivariate time series.

The largest number of implementations of MGARCH models appear in the context of systems of

financial returns; see, for example, Bollerslev et al. (1988), Attanasio (1991), De Santis and Gerard

(1997), Hansson and Hordahl (1998), Lien and Tse (2002), Engle and Colacito (2006), Andersen

et al. (2007), McNeil et al. (2010), Santos et al. (2012) and Santos et al. (2013), for a few selected

asset pricing, portfolio selection, risk management and future hedging applications. The majority

of fund managers use volatility and conditional correlation forecast to construct equity portfo-

lios; see Amenc et al. (2012) for a survey based on 139 North American Investment managers.

It is important to note that, depending on the particular application, the number of returns in

the system can vary from being rather small to extremely large; see, for example, Bollerslev et

al. (1988), Kavussanos and Visvikis (2004), Kawakatsu (2006) and Beirne et al. (2013) for small

systems and Cappiello et al. (2006), Diebold and Yilmaz (2009), Santos et al. (2012), Santos et al.

(2013) and Rombouts et al. (2014) for large systems. Besides financial applications, MGARCH

models have also been fitted to systems of macroeconomic and commodity related variables. For

example, Conrad and Karanasos (2010) explain the inflation-growth interaction fitting a general-

ized version of the constant conditional correlation (CCC) model, while Baillie and Myers (1991)

estimate the optimal hedge ratios of commodity futures, Kavussanos and Visvikis (2004) analyze

the interaction between spot and forward returns and volatilities in the shipping freight markets

and Bampinas and Pangiotis (2015) fit vector autoregressive (VAR) models with MGARCH errors

to explain the relationship between oil and gold prices. MGARCH models have also been imple-

mented in agricultural economics; see Gardebroek and Hernandez (2013) and Haixia and Shiping

(2013) for some references. Finally, MGARCH models are also useful when modeling and fore-

casting non-economic time series. For example, Cripps and Dunsmuir (2003) and Jeon and Taylor

(2012) fit bivariate vector autoregressive moving average (VARMA) models with MGARCH errors

to model the wind speed and direction.

1.2. Multivariate GARCH models

The VECH model of Bollerslev et al. (1988) is a direct generalization from the GARCH model.

In this model, each conditional variance and covariance are function of all lagged conditional

variances and covariances as well as lagged cross product of returns and lagged square returns.
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Nevertheless, in practice, the estimation of the VECH model is limited due to two main limita-

tions. First, due to the need of estimating a large number of parameters, its implementation was

restricted to systems of small dimensions. Second, their parameters need to be restricted to guar-

antee covariance stationarity and positive definiteness of conditional covariance matrices. Conse-

quently, the majority of popular MGARCH models implemented to represent the dynamic evo-

lution of volatilities, covariances and correlations of real systems are restricted so that parameter

estimation is feasible and to guarantee covariance stationarity and positiveness. The correspond-

ing restrictions are often based on assuming that volatilities depend on their own past without

interrelations neither among them nor with covariances. However, if these restrictions are not sat-

isfied, the estimated conditional variances, covariances and correlations may suffer from strong

biases; see Kroner and Ng (1998), Ledoit et al. (2003), Caporin and McAleer (2008), Rossi and

Spazzini (2010) and Amado and Teräsvirta (2014) for consequences of misspecifying conditional

variances, covariances and correlations. Engle (2009) argues that, although it seems important to

allow for square and cross-products of one asset to help forecasting variances and covariances of

other assets, in fact, there are few striking examples of these interrelations in the literature. On

the contrary, several works conclude that allowing for interrelations among conditional variances

and correlations may be important. First, empirical evidence on volatility feedbacks is plentiful;

see Granger et al. (1986), Engle et al. (1990), Comte and Lieberman (2000), Hafner and Herwartz

(2006, 2008b), Bai and Chen (2008), Diebold and Yilmaz (2009), Nakatani and Teräsvirta (2009),

Conrad and Karanasos (2010), Beirne et al. (2013) and Aboura and Chevallier (2015) for studies

related with volatility feedbacks. Therefore, it seems important to allow for volatility interac-

tions when specifying MGARCH models. Second, it has often been found that volatilities and

cross-correlations across assets move together over time and, consequently, they cannot be es-

timated separately. For example, Ramchand and Susmel (1998), Longin and Solnik (2001) and

Okimoto (2008) find that cross-correlations between markets are higher during unstable periods

when the markets are more volatile. Kasch and Caporin (2013) also describe correlations between

conditional correlations and variances, while Bauwens and Otranto (2013) have a very complete

description of the literature on volatility as a determinant of correlations. Finally, we did not find

empirical evidence in the related literature about the influence of correlations on volatilities.

The main goals are to survey the main developments of parametric MGARCH models, up-

dating previous surveys by Bauwens et al. (2006), Engle (2009) and Silvennoinen and Teräsvirta

(2009a) and to analyze the potential biases incurred when the restricted models are fitted to sys-
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tems with rich dynamics as those usually encountered in real data.

We contribute to literature by simulating a very general model, where all conditional variances,

covariances and correlations are related with each other, and fitting the most popular models

and estimation methods available in the literature to evaluate how much we lose in restricting

the model and/or simplifying the estimation procedure. Our main finding is that the full BEKK

(after Baba-Engle-Kraft-Kroner) model in the version usually consider in literature (with just one

factor) restricts strongly the dynamics of the series and performs poorly compared with the other

models, even with their restricted versions. The O-GARCH and GO-GARCH models also have

bad performances both empirically and to the simulated data. Furthermore, the performance in

fitting and forecasting volatilities, conditional covariances and correlations are similar for a given

model regardless of the particular procedure used to estimate the parameters. Finally, the dynamic

conditional correlation models estimated in three-steps is the best alternative model to explain the

general model.

1.3. Predicting the mean of equity risk premium

Welch and Goyal (2008) conclude that several macroeconomic predictors fail to beat the simple

historical average benchmark in out-of-sample exercises and recommend researchers to explore

alternative variables and/or more sophisticated models to forecast equity premia. Subsequently,

various studies have put forward alternative forecasting methods that provide statistical and eco-

nomic evidence of out-of-sample predictability. Here we focus in two kinds of methods.

First, there is a growing body of literature indicating that asset returns follow a more com-

plex process with more than one regime; see, for example, Turner et al. (1989), Garcia and Per-

ron (1996), Perez-Quiros and Timmermann (2000), Ang and Bekaert (2002, 2007), Ang and Chen

(2002), Guidolin and Timmermann (2006a,b) and Pettenuzzo and Timmermann (2011). Moreover,

numerous others, such as Henkel et al. (2011), Dangl and Halling (2012), Gargano and Timmer-

mann (2012) and Neely et al. (2014), find that numerous macroeconomic predictors tend to give

stronger signals during recessions than expansions. Jacobsen et al. (2014) find that industrial metal

prices are positive (negatively) related with future equity premia in recessions (expansions). From

a theoretical standpoint, the intertemporal capital asset pricing model of Merton (1973) indicates

that time-varying risk aversion may imply a time-varying dependence between future stock re-

turns and macroeconomic variables. More recently, Bali (2008) proves that relative risk aversion
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coefficients are unstable, suggesting that predictability could be time varying. Intuitively, it is not

hard to think that the level of investors’ risk aversion increases from economic expansions to reces-

sions (and vice versa) which would suggest that the predictive power of a given macroeconomic

indicator is regime-sensitive or state-dependent.

Second, combining forecasts from different models offers a shield against model uncertainty

and structural breaks, and allows parsimoniously to incorporate information from many vari-

ables. Although the equity premium predictability literature is rather ample, the notion of forecast

combination has been devoted scant attention. To our best knowledge there are two exceptions:

Rapach et al. (2010) who combine forecasts from simple linear regression models based on numer-

ous macroeconomic variables, and Elliott et al. (2013) who further extend this work by averaging

forecasts across complete subset regressions with the same number of predictive variables. The

combining approaches of Rapach et al. (2010) and Elliott et al. (2013) are based either on equal

weights or estimated weights. They conclude that the equal-weight (EW) forecast combination

is at least as good as the combination based on estimated weights. However, a parallel literature

suggests that pre-selecting a subset of ”best” predictors among a large set of candidates is fruitful

before deploying forecast combination methods given the large degree of co-movement between

them. For example, Bai and Ng (2008), Dobreva and Schaumburg (2013) and Fuentes et al. (2015)

combine variable selection with factor modeling and argue that less is more or that pooling the

information from less (appropriately selected) variables can yield better forecasts. Following this

lead, it is interesting using a sparse method to combine forecasts of equity premium.

Our objectives are to improve existing equity premium forecasts by considering combining

forecasts from regime-switching predictive regressions and to propose new combination approaches

as alternative to the EW combination.

We advocate the use of parsimonious regime-switching predictive regressions and extend

equity-premium forecast strategies by combining regime-switching regression models with ob-

servable state, where well-known macroeconomic predictors are interacted with an economic

state variable based on technical indicators. We demonstrate that technical indicators are rea-

sonably good predictors (vis-a-vis the NBER dating approach) as proxies for the current state

of economy and formulate simple regressions where the macroeconomic variable at hand is in-

teracted with a technical indicator. Using conventional statistical and economic measures, we

conclude that combining parsimonious state-dependent predictive regressions deliver robust out-

of-sample forecasting gains compared to the historical average (HA) benchmark, and traditional
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linear predictive regressions based on macroeconomic or technical variables. We also propose

a novel sparse EW forecast combination (SPAR hereafter) approach for equity premium predic-

tion. The robust significance test of Kostakis et al. (2015) is employed in-sample to pre-select

significant models (defined here by models whose slope coefficients are jointly significant). The

combined out-of-sample forecast is then based on forecasts from significant models. Our investi-

gation demonstrates empirically that the SPAR method is a good alternative to the EW combining

approach which endorses from the lens of equity risk premium prediction the less is more view in

the extant macroeconomic literature.

1.4. Organization

The rest of this thesis is organized as follows. Chapter 2 is an extension of Almeida et al.

(2015) and analyzes the most popular MGARCH specifications often implemented in empirical

applications when estimating and forecasting conditional variances, covariances and correlations.

First, it describes the models, parameter estimators and their properties. Second, it compares

their finite sample performance by carrying out Monte Carlo experiments to analyze the effect of

restrictions on the estimation of conditional covariance matrices. Third, it carries out an empirical

application to a five-dimensional system of daily exchange rate returns of the Euro (EUR), British

Pound (GBP), Swiss Franc (CHF), Australian Dollar (AUD) and Japanese Yen (JPY) against the

US Dollar (USD). Finally, it summarizes the main finds and conclusions. Chapter 3 describes

the traditional econometric methodology to forecast the equity premium and proposes a new

approach to construct regime-switching models to forecast equity premia. The performance of

the new forecasting strategy is measured by estimating predictive regressions for Standard and

Poor’s (S&P) 500 equity premium. Finally, Chapter 4 concludes and gives directions for future

projects.



Chapter 2

MGARCH models: Trade-off between

feasibility and flexibility

2.1. Introduction

The original MGARCH model, proposed by Bollerslev et al. (1988) and denoted as VECH, is a

direct generalization from its univariate counterpart. The VECH model is rather flexible allowing

all volatilities and conditional covariances to be related with each other. However, in practice, the

VECH model is difficult to be estimated given that the number of parameters can become exces-

sively large even in systems of moderate size. Consequently, the early implementation of VECH

models was originally restricted to systems with very few series. An additional problem faced

when dealing with VECH models is the determination of the conditions to guarantee positive

definite conditional covariance matrices and stationarity. To overcome these problems, numer-

ous popular MGARCH models implemented in practice to represent the dynamic evolution of

volatilities, covariances and correlations are restricted in a such a way that parameter estimation

is feasible and/or they guarantee covariance stationarity and positiveness. The early restricted

MGARCH models are the diagonal VECH (DVECH), suggested by Bollerslev et al. (1988), and the

BEKK model of Engle and Kroner (1995), which are still rather popular in empirical applications;

see, for example, Ledoit et al. (2003) and Bauwens et al. (2007) for the DVECH model and Beirne et

al. (2013) for the BEKK model. Alternatively, several specifications of restricted MGARCH models

are based on the decomposition of the covariance matrix into the product of conditional variances

and correlations. Among these models, the most popular are the constant conditional correlation

(CCC) model of Bollerslev (1990) and the dynamic conditional correlation (DCC) model of Engle

7
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(2002); see, for example, Laurent et al. (2013) and Amado and Teräsvirta (2014) for some recent

empirical applications of the CCC model and Engle and Kelly (2012), Bauwens et al. (2013), Aielli

and Caporin (2014) and Audrino (2014) for the DCC model. However, if the restrictions behind

these specifications are not satisfied, the estimated conditional variances, covariances and correla-

tions may suffer from biases. Then, the restricted models may fail to represent the rich dynamics

of real systems of financial returns. Furthermore, given that different models are based on dif-

ferent restrictions, the choice of a particular restricted MGARCH model can lead to substantially

different conclusions when forecasting dynamic covariance matrices. However, in empirical ap-

plications, the particular specification fitted to the data is often chosen in an ad hoc basis with

the easy of estimation being a primary factor affecting the selection of the model; see the discus-

sion by Caporin and McAleer (2012). Consequently, in order to choose an appropriate restricted

specification, it is important to analyze how the restrictions affect the estimation of conditional

variances, covariances and correlations. Kroner and Ng (1998) and Ledoit et al. (2003) compare

the DVECH, BEKK and CCC models estimating the conditional variances, covariances and cor-

relations of systems with 2 and 7 series of financial returns, respectively, and conclude that they

may have different economic implications. An empirical comparison of the scalar versions of the

BEKK and DCC models has been carried out by Caporin and McAleer (2008) who found that both

models are very similar in forecasting conditional variances, covariances and correlations. Latter,

Caporin and McAleer (2012) compare the BEKK and DCC models from a theoretical point of view

and conclude that the BEKK model could be used to obtain consistent estimates of the DCC model

with a direct link to the indirect DCC model suggested in Caporin and McAleer (2008).1

Our objective is to analyze the potential biases incurred when the restricted models are fitted

to systems with rich dynamics as those usually encountered in real data. We extend previous

research by carrying out Monte Carlo experiments, including new models and very recently pro-

posed parameter estimators. In this way, we fit the restricted models and parameter estimators

to systems simulated by specifications without restrictions and analyze the empirical implications

on estimated conditional variances, covariances and correlations of the restrictions imposed on

MGARCH models to reduce the number of parameters and/or to guarantee covariance stationar-

ity and/or positiveness. Our results have important implications for the empirical implementa-

tion of MGARCH models.

1Rossi and Spazzini (2010) and Caporin and McAleer (2014) carry out a Monte Carlo analysis to compare MGARCH
models focusing on the interaction between the specification of the conditional covariance matrix and the conditional
distribution of returns and on the effect of the dimension of the system, respectively.
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The rest of this Chapter is organized as follows. Section 2.2 describes several popular MGARCH

specifications often implemented in empirical applications. Section 2.3 compares their finite sam-

ple performance by carrying out Monte Carlo experiments to analyze the effect of restrictions on

the estimation of conditional covariance and correlation matrices. An empirical application to

a five-dimensional system of daily exchange rate returns of the EUR, GBP, CHF, AUD and JPY

against the USD is carried out in Section 2.4. Finally, Section 2.5 concludes.

2.2. Multivariate GARCH models

This section describes several popular MGARCH models often implemented to represent the

dynamic evolution of conditional variances, covariances and correlations of multivariate condi-

tionally heteroscedastic time series.

2.2.1. The VECH model

Assuming zero conditional mean, the VECH model is given by2

rt = H1/2
t εt, (2.1)

vech(Ht) = C + A vech(rt−1r
′
t−1) + B vech(Ht−1), (2.2)

where rt is the N × 1 vector of returns3 observed at time t, for t = 1, . . . , T , Ht is the N ×N con-

ditional covariance matrix of rt given past information until time t− 1, C is an N(N + 1)/2 vector

of constants, A and B are square N(N + 1)/2 parameter matrices and εt is a serially indepen-

dent multivariate white noise process with covariance matrix IN , the identity matrix of order N .

The operator vech(·) stacks the columns of the lower triangular part of a square matrix. Finally,

H1 = Σ = E(rtr
′
t) is the unconditional covariance matrix of returns. The VECH model is covari-

ance stationary if the moduli of the eigenvalues of A + B are less than one; see Engle and Kroner

(1995). Furthermore, Hafner (2003) derives analytical expressions of the fourth order moments of

returns when the distribution of εt is spherical and Hafner and Preminger (2009b) establish suffi-

cient conditions for geometric ergodicity. Although there are not known necessary conditions for

2For the sake of simplicity, in this thesis, we focus on the simplest specification which only includes one lag of past
returns, conditional variances and covariances.

3We refer to the observed vector of time series as vector of returns. Nevertheless, it should be understood that we
may also refer to the residuals of a multivariate VARMA model fitted to represent the conditional means when dealing
with non-financial data.
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the positivity of Ht, Gourieroux (1997), Francq and Zakoan (2010) and Chrétien and Ortega (2014)

discuss sufficient conditions. It is important to point out that although the restrictions are usually

imposed on the matrices of parameters that govern the dynamic evolution of the conditional co-

variances, A and B, very recently, Caporin and Paruolo (2015) propose a model with restrictions

on the unconditional covariance matrix.

The VECH model in equations (2.1) and (2.2) is very flexible to represent symmetric responses

of conditional variances and covariances to past squared returns and cross-products of returns.

The most popular estimator of the parameters of the VECH model is Gaussian quasi-maximum

likelihood (G-QML) based on maximizing the Gaussian log-likelihood function. If the conditional

covariance matrix is well specified, Bollerslev and Wooldridge (1992) show that the G-QML es-

timator is consistent. Hafner and Preminger (2009b) establish consistency and asymptotic nor-

mality of the G-QML estimator under the existence of sixth-order moments; see also Hafner and

Herwartz (2008a) who provide analytical expressions of the score and the Hessian. It is important

to note that the dimension of the covariance matrix of the parameter estimator is at least of order

N2. Consequently, the asymptotic covariance matrix of the parameter estimator, computed as the

average of the T outer-products of the score, will not be full rank for large N . This is a feature

inherent to all MGARCH models and all their estimators; see Palandri (2009).

Given that conditional financial returns often exhibit fat tails and are skewed, a natural alter-

native to the G-QML estimator is based on maximizing the Student-ν likelihood, where ν is the

degree of freedom; see Fiorentini et al. (2003), Hafner and Herwartz (2006) and Bai and Chen

(2008). The corresponding estimator will be denoted by S-QML.4

Both QML estimators are computationally demanding and could be unfeasible when the di-

mension of the system is relatively large. Indeed, the log-likelihood function is nonlinear on the

parameters and, in each iteration of its maximization algorithm, the matrix Ht needs to be in-

verted T times. Another difficulty in estimating VECH models is that their parameters need to be

subjected to nonlinear constraints to ensure the existence of covariance stationary solutions and

the positive semidefinite character of the conditional covariance matrices. Chrétien and Ortega

(2014) solve the estimation problem by incorporating these non-linear constraints in an efficient

and natural way, using a Bregman-proximal trust-region method. They fit the VECH model for

4Bauwens and Laurent (2005) further propose a multivariate skew-Student distribution. Other distributions used in
MGARCH models are the fat-tailed multivariate Laplace of Rombouts et al. (2014) and the multiple degrees of freedom
t of Serban et al. (2007); see Rossi and Spazzini (2010) for a comparison of the performance of these distributions
associated with different MGARCH specifications. The asymptotic distribution of these non-Gaussian estimators has
not been derived yet.
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real systems of stock returns for dimensions up to eight and, with considerable computational

effort, find a superior performance of the estimated VECH model in relation to other traditional

parsimonious models.

