
Department of Computer Science

Bachelor Thesis

Design and Implementation of a Micro Operating
System Over an ARM Architecture Processor.

The practical case of the Raspberry Pi.

Author: Jérôme Grossé
Tutor: Javier Fernández Muñoz

Leganés, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/79176617?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Título: Design and Implementation of a Micro Operating System Over an ARM
Architecture processor.
Autor: Jérôme Grossé
Tutor: Javier Fernández Muñoz

EL TRIBUNAL

Presidente: Yago Sáez Achaerandio

Vocal: Francisco Valera Pintor

Secretario: Lorena González Manzano

Realizado el acto de defensa y lectura del Trabajo Fin de Grado el día 13 de
Octubre de 2015 en Madrid en la Escuela Politécnica Superior de la Universidad
Carlos III de Madrid, acuerda otorgarle la CALIFICACIÓN de:

VOCAL

SECRETARIO PRESIDENTE

“Twenty years from now you will be more disappointed by the things that you
didn’t do than by the ones you did do, so throw off the bowlines, sail away from
safe harbor, catch the trade winds in your sails. Explore, Dream, Discover.”

Mark Twain

Acknoledgements

I first would like to apologies to all the people I will possibly forget in this section.

To my parents, who always pushed me and forced me go beyond the limits of what
I thought was possible.

To my marvelous girlfriend, Nerea Castedo, for her love, for her support, for being
always here when I needed her and for making me dream of a bright and common
future. To her parents and her family, who accepted me as one of their own,
making me discover a new world and culture unbeknownst to me before meeting
them.

To my friends Shehab Zaineldine, Jorge Rodríguez, Álvaro López, Ionut Sorin,
Alba Ochoa, Javier López and François Delattre who were always here to cheer
me up even when the time were rough with a special mention to Manuel Rodriguez
Gonzalo that was without a doubt the most reliable and trustful workmate and
friend I ever had.

To the teachers of the University Carlos III de Madrid without whom I wouldn’t
even hope to realize this project. Special mention to the ARCOS department who
gave me the taste of low level programming.

To Francisco Javier Blas, who helped me in many different ways throughout this
whole degree.

To Luis Cantarero that was able to help me throughout the numerous administra-
tive problems that I encountered in my student life in the UC3M.

To my tutor, Javier Fernández Muñoz, who trusted me with this project and
helped me throughout its realization.

José Manuel Peso, Mánel, Roberto León and Javier Espinosa for the wisdom and
knowledge that you shared with me during all these months.

To all the people that are not named in this section but who are in my heart.

i

Thanks to all of you, for your trust, support, help and time. I hope to deserve
everything you offered me and not to disappoint you.

ii

Abstract

As students, we are often propelled towards a high level programming throughout
the four years of the computer science degree. Java for the highest language and C
for the lowest language. However, all the languages were used atop an Operating
System with the libraries that it comprises. It was very curious along these years
to be able to deal with the hardware and get a better grasp of how Operating
System really works under the hood. My choice was therefore to dedicate my
bachelor thesis to design and implement my own educational Operating System.

The goal of this Bachelor Thesis is to implement a mini-OS from the ground up
avoiding as much as possible the use of external libraries. That way, we will go on
to implement our own boot-loader, hardware initialization, standard I/O library,
graphical library, etc.

The device used for designing and implementing the operating system is the Rasp-
berry Pi model B+, which CPU uses the ARM architecture. The reason for this
choice was to use a cheap and convenient device for the task. The Raspberry
Pi costs around 30e and boots from an SD card that can be easily placed and
removed. The boot time is also virtually instantaneous, which comes very handy
at the time of the implementation.

iii

Contents

Acknoledgements i

Abstract iii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Motivation . 1
1.2 The Raspberry Pi . 1
1.3 Research context . 2
1.4 Main objectives . 2
1.5 Document structure . 4

2 State of the Art 7
2.1 Operating System . 7
2.2 ARMv6 . 9

2.2.1 CPU modes . 10
2.2.2 Interrupt vector table . 10
2.2.3 Registers . 11

2.3 Serial Communications . 13
2.3.1 Introduction . 13
2.3.2 UART . 14

2.4 Raspberry Pi B+ . 14
2.4.1 Hardware . 15

2.4.1.1 GPIO . 15
2.4.1.2 The Message-Handling Unit: The Mailbox 16

2.4.2 Booting Process . 18
2.4.2.1 config.txt . 19
2.4.2.2 kernel.img . 19

2.4.3 Famous Operating Systems 19
2.4.4 Raspberry Pi in the Scientific Literature 20

3 Developing Environment 21
3.1 Methodology . 21
3.2 Software . 22

v

3.2.1 Operating System . 22
3.2.2 Programming Language . 23
3.2.3 Cross-Compiler . 23
3.2.4 Clang . 24
3.2.5 GNU Screen . 24
3.2.6 Atom . 25
3.2.7 Git . 25
3.2.8 BitBucket . 25
3.2.9 TexMaker . 25
3.2.10 draw.io . 25

4 Project Description 27
4.1 General Constraints . 27
4.2 Requirements Specifications . 28

4.2.1 User Requirements . 29
4.2.2 Functional Requirements . 31
4.2.3 Use Cases . 40

4.3 Software Development Process . 55

5 Proposal 57
5.1 Design . 57

5.1.1 Kernel Core Layer . 58
5.1.2 Kernel Management Layer 59

5.1.2.1 Kernel module . 59
5.1.2.2 GPIO module . 60
5.1.2.3 UART module . 61
5.1.2.4 Scheduler module 62
5.1.2.5 ARMTimer module 63
5.1.2.6 Interrupts module 64
5.1.2.7 Queue module . 65
5.1.2.8 Malloc module . 66
5.1.2.9 Mailbox module 67

5.1.3 CLI module . 67
5.1.4 Developer API Layer . 69

5.1.4.1 Character module 69
5.1.4.2 Screen Text module 70
5.1.4.3 Strings module . 71
5.1.4.4 Standard Input/Output 72

5.2 Implementation . 74
5.2.1 Source code tree . 74
5.2.2 Makefile . 74
5.2.3 Booting process of the kernel 75
5.2.4 Dynamic memory allocation 76
5.2.5 Context Switching . 78

6 Testing 81

vi

6.1 Functional testing . 81
6.1.1 Malloc . 83
6.1.2 Strings . 85
6.1.3 Queue . 88
6.1.4 Scheduler . 89

6.2 Validation Testing . 90
6.3 Traceability Matrix . 92

7 Project Planning 95
7.1 Temporal Planning . 95
7.2 Cost Projection . 96

8 Conclusions and line of work 99
8.1 Conclusions . 99
8.2 Future works . 100

List of Acronyms 101

Bibliography 101

vii

List of Figures

2.1 Registers and Modes summary . 12
2.2 CPSR bits . 13
2.3 Schema of a frame in a UART transmission 14
2.4 GPIO pins of the Raspbery Pi B+ 16
2.5 Schema representing the boot process 19

3.1 Flowchart of a TDD-driven project 22

4.1 Spiral Life-Cycle Schema . 56

5.1 Kernel layers . 58
5.2 Kernel Management Layers . 59
5.3 Kernel Management Layers - Kernel UML 60
5.4 Kernel Management Layers - GPIO UML 60
5.5 Kernel Management Layers - UART UML 61
5.6 Kernel Management Layers - Scheduler UML 62
5.7 Kernel Management Layers - ARMTimer UML 63
5.8 Kernel Management Layers - Interrupts UML 64
5.9 Kernel Management Layers - Queue UML 65
5.10 Kernel Management Layers - Malloc UML 66
5.11 Kernel Management Layers - Mailbox UML 67
5.12 Kernel Management Layers - CLI UML 67
5.13 Developper API Layer - Character UML 69
5.14 Developper API Layer - Screen Text UML 70
5.15 Developper API Layer - Strings UML 71
5.16 Developper API Layer - Strings UML 72
5.17 Source tree . 74
5.18 Kernel Booting Sequence - Sequence Diagram 76
5.19 Heap data structure . 77
5.20 Representation of the heap . 77
5.21 Heap data structure . 78
5.22 Presentation of Context and PCB data structure 79
5.23 Implementation - Diagram of Round Robin without priority 80
5.24 Snippet presenting the context switch 80

7.1 Gant Chart of the Project . 96

ix

List of Tables

1.1 Specification of the Raspberry Pi Model B+ 2

2.1 Message structure to obtain a frame-buffer from the VideoCore . . . 11
2.2 Message structure to obtain a frame-buffer from the VideoCore . . . 17

4.1 Template for the Software Requirements Specification. 29
4.2 User Requirement UR-01: Early Outputs 29
4.3 User Requirement UR-02: Flash LED when turned ON 29
4.4 User Requirement UR-03: Code Execution 29
4.5 User Requirement UR-04: Input handling 30
4.6 User Requirement UR-05: HDMI Output 30
4.7 User Requirement UR-06: HDMI Text Output 30
4.8 User Requirement UR-07: Debug mode 30
4.9 User Requirement UR-08: Multitasking 30
4.10 User Requirement UR-09: Command Line Interface 31
4.11 User Requirement UR-10: Standalone kernel 31
4.12 Functional Requirement FR-01: bootloader 31
4.13 Functional Requirement FR-02: C and ASM language coexistence . 31
4.14 Functional Requirement FR-03: Cross compiler compatibility 31
4.15 Functional Requirement FR-04: Division and modulo operations

support . 32
4.16 Functional Requirement FR-05: ARM Timer interrupt start and stop 32
4.17 Functional Requirement FR-06: ARM Timer interrupt pre-scaler

and threshold . 32
4.18 Functional Requirement FR-07: UART set-up 32
4.19 Functional Requirement FR-08: UART output 32
4.20 Functional Requirement FR-09: UART input 33
4.21 Functional Requirement FR-10: UART output debug 33
4.22 Functional Requirement FR-11: ACT LED 33
4.23 Functional Requirement FR-12: ARM Mailbox read 33
4.24 Functional Requirement FR-13: ARM Mailbox write 33
4.25 Functional Requirement FR-14: Frame buffer initialization for the

HDMI output . 34
4.26 Functional Requirement FR-15: Draw a pixel on the HDMI output 34
4.27 Functional Requirement FR-16: Draw a line on the HDMI output . 34
4.28 Functional Requirement FR-17: Clear the frame buffer of the HDMI

output . 34

xi

4.29 Functional Requirement FR-18: Print characters on the HDMI output 34
4.30 Functional Requirement FR-19: Print strings on the HDMI output 35
4.31 Functional Requirement FR-20: String management library 36
4.32 Functional Requirement FR-21: Sei and cli 37
4.33 Functional Requirement FR-22: Memory management library . . . 37
4.34 Functional Requirement FR-23: Interrupt handlers 38
4.35 Functional Requirement FR-24: Threads and contexts 38
4.36 Functional Requirement FR-25: Context switching 38
4.37 Functional Requirement FR-26: Thread scheduling 39
4.38 Functional Requirement FR-27: Round-robin scheduling 39
4.39 Functional Requirement FR-28: Display pictures on HDMI Output 39
4.40 Functional Requirement FR-29: JPEG image conversion tool 39
4.41 Functional Requirement FR-30: Compilation 39
4.42 Functional Requirement FR-31: Activity LED on Context Switch . 40
4.43 Functional Requirement FR-32: Command Line Interface 40
4.44 Traceability matrix - Functional Requirement vs User Requirements. 41
4.45 Template for the use case description. 42
4.46 Use Case UC-01: System boot . 43
4.47 Use Case UC-02: Kernel Compilation 44
4.48 Use Case UC-03: Debug Output . 45
4.49 Use Case UC-04: ARM timer interrupt 46
4.50 Use Case UC-05: Context Switching 47
4.51 Use Case UC-06: Display an image on the screen 48
4.52 Use Case UC-07: Create header picture 49
4.53 Use Case UC-08: Print strings on the serial port 50
4.54 Use Case UC-09: Print strings on the HDMI port 50
4.55 Use Case UC-10: Input data handling 51
4.56 Use Case UC-11: Line drawing . 52
4.57 Use Case UC-12: Line drawing . 53
4.58 Traceability matrix - Functional Requirement vs Use Cases 54