The parameters of the VECH model can also be estimated using the two-step covariance target-

ing (CVT) procedure originally proposed by Engle and Mezrich (1996) in the context of univariate

time series; see Caporin and McAleer (2012) for a general description. The CVT estimator can

be implemented after rewriting equation (2.2) in terms of the unconditional covariance matrix as

follows

vech(Ht) = (IN(N+1)
2

−A−B)vech(Σ) + A vech(rt−1r
′
t−1) + B vech(Ht−1). (2.3)

The estimation procedure is then divided into two steps. First, the unconditional covariance

matrix, Σ, is estimated by the sample unconditional covariance matrix of rt and substituted in

(2.3). Then, the remaining parameters are estimated by G-QML, conditional on the sample esti-

mates of the unconditional covariances.

Recently, Sbrana and Poloni (2013) and Poloni and Sbrana (2014) propose two alternative con-

sistent estimators of the parameters of the VECH model that can be used as starting values for

alternative efficient estimators. Sbrana and Poloni (2013) propose a closed-form estimator based

on the VARMA representation of the VECH model while Poloni and Sbrana (2014) propose a fea-

sible generalized least squares type estimator.

As an illustration, we generate a bivariate system of size T = 1000 by a VECH model with

Gaussian errors and the values of parameters used to generate the simulated systems reported in

the Appendix A. The parameters are chosen so as to represent the conditional variances and co-

variances usually estimated when dealing with real data and to guarantee covariance stationarity

and positiveness of the covariance matrices; see, for example, Bai and Chen (2008) and Conrad

and Karanasos (2010).5

The first two rows of Figure 2.1 plot the simulated conditional standard deviations for each

of the two variables in the system, while the last two rows plot the conditional covariances and

correlations, respectively. It is important to point out that, although we estimate the parameters

by G-QML6 and by VT without restricting them to ensure positivity and covariance stationarity,

5All the programming used in this thesis has been developed by the author using MATLAB codes, except when
explicitly mentioned.

6Note that, as the data generating process has Gaussian errors, the QML is in fact ML.
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the estimated parameters satisfy the corresponding conditions. The estimated conditional stan-

dard deviations, covariances and correlations are also plotted in the first column of Figure 2.1,

while the second column plots the simulated values (x-axis) versus the estimated values (y-axis)

corresponding to the estimates obtained with the two procedures. In the second column plots, the

errors can be measured as the Euclidean distance between the points and the identity line. Note

that, as the fitted model is the true data generating process (DGP), the errors plotted in Figure 2.1

can be attributed to parameter estimation. This figure illustrates that the errors have means close

to zero and relatively small dispersion. Furthermore, there are not large differences when estimat-

ing the parameters using G-QML or VT, but both procedures tend to overestimate the conditional

standard deviations when they are small.

2.2.2. Restricted models for conditional covariance matrices

Diagonal VECH model

The DVECH model assumes that the matrices A and B in equation (2.2) are diagonal. Con-

sequently, each conditional variance and covariance in the system has a univariate GARCH-type

specification without allowing for feedbacks among volatilities and between volatilities and co-

variances.

Sufficient conditions to guarantee the positivity of the covariance matrices of the DVECH mod-

els have been derived by Ding and Engle (2001) and Ledoit et al. (2003). Later, Gourieroux (2007)

derives necessary and sufficient conditions for the bivariate DVECH model and shows that the

sufficient condition by Ding and Engle (2001) is also a necessary one. The extension of the neces-

sary positivity conditions to systems with 3 or more variables is an open question. Finally, Ledoit

et al. (2003) derive necessary conditions to ensure covariance stationarity.

Although G-QML estimation of the parameters of the DVECH model is easier than in the com-

plete VECH model, Ledoit et al. (2003) argue that it is not computationally feasible for systems

of dimension N > 5. The DVECH model still has too many parameters that interact in a com-

plex way and, as a consequence, it is difficult to obtain convergence using existing optimization

algorithms. Moreover, the estimation of the DVECH model does not necessarily yield positive

semidefinite conditional covariance matrices. To solve these issues, Ledoit et al. (2003) propose

estimating the DVECH model using a flexible two-step procedure, hereafter denoted by LSW (af-

ter Ledoit-Santa Clara-Wolf). In the first step, the volatilities are estimated by fitting univariate

GARCH models and the conditional covariances by fitting bivariate GARCH models. These es-
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timates do not necessarily yield positive conditional covariance matrices. Consequently, in the

second step, the estimated parameters are transformed in such a way that they guarantee positive

semi-definite conditional covariance matrices with the transformation being the least disruptive.

Although the asymptotic distribution of this estimator is unknown, standard errors of the param-

eters can be obtained by bootstrapping.

Next, we illustrate the biases incurred when estimating conditional variances, covariances

and correlations after fitting the DVECH model to the bivariate system generated by the DGP

described in Appendix A. The pseudo-parameters of the DVECH model are estimated by the G-

QML, VT and LSW procedures. The first column of Figure 2.2 plots the simulated and estimated

conditional standard deviations, covariances and correlations, while in the second column are the

scatter plots of the simulated versus the estimated values. We observe that, first, the estimates of

the conditional standard deviations, covariances and correlations obtained when implementing

the three alternative estimators considered are very similar. Second, as expected, the errors in the

conditional standard deviations and covariances are larger than when the true VECH model is

fitted. Finally, the conditional covariances are underestimated when they are large. Therefore,

in the particular DGP considered in this illustration and for the particular time series generated,

the restrictions imposed by the DVECH model have greater influence on the estimation of the

conditional standard deviations and covariances than on conditional correlation estimates.

BEKK models

Engle and Kroner (1995) propose the BEKK model which guarantees positivity of the condi-

tional covariance matrices.7 The BEKK(1,1,K) is given by

Ht = W +
K∑
k=1

A′krt−1r
′
t−1Ak +

K∑
k=1

B′k Ht−1Bk, (2.4)

where K determines the generality of the process and W, Ak and Bk are square N × N param-

eter matrices, with W being a positive definite symmetric matrix. Denoting by ⊗ the Kronecker

product of two matrices, the BEKK model is covariance stationary if and only if the modulus of

the eigenvalues of
∑K

k=1 Ak ⊗ Ak +
∑K

k=1 Bk ⊗ Bk are smaller than one; see Engle and Kroner

7Kawakatsu (2006) proposes an alternative model based on exp{Ht} that also guarantees positivity. Other models
that guarantee the symmetry and positive definiteness of the conditional covariance matrices are given in Tsay (2002)
and Bai and Chen (2008), who consider a Cholesky decomposition of Ht, and Hendrych and Cipra (in press), who
propose a formulation based on the LDL decomposition. These models are not considered in this thesis as they are not
as popular as the BEKK model.
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(1995). The conditions for strict stationarity and geometric ergodicity can be found in Boussama

et al. (2011).

Engle and Kroner (1995) show that all BEKK models are representable as VECH models and

that the BEKK parametrization eliminates very few if any interesting model allowed by the VECH

representation. Indeed, Scherrer and Ribarits (2007) and Stelzer (2008) show that, when N = 2,

both specifications are equivalent. Nonetheless, when N > 3, the VECH model is more flexible

than the BEKK model; see, for example, Stelzer (2008) who presents a three-dimensional VECH

model with no BEKK representation. It is important to note that the equivalence between the

BEKK and VECH models can be established when K > 1. However, the version of the BEKK

model predominantly fitted in practice restricts K = 1;8 see, for instance, Kroner and Ng (1998),

Ledoit et al. (2003), Hafner and Herwartz (2006), Silvennoinen and Teräsvirta (2009a), Rossi and

Spazzini (2010), Caporin and McAleer (2012), Laurent et al. (2012), Beirne et al. (2013), Pedersen

and Rahbek (2014) and Burda (2015). In this case, the VECH and BEKK models are not equivalent

even if N = 2.

The parameters of the BEKK models can be estimated by QML and CVT with the same com-

putational problems described in subsection 2.2.1. Comte and Lieberman (2003) and Hafner and

Preminger (2009b) prove consistency and asymptotic normality of the G-QML estimator under

eighth and sixth finite moments of the observed variables, respectively. Avarucci et al. (2013) ar-

gue that finite fourth order moment restrictions for the G-QML estimator cannot be relaxed, even

in the simple ARCH form of the BEKK model.9 Very recently, Pedersen and Rahbek (2014) study

the asymptotic properties of the CVT estimator and establish its strong consistency under finite

second-order moments and asymptotic normality under finite sixth-order moments. Note that

these conditions are identical to those of the G-QML estimator; see Hafner and Preminger (2009b).

However, as pointed out by Caporin and McAleer (2012), when estimating the BEKK model by

CVT, it is extremely complicated to impose positive definiteness and covariance stationary restric-

tions. Recently, Burda (2015) deals with this shortcoming and suggests an approach based on

Constrained Hamiltonian Monte Carlo that solves both the nonlinear constraints resulting from

BEKK targeting and the complex form of the BEKK likelihood in relatively large dimensions.

Alternatively, Noureldin et al. (2014) propose a rotated version of the BEKK model, denoted

by rotated BEKK (RBEKK), based on fitting a covariance-targeting BEKK-type specification to the

8Hereafter, the BEKK model refers to the BEKK(1,1,1) model.
9Alternatively, Boudt and Croux (2010) show the good robustness properties of an M-estimator with a fat-tail

Student-ν loss function.
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rotated returns, et = Σ−1/2rt, as follows

Gt = IN −AA′ −BB′ + A′et−1e
′
t−1A + B′ Gt−1B, (2.5)

where Gt is the conditional covariance matrix of et with G1 = IN and A and B are square N ×N

parameter matrices. The conditions for convariance stationary are obtained by writing (2.5) in the

vectorized form and using the analysis in Engle and Kroner (1995); see Noureldin et al. (2014). The

RBEKK model can be easily estimated by CVT, ensuring positiveness and covariance stationary.

In the first step, Σ is estimated by the sample unconditional covariance matrix of rt, denoted by

Σ̂. Using the spectral decomposition of this estimate, êt is computed. The second step is based on

estimating the parameters in (2.5) by G-QML, conditional on êt.

As mentioned above, even if K is restricted to be 1, fully parametrized BEKK models are

only feasible for small systems. Two restricted popular versions of the BEKK model that further

reduce the number of parameters are the diagonal BEKK (DBEKK) and the scalar BEKK (SBEKK)

models, which are obtained by restricting the Ak and Bk matrices in (2.4) to be diagonal and

scalar, respectively; see Ding and Engle (2001). The DBEKK model is representable as a DVECH

model; see Bauwens et al. (2006). Consequently, the variances only depend on their own lags and

past squared returns and the covariances only depend on their own lags and past cross products

of returns. Noureldin et al. (2014) also study restricted versions of the RBEKK model denoted as

diagonal RBEKK (D-RBEKK) and scalar RBEKK (S-RBEKK) models.

Consider again the same simulated system described in Appendix A. Figure 2.3 plots the esti-

mated conditional standard deviations, covariances and correlations obtained after estimating the

parameters of the BEKK model by G-QML and VT, while Figure 2.4 plots the same quantities af-

ter estimating the parameters of the DBEKK and SBEKK models by G-QML and of the D-RBEKK

and S-RBEKK models by VT. For the sake of comparison, we also plot the simulated conditional

standard deviations, covariances and correlations in both figures. Figure 2.3 shows that the BEKK

model estimated by VT has slight larger errors than the BEKK model estimated by G-QML. How-

ever, the errors in the BEKK model are much larger than in the VECH model (see Figure 2.1) and,

surprisingly, larger than in the DBEKK, SBEKK, D-RBEKK and S-RBEKK models plotted in Figure

2.4, which are restricted versions of the BEKK model. In order to find a possible explanation for it,

we write the equations of the volatilities and conditional correlations for the bivariate BEKK, i.e.,
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h11,t = w11 + a211r
2
1,t−1 + 2a11a12r1,t−1r2,t−1 + a212r

2
2,t−1 + b211h11,t−1 + 2b11b12h12,t−1 + b212h22,t−1, (2.6)

h12,t = w12 + a11a21r
2
1,t−1 + (a11a22 + a12a21)r1,t−1r2,t−1 + a12a22r

2
2,t−1 + b11b21h11,t−1 (2.7)

+(b11b22 + b12b21)h12,t−1 + b12b22h22,t−1,

h22,t = w22 + a221r
2
1,t−1 + 2a21a22r1,t−1r2,t−1 + a222r

2
2,t−1 + b221h11,t−1 + 2b21b22h12,t−1 + b222h22,t−1, (2.8)

wherewij , aij and bij , for i, j = 1, 2, are the elements of matrices W, A and B, respectively, in equa-

tion (2.4). Note that the non-linear restrictions in the parameters imposed by the BEKK model do

not hold in practice for volatilities and conditional correlations. For example, in equation (2.6), the

term that multiplies r1,t−1r2,t−1 is imposed to be the double of the geometric mean of the terms

that multiply r2
1,t−1 and r2

2,t−1, respectively. Suppose that the terms that multiply r2
1,t−1 and r2

2,t−1

were corrected estimated, i.e., 0.097 and 0.022, respectively. It would imply, by the definition of

the model, that the term that multiplies r1,t−1r2,t−1 is 0.093. However, in real data, we expect that

the influence of r1,t−1r2,t−1 in h11,t is much smaller than the influence of r2
1,t−1. Analogous argu-

ments apply to the volatilities of the second series and conditional covariances. The restrictions

imposed in BEKK model could be even worse than considering that the matrices in (2.4) are di-

agonal or scalar. Note that Rossi and Spazzini (2010) also find the counterintuitive result that the

SBEKK model has a better performance than the less restrictive DBEKK model. Figure 2.4 shows

that the errors of the estimated conditional correlations are larger than when estimating the true

DGP, besides the fact that, when the conditional correlation are small, they are underestimated.

However, the errors obtained when estimating conditional volatilities and covariances are similar

in magnitude to those obtained when the true DGP is fitted. Furthermore, Figure 2.4 shows that

the estimates of conditional standard deviations, covariances and correlations are very similar

regardless of whether the DBEKK, SBEKK, D-RBEKK or S-RBEKK models are fitted.

2.2.3. Conditional correlation models

Instead of modeling directly the conditional covariance matrix, Ht, several authors propose

specifying it as the following product of conditional variances and correlations

Ht = diag(Ht)
1/2Rtdiag(Ht)

1/2, (2.9)
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where diag(Ht) = diag(h11,t, · · · , hNN,t) is a diagonal matrix whose elements are the conditional

variances of each series and Rt contains the conditional correlations.10 In this way, assuming that

conditional variances and correlations are not related, it is possible to simplify the estimation,

estimating first the conditional variances and second the conditional correlations. This two-step

(2s) estimation procedure is relatively simple allowing working with high dimensional systems.

Carnero and Eratalay (2014) show that, if the innovations are Gaussian, estimating the parameters

in multiple steps has a very similar performance to that of the QML estimator.

CCC models

Bollerslev (1990) introduces the CCC model, assuming that the conditional correlation matrix

is constant over time, that is, Rt = R, where, R is a symmetric positive definite matrix. The

matrices Ht are definite positive if and only if all the conditional variances hii,t, i = 1, · · · , N , are

positive and R is a positive definite matrix.

Allowing for feedback among volatilities, Jeantheau (1998) proposes an extension of the origi-

nal CCC model, the extended CCC (ECCC) model, with volatilities fitted by a vector GARCH(1,1)

model, as follows

ht = c + A r2
t−1 + B ht−1, (2.10)

where c is an N -dimensional vector, A and B are N × N parameter matrices, r2
t = (r2

1,t . . . r
2
N,t)

′

and ht = (h11,t . . . hNN,t)
′; see also Caporin (2007), Conrad and Karanasos (2010) and Francq and

Zakian (in press). He and Teräsvirta (2004) give sufficient conditions for covariance and strictly

stationarity, whereas Aue et al. (2009) establish a sufficient condition for strict stationarity and

the existence of fourth-order moments. On the other hand, Nakatani and Teräsvirta (2008) estab-

lish sufficient positivity conditions, while Conrad and Karanasos (2010) provide less restrictive

assumptions to ensure the positive definiteness of Ht and also show that there is a representation

of the form (2.10) in which B is diagonal; Nakatani and Teräsvirta (2009) suggest a procedure for

testing the hypothesis of a diagonal structure against the hypothesis of volatility feedbacks.

With respect to estimation of the ECCC parameters, Jeantheau (1998) proves the strong con-

sistency of the G-QML estimator and Ling and McAleer (2003) prove its asymptotic normality.

More recently and under mild conditions that coincide with the minimal ones in the univariate

case, Francq and Zakoan (2012) establish the strong consistency and asymptotic normality of the

10As the original CCC and DCC models, this thesis assumes that each conditional variance follows a GARCH(1,1)
model; see, for example, Audrino (2006) and Laurent et al. (2012) for a comparison of different specifications for
individual volatilities, focusing on their impact on the accuracy of the conditional covariance estimates.
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G-QML estimator. Specifically, although it is required strict stationarity, no moment assumption is

made concerning the existence of moments of the observed process. Francq et al. (in press) estab-

lish the strong consistency and the asymptotic normality of the CVT estimator under finite fourth

moments of the data generating process, whereas Pedersen (in press) derive the large-sample

properties of this estimator when the distribution of the data generating process has infinite fourth

moments. Finally, Francq and Zakoan (in press) estimate (2.10) imposing B to be diagonal so that

volatilities can be estimated separately, i.e., using an equation-by-equation (EBE) estimator. They

show strong consistency and asymptotic normality of the EBE estimator in a very general frame-

work and prove consistency and joint asymptotic normality of the EBE volatility and conditional

correlation matrix estimator of the ECCC model, which includes the original CCC model.11

The first column of Figure 2.5 plots the estimated conditional standard deviations, covariances

and correlations obtained after fitting the CCC and ECCC models estimated EBE to the same

simulated system described in Appendix A, while the second column plots the real values versus

the estimated values considering alternative procedures. The errors in the conditional correlation

estimates of the CCC and ECCC models are notably greater than the errors of the full model.

However, when compared with the errors plotted in Figure 2.3, we can observe that the errors

are smaller than when the BEKK model is fitted and similar to those plotted in Figure 2.4 for the

DBEKK and SBEKK models. Furthermore, Figure 2.5 illustrates that the errors when fitting the

CCC and ECCC models are similar when looking at conditional correlations, but the ECCC model

have smaller errors than the CCC model for the conditional standard deviations of the second

series and for the conditional covariances.

Conrad and Karanasos (2010) propose a further extension that also allows for negative feed-

back among volatilities and derive necessary and sufficient conditions for the positive definiteness

of the covariance matrix. It is important to point out that Conrad and Karanasos (2010) claim that

their results are also valid for models in which the correlations are time-varying, which will be

considered latter in this thesis. Most of the results obtained by them are referred to bivariate

models. Whether they can be generalized for large systems is an open question.

DCC models

Assuming constant conditional correlations is not reasonable in many practical situations.

Consequently, several authors suggest models with time-varying conditional correlations. Be-
11Very recently, Chen (2015) propose an efficient method-of-moments based estimator of CCC models which is robust

to the unknown conditional distribution of financial returns.
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cause of its popularity, we focus on the (scalar) DCC model of Engle (2002) and its consistent

correction by Aielli (2013), known as cDCC, which is given by

Rt = diag(Qt)
−1/2Qt diag(Qt)

−1/2, (2.11)

Qt = (1− a− b)S + a diag(Qt−1)1/2ut−1u
′
t−1diag(Qt−1)1/2 + bQt−1, (2.12)

where Qt is an N ×N positive definite matrix, ut = (u1t, · · · , uNt)′ with uit = rit/
√
hiit being the

standardized correlated returns, S is the unconditional covariance matrix of diag(Qt−1)1/2ut and a

and b are scalars. A sufficient condition for the positivity of Ht is that all conditional variances are

positive, a, b > 0 and a+ b < 1. Aielli (2013) also proves that if S is positive definite and a+ b < 1,

the correlated and the standardized return processes are strictly and covariance stationary.

The parameters of the cDCC model can be estimated by the three-step (3s) estimator described

by Aielli (2013); see also Caporin and McAleer (2012) for a description of available asymptotic

results on the estimation of the parameters of DCC models. As argued by Franq and Zakoan (in

press), the asymptotic properties of the three-step estimator are an open issue. Although the three-

step estimator of the cDCC model overcomes the bias problem in the parameter S, this estimator

is still downward biased in high dimensions.12 Noureldin et al. (2014) also apply the rotation

technique to the DCC model of Engle (2002), resulting in the rotated DCC (RDCC) model.

We also consider the extended DCC (EDCC) model, where volatilities are given by equation

(2.10), assuming diagonal B and the conditional correlations are given by equations (2.11) and

(2.12). This model can also be estimated by the 3s estimator, with volatilities estimated by the EBE

estimator; see Franq and Zakoan (in press).

Next, we illustrate the performance of the cDCC and RDCC models when fitted to the simu-

lated system described in the Appendix A. The first column of Figure 2.5 plots, together with the

simulated conditional standard deviations, covariances and correlations and the estimates of the

CCC and ECCC models, the corresponding estimates obtained after fitting the cDCC and RDCC

models, while the second column plots the real values versus the estimated values. Note that

the conditional standard deviations of the CCC, cDCC and RDCC models are exactly the same

given that they are estimated separately in the first step. The cDCC and RDCC models seem to

have slightly larger errors than the VECH model, but lower errors than the CCC and ECCC mod-

12Pakel et al. (2014) propose the composite likelihood estimator, allowing to estimate models even when the cross-
sectional dimension is larger than the sample size. Alternatively, Hafner and Reznikova (2012) suggest a reduction of
the bias by using shrinkage techniques applied to the sample covariance matrix of the standardized residuals.
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els. Also, the RDCC and cDCC models tend to underestimate the correlations when they are large

and underestimate when they are small. On the other hand, the estimated conditional covariances

of the cDCC and RDCC models seem to be robust to the misspecification.

Equation (2.12) imposes a common dynamic structure for all conditional correlations, gov-

erned by the parameters a and b. This might not be realistic when pairwise correlations between

different returns have different behaviors. To avoid this constraint, several generalizations of the

DCC model of Engle (2002) have been proposed. For example, Billio et al. (2006) introduce a block-

diagonal structure, where the dynamics are restricted to be equal only among certain groups of

variables, and a BEKK structure on the conditional correlations is proposed. Bauwens el al. (in

press) estimate the cDCC model in (2.12) when a and b are replaced by matrices using a Bregman-

proximal trust-region method and conclude empirically that the use of richly parametrized mod-

els have better performance than the scalar case. Hafner and Franses (2009) also extend the DCC

model by allowing the parameters to vary across assets and Otranto (2010) proposes a cluster-

ing algorithm to identify similar structures of correlation dynamics in the DCC models. Finally,

several authors propose different short- and long-run sources that affect correlations; see, for ex-

ample, Colacito et al. (2011), Rangel and Engle (2012), Audrino and Trojani (2011) and Audrino

(2014). Also, Silvennoinen and Teräsvirta (2009b, 2015) propose the smooth transition conditional

correlation (STCC) model allowing the correlations to vary smoothly between two different states.

The cDCC model has been extended by Bauwens and Otranto (2013) to include volatility as

determinant of correlations by introducing measures of volatility as exogenous variables. On

the other hand, Palandri (2009) proposes breaking the conditional correlation matrices into the

product of a sequence of matrices in such a way that they preserve positive definiteness with-

out imposing constraints on the parameters. The sequential conditional correlations (SCC) model

separates the correlations and partial correlations, allowing for a multi-step estimation procedure.

Consequently, very complex optimization problems are converted into a series of mere univariate

and bivariate estimations, which enables working with very high dimensional systems and at the

same time complex functional forms for the conditional correlation process. However, the SCC

model still assumes that variances and correlations are not related between them. Finally, Boudt

et al. (2013) propose a robust extension of the model, known as BIP-cDCC model, for forecasting

correlations in the presence of one-off events which cause large changes in prices whilst not af-

fecting the volatility dynamics. They apply the new model to daily exchange rate returns of the

EUR and JPY against the USD and conclude that the BIP-cDCC model is always better or have
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similar performance in relation to the cDCC model when forecasting future covariance matrices

at different forecast horizons.

2.2.4. Factor models

There is a growing literature on multivariate conditionally heteroscedastic factor models; see

Engle et al. (1990), Alexander and Chibumba (1997) and van der Weide (2002) for early refer-

ences. In the (G)O-GARCH model, each series in the system is generated by an orthogonal

transformation of m (m ≤ N ) univariate GARCH-type processes, the unobserved factors. The

O-GARCH(1,1,m) model of Alexander (2001) is given by

Σ−1/2rt = Λmft, (2.13)

where the Λm is aN ×mmatrix given by Λm = PmL
1/2
m , with Lm = diag(l1 · · · , lm) such that l1 ≥

· · · ≥ lm > 0 are the m largest eigenvalues of the unconditional correlation matrix of et = Σ−1/2rt

and Pm is an orthogonal matrix of their associated eigenvectors. The vector ft = (f1t, · · · , fmt)′

is a random process with 0 conditional mean and diagonal conditional variance matrix, Gt, with

each element satisfying

g2
ii,t = (1− αi − βi) + αif

2
i,t−1 + βig

2
ii,t−1, (2.14)

for i = 1, · · · ,m. Hereafter, we denote O-GARCH as the O-GARCH(1,1,N ) model as it is the most

popular specification; see, for example, Noureldin et al. (2014).

In the GO-GARCH of Boswijk and van der Weide (2011), the singular value decomposition of

the matrix ΛN is used as a parametrization, i.e. ΛN = PNL
1/2
N U(δ), where U(δ) is parameterized

by a N(N − 1)/2-dimensional vector, δ, whose elements are rotation angles such that−180 ≤ δj ≤

180. The O-GARCH model corresponds to the particular case U(δ) = IN .

The estimation and asymptotic theory of the O-GARCH and GO-GARCH models is described

in Boswijk and van der Weide (2011) and Hafner and Preminger (2009a), respectively.

2.3. Monte Carlo simulation

In this section, we carry out Monte Carlo experiments to analyze the finite sample properties of

the estimated conditional variances, covariances and correlations obtained after fitting restricted

specifications to systems in which all variances and covariances are interrelated with each other.
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We also compare alternative methods to estimate the pseudo-parameters in the restricted specifi-

cations considered.

We simulate 500 replicates of sizes T = 1000 and 2000 by the VECH model in equations (2.1)

and (2.2) with N = 2 and 5 and Gaussian and Student-7 errors. The values of the parameters

used to generate the simulated systems are reported in the Appendix A. When dealing with the

bivariate system, we fit all the restricted models described in section 2 plus the VECH model

which is the true DGP. The parameters of each model are estimated using the alternative available

estimators considered. In this way, we can conclude about how the estimates of the conditional

variances, covariances and correlations are affected by the restrictions imposed by each model, as

well as the differences among alternative parameter estimators implemented to the same model.

Table 2.1 summarizes the models fitted, the estimators considered and the parameter restrictions

imposed in the bivariate case to ensure covariance stationarity and positivity. When dealing with

the system with N = 5, the parameters of the VECH model are difficult to be estimated. In this

case, we only fit the restricted models and estimate the parameters using those estimators which

are feasible.

Table 2.1: Restrictions imposed in the parameters

Model Estimators Stationarity Positivity
VECH G(S)-QML, CVT — —
DVECH G(S)-QML, CVT — —

LSW LSW estimation LSW estimation
BEKK G-QML, S-QML — model

CVT — —
DBEKK G-QML, S-QML a2i + b2i < 1, 0 < ai, bi < 1, C > 0 in (2.4)1 model

CVT — —
SBEKK G-QML, S-QML a2 + b2 < 1, 0 < a, b < 1, C > 0 in (2.4)2 model

CVT — —
D-RBEKK CVT, S-CVT a2i + b2i < 1, 0 < ai, bi < 1 in (2.5)1 a2i + b2i < 1, 0 < ai, bi < 1 in (2.5)1

S-RBEKK CVT, S-CVT a2 + b2 < 1, 0 < a, b < 1 in (2.5)2 a2 + b2 < 1, 0 < a, b < 1 in (2.5)2

O-GARCH G-QML αi + βi < 1, 0 < αi, βi < 1 in (2.14) αi + βi < 1, 0 < αi, βi < 1 in (2.14)
GO-GARGH G-QML αi + βi < 1, 0 < αi, βi < 1 in (2.14) αi + βi < 1, 0 < αi, βi < 1 in (2.14)
CCC G-2s, S-2s usual restrictions to fit GARCH usual restrictions to fit GARCH
ECCC G-2s, S-2s usual restrictions to fit aug-GARCH usual restrictions to fit aug-GARCH
cDCC G-3s, S-3s a+ b < 1, 0 < a, b < 1 in (2.12) and 3 a+ b < 1, 0 < a, b < 1 in (2.12) and 3

RDCC G-3s, S-3s a+ b < 1, 0 < a, b < 1 in (2.12) and 3 a+ b < 1, 0 < a, b < 1 in (2.12) and 3

EDCC G-3s, S-3s a+ b < 1, 0 < a, b < 1 in (2.12) and 4 a+ b < 1, 0 < a, b < 1 in (2.12) and 4

Notes: Summary of restrictions imposed when maximizing the bivariate likelihood to ensure covariance stationarity
(second row) and positivity (third row). model means that the positivity is ensured by the model parametrization and
— means that we do not restrict the parameters.
1 where ai and bi, i = 1, 2, are the diagonal elements of the A and B.
2 where a and b are given when the A and B matrices are replaced by these scalars.
3 the usual restrictions to estimate the GARCH(1,1) model in the first step.
4 the usual restrictions to estimate the augmented GARCH(1,1) model in the first step.

For each replicate and estimator considered, the performance of the estimated conditional co-
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variance and correlation matrices is measured by the following Frobenius norms

LF1 =

∑T
t=1 Tr[(Ĥt −Ht)

′(Ĥt −Ht)]

T
, LF2 =

∑T
t=1 Tr[(R̂t −Rt)

′(R̂t −Rt)]

T
, (2.15)

where Ĥt and R̂t are the estimated conditional covariance and correlation matrices at time t;

see Laurent et al. (2013) for a comprehensive list of different loss functions and their impacts on

ranking forecasting performances of MGARCH models.

2.3.1. Bivariate case

Table 2.2 reports the number of replicates of the bivariate system in which stationarity and pos-

itivity of covariances matrices are not empirically satisfied. We consider that a fitted model is not

positive for some replicate if at least one of the conditional covariance matrices is not positive de-

fined. On the other hand, we verify whether the parameter estimates satisfy the sufficient restric-

tions to ensure covariance stationarity. Note that, the estimated parameters of all rotated models,

the (G)O-GARCH model and the models based on representing conditional correlations always

satisfy the stationarity and positivity restrictions, as they are imposed in the estimation process.

Moving on to the results of the VECH and BEKK models, the stationarity conditions are violated

in a relatively large number of replicates when the parameters are estimated by QML. The num-

ber of violations of covariance stationarity increases when the DGP is the Student-7 VECH model,

regardless of whether the Gaussian or the Student likelihoods are maximized. Still, the number

of covariance stationarity violations decreases with the sample size. On the other hand, when the

parameters of the VECH and BEKK models are estimated by CVT, the estimates always satisfy

the covariance stationarity. However, the covariance matrix estimates by CVT are not positive in a

relative large number of replicates, while QML estimates are positive in the majority of the cases.

Finally, when the DVECH, DBEKK or SBEKK models are fitted, we can observe that, regardless

of the estimator, they always satisfy covariance stationarity and positivity restrictions, except in

some cases when the DGP is the Student-7 VECH model and the DVECH model is estimated by

G-QML or S-QML. It is important to emphasize that although the conditional covariances of the

BEKK, DBEKK and SBEKK models are positive by definition, when they are estimated by CVT

without restrictions, positivity is not ensured; see Caporin and McAleer (2012).

Table 2.2 also reports the average computer time involved in the estimation. In each estimation

that does not converge for an initial value, we try alternative initial values until it converges; see
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Table 2.2: Summary of bivariate Monte Carlo simulations

Stationarity Positivity Computer time
Model Estimator Gaussian Student-7 Gaussian Student-7 Gaussian Student-7

T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

VECH G-QML 15 5 65 30 2 0 5 0 28.8 57.2 31.4 58.4
S-QML 19 6 50 18 2 0 6 0 25.6 49.1 55.2 104.7
CVT 0 0 0 0 41 31 85 67 20.5 40.7 22.7 41.8

DVECH G-QML 0 0 21 3 0 0 0 0 9.4 20.3 11.8 21.6
S-QML 0 0 13 2 0 0 0 0 20.8 41.8 25.2 48.3
CVT 0 0 0 0 0 0 0 0 7.8 17.2 7.5 18.4
LSW — — 0.27 0.43 0.26 0.39

BEKK G-QML 15 9 96 57 — 17.2 34.7 17.0 30.5
S-QML 13 8 60 37 — 24.3 51.5 28.3 54.5
CVT 0 0 0 0 19 12 47 32 11.5 22.7 13.2 23.5

DBEKK G-QML — — 3.7 7.7 4.3 8.4
S-QML — — 6.2 12.5 9.5 17.2
CVT 0 0 0 0 0 0 0 0 3.6 4.8 3.0 5.3

SBEKK G-QML — — 2.7 6.2 2.7 5.8
S-QML — — 3.4 7.3 4.7 8.9
CVT 0 0 0 0 0 0 0 0 1.3 2.7 1.6 3.1

D-RBEKK CVT — — 1.6 3.1 1.6 3.0
S-CVT — — 3.2 6.6 4.2 7.8

S-RBEKK CVT — — 0.80 1.6 0.82 1.5
S-CVT — — 1.6 3.3 1.7 3.1

O-GARCH G-QML — — 1.3 2.3 1.3 2.4
GO-GARGH G-QML — — 3.1 5.9 3.1 5.9
CCC G-2s — — 0.23 0.33 0.23 0.34

S-2s — — 1.1 1.3 0.74 1.3
ECCC G-2s — — 1.2 2.1 1.3 2.3

S-2s — — 6.1 11.0 7.3 12.1
cDCC G-3s — — 1.1 1.7 1.2 1.8

S-3s — — 3.2 4.9 3.0 5.3
RDCC G-3s — — 1.2 2.0 1.3 2.1

S-3s — — 3.9 5.7 3.7 6.4
EDCC G-3s — — 2.1 3.3 2.2 3.9

S-3s — — 8.6 13.9 16.3 16.5

Notes: The Monte Carlo simulations are carried out considering four different DGP: Gaussian VECH and Student-7
VECH models and T1 = 1000 and T2 = 2000. It is considered 500 replications for each DGP. From the third to sixth and
from the seventh to tenth columns are the number of cases where the fitted model is not stationary and not positive,
respectively. model means that the positivity is ensured by the model parametrization. From the eleventh to fourteenth
columns are the mean time in seconds required to estimate the model.

Asai (2013) and Chrétien and Ortega (2014) for methods to choose initial values for the BEKK

and VECH models, respectively. It is obvious that CVT is faster than G-QML and S-QML with

G-QML being faster than S-QML. In the DVECH model, the LSW estimator is even faster. When

comparing the DBEKK and SBEKK models with their rotated versions, we can observe that the

computer time involved in the estimation of the rotated cases is lower and, in addition, they

ensure positivity and stationarity by imposing linear constraints in the estimation. Therefore, it

seems that it is worth using the rotated BEKK models rather than non-rotated BEKK models.

Table 2.3 reports the Monte Carlo averages of LF1 and LF2 of the replicates that satisfy positiv-

ity and covariance stationarity. We can see that the errors have similar values when the true DGP
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is fitted by QML and CVT, with CVT being, in general, slightly worse estimating correlations and

better estimating covariances. When the DGP is the Student-7 VECH model, the VECH estimated

by S-QML is slightly better than the VECH estimated by G-QML or by CVT. Moving on to the

restricted misspecified models, we observe that, for a given model, different estimators lead to

similar results. Therefore, there are not large differences when alternative parameter estimators

are implemented to the same model specification.

Table 2.3: Summary of the results of bivariate Monte Carlo simulations based on the LF statistics

Gaussian Student-7
Model Estimator T = 1000 T = 2000 T = 1000 T = 2000

LF1 LF2 LF1 LF2 LF1 LF2 LF1 LF2

VECH G-QML 3.00 0.72 2.53 0.32 3.24 0.66 3.07 0.32
S-QML 3.03 0.72 2.55 0.32 2.73 0.61 2.62 0.30

CVT 2.75 0.79 2.47 0.38 2.81 0.75 3.04 0.56
DVECH G-QML 5.24 0.91 6.70 0.76 4.97 0.89 6.97 0.75

S-QML 5.25 0.91 6.73 0.76 4.77 0.80 6.91 0.68
CVT 5.50 1.08 6.40 0.95 5.00 1.05 6.43 0.92
LSW 5.82 2.34 6.45 2.15 5.12 2.20 7.06 2.42

BEKK G-QML 8.78 3.13 8.93 3.10 8.28 3.29 10.0 3.20
S-QML 9.17 3.07 8.88 3.01 7.77 2.92 9.21 2.74

CVT 8.20 3.16 8.89 3.03 7.82 3.37 10.4 3.19
DBEKK G-QML 5.75 2.27 7.10 2.50 5.34 2.20 7.09 2.39

S-QML 5.70 2.19 7.01 2.38 4.75 1.95 6.29 2.09
CVT 5.21 2.31 6.67 2.51 4.67 2.31 6.44 2.55

SBEKK G-QML 5.22 2.52 6.66 2.66 4.32 2.38 6.37 2.52
S-QML 5.16 2.42 6.56 2.55 4.04 2.08 5.82 2.19

CVT 4.75 2.69 6.29 2.83 3.81 2.72 5.67 2.88
D-RBEKK G-CVT 5.06 2.57 6.56 2.75 4.35 2.61 6.36 2.82

S-CVT 5.06 2.55 6.55 2.74 4.22 2.55 6.03 2.75
S-RBEKK G-CVT 4.75 2.69 6.29 2.83 3.81 2.72 5.67 2.88

S-CVT 4.77 2.67 6.29 2.81 3.80 2.65 5.62 2.81
O-GARCH G-QML 7.52 3.13 9.86 3.22 6.74 3.06 9.83 3.17
GO-GARCH G-QML 8.76 2.34 11.0 2.32 6.87 2.68 9.97 2.89
CCC G-2s 5.00 1.74 5.98 1.76 4.56 1.86 6.58 1.92

S-2s 5.09 1.74 6.06 1.76 4.28 1.85 6.08 1.91
ECCC G-2s 5.44 1.74 4.08 1.76 5.05 1.85 4.85 1.91

S-2s 4.77 1.74 3.86 1.76 3.83 1.85 3.94 1.91
cDCC G-3s 4.05 1.01 4.69 0.88 3.99 1.22 5.47 1.15

S-3s 4.13 1.01 4.75 0.87 3.69 1.20 4.85 1.11
RDCC G-3s 4.04 1.00 4.69 0.87 3.99 1.20 5.46 1.13

S-3s 4.10 0.99 4.76 0.86 3.67 1.17 4.88 1.10
EDCC G-3s 3.79 1.00 2.90 0.85 4.50 1.22 3.99 1.14

S-3s 3.93 0.99 2.68 0.84 3.26 1.18 2.92 1.10

Notes: This Table reports the means of the LF statistics for the conditional covariances (1) and correlations (2) matrices
through the Monte Carlo replicates whose all of the models give only positive volatilities and ensure stationarity. These
statistics are evaluated after fitting alternative bivariate MGARCH models by different estimation procedures when the
DGP is the Gaussian VECH and Student-7 VECH models with paramaters given in subsection 2.2.1, considering sample
sizes T = 1000 and 2000. After the exclusions of non-positive and non-stationary models, it remains 459, 475, 365 and
422 replicates for Gaussian with T = 1000, Gaussian with T = 2000, Student-7 with T = 1000 and Student-7 with
T = 2000, respectively. The LF1 and LF2 statistics are in the scale×10−9 and×10−2, respectively. In bold, it is the best
model.
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Hereafter, we focus on comparing different restricted models. First, we observe that although

the DVECH model has a LF1 statistic much larger than when the true VECH model is fitted, this

difference is not so large when estimating correlations. We also note that increasing the sample

size from T = 1000 to 2000, reduces the LF2 when the true model is fitted but not necessarily

when the DVECH model if fitted. Second, the errors corresponding to the BEKK model are much

larger compared to the DVECH model. However, when fitting the more restrictive DBEKK model,

the results are improved with respect to its full version. Surprisingly, when the more restrictive

SBEKK model is fitted, the results are even better for conditional covariance matrices. Note that

Rossi and Spazzini (2010) also find the counterintuitive result that the SBEKK model has a bet-

ter performance than the less restrictive DBEKK model. We also note that the performance of

the DVECH model is similar to the restricted BEKK-type models when estimating covariances

and better when estimating correlations. Third, the rotation of BEKK-type models only improves

marginally the estimated covariance matrices of the DBEKK and SBEKK models. However, the

computer time involved in the estimation of the rotated cases is lower and the rotated models en-

sure positivity of covariance matrices and covariance stationarity; see Table 2.1. Finally, when the

O-GARCH and GO-GARCH models are fitted, the restrictions imposed in these models generate

estimates of conditional variances, covariances and correlations with larger distances than those

of the DVECH or restricted BEKK-type models.