6.1 Template for the functional testing. 82
6.2 Functional Test FT-1: memory_test_init 83
6.3 Functional Test FT-2: memory_test_free_and_alloc 83
6.4 Functional Test FT-3: memory_test_four_alloc 84
6.5 Functional Test FT-4: memset_test 84
6.6 Functional Test FT-5: itoa_test . 85
6.7 Functional Test FT-6: rpi_strlen_test 85
6.8 Functional Test FT-7: itoh_test . 85
6.9 Functional Test FT-8: rpi_sprintf_test 86
6.10 Functional Test FT-9: rpi_strcpy_test 86
6.11 Functional Test FT-10: rpi_strcmp_test 87
6.12 Functional Test FT-11: rpi_strcmp_test 87
6.13 Functional Test FT-12: get_first_word_test 88
6.14 Functional Test FT-13: queue_init_test 88
6.15 Functional Test FT-14: queue_enqueue 88

xii

6.16 Functional Test FT-15: itoh_test 89
6.17 Functional Test FT-16: create_process_test 89
6.18 Functional Test FT-17: get_next_pcb_test 89
6.19 Functional Test FT-18: context_switch_test 90
6.20 Template for the validation testing. 90
6.21 Validation Test VT-01 - System boot 90
6.22 Validation Test VT-02 - Kernel compilation 90
6.23 Validation Test VT-03 - Kernel compilation 91
6.24 Validation Test VT-04 - ARM timer interrupt 91
6.25 Validation Test VT-05 - Context switching 91
6.26 Validation Test VT-06 - Display an image on the screen 91
6.27 Validation Test VT-07 - Create header picture 91
6.28 Validation Test VT-08 - Print strings on the serial port 91
6.29 Validation Test VT-09 - Print strings on the HDMI ports 91
6.30 Validation Test VT-10 - Input data handling 92
6.31 Validation Test VT-11 - Line drawing 92
6.32 Validation Test VT-12 - Command-Line Interface 92
6.33 Traceability matrix - Functional Requirement vs Tests. 93

7.1 Cost projection for physical resources taking into account deprecation 97
7.2 Human resource cost . 97
7.3 Cost Projection Total . 98

xiii

Chapter 1

Introduction

1.1 Motivation

Nowadays, we are surrounded by computers: Smart phones, laptops, desktops,
cars, gaming consoles, tablets, calculators, clusters, embedded systems. These are
all classes of devices that render the broad term of computer poor of sense. For
each of them, there are specific needs that has to be fulfilled to make them useful.
Part of these needs are reflected through the processor architecture.

During this lasts years, ARM (Advanced RISC Machines) has gained popularity
as it is the CPU architecture of choice of every hand-held devices, the most sold
devices [2]. It allows a low power consumption compared to other architecture like
i386 with a great trade-off in computational power.

1.2 The Raspberry Pi

From Wikipedia [25]

The Raspberry Pi is a series of credit card-sized single-board computers
developed in the UK by the Raspberry Pi Foundation with the intention
of promoting the teaching of basic computer science in schools.

The Raspberry Pi has been designed by scientists from the University of Cambridge
with their first commercial model released in 2012. The Raspberry Pi has been
designed with a powerful optic in mind: The bring a fully-fledged cheap computer.

1

The Raspberry Pi used for the bachelor thesis is the model B+ that includes on-
the-go a GPU, a sounds card, an ARM11 CPU and a SD Card reader. Bellow is
a table that sums up the specifications of said model:

Technical Feature Model B+
System on Chip Broadcom BCM2835 SoC
CPU 700 MHz Low Power ARM1176J (ARMv6)
GPU Dual Core VideoCore IV R© Multimedia Co-Processor
Memory 512MB SDRAM
USB 2.0 4 x USB 2.0 Connector
Video Out HDMI (rev 1.3 and 1.4), Composite RCA (PAL and NTSC)
Audio Out 3.5mm jack, HDMI
Storage SDIO
Network Ethernet
Peripherals GPIO, Camera Connector, Display Connector
Power Source Micro USB socket 5V, 2A or GPIO header
Dimensions 85 x 56 x 17mm

Table 1.1: Specification of the Raspberry Pi Model B+

The device is incredibly small and cheap for its capabilities, which makes it a
device of choices for investigations and small projects. The Linux kernel (and
therefore several distributions such as Debian or ArchLinux) has been ported to
the Raspberry Pi. Several libraries have been implemented to control the hardware
easily from the user space. Remarkable projects have already been made such as
media centres [18], emulation distribution [23].

1.3 Research context

The context of this paper is the Bachelor Thesis (Trabajo de fin de Grado) in the
University Carlos III de Madrid.

1.4 Main objectives

The goal of this research is to build from the ground up an educational kernel for
the Raspberry Pi. The objective is not to propose a professionally made and usable
OS but instead, propose an implementation with a clear code and explanation of an
operating system usable on the Raspberry Pi. To do so, one of the main objective
is to research the low level functioning of the hardware, that is, how things work

2

and communicate on a bare-metal level as well as building a system on the studied
hardware. The main guideline can be presented as following:

• Analysis and understanding of the basics of the ARM architecture:
The ARM architecture is complex and presents tools and features for a wide
range of use cases. We will mainly focus on the booting process as well as
understanding how the different part of the Raspberry works (GPIO, Timers,
GPU amongst other).

• Building a kernel able to boot and execute a program: The main goal
of a kernel is to interact with the hardware of the device and getting things
ready to execute some arbitrary code.

• Hardware Drivers: That is mostly to be able to use the other hardware
besides the processor that the Raspberry Pi uses. A device is useless if it
cannot interact with the outside world, the kernel should handle the output
of data (using a screen and/or a serial cable) as well as being able to receive
data from outside (keystrokes).

• Memory management: Allocating data given a size at run-time and return-
ing an address to the process, this is pretty much implementing the UNIX’s
C function malloc.

• Threads management: Creation of the context of thread and more gen-
erally of a process. This include being able to start, pause and terminate
process as well as having independent stacks.

• Threads scheduling: Implementation of scheduling algorithms for the threads
in order to achieve multitasking.

• Interaction with the user: In order not to have a black box devoid of
life, the OS should be able to output data (show debug messages, display
pictures on the screen or flash an LED) and handle inputs from the users
(basic commands).

• Multitasking: The main goal of an OS is to allow multi-tasking, that is, offer
the illusion that several taskw are executing at the same time while in fact
each task is allocated a short amount of time before stopping its execution,
executing the following task, etc.

3

1.5 Document structure

In this section, the structure of the document as well as the different goal of each
sections are explained outlining the main goals of each of them. It can be used as
a road map for the reader.

• Chapter 1 - Introduction: This is the current chapter. This chapter
describe the motivation and the context of this thesis as well as the objective,
the description of the project and the introductions to the the organization
of the document.

• Chapter 2 - State of the art: This refers to the current level of knowl-
edge for a given subject. In this case, the subject is OS development and
particularly, on a ARM device.

• Chapter 3 - Developing Environment: The chapter describes all the
tools used for the realization of this study, from the hardware to the software
as well as a short description and the reason of their use.

• Chapter 4 - Project Description: This chapter is the key to the whole
project. It presents the general constraints as well as the requirement speci-
fications, that is, the elicitation of the user requirements, functional require-
ments and non-functional requirements. It then proceeds to display different
use cases and a traceability matrix.

• Chapter 5 - Proposal: This chapter presents the design that has been
extracted from the requirements specifications, that is, the design of the all
modules, relationship among them and what the function that each module
contains are. It presents the organization of the kernel as well as explanation
of its internal functioning. The chapter also presents the implementation
of the kernel, that is, the explanation of some parts of the code that are
necessary for comprehension of a module or the kernel itself.

• Chapter 6 - Testing: Chapter dedicated to the presentation of the tests
performed to check the good functioning of the project, which are the auto-
mated functional tests implemented as well as the manual verification testings
and their results.

• Chapter 7 - Project Planning: Chapter dedicated to the project plan-
ning and the resources consumption encompassing the time and money usage
throughout the realization of the project.

4

• Chapter 8 - Conclusions: Final chapter presenting the conclusions drawn
during the project. Future project lines are also proposed in this section in
order to give ideas and possible improvements for the project.

In addition to these height chapter, two appendixes can be found:

1. Acronyms: Acronyms used and defined in this document.

2. Bibliography: References used in this document.

5

Chapter 2

State of the Art

The State-of-the-Art consists in exposing the highest level of development regard-
ing the topics related to this bachelor thesis. This section helps having a common
ground between the reader and the writer as to what the key concepts are, as lot
of the design decisions are based on these concepts.

The section 2.1 in dedicated to introducing the concepts of operating systems and
its relevant features.

In the section 2.2, we introduce the basics of the ARMv6, that is, its architecture,
registers, CPU modes, etc.

The section 2.3 presents serial communications and a protocol over this method:
The UART.

The last section, 2.4 is aimed to present what is relevant to know regarding the
Raspberry Pi from a development perspective.

2.1 Operating System

OS are designed to handle real-time application to process data as it comes in.
The RTOS group of OS includes real-time processing time and response time
requirements. The main characteristics of the RTOS are the following:

• Jitter: The jitter is the deviation from true periodicity of a presumed peri-
odic signal. In the context of RTOS, the jitter is the deviation of the deadline
of the system in respect to the deadline expected [22].

• Scheduling algorithm: This is how the system will determine the next
process to be executed and how it will execute. The more famous algorithm

7

are the pre-emptive algorithms, the more famous being Round Robin (RR),
Fixed priority pre-emptive scheduler. Other non-pre-emptive algorithms can
be Earliest Deadline First and FIFO.

• Interrupt latency The interrupt latency is defined as: "the time that elapses
from when an interrupt is generated to when the source of the interrupt is
serviced". This depends on a lot of criteria such as the time of interruption
(synchronous or asynchronous), the processor architecture as well as the in-
terrupt masking (interrupt enabled or disabled) and the interrupt handler
(depends on the OS).

• Context and thread switch latency: Thread switching is the process of
storing and restoring the state of a thread and saving restoring another one.
This creates the illusion of simultaneous threads executing at the same time
while in fact, all the threads are executing sequentially but a context switch
is done many times a second. The time needed to store the state of a thread
and restore another thread is the thread switch latency. This depends on
many things such as the Task scheduler (including how fast the scheduling
algorithm is), whether threads are part of same process (if not, CPU cache
overhead are to be expected), the architecture of the CPU as well as the data
structure used for the context switching itself.

What enters in consideration while using an OS is the different inter-task commu-
nication that it offers. Intertask Communication is a possibility to share resources
amongst different tasks (thread or process). The more popular method are:

• Disabling interrupts: This is the most basic resource sharing method.
When a critical resource is used and cannot be accessed at the same time,
interrupts are disabled in order to avoid any interruptions of the execution
flow until the sections related to the resource is over. This is the simplest way
to avoid having two processes from accessing a critical section at the same
time.

• Mutexes: This method is a lot more costly CPU-cycle wise than simply
disabling interrupts. It uses the analogy of a traffic light: When a developer
knows that a thread reaches a critical section, the thread is to poll the mutex
so as to check for resource availability. If the mutex is disabled, the resource
is being accessed by another thread. When the mutex is available, the thread
disable the mutex, accesses the resource, and when it goes out of the resource
re-enables the mutex.

8

• Semaphore: This is the generalisation of the mutex: The difference with
the mutex is that a semaphore can allow several threads to access the critical
sections and get disabled once the maximum number of thread accessing the
critical section at the same time has been reached.

• Message passing: In this paradigm, there’s only one owner of a resource,
when other threads want to access or get information regarding this resource,
it ask first to the owner the right to do so, then the owner can grant, delay
or deny the access of the resource.

• Synchronous message passing: The sender thread sends a message to the
receiver thread, the sender needs to wait the sender to receive such message,
which can result in a very inefficient method.

• Queues: This is the asynchronous flavour of the previous bullet point: A
message is sent by a sender but it doesn’t wait for the receiver to receive
the message, instead, the execution flow of the sender continues. However,
a problem can arise when a sender continues the execution flow without the
receive completely received the message. This is why queue are used as a
message passing buffer that can be accessed asynchronously.