Turning now to the results of the models that represent the dynamics of conditional correla-

tions, we can see that the errors corresponding to the cDCC and RDCC models are very similar

between them and similar, in terms of correlations, to the DVECH model. On the other hand, the

dynamic correlation models are much better than the DVECH model and BEKK-type models in

terms of covariances. When estimating covariances, the ECCC and cDCC models are comparable

and the difference with respect to the true DGP is 50%. When estimating correlations, the EDCC,

cDCC and RDCC models remarkably outperform the constant correlation models. Finally, the

EDCC is better than the cDCC and RDCC in relation to LF1 statistic.

To summarize the results, Figure 2.6 presents 95% non-parametric confidence intervals of the

rank average of the each fitted model, where the rank for each replicate is equal to 1 for the best

fitted model according to LF1 (or LF2) and equal to 32 for the worst one. Once again, we see that

the ranks are very similar when the parameters of a particular model are estimated by different

estimators and that the ranks of the BEKK, CCC and O-GARCH models are always worse than

those of the DCC models.
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As conclusion, for the set of parameters considered in the simulation, the restrictions imposed

by a misspecified model are much more relevant than the choice of the estimation method. More-

over, all alternative models have notably inferior performances in relation to the VECH model,

specially when T = 2000, and among the alternative models, the cDCC, RDCC and EDCC mod-

els have, in general, a superior performance. Indeed, Laurent et al. (2012) conclude empirically

that it is very difficult to outperform the DCC model after comparing 125 models fitted to fore-

cast the correlations of a system of 10 assets from the New York Stock Exchange. Caporin and

McAleer (2014) also support empirically the preference for correlation models over covariance

models when analyzing different cross-sectional dimensions from 5 up to 89 assets.

2.3.2. Five-dimensional case

Following the same procedure of the previous subsection, we simulate a five-dimensional

VECH model, where all volatilities, conditional covariances and correlations are related with

other. The VECH and BEKK models and the DVECH and DBEKK models estimated by QML

are not considered as their estimation is unfeasible when N = 5. All the other fitted models are

covariance stationary and positive. Table 2.4 reports the Monte Carlo averages of LF1 and LF2.

The conclusions are very similar to those of bivariate case. In particular, the O-GARCH and GO-

GARCH models are not good and the dynamic conditional correlation models outperform the rest

of the models. Regardless of the sample size and error distribution, the LF1 and LF2 distances are

minimum when the EDCC model if fitted. Figure 2.7 presents the 95% confidence intervals of the

ranks of the alternative models and estimators through the Monte Carlo replicates. Once more,

the models based on correlations are ranked best in relation the those based in covariances. In

particular, the DCC models have better performance than the CCC models, with the EDCC model

being the winner.

2.4. Empirical application

In this section, we compare empirically the performance of several MGARCH models fitted to

a system of five exchange rate returns, namely EUR, GBP, CHF, AUD and JPY against the USD.

The data are daily closing exchange rates observed at 12:00 AM (New York time) from January 2,

2004 to December 31, 2013, with a total of 2582 daily observations. We define the exchange rate

returns as usual by ri,t = 100× log(yi,t/yi,t−1), i = 1, 2, · · · , 5, where yi,t is the daily exchange rate
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Table 2.4: Summary of the results of five-dimensional Monte Carlo simulations based on the LF statistics

Gaussian Student-7
Model Estimator T = 1000 T = 2000 T = 1000 T = 2000

LF1 LF2 LF1 LF2 LF1 LF2 LF1 LF2

DVECH LSW 1.03 2.15 1.29 2.04 2.18 2.54 2.59 2.60
DBEKK CVT 1.16 1.93 1.47 2.05 2.39 2.21 2.97 2.38
SBEKK G-QML 1.49 2.16 1.63 2.26 3.50 2.42 3.53 2.56

S-QML 1.35 1.93 1.55 2.02 3.21 1.94 3.02 2.04
CVT 1.17 2.10 1.50 2.21 2.38 2.38 3.01 2.53

D-RBEKK G-CVT 1.16 2.03 1.46 2.14 2.40 2.33 2.98 2.48
S-CVT 1.15 1.93 1.46 2.03 2.38 2.14 2.95 2.26

S-RBEKK G-CVT 1.17 2.10 1.50 2.21 2.38 2.38 3.01 2.53
S-CVT 1.17 2.00 1.51 2.10 2.42 2.19 3.05 2.31

O-GARCH G-QML 3.56 15.8 4.25 15.33 6.46 17.5 7.94 17.4
GO-GARCH G-QML 2.04 7.04 2.68 6.43 3.85 7.71 5.07 7.66
CCC G-2s 0.78 1.81 0.98 1.75 1.78 1.97 2.31 1.95

S-2s 0.79 1.80 0.98 1.74 1.67 1.93 2.28 1.92
ECCC G-2s 0.68 1.79 0.66 1.73 1.34 1.92 1.36 1.91

S-2s 0.59 1.78 0.62 1.73 1.15 1.91 1.17 1.90
cDCC G-3s 0.55 0.77 0.67 0.67 1.46 1.03 1.87 0.96

S-3s 0.55 0.77 0.68 0.67 1.35 1.02 1.83 0.96
RDCC G-3s 0.54 0.76 0.67 0.67 1.45 1.02 1.86 0.96

S-3s 0.54 0.76 0.67 0.67 1.34 1.01 1.82 0.95
EDCC G-3s 0.45 0.74 0.36 0.65 1.06 0.98 0.89 0.92

S-3s 0.38 0.73 0.31 0.64 0.87 0.97 0.69 0.91

Notes: This Table reports the means through the Monte Carlo replicates of the LF statistics for the conditional co-
variances (1) and correlations (2) matrices after fitting alternative MGARCH models by different estimation proce-
dures when the DGP is the five-dimensional Gaussian VECH and Student-7 VECH models, considering sample sizes
T = 1000 and 2000 and 500 replications. The LF1 and LF2 statistics are in the scale ×10−7 and ×10−1, respectively. In
bold, it is the best model.

of the i-th series at time t. Figure 2.8 plots the returns for the full sample period, which is split

into estimation in-sample and forecast out-of-sample periods. The out-of-sample period spans

from January 2, 2013 to December 31, 2013 with H = 258 forecasts. Table 2.5 reports descriptive

statistics and the 20-lag Ljung-Box statistics for returns (Q(20)) and squared returns (Q2(20)) for

the overall, in-sample and out-of-sample periods. The traditional features of returns like approx-

imately zero mean, skewness and excess of kurtosis are present in all the currencies and for most

periods. According to the Ljung-Box statistics, the returns and squared returns are significantly

autocorrelated for the overall and in-sample periods. Although the Ljung-Box statistic for serial

correlation of returns is significant, an analysis of the sample autocorrelation functions shows that

the magnitudes of the correlations are very small, and generally not significant in the first two

lags and multiple of five lags. Consequently, we fit MGARCH models without any dependence in

the conditional mean. As an illustration, Figure 2.9 plots the estimated pairwise conditional cor-
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relation between GBP and CHF and between AUD and JPY after fitting the R-DBEKK and cDCC

models. We can observe that the correlations estimated by these models could be rather different

in some particular periods.

Table 2.5: Descriptive statistics of daily returns of the series considered in the application

Currency Mean Min Max Var Skew Kurt Q(20) Q2(20)
Panel A: Full sample, January 2, 2004 – December 31, 2013
EUR 0.0034 -3.84 4.62 0.41 0.123∗ 3.054∗∗∗ 16.9 39.2∗∗∗

GBP -0.0030 -3.92 4.47 0.40 -0.079 4.181∗∗∗ 77.0∗∗∗ 1359.6∗∗∗

CHF 0.0128 -8.48 5.45 0.50 -0.514∗∗∗ 11.11∗∗∗ 36.5∗∗ 45.3∗∗∗

AUD 0.0067 -8.83 6.70 0.86 -0.950∗∗∗ 12.35∗∗∗ 46.6∗∗∗ 2610.5∗∗∗

JPY 0.0004 -5.17 3.81 0.46 0.072 4.270∗∗∗ 42.7∗∗∗ 738.1∗∗∗

Panel B: In-sample, January 2, 2004 – December 31, 2012
EUR 0.0019 -3.84 4.62 0.43 0.139∗ 2.987∗∗∗ 19.8 37.5∗∗

GBP -0.0042 -3.92 4.47 0.42 -0.072 4.103∗∗∗ 75.6∗∗∗ 1194.3∗∗∗

CHF 0.0130 -8.48 5.45 0.52 -0.541∗∗∗ 11.28∗∗∗ 34.3∗∗ 46.4∗∗∗

AUD 0.0138 -8.83 6.70 0.91 -0.955∗∗∗ 12.07∗∗∗ 49.5∗∗∗ 2353.6∗∗∗

JPY 0.0089 -5.17 3.81 0.44 0.098 4.698∗∗∗ 54.3∗∗∗ 778.4∗∗∗

Panel C: Out-of-sample, January 2, 2013 – December 31, 2013
EUR 0.0171 -1.72 1.45 0.23 -0.187 0.963∗∗ 40.7∗∗∗ 26.9
GBP 0.0073 -1.27 1.36 0.21 -0.180 0.301 17.6 19.7
CHF 0.0112 -1.74 1.73 0.31 0.097 0.609∗ 33.1∗∗ 12.2
AUD -0.0577 -3.77 1.52 0.40 -0.802∗∗∗ 4.118∗∗∗ 24.6 19.4
JPY -0.0756 -3.42 2.81 0.59 -0.008 1.717∗∗∗ 13.3 15.5

Notes: This Table reports daily summarizing statistics for the returns of Euro (EUR), British Pound (GBP), Swiss Franc
(CHF), Australian Dollar (AUD) and Japanese Yen (JPY) against the US Dollar (USD): mean, minimum (Min), maximum
(Max), variance (Var), skewness (Skew), excess of kurtosis (Kurt) and Ljung-Box for returns (Q(20)) and squared returns
(Q2(20)). The top panel corresponds to the full sample period; the second panel to the in-sample period; and the third
panel to the out-of-sample period. ∗, ∗∗ and ∗∗∗ mean significant at 10%, 5% and 1% levels for the skewness, excess of
kurtosis and Ljung-Box asymptotic tests.

The out-of-sample forecasts are evaluated using the rolling scheme procedure of Giacomini

and White (2006) and described as follows. For each model and estimation method, we denote

by W1 the first window which incorporates the first T1 observations and by θ̂1 the corresponding

parameter estimates, and compute h-step-ahead forecasts for h = 1, 5, 20. For the next four win-

dows, W2 toW5, we add a new observation, one by one, and use the estimate θ̂1 from the previous

window, i.e., θ̂5 = · · · = θ̂2 = θ̂1 to compute the forecasts. For windowW6, we add the (T1 +5)−th

observation and drop the first five observations to obtain the new parameter estimate, θ̂6. For the

next four windows, we repeat the same procedure used for windows W2 to W5. Then, we repeat

this whole procedure until the last window W258.

In order to compare the out-of-sample forecasts, we evaluate the out-of-sample negative log-
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likelihood (NL), used by Audrino (2014), which is given by

NL(h) = −
H−h∑
i=0

log[L(rT+i+h; θ̂i+1, ĤT+i(h))], (2.16)

where L(.; .) is the conditional likelihood, which can be Gaussian or Student, and ĤT+i(h) is the

h-step-ahead forecast of HT+i+h for h = 1, 5, 20. The prediction ĤT+i(h) is obtained using ob-

servations up to T + i and θ̂i+1. This method is reasonable to compare the predictive accuracy of

models since the parameters of the models are estimated in-sample using the same functions. Fur-

thermore, the NL has the strength of not considering any proxies for the unobservable covariance

matrices.

The comparison of models is also carried out using the following Frobenius loss functions

LF1(h) =

∑H−h
i=0 Tr[(HT+i+h − ĤT+i(h))′(HT+i+h − ĤT+i(h))]

H − h+ 1
, (2.17)

LF2(h) =

∑H−h
i=0 Tr[(RT+i+h − R̂T+i(h))′(RT+i+h − R̂T+i(h))]

H − h+ 1
. (2.18)

As the true covariance and correlation matrices, Ht and Rt, respectively, are unobservable, we use

the realized variances, covariances and correlations as a proxy; see Patton and Sheppard (2009)

for the value of high-precision proxies for the evaluation of volatilities and conditional correlation

forecasts. It is widely recognized that the estimation of realized covariances and correlations suf-

fers from asynchronous trading and market microstructure noise, causing the covariance and cor-

relation estimators to be biased and inconsistent; see, for instance, McAleer and Medeiros (2008),

Patton (2011) and Corsi and Audrino (2012). We sample the intraday returns into 288 five-minute

intervals13 to avoid the asynchronous effect and compute the realized covariance by the realized

outlyingness weighted covariance (rOWCov) of Boudt et al. (2011).14

Finally, we perform the superior predictive ability (SPA) test of Hansen (2005) and the model

confidence set (MCS) of Hansen et al. (2011) to verify whether the performance of alternative mod-

els and methods are significantly different according to the NL and LF criteria.15 The first test

allows for multiple comparison against a pre-specified benchmark model, with the null hypoth-

esis being that each model is not outperformed by at least one of the other competing models.

13We also compute the realized covariances using ten-minute and thirty-minute intervals with similar results.
14 The proxies are estimated in R by the package highfrequency.
15We compute the SPA test and MSC using the Sheppard’s MFE Toolbox package, written in MATLAB, by consider-

ing 10,000 bootstrap replications and block length of 6. The results do not change when we change the block length to
3 or 9. The MSC is constructed using the R method within the MFE Toolbox package.
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The second one chooses from an initial set, a subset of forecasts that outperforms all the other

alternatives.

Table 2.6 reports the observed NL, LF1 and LF2 loss functions, the corresponding p-values

of the SPA tests and the MCS with α = 10% significance level for the different models and esti-

mation methods considered. According to the NL criteria, the models estimated by maximizing

the Student likelihood have notably better performance than models estimated by maximizing

the Gaussian likelihood for the three forecasting horizons. Indeed, with the exception of the CCC

model, all the models estimated by Student likelihood are not significantly outperformed in the

SPA test at 5% confidence level, while all the models estimated by Gaussian likelihood are out-

performed for one- and twenty-step-ahead. According to LF1 and LF2 loss functions, the models

estimated by Student likelihood have in general a better performance in relation to the models

estimated by Gaussian likelihood. However, the difference between the estimation methods are

not as large as in the case of NL.

The full-sample period is also split into two other in-sample and out-of-sample periods, such

that the resulting second and third out-of-sample periods are from January 2, 2008 to December 31,

2013, withH = 1550; and from January 2, 2009 to December 31, 2013, withH = 1291, respesctively.

In the second split, the estimation period is a low volatility period and has low heteroscedasticity,

whereas the forecasting period has extreme market conditions and large heteroscedasticity. In the

last split, both the in-sample and out-of-sample periods have periods of low and high volatilities.

Table A.1 reports the performance of the alternative models and estimators considered when im-

plemented to forecast volatilities, covariances and correlations during the out-of-sample periods

corresponding to the second and third splits. Given that we do not have high frequency data

for these periods, Table A.1 only reports the results corresponding to the out-of-sample negative

log-likelihood. Once again, the SBEKK model and the DCC models estimated by maximizing the

Student likelihood are the best models.

When looking at the results forNL, we can observe that the SBEKK and the three DCC models

estimated by maximizing the Student likelihood are included in the MCS for all horizons. How-

ever, when looking at the LF1 loss for covariances and LF2 loss for correlations, the BEKK-type

models are not included in the MCS and only the DCC, RDCC and EDCC models are selected.

Noureldin et al. (2014) also conclude that the RDCC is better than the RBEKK, O-GARCH and GO-

GARCH models. Finally, Francq and Zakoan (in press) also reject empirically the BEKK model.
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2.5. Concluding remarks

In this Chapter we discuss the main strengths and limitations of the most popular symmetric

multivariate GARCH models available in the literature. A simulation study is carried out to com-

pare different restricted specifications and estimators, when the series are generated by the gen-

eral VECH model. The DCC models explain adequately the evolution of volatilities, conditional

covariances and correlations generated by the general model. However, the BEKK, O-GARCH

and GO-GARCH fail to estimate conditional covariances and correlations. We emphasize that

although the BEKK(1,1,K) is as general as the VECH model in the bivariate case, it is strongly

restricted when K = 1, as usually considered in empirical applications. In this way, it is advisable

to fit the restricted DBEKK or SBEKK models, or their rotated versions. We conclude that the per-

formance of the forecasts of volatilities, conditional covariances and correlations are similar for a

given model regardless of the particular procedure used to estimate the parameters. Therefore,

we advise choosing the estimation method based on computational advantages. An empirical ap-

plication to a five-dimensional system of exchange rates returns is carried out. We conclude that

the SBEKK model estimated by S-QML and the DCC models estimated by S-QML have a reason-

able forecast performance according to the negative log-likelihood criterion, while the three DCC

models outperform all the other models according to the LF criteria.
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Figure 2.1: Plot of estimated conditional covariances and correlations of the VECH model

First column: simulated conditional standard deviations (first two rows), covariances (third row) and correlations
(fourth row) of the VECH series together with the corresponding estimates obtained after fitting the VECH model by
QML and VT. Second column: corresponding simulated vs fitted values.