OS are expected to handle the starting and finishing of a program, that is, the OS
doesn’t know beforehand its execution what the program that it will have to handle
will be. OS have emerged as an important discipline in Computer Science due to
the increasing in computational power, An OS proposes flexibility for the software
by providing tools to the developer. POSIX has a categories for the special case
of OS, RTOS, named POSIX.1b, witnessing the importance in the industry of
such class of OS. Dennis M. Ritchie made a very interesting paper [32] in 1974
where he present the UNIX operating system as well as several key components
such as: a hierarchical file system, inter-processes or even an asynchronous process
initialization. UNIX has played a key role in the development of modern operating
systems.

2.2 ARMv6

As explained before, ARM is especially suited for embedded systems and systems
that are required to be power efficient. The ARMv6, is the architecture the one
that we are interested in as the CPU used in the Raspberry Pi B+ is a 32-bits
ARM1176JZF-S. A description of the the different properties of this architecture
is described below.

9

2.2.1 CPU modes

The ARMv6 architecture presents different CPU modes, that is, modes with dif-
ferent privileges and dedicated registers. When the devices starts, the device is set
into privileged mode, that means that it can write in almost all the registers and
change execution mode. At any given time, the processor can only execute in one
given mode, however, externals events (exceptions or instructions) can trigger an
execution mode change. There’s basically one CPU mode per type of exception:

• User mode: This is the mode with the least privilege, this is the mode the
CPU should be in when executing user programs.

• Interrupt Request (IRQ)

• Fast Interrupt Request (FIQ)

• Supervisor (SVC) Privilege mode when CPU is reset or when switching
using the dedicated instruction

• Abort mode Privilege mode when a prefetch abort exception or data abort
exception has been thrown.

• Undefined mode Privilege mode when an undefined instruction exception
has been thrown.

• System mode Privilege mode only accessible from the dedicated instruction
by modifying the CPSR

2.2.2 Interrupt vector table

The interrupt vector table (and therefore the interrupt vectors) are very important
part of the interruption process. While receiving an interruption, the processor
save the current program pointer and stack pointer, switches to the adequate
CPU mode and branches to the appropriate interrupt vector. The vector table
associates the interrupt handler with the interrupt request so that the processor
knows what part of the code to execute to handle a particular interrupt.

As a result, it is required to define an interrupt handler for each of the possible
interruption. Below is a table displaying the list of interrupt that may arise during
code execution along with their CPU mode:

10

CPU Mode Interruption
Abort Reset: Reset triggered by the watchdog.

Also, first interruption triggered while boot-
ing the kernel.

Abort Prefetch Abort: Instruction couldn’t be
prefetched correctly

Abort Data Abort: Data abort interrupt can be
caused by many reasons such as alignment
faults, translation faults or access bit faults.

Undefined Undefined Instruction: Undefined instruc-
tion found during the execution. This can be
used to extend the ARM instruction set by
creating new instruction handled by this in-
terruption handler.

IRQ Software Interrupt: Synchronous interrup-
tion handler generated by the code, for in-
stance, when using a system call.

IRQ Hardware Interrupt: Asychronous inter-
ruption handler generated by the hardwhare,
for instance, via I/O or timer interruption.

FIQ Fast Interrupt: Higher priority interruption
than software interrupt.

Table 2.1: Message structure to obtain a frame-buffer from the VideoCore

2.2.3 Registers

The ARM architecture specifications specifies 37 registers:

• Thirteen general-purpose registers namely R0-R12

• One Stack Pointer (SP) per mode. This register can also be named R13.

• One Link Pointer (LR) per mode. This register can also be named R14.

• One Program Counter (PC)

• One Current Program Status Register (CSPR).

A register is qualified as banked when the mode can use these registers without
needing to restore their initial value. As there are one SP and LR registers for
each mode, SP and LR are therefore banked registers in every mode. R0 to R12
are never banked registers on the exception to the FIQ mode where R8 to R12 are
banked. The figure 2.1 borrowed from the the ARM documentation summarizes
the registers versus modes relation.

11

Figure 2.1: Registers and Modes summary

As explained before, the CPSR is the main register to use for switching state. But
in fact, the CPSR is used for a lot more than just mode switching, it has (amongst
other) these uses:

• Processor mode

• Thumb enabled/disabled bit

• FIQ enabled/disabled bit

• IRQ enabled/disabled bit

• Data endianness bit

• Branch state bit (namely IT)

• Greater-than-or-equal-to bit (namely GE)

• Do-not-monidify bits (DNM)

• Carry/borrow/extend bit

• Zero bit

12

• Negative/less than bit

This is why it is extremely important to be careful when modifying the CPSR,
this is why the ARM is also provided with a SPSR. Also, it is prime importance to
save such register when performing context switching. Finally, the CPSR contains
reserved bit, as explained in the ARM documentation these registers are currently
unused but present for future features. The figure 2.2 pictures a summary of the
bits present in the CPSR in a graphical manner.

Figure 2.2: CPSR bits

2.3 Serial Communications

2.3.1 Introduction

The serial communication (as opposed to parallel communication) is the process
of sending data one bit a time over a communication channel. This is one of
the simplest mean of communication and one of the more used in mainstream
computing as for instance USB, SATA and PCIe are all using serial communication
within their protocol. The serial communication uses a series of mechanisms that
provide error-free transfers across the devices such as synchronization bits (to avoid
data loss) and parity bits (for error checking).

Serial communications are all based on a internal clock that has to be known
before starting the communication that is called the baud rate. The baud (in bits
per seconds) specifies how fast data is sent over the serial communication. It is
important to know beforehand the baud rate of the communication otherwise it is
impossible for the two devices to synchronize and exchange data without errors.

13

The serial communication being just a concept, the specifics of the protocol such
as data framing, synchronization, error checking, etc. are specified by the standard
used. The one used in this project is specified in the next section.

2.3.2 UART

UART stands for Universal Asynchronous Receiver/Transmitter [24] and is a com-
puter devices that is used to translate data sent from a parallel way into byte and
vice versa. It is therefore required that both ends of the link have a UART devices
in order to be able to communicate.

As for many other protocols, UART uses frames to transmit its data, that is, the
data that is to be transferred is cut into little chunk which are framed (i.e. placed
into sequence of a bit data allows the receiver to know where the boundaries of
the data are). The frame contains:

• A start bit

• The data

• Parity bit (optional)

• Two stop bits

When the communication is idle, all the bits are set HIGH, it therefore comes that
the start bit is set to LOW. The parity bit is optional but provide an additional
layer of error checking. Finally, the two stop bits are always set to HIGH.

Figure 2.3: Schema of a frame in a UART transmission

2.4 Raspberry Pi B+

On top of the ARM resides the Raspberry Pi with its set of rules and hardware.
For this section, we will focus on the model that is relevant for this project, that
is, the Raspberry Pi model B+.

14

2.4.1 Hardware

The hardware has to be handled by the kernel up to a certain extends. Depending
on the hardware, different parameters parameters and protocols are to be em-
ployed. This section is a summary of the relevant part of how to use them and
how it has been design in the kernel.

In order to gather the information related to a given hardware, the official Broad-
com BCM2835 ARM Peripherals manual [1] has be used. It states on page 6:

Physical addresses range from 0x20000000 to 0x20FFFFFF for periph-
erals. The bus addresses for peripherals are set up to map onto the
peripheral bus address range starting at 0x7E000000. Thus a periph-
eral advertised here at bus address 0x7Ennnnnn is available at physical
address 0x20nnnnnn.

We are going to use the physical address (i.e. from 0x20000000 to 0x20FFFFFF).
The peripheral address of the Raspbery Pi can be found with an offset from
the base value. For instance, the GPIO address can be found with an offset
of 0x200000, the UART with an offset of 0x201000, etc).

The hardware in the scope of this bachelor thesis are the GPIO, the UART and
the GPU. We will therefore introduce these components below.

2.4.1.1 GPIO

The GPIO is the easiest way to handles I/O with an external devices, as its name
implies. The Raspberry Pi uses a J8 header, that is, a 26-usable-pins GPIO, the
other being for the ground or power supply. Finally, there are some GPIO numbers
that don’t have any physical pins but have influence on the board. For instance,
GPIO 47 refers to the ACT LED. The figure 2.4 is a table presenting the GPIO
pins [19].

15

Figure 2.4: GPIO pins of the Raspbery Pi B+

Only five pins are actually used for the project:

• Pin 2 - 5.0V DC - This will be the Pin used for providing power to the
board.

• Pin 6 - GROUND

• Pin 8 - TxD - Transmit data. This is the pin used to output data serially
to the computer.

• Pin 10 - RxD - Receive data. This is the pin used to receive data serially
from the computer.

• Pin 47 - ACT LED - It is possible to turn it on and off, this led is specially
useful before having implemented the serial output drivers.

The pins 8 and 10 are used for the UART serial communication between the
computer and the Raspberry Pi.

2.4.1.2 The Message-Handling Unit: The Mailbox

The mailboxes [14] are a hardware tool that ease the communication between the
the ARM processor and the VideoCore. It allows the communication of these two

16

components using asynchronous messages, hence the name ’Mailbox’. It contains
seven channels that are each for a different purpose/task:

• Channel 0: Power management interface channel

• Channel 1: Frame-buffer channel

• Channel 2: Virtual UART channel

• Channel 3: VCHIQ interface

• Channel 4: LEDs interface channel

• Channel 5: Buttons interface channel

• Channel 6: Touch-screen interface channel

All of these mailbox can contain up to height messages of 32-bits which can be
allocated using a FIFO policy.

The only channel that we will be using for this work is the channel 1, related to the
frame-buffer as it will help us to ask for the VideoCore a address where the data
related to the screen can be written. Please find the status of the organization of
the message hereunder:

Byte Meaning
0 Physical Width: Width to upscale the vir-

tual width to.
4 Physical Height: Height to upscale the vir-

tual height to.
8 Virtual Width: Width of the native frame-

buffer
12 Virtual Height: Height of the native frame-

buffer
16 GPU - Pitch
20 Bit Depth: How many byte to allocate for

each pixel, related to colour depth
24 X: Number of bits to skip in the top left side

on the horizontal axis
28 Y: Number of bits to skip in the top left side

on the vertical axis
32 GPU - Pointer: Pointer where the frame-

buffer is located
36 GPU - Size: Size of the the frame-buffer in

byte

Table 2.2: Message structure to obtain a frame-buffer from the VideoCore

17

2.4.2 Booting Process

The board is devoid of power button, instead, the Raspberry Pi boots automat-
ically when power is applied to the board. The booting process is a bit atypical
as the device that is first powered and that initializes the booting sequence is the
VideoCore processor, which start the stage 1 bootstrap from the ROM in the SoC.
The stage 1 bootstrap gives the instruction to initialize the SD Card, mount it
and start the file bootcode.bin. Below is the list of the boot stages:

1. hardcoded firmware - This code starts on the GPU, mounts and executes
stage 2.

2. bootcode.bin - Still running on the GPU, it enables the RAM and starts
stage 3.

3. start.elf - This is the firmware of the GPU. It reads the file config.txt if any,
and starts setting up the GPU. This stage is also in charge of partitioning the
RAM into two regions: GPU RAM and CPU RAM, this is set so that the
ARM processor will take the leftover RAM. It finally reads another configu-
ration file: cmdline.txt, it contains the attributes to be passed to the kernel
before starting. Finally, it loads and execute the kernel.img file and start the
CPU.

4. kernel.img - This is the user code, that is, the file that this thesis aims to
produce.

Both bootcode.bin and start.elf can be found on the official repository of the Rasp-
berry Pi [11] but they belong to BroadCom that hasn’t released the source for
those two files and have various feature that are undocumented, which makes
custom boot-loaders extremely tedious to produce.

This is the latter that we will implement. It is to be compiled with the arm cross
compiler [7].

18

Figure 2.5: Schema representing the boot process

2.4.2.1 config.txt

As aforementioned, this file contains parameters that are used to set up the CPU
and GPU. A broad range of parameters can be set [8]: from the memory that
the GPU will use, disable or enabling the L2 cache, setting up the audio and
PWM, setting up the HDMI video mode (video, audio, frequency, resolution, pixel
encoding, etc.).

2.4.2.2 kernel.img

This is the user code. The bootloader stage 3 will load that file and by default
expect the first instruction to be stored at the address 0x8000, this is to be taken
into account when compiling our kernel.

2.4.3 Famous Operating Systems

Not surprisingly, the most popular OS’ on the Raspberry are Linux-based. Here
is a non-exhaustive list of the most notable operating system that can be run by
the Raspberry Pi:

• Raspbian [21]: OS based on the highly popular Debian distribution op-
timized for the Raspberry-Pi. Raspbian is bundled with more than 35000
packages, which allow a very broad set of possibilities (from Desktop use to

19

more specific use for developers. This is the go-to OS for a general purpose
Raspberry Pi.

• ArchLinux [6]: Port of the ArchLinux distribution to ARM processors. It is
suited for more specific use as the user can and has to install specific packages
that is suited for its use as the basic installation only comes with the Linux
kernel, a shell and a package manager.

• OpenELEC [17]: OpenELEC stands for Open Embedded Linux Entertain-
ment Center, this is the go-to distribution for using the Raspberry Pi as a
media center.

• Kali Linux [12]: As for ArchLinux, this is a port of the popular Kali Linux
to the ARM processors. This is the distribution of choice for forensics analysis
and penetration testing.

• RetroPie [23]: This distribution is for entertainment purposes as it proposes
a wide set of emulator for old consoles proposing a retro gaming experience.
The distribution supports game pads for various consoles as long as an adapter
is purchased.

• FreeRTOS [10]: Whereas the previous OS are all based on the Linux Kernel,
FreeRTOS has its standalone kernel and Operating System specially tailored
for real-time purposed for embedded systems

2.4.4 Raspberry Pi in the Scientific Literature

Mr Eric Biggers wrote a paper regarding the port of Xinu [28], an Operating
System totally independent on UNIX as it has been made without any goal of
compatibility and without the knowledge of the source code of UNIX. The paper
shows different challenges and solutions brought by Mr. Biggers in order to port
it to the Raspberry Pi. Other papers have been publish but are more related to
the IoT1, it is therefore out of the scope of this document.

1Internet of Things

20

Chapter 3

Developing Environment

This section is aimed to present the development method as well as the program-
ming language, tools, software and hardware used throughout the development of
this bachelor thesis.

The section 3.1 introduces the methodology used for developing the kernel.

The section 3.2 introduces the different software and operating systems used in
order to compile and use the kernel. In addition to that, the software used for the
realisation of the project are also introduced.

3.1 Methodology

The methodology used for developing the features of the operating system uses
the TDD1 [27] method. That is, when a feature is needed, a test is made and
then the solution is developed. It helps to have a clear idea of the edge cases and
what the function should do. Continuous automated testing of the projects offers
several key advantages:

• Documentation purposes: Although it doesn’t alone give a complete doc-
umentation of the function, it shows clearly how it should be used and why it
has been thought for. The scenarios displayed in the tests should be typical
scenario that can happen when using them in the project.

• Bug prevention: A very common way to introduce bug in a library is to
change the algorithm while keeping backward compatibility. If the feature has
been tested, a developer shouldn’t fear to update the internal implementation
of a function (for example, improve the efficiency or enhance the results of

1Test-Driven Development

21

Figure 3.1: Flowchart of a TDD-driven project

said function) as the tests will fails if the function doesn’t behave any more
as it is expected to in at least one of the cases.

• Time saver: Automated tests are very useful as they allows the developer
to avoid testing every cases by hand when modifying a feature. The tests
being automated, they will notify failures, if any, automatically.

In this thesis, a tests have been created in any of these three scenarios:

• Feature creation: As stated by the TDD, a test should be created before
implementing the solution.

• Feature enhancement: If the algorithm has been changed and some be-
haviour has been modified, a test is created.

• Bug encountered: When an unexpected scenario has been found leading
to an incorrect behaviour, a test is created testing for the correct behaviour
and then the function tested is modified to fit all the previously made tests
as well as the newly created one.

3.2 Software

3.2.1 Operating System

The Operating System used for the development, compilation of the kernel and
redaction of the documentation is Mac OSX version 10.10. This is the latest
iteration of Apple’s Operating System.

22

3.2.2 Programming Language

The end program needs to be compiled to an ARM assembly program, it is there-
fore all naturally that at the very beginning of the project, the kernel was imple-
mented in ARM Assembly. However, as many people that wrote code in assembly
know, assembly can reveal itself tedious to work with, I therefore looked for a
way to use either the C or C++ programming languages. However, I’ve had way
more practice with C, especially throughout the whole degree, than C++. It is
very difficult to write the whole kernel without any ARM Assembly in it: The
bootstrap of the kernel is written in ARM ASM (i.e.: The stack settings as well
as the interrupt vector), and the higher level of code is written in C.

Regarding C, it is a general-purpose programming language created in 1972 by
Dennis Ritchie and Brian Kernighan [31], however, it is often used for low level
programming or programs to be run from within a CLI2. It has been created to be
mapped efficiently to machine code as an alternative to assembly programming,
which is one of the main reasons why it is still nowadays a famous programming
language for operating system development (Linux, for instance, is almost com-
pletely implemented in C).

Due to the popularity and the age of C, it proposed a wide range of advantage:

• Compatible with most current Operating System

• Fast and efficient as it is really close to machine code

• Lot of support and in our case, compiler and cross compilers for a large set
of computers.

• Modulable through the usage of libraries.

As a drawback, C totally lacks of Object-Oriented features (C++ has been created
to fix this issue), and it has a steep learning curve.

3.2.3 Cross-Compiler

A cross-compiler is a compiler that is able to create binary code for a machine
different that on which the compiler is run. Since the code is not being compiled
on the Raspberry Pi but instead, on independent computer, the use of a cross-
compiler is mandatory.

2Command line interface

23

In order to compile the kernel, the YAGARTO GNU ARM toolchain [26] has been
used. The YAGARTO toolchain was initially made to be executable on Microsoft
Windows with the objective to be independent from Cygwin [9], a Unix-like envi-
ronment and command-line interface for Microsoft Windows that provides native
integration of Windows-based applications, data, and other system resources with
applications, software tools, and data of the Unix-like environment. and be cheap
for beginner (it is actually free). The YAGARTO project has then be ported to
Mac OSX. Amongst other program, this toolchain comes with the following tools
that are used for the compilation process:

• arm-none-eabi-as: Used for the compilation of the assembly code.

• arm-none-eabi-gcc: Used for the compilation of the C code.

• arm-none-eabi-ld: Used for the linking of the object files into an ELF3 file
following a given memory map.

• arm-none-eabi-objcopy: Used to convert the compiled file back to assem-
bly code, it is used mainly for debug purposes.

3.2.4 Clang

Clang is an open source compiler for the C, C++, Object-C and Objective C++
programming languages. It uses LLVM4 [13] as compiler infrastructure developed
by Apple starting from 2007 but that has since then received involvement from
other companies such as Google, ARM or even Intel. This is the compiler present
by default on the Mac OSX operating system and the one used in this project to
compile the code that can be executed by the users for the functional testings.

3.2.5 GNU Screen

GNU Screen is a command-line application for console multiplexing, allowing a
user to have different virtual consoles inside one terminal by the mean of different
buffers. It has the particularity to able to be detached (i.e. put in the background)
and restored later in time without pausing or closing the programs opened in
screen. The most interesting feature and the one that is directly linked to this
project is that GNU Screen can be used a serial console, that is, it is possible to
specify a number of baud and a port so as to communicate with a peripheral. This
is therefore, the software that is used for communicating with the Raspberry Pi
through the serial connection provided by the GPIO.

3Executable Linkable Format
4Low Level Virtual Machine

24

3.2.6 Atom

Atom is GitHub’s free open source multi-platform text editor written in node.js
and base on Chromium. It is highly customizable and supports a large amount
of plug-ins thanks to its built in plug-in manager and has a large community
maintaining them. It has out-of-the-box compatibility with Git. Atom is written
on node.js and based on Chromium. This software was used to write all the source
code of the kernel for this project.

3.2.7 Git

Git is a free and open source version control system designed by Linus Torvalds.
It is a very widely used tool to develop, backup, and distribute source code. It
is really handy when developing a software as the user can create versions of the
source code (i.e. commit) as well a go back to some previously created version.
This tool has been extensively used throughout the development of the kernel.

3.2.8 BitBucket

BitBucket offers private git repositories (i.e. a storage location from which the
source code can be updated and retrieved) for free when applying to the student
program. This platform has been used to store the source code of the kernel
throughout its development.

3.2.9 TexMaker

TexMaker is the application used to write this document. It is a cross-plateform
LaTeX editor and is therefore present on the three major Operating System. Tex-
Maker handles the word-processing part with useful shortcuts, auto-completion
and spell-checking, but is also able to compile the LaTeX document to several
formats with only one key press. In addition to that, it presents a fairly extensive
configuration.

3.2.10 draw.io

Draw.io is a free online diagram drawing application that allows the user to draw
figures such as workflow, charts, UML diagrams, network diagrams, use case dia-
grams, etc. In addition to that, it has a very good integration with the browser’s
local storage, Google Drive or Dropbox to provide document persistence. This is

25

the application that has been used to drawn most of the diagrams present in this
document.

26

Chapter 4

Project Description

This main purpose of this section is to shape the project by defining needs (re-
quirements) as well as use cases and the development process. This is one of the
most important part as the development is entirely shaped based on this section.
The requirement needs to define the feature to be developed. Of course, there
are two different perspective in a software project: The user perspective and the
system perspective. It is therefore necessary to create requirements for both of
these perspectives. Requirements can be classified in different types:

• User Requirements: Requirements that needs to fulfill feature from the
user perspective. These are the requested features with the user’s words.

• Functional Requirements: Requirements from the system perspective. It
is testable as it targets very concrete parts and therefore specific enough.
There are presented from the engineers words.

• Non Functional Requirements

4.1 General Constraints

The system is to be used on a Raspberry Pi, this therefore give several constraints
regarding the kernel. The kernel should work with a modest amount of processing
power and in a power efficient manner. Also, it should be able to output infor-
mation without any monitor plugged in. Being an operating system, it should be
able to run flawlessly for an extended amount of time.

27

4.2 Requirements Specifications

The requirement specification is is the section where the requirements are formal-
ized. In order to formalize them, we will follow the IEEE Recommended Practice
for Software Requirements Specifications [30] that states what the requirements
should address their traget and the way these requirements should be formulated.
Therefore, software feature, performances, functional and non functional issues
as well design and implementation constraints will be specified. It is also recom-
mended to be:

• Correct: A requirement is correct if and only if every requirement stated
therein is one that the software shall meet.

• Unambiguous: A requirement is unambiguous if and only if every require-
ment stated therein has only one interpretation.

• Complete: A requirement is complete if all significant requirements should
be acknowledged and treated. Also, the system’s responses should be clearly
stated in the valid and invalid case.

• Consistent: The requirements are consistent if none of them conflict (i.e.: a
mutually exclusive behavior).

• Ranked for importance and/or stability: Each requirements needs to
have an identifier reflecting their importance.

• Verifiable: The requirements need to be verifiable and be able to be checked
in a reasonable amount of time, that is, there exists some finite cost-effective
process with which a person or machine can check that the software product
meets the given requirement.

• Modifiable: A requirement is said to be modifiable if and only if its structure
and style are such that any changes to the requirements can be made easily,
completely, and consistently while retaining the structure and style.

• Traceable: A requirement is said to be traceable if and only its origin is
clear and can be references in future development stages.

In order to fulfill these recommendations and formalize the requirement, we will
use a table for each requirements containing the following fields:

28

ID ID of the requirement
Name Name of the requirement
Necessity Relevance of the requirement regarding the functionality. the

value set to High, Medium or Low
Stability Stability (i.e. Relevant) across the whole project.
Verifiability Ease to check the requirement. The values can be Hard, Average

or Easy
Description Description of the requirement following the IEEE recommenda-

tions
Source On which cycle the requirement has been formalized
Priority Importance of the requirement in the final product. The values

can be Critical, Conditional or Optional

Table 4.1: Template for the Software Requirements Specification.

4.2.1 User Requirements

This sections presents the requirements states from a user perspective. These are
the feature that the project needs to exhibits when the project is finished.

ID UR-01 Name Early Outputs
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The system shall be able to output lines while booting giving

feedbacks to the users.

Table 4.2: User Requirement UR-01: Early Outputs

ID UR-02 Name Flash LED when turned ON
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The system shall be able to flash an LED once in a while when

turned on.

Table 4.3: User Requirement UR-02: Flash LED when turned ON

ID UR-03 Name Code Execution
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The system shall be able to execute user function embedded in

the kernel.