34 CHAPTER 2. MGARCH

0 100 200 300 400 500 600 700 800 900 1000

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Time

Es
tim

at
ed

 c
on

di
tio

na
l s

ta
nd

ar
d 

de
vi

at
io

n 
of

 th
e 

se
rie

s 
1

 

 
DVECH−LSW
DVECH−VT
DVECH−QML
real cond. sd

0.01 0.015 0.02 0.025 0.03 0.035 0.04

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Real conditional standard deviation

Es
tim

at
ed

 c
on

di
tio

na
l s

ta
nd

ar
d 

de
vi

at
io

n 
of

 th
e 

se
rie

s 
1

 

 
DVECH−LSW
DVECH−VT
DVECH−QML

0 100 200 300 400 500 600 700 800 900 1000
0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

Time

Es
tim

at
ed

 c
on

di
tio

na
l s

ta
nd

ar
d 

de
vi

at
io

n 
 o

f t
he

 s
er

ie
s 

2

 

 
DVECH−LSW
DVECH−VT
DVECH−QML
real cond. sd

0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026
0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

Real conditional standard deviation

Es
tim

at
ed

 c
on

di
tio

na
l s

ta
nd

ar
d 

de
vi

at
io

n 
 o

f t
he

 s
er

ie
s 

2

 

 
DVECH−LSW
DVECH−VT
DVECH−QML

0 100 200 300 400 500 600 700 800 900 1000

0

1

2

3

4

5

6

7
x 10−4

Time

Es
tim

at
ed

 c
on

di
tio

na
l c

ov
ar

ia
nc

e 
be

tw
ee

n 
th

e 
se

rie
s

 

 
DVECH−LSW
DVECH−VT
DVECH−QML
real cond. cov.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10−4

0

1

2

3

4

5

6

7
x 10−4

Real conditional covariance

Es
tim

at
ed

 c
on

di
tio

na
l c

ov
ar

ia
nc

e 
be

tw
ee

n 
th

e 
se

rie
s

 

 
DVECH−LSW
DVECH−VT
DVECH−QML

0 100 200 300 400 500 600 700 800 900 1000

−0.2

0

0.2

0.4

0.6

0.8

Time

Es
tim

at
ed

 c
on

di
tio

na
l c

or
re

la
tio

n 
be

tw
ee

n 
th

e 
se

rie
s

 

 
DVECH−LSW
DVECH−VT
DVECH−QML
real cond. corr.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Real conditional correlation

Es
tim

at
ed

 c
on

di
tio

na
l c

or
re

la
tio

n 
be

tw
ee

n 
th

e 
se

rie
s

 

 
DVECH−LSW
DVECH−VT
DVECH−QML

Figure 2.2: Plot of estimated conditional covariances and correlations of the DVECH model

First column: simulated conditional standard deviations (first two rows), covariances (third row) and correlations
(fourth row) of the VECH series together with the corresponding estimates obtained after fitting the DVECH model by
QML, VT and LSW. Second column: corresponding simulated vs fitted values.
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Figure 2.3: Plot of estimated conditional covariances and correlations of the BEKK model

First column: simulated conditional standard deviations (first two rows), covariances (third row) and correlations
(fourth row) of the VECH series together with the corresponding estimates obtained after fitting the BEKK by QML
and VT. Second column: corresponding simulated vs fitted values.
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Figure 2.4: Plot of estimated conditional covariances and correlations of the DBEKK and SBEKK models

First column: simulated conditional standard deviations (first two rows), covariances (third row) and correlations
(fourth row) of the VECH series together with the corresponding estimates obtained after fitting the DBEKK, SBEKK
and D-RBEKK and S-RBEKK models. Second column: corresponding simulated vs fitted values.
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Figure 2.5: Plot of estimated conditional covariances and correlations of the CCC and DCC models

First column: simulated conditional standard deviations (first two rows), covariances (third row) and correlations
(fourth row) of the VECH series together with the corresponding estimates obtained after fitting the CCC, ECCC,
cDCC and RDCC models. Second column: corresponding simulated vs fitted values.
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Figure 2.6: Multiple comparison based on Friedman test for bivariate Monte Carlo simulations

Multiple comparison based on Friedman test for the simulation described in Table 2.2. Results for LF1 and LF2 on
the left and right columns, respectively. The first two rows are for Gaussian and the last two for Student-7 error
distributions. Results for sample size T = 1000 (2000) are presented in the first and third (second and fourth) rows.
The 95% confidence interval are for the average rank of the estimation method. In black is the confidence interval for
the reference method. Methods which are statistically different are in red, while the others are in blue.
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Figure 2.7: Multiple comparison based on Friedman test for five-dimensional Monte Carlo simulations

Multiple comparison based on Friedman test for the simulation described in Table 3. Results for LF1 and LF2 on
the left and right columns, respectively. The first two rows are for Gaussian and the last two for Student-7 error
distributions. Results for sample size T = 1000 (2000) are presented in the first and third (second and fourth) rows.
The 95% confidence interval are for the average rank of the estimation method. In black is the confidence interval for
the best model (EDCC). Methods which are statistically different are in red, while the others are in blue.
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Figure 2.8: Plot of return series of the currencies considered in application

Return series of the Euro (first row), British Pound (second row), Swiss Franc (third row), Australian Dollar (fourth
row) and Japanese Yen currencies (fifth row) against the US Dollar currency in the period starting on January 2, 2004
and ending on December 31, 2013, for a total of 2581 daily observations.
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Figure 2.9: Plot of estimated conditional correlations between currencies

Pairwise conditional correlations between GBP and CHF (top panel) and AUD and JPY (bottom panel) series after being
estimated by the R-DBEKK and cDCC models.
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Chapter 3

Combining State-Dependent Forecasts of

Equity Risk Premium

3.1. Introduction

The predictability of the equity market return in excess of the risk-free interest rate plays an

important role in several financial applications such as asset pricing, asset allocation and risk

management. There is convincing evidence to date that a host of macroeconomic variables have

in-sample predictive power for the equity premia; see, for example, Fama and French (1988),

Lettau and Ludvigsson (2001) and Ang and Bekaert (2002, 2007). However, a degree of skepti-

cism remains as regards the out-of-sample predictability of the equity premium; see, for instance,

Bossaerts and Hillion (1999), Goyal and Welch (2003) and Butler et al. (2005). In particular, Welch

and Goyal (2008) document that most macroeconomic predictors fail to beat the simple histori-

cal average benchmark in out-of-sample forecasting exercises and recommend researchers to ex-

plore alternative predictors and/or more sophisticated forecasting methods. Consequently, recent

studies have tried to find alternative forecasting methods that provide statistical and economic ev-

idence of out-of-sample predictability; see Campbell and Thompson (2008), Rapach et al. (2010),

Ferreira and Santa-Clara (2011) and Pettenuzzo et al. (2014). In a recent study, Neely et al. (2014)

show that technical indicators contain predictive information for the equity risk premium and that

they are not encompassed by macroeconomic variables.

This thesis contributes to the stock return forecasting literature by constructing parsimonious

regime-switching predictive regressions where the equity premium can have two different states.

Although the traditional works assume that equity premia are generated by a linear process with

43
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stable coefficients on macroeconomic variables, recent literature indicates that asset returns fol-

low a complex process with more than one regime; see, for example, Turner et al. (1989), Garcia

and Perron (1996), Perez-Quiros and Timmermann (2000), Ang and Bekaert (2002, 2007), Ang

and Chen (2002), Guidolin and Timmermann (2006a,b) and Pettenuzzo and Timmermann (2011).

In particular, Tu (2010) concludes that the certainty-equivalent losses associated with ignoring

regime switching are generally above 2% per year. Furthermore, Henkel et al. (2011), Dangl and

Halling (2012), Gargano and Timmermann (2012), Neely et al. (2014), among many others find that

numerous predictors tend to give stronger signals during recessions than expansion. Jacobsen et

al. (2014) find an even more strong evidence when considering industrial metals prices as predic-

tors, which are strongly positive related with future equity premia in recessions and strongly neg-

ative related in expansions. From a theoretical point of view, the intertemporal asset pricing model

of Merton (1973) indicates that time-varying risk aversion may imply a time-varying dependence

between stock returns and macroeconomic predictors. More recently, Bali (2008) proves that rel-

ative risk aversion coefficients are unstable, suggesting that predictability could be time-varying.

On the basis that predictability changes over time, some authors (see, for example, Guidolin and

Timmermann (2007), Henkel et al. (2011), Dangl and Halling (2012) and Zhu and Zhu (2013))

provide equity premium forecasting strategies using regime-switching, where each regime is un-

observable. We propose a more parsimonious approach to construct regime-switching models to

forecast equity premia. We rely on the technical variables of Neely et al. (2014) as proxy of the cur-

rent state of economy and allow each macroeconomic variable at hand to be interacted with this

state variable; thus, the equity premium predictability becomes state-dependent. Our method-

ology is very simple and easy to be interpreted. We analyze the performance of our forecasting

strategy by estimating predictive regressions for S&P 500 equity premium. Using conventional

statistical and economic measures, we conclude that the combining regime-switching predictive

regressions deliver stable out-of-sample forecasting gains compared to the historical average, tra-

ditional regressions based on macroeconomic or technical variables and combining single-state

models.

Our second contribution of this Chapter is to propose a novel sparse forecast combination

method. Since the seminal paper of Bates and Granger (1969), the idea of forecast combination

has received ample support from successful economics and finance applications; see Stock and

Watson (1999, 2003, 2004) who combine forecasts of inflation and real output growth with impli-

cations for macroeconomic policy-making, Fuertes and Olmo (2013) who combine intra-day and
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inter-day forecasts of Value-at-Risk for risk management and Caldeira et al. (2015) who combine

high dimensional multivariate volatility forecasts using economic criteria based on portfolio se-

lection. This method accounts for model uncertainty and incorporates information from several

variables, which reduces forecast volatility. In the equity risk premium context, the notion of fore-

casting combination is first explored by Rapach et al. (2010) who combine forecasts from assorted

univariate macroeconomic regression models. Elliott et al. (2013) further extend this work by aver-

aging forecasts across complete subset regressions with the same number of predictive variables.

The combining approaches of Rapach et al. (2010) and Elliott et al. (2013) are based either on equal

weights or estimated weights over an estimate period. They conclude that the EW combining

forecasts are not worse than combining forecasts using estimated weights. However, numerous

authors suggest that a selection of relevant variables is suitable before using combining methods,

given the relative large collection of macroeconomic variables typically employed as candidate

predictors and the large degree of co-movement between them. For example, Bai and Ng (2008),

Dobreva and Schaumburg (2013) and Fuentes et al. (2015) combine a variable selection process

with factor models and argue that more variables do not necessarily yield better forecasts. Based

on the last three references, we extend their sparse combining approach to equity premium fore-

cast. A in-sample significance test of (joint) predictability is employed as a threshold rule to select

which of the individual models will be considered or excluded in the combining forecasts. Then,

the one-step-ahead forecast is given by the mean average of forecasts from models where the null

hypothesis of zero slope coefficient(s) is not rejected statistically under a selected level. Our results

show that our SPAR method is a good alternative to the EW combining approach.

The rest of this Chapter is organized as follows. Section 3.2 presents the econometric methodol-

ogy and describes our macroeconomic and technical data set, while Section 3.3 outlines statistical

and economic measures of forecasting performance. Section 3.4 carries out an empirical analysis

of the US equity premium. Finally, Section 3.5 concludes.

3.2. Forecasting methodology

This section describes the forecasting strategies and variables considered in this thesis.
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3.2.1. Predictive variables: Macroeconomic and technical indicators

The most widely-used predictive regression for the equity risk premium can be formalized as

rt+1 = αi + βixi,t + εt+1, (3.1)

where rt+1 is the continuously compounded return (including dividends) in excess of the risk-

free interest rate, xi,t is the i-th macroeconomic variable at time t, εt+1 is a zero-mean error, and

t = 1, 2, · · · , T are the sample months. Denoting by Et(·) the conditional expectation based

on the information until time t, one forecast of the one-month-ahead equity risk premium is

r̂t+1 = Et(rt+1) = Et(αi+βixit+εt+1) = αi+βixit. A simple no-predictive benchmark is obtained

by imposing βi = 0 in Equation (3.1), which results in the constant expected equity risk premium

model, with the one-month-ahead forecast given by the historical average (HA) of excess returns

from months 1 to t, i.e., r̄t+1 = (
∑t

i=1 ri)/t. If xi,t contains predictive information for the equity

risk premium, then r̂t+1 should outperform r̄t+1. The reason on why assorted macroeconomic

variables, such as the dividend yield, default spread and term structure, have been employed in

the equity risk premium literature is well described by Cochrane (2011). In particular, according to

asset price theory, time-varying expected stock returns are basically determined by future macroe-

conomic conditions. Once macroeconomic variables can predict changing in economy state, they

should also have predictive ability for equity risk premium tendencies, which is consistent with

rational asset pricing.

We base our analysis on the updated 12 macroeconomic variables studied by Welch and Goyal

(2008) inter alios with observations over the period from December 1950 to December 2014. They

comprise

Dividend yield (D/Y): difference between the log of 12-month moving sums of dividends

paid on the S&P 500 Index and the log of lagged prices.

Earnings-price ratio (E/P): difference between the log of 12-month moving sums of earnings

on the S&P500 Index and the log of prices.

Dividend payout ratio (D/E): difference between the log of 12-month moving sums of divi-

dends paid on the S&P 500 Index and the log of 12-month moving sums of earnings on the

S&P500 Index.
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Equity premium volatility (RVOL): based on a 12-month moving standard deviation estima-

tor of Mele (2007).

Book-to-market ratio (B/M): ratio of book value to market value for the Dow Jones Industrial

Average.

Net equity expansion (NTIS): ratio of 12-month moving sums of net issues by New York

Stock Exchange (NYSE) listed stocks to the total end-of-year market capitalization of NYSE

stocks.

Treasury bill (TBill): interest rate on a 3-month Treasury bill.

Long-term rate of returns (LTR): return on long-term government bonds.

Term Spread (TMS): difference between the long-term yield on government bonds and the

Treasury bill rate.

Default yield spread (DFY): difference between BAA- and AAA-rated corporate bond yields

from FRED.

Default return spread (DFR): difference between long-term corporate bond and long-term

government bond returns.

Inflation (INFL): Consumer Price Index (all urban consumers) from the Bureau of Labor

Statistics. As inflation information is released only with a month of delay, we use xi,t−1 in

Equation (3.1) for inflation to forecast the equity premium at time t+ 1.1

Equity risk premium forecasts can also be predicted by technical variables as follows

rt+1 = αi + βiTECHi,t + εt+1, (3.2)

where TECHi,t is the i-th technical indicator at time t, which is equal to 1 (buy signal) or 0 (sell

signal). Typical technical indicators are trend-chasing rules based on moving average of past

price and volume patterns. Although the economic intuition on why technical indicators have

predictive power in the equity risk premium is not well established, Neely et al. (2014) provide

four possible theoretical models to explain the influence of technical indicators in future equity

1We exclude two variables, the dividend price ratio (D/P) and the long term yield (LTY) since they are by construc-
tion a combination of other variables in the set; namely, D/P=E/P+D/E and LTY=TBL+TMS.
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premium trends. Furthermore, they find empirically statistical and economic evidence on US

equity predictability by considering numerous technical indicators.

As candidates for TECHi,t in the predictive regression (3.2) we consider the 14 technical indi-

cators adopted by Neely et al. (2014). The moving average rule with lengths a and b, MA(a,b), is

given by

MAt(a, b) =

 1 if (
∑a−1

j=0 Pt−j)/a ≤ (
∑b−1

i=0 Pt−j)/b,

0 if (
∑a−1

j=0 Pt−j)/a > (
∑b−1

i=0 Pt−j)/b,
(3.3)

where Pt denotes the asset price at time t. We generate moving average indicators for a = 1, 2, 3

and b = 9, 12.

The moment rule with level l, denoted by MOM(l), is defined by

MOMt(l) =

 1 if Pt ≤ Pt−l,

0 if Pt > Pt−l.
(3.4)

We analyze moment rules for l = 9, 12.

The on-balance volume is defined as

OBVt =
t∑

j=0

V oljDj , (3.5)

where V olj is the volume traded in the S&P 500 Index in the period j and Dj is a variable such

that Dj = 1 if Pj − Pj−1 ≥ 0 and Dj = −1 if Pj − Pj−1 < 0. The third trend-following strategy is

given as function of the on-balance volume as follows

VOLt(a, b) =

 1 if (
∑a−1

j=0 OBVt−j)/a ≤ (
∑b−1

j=0OBVt−j)/b,

0 if (
∑a−1

j=0 OBVt−j)/a > (
∑b−1

j=0OBVt−j)/b.
(3.6)

We compute monthly signals for a = 1, 2, 3 and b = 9, 12 and denote it as VOL(a, b).

We further introduce an agreement variable to summarize the information from the 14 techni-

cal variables as follows

Ak =

 1 if
∑14

i=1 TECHi,t ≥ k,

0 if
∑14

i=1 TECHi,t < k,
(3.7)

where i = 1, · · · , 14 and k is the minimum number of technical variables that have to be equal to

1 to Ak take value 1. Hence the agreement variable is equal to 1 if at least k of the 14 technical
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variables are equal to 1, and 0 otherwise.

3.2.2. Two-state predictive model

Our forecasting strategy consists on modeling the equity premium as having two different

states as follows

rt+1 = αi + β1ixi,t + β2iStxi,t + εt+1, (3.8)

where St is a dummy state-variable, which takes values 0 or 1. Consequently, the mean of equity

premium at time t is equal to αi + β1ixi,t if St = 0 and to αi + (β1i + β2i)xi,t if St = 1, so the

equity premium is state-dependent.2 We can test the state effect in the equity premium forecasts

by doing H0: β2i = 0 against HA: β2i 6= 0.

The first challenge is to find an appropriate state variable. As the NBER business cycle data is

released with a lag, we have to look for a proxy of the current state of the economy that is based

on historical data up to the time when the forecast is made. Jacobsen et al. (2014) suggest three al-

ternative proxies for St: the CFNAI (Chicago Fed National Activity Index) which is available on a

real time basis3, the recession probabilities from Chauvet and Piger (2008) using a regime switch-

ing model and recession probabilities based on the four macroeconomic variables of Henkel et

al. (2011) (term spread, default spread, dividend yield, and the short rate) also using a regime

switching model. We consider information from technical indicators as plausible candidates for

St, which are very simple functions of past return prices and can identify price trends by relying

that these trends persist into the future. Moreover, technical variables are strongly positive corre-

lated with the NBER-cycle, as we can see in Table 3.1 the percentage of agreement between each

technical variable and the business cycle. We report two alternatives for St, the moving average

MA(2,12) technical indicator and the agreement variable A10, both with more than 80% of agree-

ment the NBER business cycle and less then 7.5% of transitions (therefore persistent).4 Figure 3.1

plots the MA(2,12) and A10 technical trading indicators over the sample period from December

1950 to December 2014. We observe that these state variables capture most of the actual NBER-

dated recession months, albeit at the expense of triggering some false recession signals. Therefore,

technical indicators can be thought as a proxy of the present state of economy, such that a value of
2There is no empirical work in literature that justifies considering a predictive model for the equity premium with

a switching intercept αi. Nevertheless, we considered a generalization of model (3.8) with intercept term α1i + α2iSt,
using various proxies for St. The resulting forecasts did not offer any improvement neither according to out-of-sample
R2

OOS nor according to the certainty equivalent return gains.
3The CFNAI is a weighted average of 85 existing monthly indicators released at the end of each month; see Stock

and Watson (1999). We do not use it because the CFNAI was first released in 2001 and our sample starts in 1950.
4The percentage of transitions of NBER data is 2.61%, so we look for a persistent variable St.
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1 indicates current recession and a value of 0 indicates expansion.