Table 4.4: User Requirement UR-03: Code Execution

29

ID UR-04 Name Input handling
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The system shall be able to receive inputs from a computer and

display on the terminal user inputs.

Table 4.5: User Requirement UR-04: Input handling

ID UR-05 Name HDMI Output
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The system shall be able to display an image on a screen using

the HDMI connection.

Table 4.6: User Requirement UR-05: HDMI Output

ID UR-06 Name HDMI Text Output
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The system shall be able to output text on the screen using the

HDMI connection.

Table 4.7: User Requirement UR-06: HDMI Text Output

ID UR-07 Name Debug mode
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The kernel should present the possibility to be run in a debug

mode, that is, to display more than the strict necessary feedback
for the users and help debug the kernel.

Table 4.8: User Requirement UR-07: Debug mode

ID UR-08 Name Multitasking
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The system shall be able to execute more than one program at a

time.

Table 4.9: User Requirement UR-08: Multitasking

30

ID UR-09 Name Command Line Interface
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The system shall be able to offer to the user a CLI1 where the

user can execute commands and start programs.

Table 4.10: User Requirement UR-09: Command Line Interface

ID UR-10 Name Standalone kernel
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The system shall use external library only in strictly necessary

cases so as to avoid having to adapt the system to a specific frame-
work (ex: Linux).

Table 4.11: User Requirement UR-10: Standalone kernel

4.2.2 Functional Requirements

This sections presents the requirements stated from a system perspective, that is,
from a more specific point of view with a more detailed approach.

ID FR-01 Name Bootloader
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The system shall execute the required instruction to run a hello

world program.

Table 4.12: Functional Requirement FR-01: bootloader

ID FR-02 Name C and ASM language coexis-
tence

Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The kernel should offer the possibility to combine ARM ASM

language and C language.

Table 4.13: Functional Requirement FR-02: C and ASM language coexistence

ID FR-03 Name Cross compiler compatibility
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The source code structure shall be compatible with the arm-none-

eabi cross-compiler.

Table 4.14: Functional Requirement FR-03: Cross compiler compatibility

31

ID FR-04 Name Division and modulo operations
support.

Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The source code shall implement the missing instructions __ae-

abi_uidiv and __aeabi_uldivmod

Table 4.15: Functional Requirement FR-04: Division and modulo operations support

ID FR-05 Name ARM Timer interrupt start and
stop.

Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The kernel shall offer the possibility to start and stop the armtimer

interrupt

Table 4.16: Functional Requirement FR-05: ARM Timer interrupt start and stop

ID FR-06 Name ARM Timer interrupt pre-
scaler and threshold.

Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The kernel shall offer the possibility to set the pre-scaler of the

ARM timer as well as its activation threshold.

Table 4.17: Functional Requirement FR-06: ARM Timer interrupt pre-scaler and threshold

ID FR-07 Name UART set-up
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The kernel shall be able to set up the UART hardware module of

the Raspberry Pi.

Table 4.18: Functional Requirement FR-07: UART set-up

ID FR-08 Name UART output
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The kernel shall present a library that allows the developer to

send data through the UART serial communication. This library
shall be analogous to the Linux’s printf.

Table 4.19: Functional Requirement FR-08: UART output

32

ID FR-09 Name UART input
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The kernel shall present a library that allows the developer to

receive data through the UART serial communication. The max-
imum buffer allowed should be up to 16 bytes a seconds.

Table 4.20: Functional Requirement FR-09: UART input

ID FR-10 Name UART output debug
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The kernel shall present a function that will only prints when

compiled with the DEBUG flag. The function shall be called
print_debug.

Table 4.21: Functional Requirement FR-10: UART output debug

ID FR-11 Name ACT LED
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The kernel shall present a function that allows the developer to

turn ON or OFF the ACT LED of the Raspberry Pi.

Table 4.22: Functional Requirement FR-11: ACT LED

ID FR-12 Name ARM Mailbox read
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The kernel shall be able to read any channel of the ARM mailbox.

Table 4.23: Functional Requirement FR-12: ARM Mailbox read

ID FR-13 Name ARM Mailbox write
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The kernel shall be able to write on any channel of the ARM

mailbox.

Table 4.24: Functional Requirement FR-13: ARM Mailbox write

33

ID FR-14 Name Frame buffer initialization for
the HDMI output

Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The kernel shall be able to initialize the frame buffer interface.

Table 4.25: Functional Requirement FR-14: Frame buffer initialization for the HDMI output

ID FR-15 Name Draw a pixel on the HDMI
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The kernel shall be able to draw a pixel given a successfully ini-

tialized frame buffer, a color and the (x,y) coordinates of said
pixel.

Table 4.26: Functional Requirement FR-15: Draw a pixel on the HDMI output

ID FR-16 Name Draw a line on the HDMI out-
put

Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The kernel shall be able to draw a line given a successfully initial-

ized frame buffer, a color and the (x,y) coordinates of the start
and end pixels.

Table 4.27: Functional Requirement FR-16: Draw a line on the HDMI output

ID FR-17 Name Clear the frame buffer of the
HDMI output

Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The kernel shall be able to clear the screens on the HDMI output.

Table 4.28: Functional Requirement FR-17: Clear the frame buffer of the HDMI output

ID FR-18 Name Print characters on the HDMI
output

Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The kernel shall exhibit a function that is able to write a full

character onto the screen buffer

Table 4.29: Functional Requirement FR-18: Print characters on the HDMI output

34

ID FR-19 Name Print strings on the HDMI out-
put

Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The kernel shall exhibit a function that is able to write a string

using the function defined on the previous requirement.

Table 4.30: Functional Requirement FR-19: Print strings on the HDMI output

35

ID FR-20 Name String management library
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The kernel shall exhibit a library dealing with strings. Said library

shall have the following functions implemented:

• number_of_digits: A function returning the amount of
digits a integer has.

• itoa: An integer to string function.

• itoh: An integer to hexadecimal representation function.

• sprintf: Given a destination char pointer, an input char
pointer and a set of argument associated to the input string,
format said string to include those arguments into the string.
The use shall be analogous to Linux’s sprintf.

• rpi_printf: Kernel equivalent of Linux’s printf. It receives
the same inputs than sprintf but also print this string on the
serial port.

• screen_printf: Kernel equivalent of Linux’s printf. It re-
ceives the same inputs than sprintf but also print this string
on the HDMI port.

• rpi_strlen: Return the length of a string (i.e.: From the
start up to the character).

• rpi_strcpy: Copy the length-first characters of a char
pointer into a destination char pointer.

• rpi_strcmp: Returns EQUAL_STRINGS if two strings
are equals, DIFFERENT_STRINGS else.

• rpi_trim: Copy the content of the input strings into a
destination string removing the leading and trailing spaces.

• get_first_word: Returns the first word found on the in-
put string into the destination string.

Table 4.31: Functional Requirement FR-20: String management library

36

ID FR-21 Name sei and cli
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description Creation of two functions to allow and disallow interrupts:

• sei (Set Interrupts): Enable interrupts

• cli (Clear Interrupts): Disable interrupts

These functions shall be used when a program reaches a critical
section.

Table 4.32: Functional Requirement FR-21: Sei and cli

ID FR-22 Name Memory management library
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The kernel shall exhibit a library dealing with the memory. Said

library shall have the following functions implemented:

• rpi_memset: Given a pointer p, a length l and a byte value
v, the function shall write l times v from the pointer location
onwards. This function is similar to Linux’s memset.

• memory_alloc: Dynamically allocate a memory chunk of
a given length and return the memory’s location. This func-
tion is similar to Linux’s malloc.

• memory_free: Free a memory chunk previously allocated
with memory_alloc.

Table 4.33: Functional Requirement FR-22: Memory management library

37

ID FR-23 Name Interrupt handlers
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description Create an interruption handler for all the different types of inter-

ruptions, that is:

• reset

• undefined instruction vector

• software interrupt vector

• prefetch abort vector

• data abort vector

• unused

• interrupt vector

• fast interrupt vector

Table 4.34: Functional Requirement FR-23: Interrupt handlers

ID FR-24 Name Threads and contexts
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The concept of contexts and thread must be implemented. A

context will need to store the link register, the stack pointer and
the base stack pointer.

Table 4.35: Functional Requirement FR-24: Threads and contexts

ID FR-25 Name Context switching
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description Context shall be able to be switched. That is, a thread shall be

able to get paused and executed at any time thanks to a context
switch algorithm. The context switch shall be executed every time
a timer interrupt is raised.

Table 4.36: Functional Requirement FR-25: Context switching

38

ID FR-26 Name Thread scheduling
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description A scheduler shall be implemented. The scheduler shall be called

at the moment of a context switch and will decide what is the
next thread to be executed. The scheduler shall provide an easy
way to change/implement a new scheduling algorithm.

Table 4.37: Functional Requirement FR-26: Thread scheduling

ID FR-27 Name Round-robin scheduling
Necessity High Priority High Stability Stable
Verifiability Easy Source First
Description The scheduler shall have provide a round-robin scheduling algo-

rithm.

Table 4.38: Functional Requirement FR-27: Round-robin scheduling

ID FR-28 Name Display pictures on HDMI Out-
put

Necessity Medium Priority Medium Stability Stable
Verifiability Easy Source Second
Description The system shall be able to display a picture on the HDMI output

using raw data provided at compilation time.

Table 4.39: Functional Requirement FR-28: Display pictures on HDMI Output

ID FR-29 Name JPEG image conversion tool
Necessity Medium Priority Medium Stability Stable
Verifiability Easy Source Second
Description A tool shall be provided that converts a JPEG image to data

usable by the kernel (please refer the previous requirement for the
purposes of the tool).

Table 4.40: Functional Requirement FR-29: JPEG image conversion tool

ID FR-30 Name Compilation
Necessity High Priority High Stability Stable
Verifiability Easy Source Second
Description The compilation process should be eased with the use of the ’make’

tool. The compilation process shall be properly executed without
any error messages. The gcc tags for the compilation shall be
-std=c99 -Wall -Werror -Wextra -Wuninitialized -O2 -nostdlib -
nostartfiles -ffreestanding

Table 4.41: Functional Requirement FR-30: Compilation

39

ID FR-31 Name Activity LED on Context
Switch

Necessity High Priority High Stability Stable
Verifiability Easy Source Second
Description The ACT LED light state should be reversed at every context

switch.

Table 4.42: Functional Requirement FR-31: Activity LED on Context Switch

ID FR-32 Name Command Line Interface
Necessity High Priority High Stability Stable
Verifiability Easy Source Second
Description The kernel should prompt include a Command Line Interface

where the user is prompted to enter commands and the kernel
execute said commands if the command exists

Table 4.43: Functional Requirement FR-32: Command Line Interface

A traceability matrix showing the correlation of the Functional Requirements and
the User Requirements can be found on table 4.44

4.2.3 Use Cases

A use case aims to define a goal-oriented interactions between:

• The Actor(s): Parties outside of the system that interact with it. They can
be a user, a role or another system. Actors have goals and they’ll use the
system to reach this goal.

• The System: The system is final product that we are considering. In this
case, the kernel.

A use case sums up the actors, the goals, the sequence of interaction between the
actor(s) and the system as well as the requirements that are considered through
this use case.

As well as for the requirement specification, we will use table to help define these
user cases. The actor will always be the user interacting with the system, for this
very reason, this field will be omitted. The template uses with its field and the
description thereof is displayed here-under:

40

FR
-0
1

FR
-0
2

FR
-0
3

FR
-0
4

FR
-0
5

FR
-0
6

FR
-0
7

FR
-0
8

FR
-0
9

FR
-1
0

FR
-1
1

FR
-1
2

FR
-1
3

FR
-1
4

FR
-1
5

FR
-1
6

FR
-1
7

FR
-1
8

FR
-1
9

FR
-2
0

FR
-2
1

FR
-2
2

FR
-2
3

FR
-2
4

FR
-2
5

FR
-2
6

FR
-2
7

FR
-2
8

FR
-2
9

FR
-3
0

FR
-3
1

FR
-3
2

U
R
-0
1

X
X

U
R
-0
2

X
U
R
-0
3

X
X

X
X

X
U
R
-0
4

X
X

X
X

U
R
-0
5

X
X

X
X

U
R
-0
6

X
X

X
X

X
X

U
R
-0
7

X
U
R
-0
8

X
X

X
X

X
X

X
X

U
R
-0
9

U
R
-1
0

X
X

X
X

X

T
ab

le
4.