Table 3.1: Agreement with NBER-data

Technical variables Agreement variables
Predictor Agreement (%) Transit- Pred- Agreement (%) Transit-

REC EXP Full sample ions(%) ictor REC EXP Full sample ions(%)
MA(1,9) 74.38 77.13 76.69 13.04 I1 90.91 54.40 60.16 12.39
MA(1,12) 80.17 81.30 81.12 8.87 I2 87.60 62.29 66.28 11.34
MA(2,9) 77.69 78.36 78.26 9.91 I3 85.95 66.92 69.92 10.56
MA(2,12) 80.17 81.14 80.99 7.04 I4 85.12 70.02 72.40 10.95
MA(3,9) 79.34 79.29 79.30 8.60 I5 83.47 72.80 74.48 9.91
MA(3,12) 80.17 81.61 81.38 7.04 I6 80.17 75.27 76.04 9.91
MOM(9) 79.34 80.83 80.60 9.65 I7 76.86 80.53 79.95 8.34
MOM(12) 80.99 83.31 82.94 7.56 I8 76.03 83.31 82.16 7.30
VOL(1,9) 67.77 73.42 72.53 17.47 I9 72.73 85.47 83.46 6.00
VOL(1,12) 71.90 76.97 76.17 12.39 I10 69.42 86.09 83.46 5.74
VOL(2,9) 70.25 73.42 72.92 10.95 I11 67.77 87.64 84.51 6.26
VOL(2,12) 71.90 76.35 75.65 7.69 I12 64.46 88.41 84.64 5.48
VOL(3,9) 69.42 75.27 74.35 10.43 I13 61.16 89.64 85.16 6.26
VOL(3,12) 71.90 76.51 75.78 7.17 I14 53.72 92.12 86.07 6.78

Notes: Agreement of each indicator variable described in Section 3.2.1 at time t with the present state of economy,
considering the NBER data from January 1951 to December 2014. It is also reported the percentage of true recessions
(REC) and true expansions (EXP) and the percentage that each technical variable transits from one state to the other. In
the NBER data, the percentage of transition is 2.61%. In bold, it is the best model of each panel.

3.2.3. Equal-weighted combination of forecasts

Let N the number of individual forecasts of rt+1 at hand, all of them evaluated from informa-

tion up to time t. The combining forecasts is a weighted average of them

r̂Ct+1 =
N∑
i=1

ωi,tr̂i,t+1, (3.9)

where r̂i,t+1 is the i-th individual forecast with the corresponding loading or weight ωi,t. Different

versions of combining methods are given by different choices of the weights ωi,t. The more pop-

ular version is the EW combining forecasts, also known as mean combining forecasts, which set

ωi,t = 1/N on each individual predictive regression forecast in Equation (3.9). Other two direct

alternatives are the median combination, where the forecast is the median of r̂i,t+1, i = 1, · · · , N ,

and the trimmed mean combination, which imposes ωi,t = 0 for the individual forecasts with the

smallest and largest values and sets ωi,t = 1/(N − 2) for the remaining individual forecasts in

Equation (3.9).

Elliot et al. (2013) extend the combining forecasts by averaging forecasts across complete subset
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regressions with the same number of predictive variables, i.e., they combine forecasts from all

possible linear regression models considering a fixed number of predictors, say k. For k = 2, for

example, there is a total of
(
N
2

)
models with two explaining variables

rt+1 = αi + βixi,t + βjxj,t + εt+1, (3.10)

such that i 6= j. After estimating all the αi, βi and βj by OLS, it is possible to compute
(
N
2

)
differ-

ent one-step-ahead forecasts. The combining one-step ahead forecast is obtained by averaging all

these
(
N
2

)
forecasts. We analyze complete subset regressions on macroeconomic predictive vari-

ables for k = 1, 2, 3 to analyze which cases produces better forecasts; see Elliott et al. (2013) for a

comparison of different values of k. They argue that as k grows larger, the out-of-sample forecast-

ing performance quickly deteriorates. The combining approach of Rapach et al. (2010) is a special

case of the complete subset regression, when k is equals to 1. For for k = 1, 2, 3, we compare

traditional combining forecasts to combining forecasts applied to regime-switching models.

3.2.4. Sparse combination of model forecasts

Rapach et al. (2010) and Elliott et al. (2013) conclude that the EW combining forecasts are not

outperformed by the median and trimmed mean combinations and any other estimated-weighted

methods considered. As an alternative to the EW combination, we introduce the sparse EW com-

bining forecasts, where the one-step-ahead prediction of the equity risk premium is the mean aver-

age of forecasts from selected models through in-sample predictability tests, as will be explained

in the following. As argued by Campbell and Yogo (2006), traditional in-sample predictability

tests can be severely distorted when the degree of persistence of the predictive variables is not

well specified. However, it is widely known that most of the macroeconomics variables used in

predictive regressions are highly persistent with autoregressive roots close to unity, which gener-

ating uncertainty whether these variables are stationary or not. For this reason, we evaluate the

(joint) significance of parameters by the Kostakis et al. (2015) test which is robust to regressors’

degree of persistence and accommodates testing the joint predictive ability in multiple regression;

see also Polk et al. (2006) and Amihud et al. (2009) for other hypothesis-testing methods for mul-

tiple regressors. For each individual forecast, we first test if the predictive variables are jointly

significant according to the Kostakis et al. (2015). For example, in the case of combining forecasts

from simple predictive regressions, we test whether each βi = 0 in equation (3.1) against βi 6= 0,
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whereas in case of combining forecasts from two-variable regressions, k = 2, we test βi = βj = 0

in equation (3.10) for each par i, j with i 6= j. Then, we construct the one-step-ahead prediction

of the equity risk premium as the mean average of forecasts from models whose coefficients are

jointly significant. If at any given rolling estimation window (ending at month t) none of the indi-

vidual forecasts is significant, the corresponding prediction at time t+ 1 is the historical average.

Formally, from a total of
(
N
k

)
forecasts at hand, the sparse EW forecast combination is given by

r̂SPARt+1 =


∑

i∈E r̂i,t+1

M
, if E 6= ∅,∑T

t=1 rt
T

, if E = ∅,
(3.11)

where E = {i; predictive variable(s) (is)are (jointly) significant at 10% level; i = 1, · · · ,
(
N
k

)
} and

M is the cardinality of E.

3.3. Out-of-sample forecast evaluation

Inoue and Kilian (2005) and Diebold (2012) compare out-of-sample versus in-sample tests of

predictability and conclude that in-sample tests of predictability have higher power than out-of-

sample tests. Nevertheless, the objective of our empirical application is to verify whether com-

bining state-dependent forecasts can be employed for investors on a real-time basis who want to

predict the one-step-ahead equity premium, implying in better economic decisions, i.e., portfolio

holdings. Therefore, an out-of-sample analysis is more suitable.

The full-sample is split into the in-sample estimate and out-of-sample forecast periods with

T and H observations, respectively. Following Welch and Goyal (2008), out-of-sample forecasts

of the equity premium are obtained sequentially in a recursive approach (expanding estimation

windows). We describe next the statistical and economic measures of out-of-sample predictability

employed in the thesis.

3.3.1. Statistical performance

We compare the statistic performance of different forecasts by three measures. First, the pop-

ular out-of-sample R2, R2
OOS , of Campbell and Thompson (2008) is computed to measure the

reduction in the mean squared predictive error (MSE) of a specific forecast in relation to the HA
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benchmark as follows

R2
OOS = 1−

∑H
h=1(r̂T+h − rT+h)2∑H
h=1(r̄T+h − rT+h)2

, (3.12)

where h = 1, · · · , H are the out-of-sample months, r̂T+h is a one-ahead forecast based on informa-

tion until time T + h − 1 and rT+h is the mean of the first (T + h − 1) observations. If R2
OOS > 0,

it means that the forecast r̂T+h performs better, in mean, than the historical average; whereas, if

R2
OOS ≤ 0, the historical average is not outperformed by the alternative approach. We report the

R2
OOS statistic separately for expansionary (EXP) and recessionary (REC) months according to the

NBER business cycle dating. We also report an alternative version of the conventional R2
OOS that

compares the square forecast error of the predictive approach at hand versus the EW combination

of forecasts from conventional one-state predictive models based on individual macroeconomic

variables (k = 1), which corresponds to the traditional combining forecasts of Rapach et al. (2010).5

Second, the MSE-adjusted statistic of the Clark and West (2007) is performed to test the null

hypothesis that the historical average performs better or equal to the alternative forecast, which

correspond to the hypothesis test H0: R2
OOS ≤ 0 against R2

OOS > 0. This test is an extension of

the Diebold and Mariano (1995) and West (1996) tests and allows to compare forecast of nested

models.

The R2
OOS (like MSE) is an overall measure of forecast performance computed from forecast

sequences and hence, as point statistics, they can mask important instability in forecast perfor-

mance. To gauge the dynamics of the forecast performance over the entire out-of-sample period

we graph the variation in the cumulative square error (CSE) given by

∆CSEt =
t∑

h=1

(r̄T+h − rT+h)2 − (r̂T+h − rT+h)2, (3.13)

such that a positively-sloped ∆CSEt graph indicates that the forecasting model at hand consis-

tently outperforms the HA benchmark, while a negatively-sloped curve indicates the opposite. A

switch from a positive to a negative slope or vice versa indicates unstable forecast performance.

We also graph the variation in the CSE when the benchmark is the model of Rapach et al. (2010)

to compare the gains of considering combinations of two-state models rather than combinations

of one-state models.

5Hereafter, unless specified, the benchmark of the R2
OOS is the historical average forecast.
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3.3.2. Economic performance

As reported by Cenesizoglu and Timmermann (2012), for the R2
OOS statistic being a point fore-

cast, it does not reflect the accuracy of predictive movements in the entire distribution of equity

premium. To overcome this, we carry out an asset allocation exercise to evaluate the economic

performance of the equity premium forecasts. We consider investors who at time t allocate ωt% of

his total wealth to stocks and the reminding (1-ωt)% to risk-free bills. In this way, the total wealth

at month t+ 1 is

Wt+1 = [(1− ωt)exp(rft+1) + ωtexp(rft+1 + rt+1)]Wt, (3.14)

where the equity premium, rt, and the risk-free interest rate, rft+1, are continuously compounded.

We assume that investors maximize the expected one-month ahead wealth, which excludes any

intertemporal hedging component in the choice of the portfolio weights. Hence, portfolio weights

for the period t are the solution to the following optimizing problem

ω∗t = arg max
ωt

Et[U(Wt+1)], (3.15)

where the utility function U(Wt+1) is defined according to the investor’s preference. For a mean-

variance investor, the corresponding utility is U(Wt+1) = Et[Wt+1]− γ
2V art[Wt+1], where γ is the

relative risk aversion parameter. This investor’s preference implies that the optimal proportion of

wealth allocated to equities on month t+ 1 is

ω∗t =
exp(r̂t+1 + σ̄2

t+1/2)− 1

γexp(rft+1)exp(σ̄2
t+1 − 1)exp(2r̂t+1 + σ̄2

t+1)
, (3.16)

where r̂t+1 is the equity premium forecast relying on a forecast strategy and σ̄2
t+1 is the predicted

conditional variance of the excess return. As in Neely et al. (2014), we evaluate the predictive con-

ditional variance as the mean squared excess returns over five-years rolling windows, regardless

of the forecast method considered. We follow Campbell and Thompson (2008) and impose the

constrain 0 ≤ ωt ≤ 1.5 to rule out short sales and leverage above 50%.

We also consider constant relative risk aversion (CRRA) investors, whereU(Wt+1) = W 1−γ
t+1 /(1−

γ), so that the optimal portfolio weight can be approximated by

ω∗t =
r̂t+1 + σ̄2

t+1/2

γσ̄2
t+1

. (3.17)
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We compare the asset allocation performance of different models by the certainty equivalent

return (CER) measure, which is the risk-free rate of return that an investor is willing to accept

instead of adopting the given risky portfolio. The CER corresponding to a mean-variance investor

is given by

CER = µ̂p −
γσ̂2

p

2
, (3.18)

where µ̂p and σ̂2
p are, respectively, the mean and variance of the portfolio returns over the out-

of-sample period. On other other hand, the CER corresponding to the a CRRA investor is given

by

CER =

[
(1− γ)

H

H∑
h=1

W 1−γ
T+h

1− γ

]1/(1−γ)

− 1. (3.19)

Our forecast evaluation metric is the CER gain, ∆, defined as the difference between the CER

of a investor who employs a forecasting model to predict the risk premium and the CER of a

investor that assumes no predictability and, accordingly, relies on the historical average. We report

monthly CER gains in annualized form by multiplying it by 1200. Positive CER gains represent the

annualized fee that an investor would be willing to pay in order to have access to the forecasting

model. We also report the CER gains for expansionary (EXP) and recessionary (REC) months

according to the NBER business cycle dating.

Additionally, we compare the investor’s performance through the Sharpe ratio, defined by

the quotient between the mean portfolio return in excess of the risk-free rate and the standard

deviation of the excess of portfolio return, both over the forecast period.

3.4. Empirical analysis

In this section we carry out an empirical application using the monthly data on US equity

premium along the 12 macroeconomic and 14 technical variables described in section 3.2.1 in

the period from December 1950 to December 2014. The interest lies in illustrating combining

state-dependent forecasts and comparing its performance to other approaches. The equity risk

premium is given by the difference between the log return on the S&P 500 (including dividends)

and the log return on the Treasury-bill rate. After accounting for lag in the predictive regressions,

the sample is split into in-sample estimate and out-of-sample forecast periods. The in-sample

spans from December 1950 to December 1965 with a total of T = 180 observations, and the forecast

evaluation period is from January 1966 to December 2014 with a total of H = 588 one-step-ahead
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predictions.

3.4.1. Results from statistical evaluation

Table 3.2 reports the out-of-sample forecasting performance of the individual regression mod-

els. Consistent with the findings of Welch and Goyal (2008), the majority of the macroeconomic

variables do not add extra information in relation to the HA benchmark, as only two of the cor-

responding R2
OOS are positive. Also these two positive R2

OOS are just 0.06% and 0.26%. On the

other hand, all the indicator variables have MSE lower than the benchmark forecast, with seven

of them also beating statistically the HA, based on the MSE-adjusted statistics with 10% of sig-

nificance. The highest values of the R2
OOS is 0.864% for the MA(2,12) variable. Figure 3.2 plots the

cumulative square forecast errors for the historical average forecast minus the cumulative square

forecast error for the macroeconomic and technical variables. In the case of technical indicators,

we just plot one of each group, MA, MOM and VOL, as the other ones have similar pattern. These

figures show that none of the individual macroeconomic or technical variables can beat the his-

torical average. Although some of the curves are crescent during certain periods, all individual

models exhibit relatively long periods with negatively sloped curves.

Table 3.2: Results from statistical evaluation of individual predictive variables

Macroeconomic variables Technical variables
Predictor R2

OOS(%) Predictor R2
OOS(%)

ALL EXP REC ALL EXP REC
D/Y -0.168 -1.366 2.382 MA(1,9) 0.302 -0.676 2.384
E/P -0.579 -0.300 -1.173 MA(1,12) 0.697∗ -0.521 3.289
D/E -0.883 -1.720 0.898 MA(2,9) 0.392∗ -0.611 2.527
RVOL 0.064∗ -0.156 0.531 MA(2,12) 0.846∗∗ -0.409 3.518
B/M -1.327 -0.399 -3.303 MA(3,9) 0.480∗ -0.674 2.937
NTIS -0.922 -0.129 -2.611 MA(3,12) 0.088 -0.426 1.181
TBL -0.837∗∗ -1.907 1.441 MOM(9) 0.122 -0.447 1.333
LTR 0.260∗∗ -1.931 4.922 MOM(12) 0.161 -0.414 1.383
TMS -0.834∗∗ -3.136 4.064 VOL(1,9) 0.476∗ -0.527 2.611
DFY -0.634 -0.542 -0.830 VOL(1,12) 0.803∗∗ -0.201 2.940
DFR -0.420 0.349 -2.055 VOL(2,9) 0.467∗ 0.042 1.371
INFL -0.272 0.159 -1.190 VOL(2,12) 0.348 0.189 0.688

VOL(3,9) 0.034 -0.368 0.890
VOL(3,12) 0.673∗∗ 0.095 1.903

Notes: The forecasts are based on individual macroeconomic (on the left) and technical (on the right) predictive vari-
ables, both described in Section 3.2.1, over the out-of-sample period from January 1966 to December 2014. R2

OOS is the
out-of-sampleR2 given in Equation (3.12). TheR2

OOS for the full-sample (ALL) is computed separately for NBER-dated
expansion (EXP) and recession (REC) months. The hypothesis test H0: R2

OOS ≤ 0 against R2
OOS > 0 is performed by

the Clark and West (2007) out-of-sample MSE-adjusted statistic, where ∗, ∗∗ and ∗∗∗ indicate significance at the 10%,
5%, and 1% levels. In bold, it is the best model of each panel.
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Panel A of Table 3.3 summarizes the statistical performance of combining forecasts from tra-

ditional one-state predictive models. In this panel, all the R2
OOS values are larger than the R2

OOS

values of the 26 forecasts from individual macroeconomic predictors. Also combining subset re-

gressions with two or three predictive variables produce better point forecasts than the original

combining forecasts from individual macroeconomic predictive variables, with the R2
OOS for the

k = 3 being the largest one. Furthermore, combining methods outperform statistically the HA

considering the MSE-adjusted statistics with significance level of 1%. Rapach et al. (2010) and

Elliott et al. (2013) also conclude that combinations of macroeconomic predictive models beat

the HA forecast and forecasts from individual predictive variables. The R2
OOS of the sparse EW

combining forecasts increases in relation to the corresponding EW combination when considering

k = 1 or k = 2, but this is not true when k = 3, where the R2
OOS for the EW combination is slightly

larger.

The performance of combining forecasts from two-state models, with states defined by MA(2,

12) and I10 variables (Panels B and C of Table 3.3, respectively) is improved the in relation to

the nested combining forecasts based on one-state models. Furthermore, the R2
OOS of combining

two-state models are significantly larger than the traditional combining forecasts of Rapach et al.

(2010), denoted by EW(k = 1), at 10% level. The results are more evident when using I10 as a

proxy, once the R2
OOS values increase from 1.034, 1.611 and 1.792% to 1.763, 2.23 and 2.145% for

the EW combination with k = 1, k = 2 and k = 3 forecast strategies, respectively. When the proxy

is the MA(2,12) variable, the R2
OOS of the SPAR combining forecasts increases in relation to the

corresponding EW combining method for k = 1 and k = 2 and it is almost the same when k = 3.

We also compare our combining state-dependent forecasts with the principal component (PC)

combining method of Neely et al. (2014). Panel D of Table 3.3 displays the results of the three

PC combining cases: of the 12 macroeconomic variables (PC-ECON), of the 14 technical indica-

tors (PC-TECH) and of all the macroeconomic and indicators together (PC-ALL). We can see that

PC-ECON and PC-TECH do not produce more accurate point forecasts than the simple regression

based on the MA(2,12) variable. On the other hand the PC-ALL combination improves the pre-

dictability of baseline bivariate regressions, with an R2
OOS of 1.48%. Still, the R2

OOS are larger for

combining forecasts from two-state model compared to PC-ALL forecasts.