44
:
Tr

ac
ea
bi
lit
y
m
at
rix

-F
un

ct
io
na

lR
eq
ui
re
m
en
t
vs

U
se
r
R
eq
ui
re
m
en
ts
.

41

ID ID of the use case
Name Name of the use case
Description Description of the use case.
Steps Sequence of events that take place along with

the use case.
Pre-conditions Condition that are supposed to be fulfilled

while considering the use case.
Post-conditions Conditions that are necessary for the correct

realization of the use case.
Requirements Functional requirements that the use case ver-

ifies.

Table 4.45: Template for the use case description.

Several kind of messages can be printed on the printed in the serial terminal. The
early outputs are always displayed even when the kernel hasn’t been compiled with
the DEBUG flag. The DEBUG messages are prepended by the ’DEBUG: ’ string.
Finally, the regular messages from program are printed as such.

42

ID UC-01
Name System boot
Description The system boot. The following messages are

displayed on the screen:

• UART initialized

• Initializing frame-buffer

• Frame-buffer correctly initialized

• Screen-text correctly initialized

• Memory correctly initialized

Steps
1. Plug UART cable into the Raspberry-Pi

2. Plug UART cable’s USB side to the com-
puter

3. Start a screen terminal in serial mode

Pre-conditions Kernel compiled successfully.
Post conditions Messages correctly displayed and no other er-

ror triggered.
Requirements FR-01, FR-07, FR-08, FR-12, FR-13, FR-14,

FR-22

Table 4.46: Use Case UC-01: System boot

43

ID UC-02
Name Kernel compilation
Description The system compiles with all its core com-

ponent without any error message. The core
source code is implemented with both ASM
bits and C bits.

Pre-conditions
• Cross compiler installed.

• ’make’ installed

Steps
1. Open terminal

2. Go to the kernel’s source code directory

3. Type ’make’

Post conditions Only the compilation messages are printed, no
error messages from the compiler or the linker
are triggered.

Requirements FR-02, FR-03, FR-08, FR-30

Table 4.47: Use Case UC-02: Kernel Compilation

44

ID UC-03
Name Debug Output
Description The print_debug function prints DEBUG

messages if the kernel has been compiled with
the DEBUG flag. The kernel boot up has two
debug messages:

• Frame-buffer initialized with phys-
ical resolution:1280x1024 and vir-
tual:800x600

• Initialization finished. Starting main
program.

Pre-conditions The code should make use of print_debug
Steps

1. Open terminal

2. Go to the kernel’s source code directory

3. Edit makefile

4. Make sure that DEBUGFLAG is set to
’-DDEBUG’

5. Type ’make’

6. Boot the kernel

Post conditions Only the compilation messages are printed, no
error messages from the compiler or the linker
are triggered.

Requirements FR-07, FR-08, FR-10, FR-30

Table 4.48: Use Case UC-03: Debug Output

45

ID UC-04
Name ARM timer interrupt
Description The user can trigger a timer interrupt at reg-

ular interval which is handled by the function
interrupt_vector

Pre-conditions -
Steps

1. Edit the function main_program in file
user_program.c

2. Call the function armtimer_set with
paramter 0xFF. This sets the frequency
of the interrupts before pre-scaling.

3. Call the function enable_armtimer_irq

4. Call the function armtimer_enable.
Possible pre-scaler are 256, 16 and 1.

5. Call the function sei that will enable the
interrupts catch.

6. Edit the function interrupt_vector
within the file interrupts.c

7. Insert everything that needs to be done
at each interrupts. For example, print-
ing something on the serial monitor us-
ing rpi_printf.

8. Compile the kernel

9. Boot the kernel

10. Appreciate the timer interruptions
thanks to the serial print.

Post conditions The serial outputs are correctly printed.
Requirements FR-05, FR-06, FR-07, FR-08, FR-22, FR-23,

FR-30

Table 4.49: Use Case UC-04: ARM timer interrupt

46

ID UC-05
Name Context switching
Description This use case makes use of the ability of the

kernel to handle threads and switch threads
via context switching. The currently devel-
oped scheduling algorithm is Round Robin
(i.e. Each thread has the time before the next
interruption in order of creation before switch-
ing back to the first one still running and so
forth).

Pre-conditions -
Steps

1. Edit the function main_program in file
user_program.c

2. Create several functions that will be
used as thread handler (i.e. The func-
tion that a given thread will execute)

3. Create a thread for each of the function
created on the previous step using the
function create_process() that accepts
as first parameter the name of the func-
tion and as second the argument to be
passed to it.

4. Start the scheduler by using the function
bootstrap_scheduler

5. Compile the kernel

6. Boot the kernel

Post conditions Appreciate the example image being out-
putted on the screen.

Requirements FR-05, FR-06, FR-11, FR-21, FR-22, FR-23,
FR-24, FR-25, FR-26, FR-27, FR-30, FR-31

Table 4.50: Use Case UC-05: Context Switching

47

ID UC-06
Name Display an image on the screen
Description Example of how to show a picture on the

screen using the HDMI output. This relies on
the fact that print_buffer_example has an ex-
ample of picture being displayed. The picture
is stored in data/uc3m.h in the ALPHA-RED-
GREEN-BLUE format.

Pre-conditions -
Steps

1. Call at any time print_buffer_example
if it hasn’t been called already

2. Compile the kernel

3. Boot the kernel

Post conditions
• Appreciate the correct creation of the
image data file header.

• Appreciate image being correctly out-
putted on the screen.

Requirements FR-12, FR-13, FR-14, FR-15, FR-28, FR-30

Table 4.51: Use Case UC-06: Display an image on the screen

48

ID UC-07
Name Create header picture
Description This use case makes use of the ability of the

kernel to handle threads and switch threads
via context switching. The currently devel-
oped scheduling algorithm is Round Robin
(i.e. Each thread has the time before the next
interruption in order of creation before switch-
ing back to the first one still running and so
forth).

Pre-conditions For the image conversion, it is necessary to
have Python and PIL installed on the com-
puter.

Steps

1. Run the file utils/imageconverter.py
with the correct parameters (see help of
the script)

2. Place the outputted header in the the
source code’s include/data folder.

3. Import the header where the function
that calls the library is implemented.

4. The function needs to use the screen-
buffer’s display_image function.

5. Compile the kernel

6. Boot the kernel

An example is showed in the function
print_buffer_example

Post conditions
• Appreciate the thread switching back

and forth

• Appreciate the ACT LED flashing at
each context switching

Requirements FR-29

Table 4.52: Use Case UC-07: Create header picture

49

ID UC-08
Name Print strings on the serial port
Description Showcases the ability of the kernel to format

a string and display it on the serial port
Pre-conditions -
Steps

1. Use the function rpi_printf for printing
a formatted string on the serial output.
Please refer to the documentation for
more info on the features implemented.

2. Compile the kernel

3. Boot the kernel

4. Establish a serial communication with
the device

Post conditions Appreciate the formatted string being dis-
played on the serial port.

Requirements FR-01, FR-02, FR-03, FR-08, FR-20

Table 4.53: Use Case UC-08: Print strings on the serial port

ID UC-09
Name Print strings on the HDMI port
Description Showcase the ability of the kernel to format a

string and display it on the serial port
Pre-conditions -
Steps

1. Use the st_print_string for printing a
string on the serial output.

2. Compile the kernel

3. Boot the kernel

4. Establish a serial communication with
the device

Post conditions Appreciate the formatted string being dis-
played on the HDMI port.

Requirements FR-01, FR-02, FR-03, FR-08, FR-18, FR-19

Table 4.54: Use Case UC-09: Print strings on the HDMI port

50

ID UC-10
Name Input data handling
Description Use case showcasing the ability of the kernel

to receive data from an external device using
the UART communication scheme.

Pre-conditions -
Steps The function is charge of reading the received

data is uart.c’s uart_get_input_buffer.

1. Use the function uart_get_input_buffer
in a while loop.

2. Print the returned string from the func-
tion to see the input mirrored in the out-
put. We will assume that the rpi_printf
function is being used.

3. Compile the kernel

4. Boot the kernel

5. Connect to the kernel with the serial
communication

6. Type some character and appreciate
these characters being mirrored on the
serial port by the kernel.

An example of this code is used in the inter-
rupt.c file in the hardware interrupt handler.

Post conditions Appreciate the typed character being mirrored
onto the communication medium.

Requirements FR-01, FR-02, FR-03, FR-08, FR-09

Table 4.55: Use Case UC-10: Input data handling

51

ID UC-11
Name Line drawing
Description Use case showcasing the basics of line draw-

ing. It directly involve using screenbuffer’s
draw_line.

Pre-conditions Memory initialized and UART initialized
Steps The function is charge of reading the received

data is screenbuffer.c’s draw_line.

1. Call anywhere in the code draw_line
anywhere in the code. It takes as first
two parameters the x and y coordinate of
the first point, then the two next are the
x and y coordinate of the second point
and the last parameter is the color in
which the line is to be drawn.

2. Compile the kernel

3. Connect HDMI cable to the device

4. Boot kernel

An example of this code can be found in
the screenbuffer.c file in the function named
print_rotating_bar_example.

Post conditions Appreciate the line being drawn on the screen.
Requirements FR-01, FR-02, FR-03, FR-04, FR-07, FR-08,

FR-09, FR-30, FR-32

Table 4.56: Use Case UC-11: Line drawing

52

ID UC-12
Name Command-Line Interface
Description Showcasing the rudimentary CLI implemented

in the kernel.
Pre-conditions UART initialized
Steps The function is charge of displaying a CLI is

the command_line function in cli.c.

1. Use the function command_line any-
where in the code to spawn the CLI.

2. The function used are to be imple-
mented in that very file and populate in
the code via the if chain present in the
command_line function.

3. Compile the kernel

4. Connect to the kernel with the serial
communication

5. Boot kernel

6. Type the function with the arguments
(if needed).

Post conditions Appreciate the functions being correctly exe-
cuted under the demands of the user.

Requirements FR-01, FR-02, FR-03, FR-04, FR-12, FR-13,
FR-14, FR-15, FR-16, FR-17, FR-30

Table 4.57: Use Case UC-12: Command-Line Interface

A traceability matrix showing the correlation of the Functional Requirements and
the Use Cases can be found on table 4.58

53

U
C
-01

U
C
-02

U
C
-03

U
C
-04

U
C
-05

U
C
-06

U
C
-07

U
C
-08

U
C
-09

U
C
-10

U
C
-11

U
C
-12

FR
-01

X
X

X
X

X
X

FR
-02

X
X

X
X

X
X

FR
-03

X
X

X
X

X
X

FR
-04

X
X

X
X

X
X

X
FR

-05
X

X
FR

-06
X

X
FR

-07
X

X
X

FR
-08

X
X

X
X

X
X

X
X

FR
-09

X
X

FR
-10

X
X

FR
-11

X
X

FR
-12

X
X

X
FR

-13
X

X
X

FR
-14

X
X

X
FR

-15
X

X
FR

-16
X

FR
-17

X
FR

-18
X

FR
-19

X
FR

-20
X

FR
-21

X
FR

-22
X

X
X

FR
-23

X
X

FR
-24

X
FR

-25
X

FR
-26

X
FR

-27
X

FR
-28

X
FR

-29
X

FR
-30

X
X

X
X

X
X

X
FR

-31
X

FR
-32

X

T
able

4.58:
Traceability

m
atrix

-FunctionalR
equirem

ent
vs

U
se

C
ases

54

4.3 Software Development Process

Throughout the realization of this project, the software development process cho-
sen is the spiral life-cycle. This process shares many similarities with the incremen-
tal model and allows as the project starts to present tasks that are known from the
start and that are to be developed and enhanced throughout the project. The big
advantages of this process is to allow a flexible requirement elicitation throughout
the project as multiple evaluation phases are being done. In addition to that, the
project is started early on in the project allowing the creation of tangible materials
from the very beginning.

The spiral is a metaphor for an iteration, which contains the following phases:

• Planning Phase: This phases focuses on the creation and/or overhaul of
the previously set requirements. The objective is to review and adapt the
requirements as the project evolves. This is the iteration of this phase that
generates the whole set of requirements.