From Tables 3.2 and 3.3, it is evident that, for almost all forecast strategies, the predictability

is substantially larger for recessions vis--vis expansions, which matches with several works in
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Table 3.3: Results from statistical evaluation of combining forecast methods

Equal-weighted Sparse
Predictor R2

OOS (%) R2
OOS (%)

ALL EXP REC EW(k = 1) ALL EXP REC EW(k = 1)
Panel A: One-state regressive models
k = 1 1.034∗∗∗ 0.722 1.696 0 1.507∗∗∗ 0.736 3.149 0.479∗

k = 2 1.611∗∗∗ 1.005 2.901 0.584∗∗ 1.709∗∗∗ 0.961 3.300 0.683∗∗

k = 3 1.792∗∗∗ 0.947 3.592 0.767∗∗ 1.779∗∗∗ 0.885 3.682 0.753∗∗

Panel B: Two-state regressive models - state variable MA(2,12)
k = 1 1.451∗∗∗ 0.523 3.424 0.421∗ 2.041∗∗∗ 0.657 4.984 1.017∗∗

k = 2 1.829∗∗∗ 0.442 4.782 0.804∗∗ 1.908∗∗∗ 0.398 5.121 0.883∗∗

k = 3 1.769∗∗∗ 0.065 5.394 0.743∗∗ 1.759∗∗∗ 0.009 5.482 0.733∗∗

Panel C: Two-state regressive models - state variable A10

k = 1 1.763∗∗∗ 0.868 3.667 0.737∗∗ 1.894∗∗∗ 0.539 4.778 0.869∗∗

k = 2 2.230∗∗∗ 0.848 5.171 1.209∗∗ 1.878∗∗∗ 0.380 5.065 0.853∗∗

k = 3 2.145∗∗∗ 0.552 5.535 1.123∗∗ 2.090∗∗∗ 0.459 5.560 1.067∗∗

Panel D: Principal component analysis
ECON -0.224∗∗∗ -2.672 4.984
TECH 0.689∗ -0.321 2.838
ALL 1.489∗∗∗ -2.678 10.356

Notes: The forecasts over the out-of sample-period from January 1966 to December 2014 are evaluated by the equal-
weighted (EW) combination on the right and by the sparse EW (SPAR) combination on the left. The combining forecasts
based on conventional one-state predictive regressions (Panel A), two-state predictive regressions (with state variable
proxied by the MA(2,12), Panel B, or A10, Panel C, technical indicators) and principal component (PC) combination
(Panel D). In Panels A, B and C, the candidate predictors are the set of 12 macroeconomic variables considered either
in single-, two- or three-variable regressions (k = 1, 2, 3). The PC analysis is conducted separately for macroeconomic
predictive variables (ECON), technical indicators (TECH) and all of them together (ALL). R2

OOS is the out-of-sample
R2 given in Equation (3.12). Besides the traditional historical average (HA) benchmark, the R2

OOS is also evaluated by
considering the EW combining forecasts from individual regressive variables (k = 1) as a benchmark. When the HA is
the benchmark, the R2

OOS for the full-sample (ALL) is also computed separately for NBER-dated expansion (EXP) and
recession (REC) months. The hypothesis test H0: R2

OOS ≤ 0 against R2
OOS > 0 is performed by the Clark and West

(2007) out-of-sample MSE-adjusted statistic, where ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels. In
bold, it is the best model of each panel.

literature; see, for example, Henkel et al. (2011), Gargano and Timmermann (2012), Dangl and

Halling (2012) and Neely et al. (2014). For example, the highest R2
OOS for expansions is 1.005%

when using the k = 2 as predictor, while the R2
OOS in recession months for combining methods is

always larger than 1.5%.

Figure 3.3 plots the two components of Theil (1971) MSE decomposition for the individual

predictive regression models and the combining methods over the out-of-sample period. These

components are the squared forecast bias and a remainder term that depends basically on the fore-

cast volatility. To avoid cluttering the diagram, we just plot one technical variable of each group,

MA(2,12), MOM(12) and VOL(2,12), as the other variables lie close to the others in the same group.

Analogously, we just display the results for combining forecasts from single predictive variables,

k = 1, but considering the EW and SPAR combinations and one-state and two-state models. All
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combination of forecasts has a lower forecast variance than all of the individual predictive regres-

sion models. Furthermore, the SPAR combining forecasts have lower bias than the EW combining

forecasts. Finally, two-state models have lower forecast variance than one-state models.

To check the stability of our results over time, Figure 3.4 plots the CSE for the historical average

benchmark model minus the CSE for combining forecasting methods. The bottom figures have

positively sloped curves during certain periods, but also present relatively long periods where

the curves are decreasing, which indicates that PC models do not deliver stable forecasts. We also

observe that the predictive ability of combining one-state models deteriorates after the second

half of 1990’s, as the lines for the EW (or SPAR) combining forecasts from one-state models are

predominantly non-crescent. On the other hand, the slopes corresponding to combining two-state

forecasts are predominantly crescent. Therefore, combining forecasts from two-state models con-

sistently outperform the benchmark model. Finally, Figure 3.5 plots the CSE for the Rapach et al.

(2010) model minus the CSE for alternative combining forecasts. We can see that the improvement

of introducing two-state models in the combining methods is more evident during recessions,

where combining two-state models consistently outperforms combining one-state models.

3.4.2. Results from economic evaluation

The results for asset allocation exercise for the 26 individual regression models are in Table 3.4.

Once again, we observe that the indicators variables can explain better future equity premia than

macroeconomic predictors. The CER gains are always positive for the technical indicators and

ranges from 73 to 315 basis points for a mean-variance investor and from 91 to 298 basis points for

a CRRA investor. The largest CER gains and Sharpe ratios is reached for the MA(2,12) variable, for

any investor preference. The CER gains are also computed separately for NBER-dated expansion

and recession months, but we do not report them here for brevity. As the statistic measure, the

economic gains are more evident for recessions in comparison to expansions for all the technical

and the majority of macroeconomic variables.

Panel A of Table 3.5 reports the economic results for combining macroeconomic models. Com-

bining forecasts based on one-state models do not outperform the MA(2,12) indicator neither for

mean-variance nor for CRRA preferences. In particular, the EW combining forecasts of Rapach

et al. (2010) have CER gains lower than at least six of individual technical indicators. Although

the SPAR combining method increases the CER gains and Sharpe rations in relation to the EW
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Table 3.4: Results from asset allocation exercise for individual predictive variables

Macroeconomic variables Technical variables
Mean-variance CRRA Mean-variance CRRA

Predictor ∆(%) Sharpe ∆(%) Sharpe Predictor ∆(%) Sharpe ∆(%) Sharpe
HA 3.88 0.065 3.65 0.048 MA(1,9) 1.71 0.096 1.84 0.084

MA(1,12) 2.89 0.126 2.76 0.108
D/Y -0.03 0.045 0.52 0.036 MA(2,9) 2.09 0.106 2.10 0.092
E/P 0.37 0.064 0.61 0.049 MA(2,12) 3.15 0.133 2.98 0.113
D/E -0.34 0.046 -0.72 0.025 MA(3,9) 2.53 0.119 2.41 0.103
RVOL -0.65 0.081 -0.71 0.060 MA(3,12) 1.37 0.089 1.48 0.076
B/M -1.34 0.042 -1.27 0.025 MOM(9) 1.35 0.088 1.50 0.075
NTIS 0.15 0.085 -0.36 0.062 MOM(12) 1.30 0.088 1.46 0.075
TBL 1.94 0.101 1.66 0.082 VOL(1,9) 1.66 0.098 1.73 0.084
LTR 1.01 0.102 1.24 0.083 VOL(1,12) 2.58 0.119 2.59 0.104
TMS 1.97 0.127 1.17 0.101 VOL(2,9) 1.50 0.096 1.62 0.083
DFY -0.79 0.062 -1.02 0.040 VOL(2,12) 1.33 0.091 1.46 0.078
DFR 0.24 0.069 0.31 0.053 VOL(3,9) 0.73 0.077 0.91 0.064
INFL 0.81 0.081 0.60 0.064 VOL(3,12) 2.16 0.109 2.20 0.094

Notes: The forecasts are based on individual macroeconomic (on the left) and technical (on the right) predictive vari-
ables, both described in Section 3.2.1, over the out-of sample-period from January 1966 to December 2014. The investor
who allocates his wealth between stocks and risk-free bills at the end of each out-of-sample month is assumed to have a
mean-variance or constant risk relative risk aversion (CRRA) preferences and a relative risk aversion parameter γ = 5.
∆(%) is the monthly certainty equivalent return (CER) gains, in the annualized form, for a investor who employs a
forecasting model to predict the risk premium rather than assuming historical average (HA) forecast. Sharpe ratio is
the mean portfolio return in excess of the risk-free rate divided by the standard deviation of the excess of portfolio
return. In bold, it is the best model of each panel.

combination, the SPAR combining forecast from one-state models can beat the MA(2,12) model.

We can see in Panels B and C of Table 3.5 that combining forecasts from two-state models im-

prove the economic performance in relation to combinations from one-state models, considering

any utility gain. The improvement is notable for either MA(2,12) or A10 as state variable. Fur-

thermore, for mean-variance or a CRRA investor, any combining two-state models considered in

the analysis have larger CER gains and Sharpe ratios than any forecasts from individual model

or combinations from one-state models. The results are even better when the SPAR method is ap-

plied to two-state models. Therefore, the SPAR combining forecasts from state-dependent models

are economic better than their nested forecasting strategies.

Panel D of Table 3.5 shows that the PC-ALL forecast has CER gains of 412 and 400 basis points

for the mean-variance and CRRA preferences, respectively, which is larger than all the 26 individ-

ual regression models and combining forecasts from one-state models. However, the CER gains

and Sharpe ratios of the SPAR combining forecasts from two-state models are larger than the CER

gains and Sharpe ratios of the PC-ALL model for any investor’s preference.

To summarize, the combining forecasts from regime-switching predictive models deliver larg-
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Table 3.5: Asset allocation exercise for combining forecasts

Equal-weighted Sparse
Mean-variance CRRA Mean-variance CRRA

Pred- ∆(%) ∆(%) Sharpe ∆(%) ∆(%) Sharpe ∆(%) ∆(%) Sharpe ∆(%) ∆(%) Sharpe
ictor HA EW ratio HA EW ratio HA EW ratio HA EW ratio
Panel A: One-state regressive models

k = 1 1.65 0 0.097 1.67 0 0.080 2.75 1.11 0.127 2.45 0.79 0.106
k = 2 2.70 1.05 0.121 2.66 1.00 0.103 3.02 1.38 0.131 2.63 0.97 0.106
k = 3 2.91 1.26 0.127 2.89 1.22 0.109 2.85 1.20 0.126 2.66 0.99 0.105

Panel B: Two-state regressive models - state variable MA(2,12)

k = 1 3.30 1.66 0.136 3.53 1.86 0.123 4.36 2.72 0.163 4.38 2.71 0.146
k = 2 4.36 2.71 0.163 4.46 2.80 0.146 4.50 2.86 0.166 4.51 2.84 0.148
k = 3 4.31 2.66 0.162 4.50 2.84 0.146 4.36 2.71 0.163 4.55 2.88 0.147

Panel C: Two-state regressive models - state variable A10

k = 1 3.62 1.97 0.144 3.84 2.17 0.130 4.12 2.47 0.157 4.31 2.64 0.144
k = 2 4.38 2.73 0.163 4.50 2.83 0.147 4.54 2.90 0.168 4.63 2.97 0.151
k = 3 4.25 2.60 0.160 4.38 2.72 0.143 4.38 2.73 0.163 4.49 2.83 0.146

Panel D: Principal component analysis

ECON 1.60 -0.04 0.113 0.81 -0.83 0.088
TECH 2.49 0.84 0.117 2.35 0.70 0.100
ALL 4.12 2.47 0.158 4.00 2.35 0.143

Notes: The table summarizes the out-of-sample economic performance of equity premium forecasts of equal-weighted
(on the left) and sparse EW (on the right) combination of conventional one-state predictive regressions (Panel A), two-
state predictive regressions (with state variable proxied by the MA(2,12), Panel B, or A10, Panel C, technical indicators)
and principal component (PC) combination (Panel D). The out-of sample-period spans from January 1966 to December
2014. In Panels A, B and C, the candidate predictors are the set of 12 macroeconomic variables considered either in
single-, two- or three-variable regressions (k = 1, 2, 3). The PC analysis is conducted separately for macroeconomic
predictive variables (ECON), technical indicators (TECH) and all of them together (ALL). The investor who allocates
his wealth between stocks and risk-free bills at the end of each month is assumed to have a mean-variance or constant
relative risk aversion (CRRA) preferences and a relative risk aversion parameter γ = 5. ∆(%) HA is the monthly
certainty equivalent return (CER) gains, in the annualized form, for a investor who uses as risk premium forecast a
combined forecasts from competing models instead of the historical average (HA) excess return. ∆(%) EW is similarly
defined with reference to equal-weighted combining forecast from individual regressive variables (k = 1). Sharpe ratio
is the mean portfolio return in excess of the risk-free rate divided by the standard deviation of the excess of portfolio
return. In bold, it is the best model of each panel.

er CER gains and Sharpe ratios compared to forecasts from historical average, simple regressive

variables and combining single-state models. Furthermore, the results considering the SPAR com-

bination are better in relation to the EW combination.

3.4.3. Robustness checks

We employ robustness checks to verify whether our results are still valid in other sub-sample

periods and for other risk aversion parameter γ . Following Rapach et al. (2010), we consider an

out-of-sample period starting on January of 1976 and other starting on January 2000. The first case

is motivated for the results of Welsh and Goyal (2003) that points that the out-of-sample predictive

ability of several economic variables deteriorates notably after the Oil Shock in the period between

1973 and 1975. The second one corresponding to the last 15 years of the full sample. In both

forecast-periods, predictability is more unstable and even argued to be spurious by some authors.



62 CHAPTER 3. PREDICTABILITY OF EQUITY PREMIA

The statistical and economic results in Tables B.1 and B.2 confirm that combining regime-

switching model outperforms the other methods for the two alternative out-sample periods. In

these sub-samples, the R2
OOS of combining forecast of Rapach et al. (2010) and its extension of El-

liott et al. (2013) are not significantly greater than zero at the 10% level, according to the Clark and

West (2007) test, whereas the combining two-state model are in all the cases. Moreover, the CER

gains when considering combining two-state models rather than combining one-state models are,

in average, 250 and 650 basis points for the out-of samples starting in January 1976 and January

2000, respectively.

Following Cenesizoglu and Timmermann (2012), we also report the asset allocation exercise by

considering relative risk aversion parameter equal to 3 and 10 . Tables B.3 and B.4 confirm the bet-

ter performance of combining two-state models in relation to the other competitors. Also the CER

gains of the SPAR combination are larger than the corresponding EW combination. Therefore,

our methods are robust to the out-of-sample periods considered and to the relative risk aversion

parameter.

3.5. Conclusions

In this Chapter, we extend equity-premium forecast strategies by combining regime-switching

models, where, in each individual model, macroeconomic variables are allowed to be interacted

with a state variable. We construct proxies of state variables by using technical variables of Neely

et al. (2014), which are associated with the business cycle and and can identify stock’s price trends.

In the empirical out-of-sample analysis to the monthly US equity premium series, our new method

deliver statistically and economically out-of-sample gains vis-a-vis the historical average, tradi-

tional univariate regressions and equal-weighted combination of macroeconomic forecasts. The

results are robust to different out-of-sample periods, alternative investor’s preferences and differ-

ent relative risk aversion parameters.

We also propose a sparse EW combining methods as an alternative to the EW combination.

In this approach only models with slope coefficients jointly significant are considered in the com-

bining forecasts. Although we observe statistically a mild improvement of the SPAR method in

relation to the EW combination, the asset allocation results show evident better performance of

the SPAR strategy compared to the EW combining forecasts.
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Figure 3.1: Plot of MA(2,12) and A10 technical indicators

This figure plots the recession months as signaled by the moving average MA(2,12), top graph, and the agreement (of
technical indicators) variable A10, bottom graph. Shaded areas indicate recession months according to NBER business
cycle dating. The sample period is from December 1950 to December 2014.
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Figure 3.2: Cumulative squared forecast errors from individual models

This figure plots the ∆CSEt defined as the cumulative difference in the square forecast errors between the historical
average (HA) benchmark model and each simple predictive regression model. The individual predictive variables, as
labeled in each graph, are described in Section 3.2.1. The out-of-sample period spans from January 1966 to December
2014.
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Figure 3.3: Scatterplot of the out-of-sample forecast variance versus the squared forecast bias

The figure is a scatterplot of the out-of-sample forecast variance (Y-axis) versus the squared forecast bias (X-axis) for
each of the one-state simple predictive regressions (based on macroeconomic predictors or technical indicators), and
equal-weighted (EW) and sparse EW (SPAR) combinations of one-state and two-state models. The macroeconomic pre-
dictors, D/Y, E/P, D/E, RVOL, B/M, NTIS, TBill, LTR, TMS, DFY, DFR and INFL, and the technical indicators MA(2,12),
MOM(12), VOL(2,12) are as described in Section 3.2.1. The combined forecasts are of the 12 macroeconomic variables
considered in one-variable regressions (k = 1). The out-of-sample period spans from January 1966 to December 2014.
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Figure 3.4: Cumulative squared forecast errors from combining forecasts - HA benchmark

This figure plots the ∆CSEt defined as the cumulative squared forecast errors of the historical average (HA) bench-
mark model minus the cumulative squared forecast errors from combination of forecasting methods over the out-of-
sample period from January 1966 to December 2014. We consider the equal-weighted (EW) and sparse EW (SPAR)
combinations of conventional one-state predictive regressions and two-state predictive regressions, with state variable
proxied by the MA(2,12), and principal component (PC) combination. In the EW and SPAR combinations, the candi-
date predictors are the set of 12 macroeconomic variables considered either in single-, two- or three-variable regressions
(k = 1, 2, 3). The PC analysis is conducted for technical indicators (TECH) and macroeconomic predictive and technical
variables together (ALL).
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Figure 3.5: Cumulative squared forecast errors from combining forecasts - Rapach et al. (2010) benchmark

This figure plots the ∆CSEt (EW) defined as the cumulative squared forecast errors of equal-weighted combining
forecast from individual regressive variables (k = 1) minus the cumulative squared forecast errors from combination
of forecasting methods over the out-of-sample period from January 1966 to December 2014. We consider the equal-
weighted (EW) and sparse EW (SPAR) combinations of conventional one-state predictive regressions and two-state
predictive regressions, with state variable proxied by the MA(2,12). In the EW and SPAR combinations, the candidate
predictors are the set of 12 macroeconomic variables considered either in single-, two- or three-variable regressions
(k = 1, 2, 3). Shaded areas indicate recession months according to NBER business cycle dating.
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Chapter 4

Summary and Future Research

This thesis studies topics about modeling and predicting expected equity returns and condi-

tional covariances and correlaions. In Chapter 2, we survey the main developments of parametric

MGARCH models, updating previous surveys by Bauwens et al. (2006), Engle (2009) and Sil-

vennoinen and Teräsvirta (2009a). Following, we carry out Monte Carlo simulations to analyze

the potential biases incurred when the restricted models are fitted to systems with rich dynamics

as those usually encountered in real data. We show that the restrictions imposed by the BEKK,

O-GARCH and GO-GARCH models are very unrealistic generating potentially missleading fore-

casts of condicional correlations. We emphasize that although the BEKK(1,1,K) is as general as

the VECH model in the bivariate case, it is strongly restricted when K = 1, as usually considered

in empirical applications. On the contrary, models based on the dynamic conditional correlation

specification provide appropriate estimates to explain adequately the evolution of volatilities, con-

ditional covariances and correlations generated by the general model. Alternative estimators of

the parameters are important to simplify the computations but do not have implications on the

estimates of conditional correlations. Hence, we recommend choosing the estimation method

based on computational advantages. We fitted the models considered to a five-dimensional sys-

tem of exchange rate returns. We find that the SBEKK model estimated by S-QML and the DCC

models estimated by S-QML have a reasonable forecast performance according to the negative

log-likelihood criterion, while the three DCC models outperform all the other models according

to the LF criteria.