• Risk Analysis Phase: Aims to identify the risks and solutions that the
current iteration presents in respect to the previous iteration. This allows
the creation of alternative solutions and tackles problems early on.

• Engineering Phase: Phase where the requirements are developed along
with the testings necessary to checks their correct functioning allowing a new
iteration to be started on strong bases.

• Evaluation Phase: Phase where the customer checks the project up to that
point in order to start a new iteration once the needs has been overhauled or
new needs are specified.

A representation [29] of this development process can be found on figure 4.1

The projects will be divided into six cycles, each of them being a particular mile-
stone:

1. Execution of a hello world: Phase where the first output from the board can
be seen.

2. Serial output: Phase aimed to develop the features necessary for printing
characters on the serial output of the board and read from an external device.

3. HDMI output: Phase aimed to develop the features necessary for displaying
shapes, texts and images on the screen.

55

Figure 4.1: Spiral Life-Cycle Schema

4. Serial input: Phase aimed to develop the features necessary for receiving
inputs on the board.

5. Context Switching: Phase aimed to develop the features necessary for allowing
the kernel to perform context switching and thread scheduling.

6. Command line interface: Phase aimed to develop the feature necessary to
present a command line interface to the user.

56

Chapter 5

Proposal

In this section we will set the goals and explain the design and an implementation
of the Operating System, that is, the proposed solution to the requirement speci-
fications and use cases presented in the previous chapter. This chapter is divided
into two major sections:

1. Design This part is about how the system is organized in an abstract way,
that is, exposing the different parts of the system, their interactions as well
as the design decisions and justification for the these parts.

2. Implementation This part is the tangible part of the chapter: It shows the
organization of the source code, code tree and source code snippets that are
relevant for the proposal.

5.1 Design

The design of the kernel is made using three different parts:

1. The Kernel Core: The part of the kernel that deal with the hardware at
very low level. This part mainly deals with the booting part as well as context
switching and interrupts. This part is totally architecture dependent.

2. Kernel management: Mainly drivers, this part is dedicated to memory
management and management of the different hardware part of the Raspberry
Pi.

3. Developer API: This part is not directly needed by the kernel to properly
work but it proposes an interface for the developer to use the kernel. It

57

contains modules such as string management module, input/output module,
thread module and graphical helper module.

Figure 5.1: Kernel layers

5.1.1 Kernel Core Layer

As stated in the introduction, this part of the code is the heavily hardware de-
pendent. It is the one dedicated to the low level interaction with the kernel and is
overall dedicated to the CPU and partial interrupt management. Naturally, this
part of the kernel is written in ARM assembly language.

This is the first part that has to be executed by the kernel once the Raspberry Pi
bootstraping has finished and does in the early part:

1. Set-up of the interrupt vector table.

2. Set-up of the the Interrupt mode’s, Fast Interrupt mode’s and Supervisor
mode’s stack pointers.

3. Jump to the very first bit of the C kernel code (Kernel management layer).

It is also has two essential method that are dedicated to enabling and disabling
interrupts.

This layer is indispensable for being able to boot code that is not programmed
in assembly and also to handle interrupts in a later stage of the booting pro-
cess, thanks to the set up of the interrupt vector table and setting up their stack
pointers.

58

5.1.2 Kernel Management Layer

The kernel management is the part that contains different driver modules for the
management of the different hardware part of the device. Each of these module
have a different tasks that are separated by their main goals.

The diagram below shows the different modules present in this layer as well as
their relations between each other. Some of them can be useful on their own
(such as the malloc module or the queue module) and can therefore be used by
the developer. Some other are only useful for a specific goal (such as the mailbox
module, UART module or scheduler module).

Figure 5.2: Kernel Management Layers

In the following section we will proceed to present each of these module by defining
their goals and what the functions that are to be present. are

5.1.2.1 Kernel module

The kernel module is the conductor of the whole kernel. It does nothing by itself
but instead manage all the required module for the correct initialization of the
kernel and keeps sure that everything has been correctly initialized. After all the
booting process, it finally runs the user program, that is, the part of the code that
is defined by the user.

59

Figure 5.3: Kernel Management Layers - Kernel UML

As displayed on the UML graph, the kernel module has three functions:

• initialize_hardware: Aimed to initialize the UART as well as the frame-
buffer for the HDMI outputs.

• initialize_memory: Aimed to initialize the memory needed to use the mal-
loc functions suite.

• kernel_main: This is the function that is called after the kernel initilization
(i.e. at the end of the Kernel core sequence). It calls the two previous
functions.

5.1.2.2 GPIO module

Figure 5.4: Kernel Management Layers - GPIO UML

As displayed on the UML graph, the GPIO module has only one functions: The
light_act function. This function is aimed to turn ON or OFF the ACT LED.
However, the important part of that module is that is had to define the constants
and the variable required to manipulate said GPIO.

60

5.1.2.3 UART module

Figure 5.5: Kernel Management Layers - UART UML

As displayed on the UML graph, the kernel module has five functions:

• uart_write_char: Aimed to send a byte to the UART hardware. It is
typically to write a character.

• uart_write: Aimed to send an array of byte to the UART hardware. It is
typically to write a string by recursively called uart_write_char

• uart_read: Aimed to receive a byte from the UART hardware.

• uart_init: Realize a sequence of instruction aimed to set up the UART
communication. It is it to set up the BAUD rate, storing policy, etc.

• uart_get_input_buffer: Empty the UART buffer and returns its content
to the caller.

61

5.1.2.4 Scheduler module

Figure 5.6: Kernel Management Layers - Scheduler UML

This module is the biggest and the most complex module in term of code and
covers many different features as it handle everything from the context structure
declaration up to the scheduler algorithm and the context switching. An important
element that is the pillar of this module is the pcb_list. This is a queue (see the
queue module) that contains the list of the ready-to-start and started processes.
Let’s detail all the functions and what their purpose is:

• create_process: This function is in charge of creating a process, that is,
creating its metaphor (a PCB 1), dedicating dynamically its stack memory
(see the malloc module), setting up its state and finally inserting the created
PCB to the pcb_list.

• start_process: As indicated by its name, it starts a previously created pro-
cess. When a process is created, it is allocated in memory and the metaphor
is initialized with the adequate initial values. Start_process takes a PCB as
parameter and start the process that the PCB refers to.

• terminate_process: This function takes also a PCB as parameter. It ter-
minates the process that the PCB refers to, that is, cleaning the memory
related to process (its stack and the PCB structure itself).

• get_next_pcb: Returns the PCB of the next executable process (i.e. newly
created or paused due to a context switch). This is the function mainly used
for the Round-Robin scheduling algorithm.

1Process Control Block

62

• scheduler: This function is to be called to get the next PCB to schedule. In
the current design, it simply calls get_next_pcb, but it is aimed to be able
to call any other function depending on the algorithm that the user wants to
develop.

• get_current_pid: System function that a process can run to get its PID2.

• get_current_pcb: Function that returns the whole PCB of the process
currently scheduled to the caller.

• set_current_pcb: Set the current PCB, that is, the PCB that will be
scheduled next.

• bootstrap_scheduler: System function that can be called in order to start
the scheduling process, that is: enable the interrupt, set up the ARM timer
and ARM timer interrupt, start the first process in the PCB list. This func-
tion has to be called only once and assumes that at least one process ready
to be scheduled has been inserted into the PCB list.

• set_current_pcb: Set the current PCB, that is, the PCB that will be
scheduled next.

5.1.2.5 ARMTimer module

Figure 5.7: Kernel Management Layers - ARMTimer UML

This module is a simple one that is aimed to set up the ARMTimer as well as its
interrupt. It only contains three functions:

• armtimer_enable: Enable the timer: Enable the interrupt and set its pre-
scaler, that is the amount of cycle that have to be reach to decrement the
counter of the timer by one. Once the timer reaches zero, an interrupt is trig-
gered. The starting value of the counter is set by the function armtimer_set.

• armtimer_disable: Disable the timer interrupts.
2Process ID, typically an integer that uniquely defines a process

63

• armtimer_set: Set the timer initial value to the argument that is passed
to the function.

5.1.2.6 Interrupts module

Figure 5.8: Kernel Management Layers - Interrupts UML

As its name suggests, this class is where the interrupt handlings are made. It has
one function for each interrupt but several or them are actually not used in this
kernel but are needed to be defined nontheless. It also contains functions that can
enable or disable the interrupts handling. All these function are explained below:

• sei: Enable the interrupt handling. That is, if an interrupt is triggered, the
kernel will execute the appropriate handler.

• cli: Disable the interrupt handling. That is, if an interrupt is triggered, no
handler will be executed. This functions mainly used for critical sections (i.e.:
Sections that shouldn’t be interrupted).

• reset_vector: Handler that is triggered during the reset flavour of the
ABORT interrupt.

• prefetch_abort_vector: Handler that is triggered during the prefect abort
flavour of the ABORT interrupt. This handler is not implemented.

• data_abort: Handler that is triggered during the data abort flavour of the
ABORT interrupt. This interrupt is triggered when having a data fault in
the kernel. The interrupt shows a debug message in order to pinpoint the
address of the instruction that triggered the data abort interrupt and then
cause the kernel to hang.

64

• undefined_instruction_vector: Handler that is triggered during an UN-
DEF interrupt. This handler is not implemented.

• software_interrupt_vector: Handler that is triggered during an SWI in-
terrupt (software interrupt). This handler is not implemented as no function
trigger software interrupts are implemented.

• interrupt_vector: Handler that is triggered during an IRQ interrupt (hard-
ware interrupts). This the interrupt in charge of performing the tasks to be
performed at each interrupt generated by the ARMTimer. It is design to
read the input received on the UART, and then perform the scheduling and
context switch to the next process.

• fast_interupt_vector: Handler that is triggered during an FIQ interrupt
(fast interrupt). This handler is not implemented.

• enable_armtimer_irq: Enable specifically the arm interrupts.

• disable_armtimer_irq: Disable specifically the arm interrupts.

5.1.2.7 Queue module

Figure 5.9: Kernel Management Layers - Queue UML

This module basically defines and handle the queue data structure. A queue is
a linear data structure. This data structure present a head and a tail with an
element that linked to the next (if any) by storing its value. A queue is always
processed from the head to the tail: The next element to be dequeued is the
element on the head and when adding an element, it becomes the next tail, this
makes it a FIFO3 data structure. It only contains three functions:

• create_queue: It simply create the queue data structure that can then be
used with the dequeue and enqueue functions.

3First-In First-Out

65

• dequeue: As aformentioned, deleting the head of the queue and returning
the element in contains. The element that was next to the head is now the
new head.

• enqueue: This function add an element to the queue and place it right after
the tail of the queue, becoming the new tail of the queue.

5.1.2.8 Malloc module

Figure 5.10: Kernel Management Layers - Malloc UML

This module is aimed to provide support to dynamics memory allocation, that is,
allocate memory of a dynamic size at run time instead of using the compiler to
allocate memory at compile time. This module is specially useful when creating
process for the PCB allocation as well at the stack allocation. The specifics of this
module are explained in the dedicated part implementation section. Many function
are purposely named at their UNIX counterpart as they mimic their behaviour.
The list of the function of this module is described hereafter:

• rpi_memset: It has the same behaviour that you’d expect from the UNIX’s
memset, that is, given a memory address, a value and a length, the function
fills the memory address by the value provided and for a number of bytes
provided by the length.

• memory_init: This function is needed to be called first before being able to
use memory_alloc. Given a memory segment (an address and a length) that
will be dedicated to dynamic memory, it creates a queue where each element
represents a dynamic memory allocation (or a freed one that my be used for
another memory allocation).

66

• memory_alloc: This the kernel’s version of UNIX’s malloc. Given a length
in byte, it returns the starting address of a memory segment of the length
provided to the function.

• memory_free: Free a memory segment so as to be useful for another mem-
ory allocation later in time.

• memory_destroy: This is the reverse of the function memory_init: It frees
all the memory segment allocated in the dynamic memory segment and then
destroys said memory segment.

5.1.2.9 Mailbox module

Figure 5.11: Kernel Management Layers - Mailbox UML

The Mailbox module creates the data structure to manipulate the Raspberry’s
mailbox with ease as well as method that are able to write and read the mailbox
according to the board’s specifications. It contains only two functions:

• mailbox_write: Given a channel number and an octet of data, sends the
provided data to the mailbox on the given channel.