In Chapter 3, we focus on predictability of the equity market return in excess of the risk-free in-

terest rate. The combining forecasts from macroeconomic predictive models of Rapach et al. (2010)

and its extension by Elliott et al. (2013) outperform statistically and economically the historical av-

69
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erage benchmark to explain future equity market returns in excess of the riskless rate. We further

extend equity-premium forecast strategies by combining regime-switching models, where, in each

individual model, macroeconomic variables are allowed to be interacted with a state variable. We

define state variables as simple functions of technical variables of Neely et al. (2014), which are

associated with the business cycle and can identify stock’s price trends. Our methodology is very

parsimonious and easy to be interpreted. We carry out an empirical analysis to the monthly US

equity premium series in the period from December 1950 to December 2014 and conclude that the

combining regime-switching models deliver stable out-of sample gains in relation to the existing

methods such as univariate regressions and combinations from one-state regressions widely con-

sidered in literature. Our results are confirmed by using three different out-of-sample periods and

by an asset allocation exercise with two different investor’s preferences and three different relative

risk aversion parameters.

In the equal-weighted combining forecasts, each individual predictive regression model fore-

cast have the same combining weight to explain future returns. Rapach et al. (2010), Elliott et

al. (2013), among many other recent works, conclude that the EW combining forecasts are not

worse than combining forecasts using estimated weights. Given the relative large set of macroe-

conomic variables available as candidate predictors, we propose a novel sparse forecast combi-

nation method and demonstrate through a comparison exercise with alternative forecast combi-

nation methods that it is effective for equity premium prediction. In this approach only models

with slope coefficients jointly significant are considering in the combining forecast. Although we

observe statistically a mild improvement of SPAR methods in relation to EW combinations, the

asset allocation results show evident better performance of SPAR strategy compared to the EW

combining forecasts.

It is also of interest to compare the models considered in Chapter 2 with those based on copu-

las; see, for example, Patton (2006), Lee and Long (2009), So and Yeung (2014) and Creal and Tsay

(2015). Furthermore, we focus on symmetric models. However, there is a strong empirical evi-

dence of asymmetries in the responses of conditional variances and covariances to positive versus

negative past returns; see, for example, Bollerslev et al. (2006) for a comprehensive list of references

with empirical evidence about the asymmetric response of volatility to past returns and Kroner

and Ng (1998), Cappiello et al. (2006) and Caporin and McAleer (2011) for asymmetric response to

simultaneous negative returns and simultaneous positive ones. Further research should focus on

studying the economic implications of the restrictions imposed on asymmetric MGARCH models



71

to reduce the number of parameters and/or to guarantee covariance stationarity and/or posi-

tiveness. The next step of the project will be propose a very general model dynamic conditional

correlation model, where all conditional variances, covariances and correlations are related with

each other and, at the same time, the model is feasible for systems with very large dimensions,

like 50 or 100 or 200.

Numerous works seek to conduct an economic evaluation of forecasts by computing the utility

gains (or CER gains). These CER calculations are based on mean-variance or CRRA preferences.

However there is a gap in the literature that no paper has consider intertemporal hedging in the

investor’s decisions together with Epstein-Zin recursive preferences. In future works, we will

develop an economic framework for evaluation of forecasts, i.e. the utility gains, to an investor

that has recursive preferences, specifically the Epstein-Zin preference as it is assumed by most of

the macro-finance literature, and intertemporal hedging choices.
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Appendix A

Appendix to Chapter 2

The DGP is given by the VECH model in equations (2.1) and (2.2) with

a) Σ = 10−4×((2.217 0.887)′ (0.887 1.763)′), A = ((0.097 0.014 0.022)′ (0.016 0.069 0.011)′ (0.025

0.01 0.105)′) and B = diag(0.8695, 0.857, 0.85), where vech(Σ) = (IN(N+1)
2

−A−B)−1C.

b) Σ = 10−4×((1.745 0.626 0.617 0.430 0.523)′(0.626 2.463 0.942 0.583 0.520)′ (0.617 0.942 3.311

0.806 1.002)′ (0.430 0.583 0.806 2.045 0.704)′ (0.523 0.520 1.002 0.704 2.257)′),

A =



0.081 0.02 −0.01 −0.012 0.015 0.02 0 0 0 0.005 0 0 0.011 0 0.01

0.02 0.053 0 0 0 0.01 0 0 0 0 0 0 0 0 0

0.019 0 0.05 0 0 0 0 0 0 0.01 0 0 0 0 0

0.017 0 0 0.037 0 0 0 0 0 0 0 0 0.01 0 0

0.018 0 0 0 0.044 0 0 0 0 0 0 0 0 0 0.01

0.021 0.008 0 0 0 0.098 −0.01 −0.011 0.017 0.02 0 0 0.012 0 0.015

0 0 0 0 0 0.014 0.049 0 0 0.02 0 0 0 0 0

0 0 0 0 0 0.015 0 0.04 0 0 0 0 0.01 0 0

0 0 0 0 0 0.01 0 0 0.045 0 0 0 0 0 0.012

0.018 0 0.01 0 0 0.017 −0.009 0 0 0.1 0.01 0.011 0.015 0 0.019

0 0 0 0 0 0 0 0 0 0.015 0.039 0 0.023 0 0

0 0 0 0 0 0 0 0 0 0.02 0 0.045 0 0 0.019

0.02 0 0 −0.01 0 0.024 0 −0.01 0 0.014 −0.01 0 0.074 −0.011 0.022

0 0 0 0 0 0 0 0 0 0 0 0 0.019 0.039 0.014

0.017 0 0 0 0.007 0.02 0 0 0.009 0.015 0 −0.01 0.02 0.01 0.07



,

and B = diag(0.84 0.825 0.815 0.805 0.82 0.83 0.825 0.829 0.82 0.845 0.82 0.83 0.837 0.835 0.845).
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Appendix B

Appendix to Chapter 3

Table B.1: Results for the out-of sample-period starting on January 1976

Equal-weighted Sparse
Pred- R2

OOS ∆(%)-MV ∆(%)-CRRA R2
OOS ∆(%)-MV ∆(%)-CRRA

ictor HA EW HA EW HA EW HA EW HA EW HA EW
Panel A: One-state regressive models

k = 1 0.24 0 0.19 0 0.15 0 0.48∗ 0.24 0.73 0.54 0.34 0.19
k = 2 0.33 0.09 0.23 0.04 0.14 0.00 0.30 0.06 0.58 0.40 0.05 -0.10
k = 3 0.23 -0.02 0.17 -0.02 0.12 -0.03 0.15 -0.10 0.24 0.06 -0.03 -0.18

Panel B: Two-state regressive models - state variable MA(2,12)

k = 1 0.79∗∗ 0.54 1.94 1.75 2.16 2.01 1.10∗∗ 0.85∗∗ 2.78 2.60 2.72 2.57
k = 2 0.99∗∗ 0.75∗∗ 2.86 2.67 2.91 2.76 1.09∗∗ 0.85∗∗ 3.05 2.86 2.98 2.83
k = 3 0.92∗∗ 0.67∗∗ 2.95 2.77 3.09 2.94 0.92∗∗ 0.68∗∗ 3.01 2.82 3.13 2.98

Panel C: Two-state regressive models - state variable A10

k = 1 1.13∗∗ 0.89∗∗ 2.37 2.19 2.56 2.41 1.03∗∗ 0.78∗∗ 2.36 2.17 2.54 2.39
k = 2 1.37∗∗ 1.13∗∗ 2.61 2.42 2.62 2.47 1.00∗∗ 0.75∗∗ 2.94 2.75 2.93 2.78
k = 3 1.27∗∗ 1.03∗∗ 2.59 2.40 2.65 2.50 1.25∗∗ 1.01∗∗ 2.58 2.40 2.61 2.46

Panel D: Principal component analysis

ECON -2.64 -2.89 -0.84 -1.02 -1.86 -2.01
TECH 0.61∗ 0.37 2.28 2.09 2.03 1.88
ALL -0.42∗∗ -0.66∗ 1.98 1.79 1.76 1.61

Notes: Statistical and economic results of equity premium forecasts of equal-weighted (on the left) and sparse (on the
right) combination of conventional one-state predictive regressions (Panel A), two-state predictive regressions (with
state variable proxied by the MA(2,12), Panel B, or A10, Panel C, technical indicators) and principal component (PC)
combination (Panel D). In Panels A, B and C, the candidate predictors are the set of 12 macroeconomic variables con-
sidered either in single-, two- or three-variable regressions (k = 1, 2, 3). The PC analysis is conducted separately for
macroeconomic predictive variables (ECON), technical indicators (TECH) and all of them together (ALL). The out-of
sample-period spans from January 1976 to December 2014. R2

OOS is the out-of-sample R2 given in Equation (3.12).
Besides the traditional historical average (HA), the R2

OOS is also evaluated by considering the equal-weighted (EW)
combining forecast from individual regressive variables (k = 1) as benchmark. The hypothesis test H0: R2

OOS ≤ 0
against R2

OOS > 0 is performed by the Clark and West (2007) out-of-sample MSE-adjusted statistic, where ∗, ∗∗ and ∗∗∗

indicate significance at the 10%, 5%, and 1% levels. The investor who allocates his wealth between stocks and risk-free
bills at the end of each out-of-sample month is assumed to have a mean-variance preference and a relative risk aver-
sion parameter γ = 5. ∆(%) HA is the monthly certainty equivalent return (CER) gains, in the annualized form, for
a investor who uses as risk premium forecast a combined forecasts from competing models instead of the historical
average (HA) excess return. ∆(%) EW is similarly defined with reference to EW combining forecast from individual
regressive variables (k = 1). In bold, it is the best model of each panel.
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Table B.2: Results for the out-of sample-period starting on January 2000

Equal-weighted Sparse
Pred- R2

OOS ∆(%)-MV ∆(%)-CRRA R2
OOS ∆(%)-MV ∆(%)-CRRA

ictor HA EW HA EW HA EW HA EW HA EW HA EW
Panel A: One-state regressive models

k = 1 -0.23 0 -0.62 0 -0.77 0 -0.23 -0.01 -0.29 0.34 -1.02 -0.25
k = 2 -0.50 -0.27 -0.79 -0.17 -1.11 -0.33 -0.71 -0.48 -0.28 0.34 -1.63 -0.86
k = 3 -0.81 -0.58 -0.36 0.26 -0.86 -0.09 -1.02 -0.79 -0.36 0.26 -1.32 -0.54

Panel B: Two-state regressive models - state variable MA(2,12)

k = 1 1.36∗ 1.59∗ 4.39 5.01 5.30 6.07 1.63 1.86∗ 5.73 6.35 6.45 7.23
k = 2 2.00∗ 2.23∗ 6.94 7.56 7.32 8.10 2.03∗ 2.26∗ 7.09 7.71 7.40 8.17
k = 3 2.34∗ 2.57∗∗ 7.43 8.05 7.68 8.46 2.33∗ 2.56∗∗ 7.45 8.07 7.68 8.45

Panel C: Two-state regressive models - state variable A10

k = 1 1.83∗ 2.06∗ 5.10 5.72 5.81 6.58 1.39 1.62 4.88 5.50 5.74 6.51
k = 2 2.25∗ 2.48∗∗ 6.68 7.30 6.97 7.74 1.99∗ 2.22∗ 7.07 7.69 7.36 8.13
k = 3 2.18∗ 2.41∗∗ 6.69 7.31 6.81 7.58 2.15∗ 2.38∗∗ 6.68 7.30 6.80 7.58

Panel D: Principal component analysis

ECON -4.29 -4.06 -1.63 -1.00 -2.48 -1.71
TECH 2.12∗ 2.35∗∗ 6.65 7.27 7.02 7.79
ALL 2.67∗∗ 2.90∗∗ 6.64 7.26 7.63 8.41

Notes: Statistical and economic results of equity premium forecasts of equal-weighted (on the left) and sparse (on the
right) combination of conventional one-state predictive regressions (Panel A), two-state predictive regressions (with
state variable proxied by the MA(2,12), Panel B, or A10, Panel C, technical indicators) and principal component (PC)
combination (Panel D). In Panels A, B and C, the candidate predictors are the set of 12 macroeconomic variables con-
sidered either in single-, two- or three-variable regressions (k = 1, 2, 3). The PC analysis is conducted separately for
macroeconomic predictive variables (ECON), technical indicators (TECH) and all of them together (ALL). The out-of
sample-period spans from January 2000 to December 2014. R2

OOS is the out-of-sample R2 given in Equation (3.12).
Besides the traditional historical average (HA), the R2

OOS is also evaluated by considering the equal-weighted com-
bining (EW) forecast from individual regressive variables (k = 1) as benchmark. The hypothesis test H0: R2

OOS ≤ 0
against R2

OOS > 0 is performed by the Clark and West (2007) out-of-sample MSE-adjusted statistic, where ∗, ∗∗ and ∗∗∗

indicate significance at the 10%, 5%, and 1% levels. The investor who allocates his wealth between stocks and risk-free
bills at the end of each out-of-sample month is assumed to have a mean-variance preference and a relative risk aver-
sion parameter γ = 5. ∆(%) HA is the monthly certainty equivalent return (CER) gains, in the annualized form, for
a investor who uses as risk premium forecast a combined forecasts from competing models instead of the historical
average (HA) excess return. ∆(%) EW is similarly defined with reference to EW combining forecast from individual
regressive variables (k = 1). In bold, it is the best model of each panel.
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Table B.3: Asset allocation exercise for γ = 3

Equal-weighted Sparse
Mean-variance CRRA Mean-variance CRRA

Pred- ∆(%) ∆(%) Sharpe ∆(%) ∆(%) Sharpe ∆(%) ∆(%) Sharpe ∆(%) ∆(%) Sharpe
ictor HA EW ratio HA EW ratio HA EW ratio HA EW ratio
Panel A: One-state regressive models

k = 1 1.87 0 0.111 1.86 0 0.084 3.73 1.86 0.143 3.75 1.89 0.117
k = 2 3.83 1.96 0.145 3.73 1.87 0.117 4.21 2.34 0.152 3.91 2.04 0.119
k = 3 3.98 2.11 0.149 3.99 2.12 0.122 3.83 1.96 0.146 3.83 1.96 0.119

Panel B: Two-state regressive models - state variable MA(2,12)

k = 1 3.02 1.14 0.130 3.44 1.58 0.112 4.84 2.96 0.165 4.98 3.11 0.142
k = 2 4.72 2.85 0.163 4.82 2.96 0.139 4.90 3.03 0.167 5.00 3.14 0.143
k = 3 4.47 2.60 0.159 4.51 2.64 0.135 4.51 2.64 0.160 4.58 2.72 0.137

Panel C: Two-state regressive models - state variable A10

k = 1 3.72 1.85 0.143 4.07 2.20 0.122 4.43 2.56 0.158 4.88 3.02 0.141
k = 2 4.95 3.08 0.166 5.08 3.22 0.143 5.02 3.15 0.169 5.15 3.28 0.146
k = 3 4.74 2.87 0.164 4.74 2.87 0.139 4.87 3.00 0.167 4.86 3.00 0.141

Panel D: Principal component analysis

ECON 2.80 0.93 0.127 2.75 0.89 0.100
TECH 3.07 1.19 0.131 3.16 1.30 0.107
ALL 4.49 2.62 0.160 4.86 2.99 0.142

Notes: The table summarizes the out-of-sample economic performance of equity premium forecasts of equal-weighted
(on the left) and sparse (on the right) combination of conventional one-state predictive regressions (Panel A), two-state
predictive regressions (with state variable proxied by the MA(2,12), Panel B, or A10, Panel C, technical indicators)
and principal component (PC) combination (Panel D). In Panels A, B and C, the candidate predictors are the set of 12
macroeconomic variables considered either in single-, two- or three-variable regressions (k = 1, 2, 3). The PC analysis
is conducted separately for macroeconomic predictive variables (ECON), technical indicators (TECH) and all of them
together (ALL). The out-of sample-period spans from January 1966 to December 2014. The investor who allocates his
wealth between stocks and risk-free bills at the end of each month is assumed to have a mean-variance or constant
relative risk aversion (CRRA) preferences and a relative risk aversion parameter γ = 3. ∆(%) HA is the monthly
certainty equivalent return (CER) gains, in the annualized form, for a investor who uses as risk premium forecast a
combined forecasts from competing models instead of the historical average (HA) excess return. ∆(%) EW is similarly
defined with reference to equal-weighted combining forecast from individual regressive variables (k = 1). Sharpe ratio
is the mean portfolio return in excess of the risk-free rate divided by the standard deviation of the excess of portfolio
return. In bold, it is the best model of each panel.
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Table B.4: Asset allocation exercise for γ = 10

Equal-weighted Sparse
Mean-variance CRRA Mean-variance CRRA

Pred- ∆(%) ∆(%) Sharpe ∆(%) ∆(%) Sharpe ∆(%) ∆(%) Sharpe ∆(%) ∆(%) Sharpe
ictor HA EW ratio HA EW ratio HA EW ratio HA EW ratio
Panel A: One-state regressive models

k = 1 1.01 0 0.089 1.01 0 0.084 1.11 0.10 0.107 1.07 0.05 0.098
k = 2 1.44 0.43 0.109 1.42 0.41 0.104 1.36 0.35 0.108 1.28 0.26 0.102
k = 3 1.34 0.33 0.109 1.34 0.33 0.105 1.25 0.24 0.106 1.17 0.16 0.100

Panel B: Two-state regressive models - state variable MA(2,12)

k = 1 1.96 0.95 0.132 2.01 1.00 0.128 2.48 1.47 0.158 2.45 1.44 0.152
k = 2 2.54 1.53 0.160 2.52 1.51 0.152 2.58 1.57 0.162 2.53 1.52 0.154
k = 3 2.49 1.48 0.158 2.50 1.49 0.150 2.50 1.49 0.159 2.52 1.51 0.151

Panel C: Two-state regressive models - state variable A10

k = 1 2.07 1.06 0.137 2.12 1.11 0.134 2.45 1.44 0.156 2.48 1.47 0.153
k = 2 2.51 1.50 0.158 2.50 1.49 0.152 2.67 1.66 0.166 2.65 1.64 0.159
k = 3 2.35 1.34 0.151 2.36 1.34 0.144 2.40 1.39 0.153 2.39 1.38 0.146

Panel D: Principal component analysis

ECON -1.17 -2.18 0.094 -3.55 -4.56 0.077
TECH 1.31 0.30 0.111 1.18 0.17 0.103
ALL 1.97 0.96 0.153 1.44 0.43 0.145

Notes: The table summarizes the out-of-sample economic performance of equity premium forecasts of equal-weighted
(on the left) and sparse (on the right) combination of conventional one-state predictive regressions (Panel A), two-state
predictive regressions (with state variable proxied by the MA(2,12), Panel B, or A10, Panel C, technical indicators) and
principal component (PC) combination (Panel D). The out-of sample-period spans from January 1966 to December 2014.
In Panels A, B and C, the candidate predictors are the set of 12 macroeconomic variables considered either in single-,
two- or three-variable regressions (k = 1, 2, 3). The PC analysis is conducted separately for macroeconomic predictive
variables (ECON), technical indicators (TECH) and all of them together (ALL). The investor who allocates his wealth
between stocks and risk-free bills at the end of each month is assumed to have a mean-variance or constant relative
risk aversion (CRRA) preferences and a relative risk aversion parameter γ = 10. ∆(%) HA is the monthly certainty
equivalent return (CER) gains, in the annualized form, for a investor who uses as risk premium forecast a combined
forecasts from competing models instead of the historical average (HA) excess return. ∆(%) EW is similarly defined
with reference to equal-weighted combining forecast from individual regressive variables (k = 1). Sharpe ratio is the
mean portfolio return in excess of the risk-free rate divided by the standard deviation of the excess of portfolio return.
In bold, it is the best model of each panel.
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