• mailbox_read: Given a channel, read data from a channel and returns it if
any.

5.1.3 CLI module

Figure 5.12: Kernel Management Layers - CLI UML

67

The CLI is the module made for user interactions. The module, as its name
suggests, is designed to be able to interpret user’s input and execute different
commands. Here, only the part made to retrieve the inputs from the user, be
able to get the function to run (first word) and pass the argument to the function
(is the function is recognized, the arguments is what is directly placed after the
function). For now, only the echo function is being implemented.

• command_line: Spawn the CLI. When the function is run, is shows a
command prompt and asks for the user to enter a command.

• echo: Function available for the CLI. It simply mirrors to the serial interface
what has been passed as argument.

68

5.1.4 Developer API Layer

The developer API layer is the layer that is a lot higher level than the previous
Kernel Management Layer. The four modules included into this layer are not
considered as the necessary parts of the kernel to work but are nonetheless handy
while developing other module, debugging or creating new interactions. As a
result, these modules are lot more hardware-independent (unlike the ones from the
Kernel Management Layer). This part also contains modules that were developed
in a later stage of the project. This sections is here to present these modules.

Although these modules are a lot less interdependent, some of them still depend on
others. This is the case of the Screen Text module that depends on the character
module and the Standard Input/Output that depends on the Strings module.
Below is a presentation of these four modules:

5.1.4.1 Character module

Figure 5.13: Developper API Layer - Character UML

This module is very simple yet very handy. It helps the Screen Text module to
print character of the HDMI monitor without having to worry about the type face
and the pixels to be printed. The only function of this module, char_get_pixel, is
able to return given a character, a x and y position within the dimensions of the
font, the pixel color of the character.

69

5.1.4.2 Screen Text module

Figure 5.14: Developper API Layer - Screen Text UML

This module is in charge of displaying character on the HDMI output. It keeps
track of the pointer and handles jump line. It is directly dependent on the Char-
acter module. The function that it comprises are the following:

• init_screen_text: Initializes the screen text (i.e. set the applicable width
and height in pixel as well as setting the cursor boundaries).

• st_set_cursor: Sets the cursor to a given line and column.

• st_print_char: Prints a character on the current cursor position and up-
date the cursor’s position. This is the part that depends on the Character
module.

• st_print_string: Recursively call the st_print_char character so as to be
able to print a string.

• print_screen_text_example: Example of how to use the module. Use
for presentation or testing purposes.

70

5.1.4.3 Strings module

Figure 5.15: Developper API Layer - Strings UML

This module is similar to UNIX’s string library. This module is capable of handling
several strings manipulations. The functions that it implements are described
below:

• number_of_digits: Given an integer, it returns the number of character
needed to print said integer.

• rpi_itoa: Integer to string function - Given a number and a character
pointer, write the string representation of the number into the character
pointer.

• itoh: Integer to hexadecimal function - Given a number and a character
pointer, write the hexadecimal representation of the number into the charac-
ter pointer.

• _sprintf : Internal function of the sprintf function described below. Given a
character pointer (aimed to be the destination), a string with variable place
holders and a list of arguments, writes into the destination the formatted
string in relation to the arguments.

• sprintf : Function consuming the _sprintf. It takes care of the variable
number of arguments handling before passing them the _sprintf.

• rpi_strlen: Given a null-ended string, returns its length (i.e.: Number of
character until meeting the null character).

71

• rpi_strcpy: Given an origin and a destination char pointer as well as a
length, copy the length first characters of the origin to the destination.

• concatenate_string: Given a first string, its length, a second string, its
length and a destination string (that is assumed to have a length bigger than
the sum of the two previous strings), writes the concatenation of the two
strings to the destination.

• rpi_strcmp: Returns EQUAL_STRINGS if two strings are equals, DIF-
FERENT_STRINGS else.

• rpi_trim: Copies the content of the input strings into a destination string
removing the leading and trailing spaces.

• get_first_word: Returns the first word found on the input string into the
destination string.

5.1.4.4 Standard Input/Output

Figure 5.16: Developper API Layer - Strings UML

The Sandard Input/Output module is in charge of providing some standard API
for printing on the serial port. It has three functions:

• rpi_printf : Homologous function of the widely known UNIX printf function
adapted for this kernel. It internally uses sprintf to format the string and
then prints said string on the serial port using the UART module.

• print_debug: Function that prints a given string onto the serial port if and
only if the kernel has been compiled with the DEBUG flag.

• stdio_handle_interrupt: It is important that this functions of this module
are not interrupted (via any kind of interrupt) while they are being executed.
This is due to the interaction with the serial port as well as the data that it
contains that might be switched be replaced by another thread’s argument.

72

Not taking care of the interrupt while using either of the previously mentioned
method can trigger a data abort interruption.

73

5.2 Implementation

This part is aimed to present the tangible part of the project, that is, the source
code. It also presents the hierarchy of the project as well as presenting the imple-
mentation of some components that are deemed necessary to be explained.

5.2.1 Source code tree

The source code tree is the organization of the source code, that is the folder
organization of the code, how the code is structured, and explaining the reasoning
being such structure.

Below is the directory tree of the source code with on the right-hand side of the
directory or file, a description of its purpose:

/

Makefile ... Makefile of the whole project. An extended

description thereof can be found below.
boot/ ... Contains all the file that need to be copied the SD

card.
include/ ... Contains the header files.

data/ ... Contains additional data such as pictures or fonts.

linker_map.s ... Linker data for the compilation.

memory_map.d ... Internal memory organization of the executable.

obj/ ... Temporary storage of the .o files.

src/ ... Folder containing the .c files.

tests/ ... Folder containing the unitary and functional tests.

An extended description can be found in the Testing

section.
Makefile

obj/

run_test.sh ... Bash script that runs all the tests at once.

src/c files of the tests.

Figure 5.17: Source tree

5.2.2 Makefile

The Makefile is the special text file format that allows the mapping of rules to
commands as well as command dependency (i.e. a command needs to have its
dependencies fulfilled before said command can be run). This is the method that
has been chosen for this project for the compilation of the kernel as well as some

74

handy functions that are useful for the user. The more interesting commands and
what is their effect while using the Makefile are presented below:

• make all: Same as doing both make bootfiles and make gcc [20]

• make bootfiles: Download using curl the latest boot-files from the official
rapsberry-pi repository and store these files into the ./boot folder.

• make gcc: Compile the project’s kernel and place it into the ./boot folder.

• make deploy: Copy the kernel.img file previously compiled with make gcc
and place it into the SD Card. It then prints both SHA values to be sure
that the kernel has been correctly copied. Please note that this command
may vary from one machine to another and might need customization.

• make connect: Connect to the raspberry-pi using screen and the baud-rate
used in the kernel. It assume that screen is installed on the system. Please
note that as well as the previous command, the command might need to be
adjusted on the machine.

5.2.3 Booting process of the kernel

While starting the Raspberry Pi, its own boot-loader is executed, this process has
been explained on subsection 2.4.2 - Booting Process. In this section we are going
to talk about the kernel’s boot-process, that is, the initialisation of our kernel once
the Raspberry Pi is executing the custom code (i.e.: the one we compiled).

Below is a sequence diagram showing the booting process of the kernel from the
moment the Raspberry Pi starts executing the code of the kernel up to the moment
it executes the main program (that is, the user’s code).

75

Figure 5.18: Kernel Booting Sequence - Sequence Diagram

5.2.4 Dynamic memory allocation

As aforementioned, dynamic memory allocation is something that is not only ex-
pected to be handled by the Operating System but also needed for its functioning.
It allow the allocation of memory segments by a program without prior knowledge
of how many bytes have to be allocated and how many memory segments will be
allocated during the life cycle of the operating system execution. This sections
explains how this has been implemented in this project.

Let’s first begin by introducing the memory structure that has been chosen for
the memory allocation. The heap is a single-linked queue with the following data
structure:

76

s t r u c t heap_t
{

char s i z e ; // S i z e o f the a l l o c a t e d memory chunk
char a l l o c a t e d ; // I s i t cu r r en t l y a l l o c a t e d or has i t been f r e ed ?
s t r u c t heap_t ∗next ; // Next element in the s i n g l e −l i nked queue

} ;

Figure 5.19: Heap data structure

Each of the components of these elements is critical for the right functioning of
heap. Let’s details them:

• size: This is the size of the chunk. It helps a lot in conjunction to the variable
allocated as it allow later memory allocation when the size is inferior than or
equal to a previous dynamic memory chunk that has been freed.

• allocated: Gives information on whether or not the current chunk is being
used (value ALLOCATED) or freed (value UNALLOCATED) and therefore
eligible for a subsequent allocating on this particular memory chunk.

• next: The pointer to the next heap_t element in the heap.

A representation of the heap memory can be found bellow. It showcases the
aforementioned data structure and the writable memory.

Figure 5.20: Representation of the heap

During the introduction to the malloc module, we presented the function mem-
ory_init. This function is the one readying the heap of the kernel for memory
allocation, that is, it stores the starting value of the heap and write 0 for as long
as the length allow us to (this is to ensure no garbage values in the memory heap).

The memory_alloc function is the one that does all the management on whether
or not a memory can be allocated on a given memory chunk. It’s pseudo-code is
presented below.

77

void ∗ memory_alloc (uint32_t s i z e) {
h = get_heap_start () // Memory address o f the e l e c t e d chunk
i f (h != 0) do // F i r s t memory a l l o c a t i o n

whi l e t rue do
i f h > heap_limit OR ((h == NULL OR h−>a l l o c a t e d == UNALLOCATED) do

break
e l s e

h = h−>next
done

done
done

i f h > heap_limit do // Heap f u l l
r e turn NULL

done

// We have a va l i d chunk
h−>s i z e = s i z e ;
h−>a l l o c a t e d = a l l o c a t e d ;
write_zeros_on_writable_memory (h)

i f h−>next == NULL do
h−>next = h + s i z e o f (heap_t) + s i z e

done

re turn h + s i z e o f (heap_t) // Return the address o f the wr i t ab l e memory
}

Figure 5.21: Heap data structure

What the function does is basically to iterate through the linked list and find
either an eligible chunk or reach the end of the heap by checking the heap_limit
variable. In case of failure, the function returns NULL, and in case of success, the
function returns the address of the writable memory.

In terms of complexity, we are iterating through the whole linked list. So the time
complexity of the algorithm is O(n).

5.2.5 Context Switching

Context switching is one of the key parts of this kernel and of an Operating System
in general as one is expected to implement multi-tasking. In order to understand
the implementation, let’s first introduce how context are stored by presenting the
data structure thereof. A snippet of the kernel code can be found on figure 5.22.

As we can see, two figure are set. The first one is the context structure, it is aimed
to store the information of a process at a given time. It store the stack pointer
as well as the link pointer. Also, it store the original address of the stack pointer.

78

This is needed in order to be able to destroy the memory segment of the stack
pointer once we can to destroy the whole process. We can then find the structure
of the Process Control Block, that is, the information related to the process in
general (ID, its current state, the function that it runs, etc.).

typede f enum {NEW, READY, RUNNING, WAITING, TERMINATED} State ;

// De f i n i t i o n o f a context
typede f s t r u c t {

unsigned i n t ∗ sp_or ig in ; // Orig in o f the s tack po inter ,
// needed f o r context d e s t ru c t i on

unsigned i n t ∗ sp ; // Stack po in t e r
unsigned i n t ∗ l r ; // Link r e g i s t e r

} context_t ;

// De f i n i t i o n o f the proce s s c on t r o l b lock
s t r u c t pcb_t {

unsigned i n t pid ; // Process i n d e n t i f i e r
State s t a t e ; // State o f the p roce s s (new , ready , e t c .)
unsigned i n t p r i o r i t y ; //The lower the more p r i o r i t y , l i nux
convent ion
void (∗ f unc t i on) (void) ; // Function that the proce s s w i l l run
void ∗ arguments ; // Arguments to be passed to the func t i on
context_t context ;
s t r u c t pcb_t ∗next ; // Next PCB in the s i n g l e l i s t

} ;

Figure 5.22: Presentation of Context and PCB data structure

The part of the code dedicated to performing that context switch is present inside
the function interrupt_vector inside the interrupts.c file. Most of the code prior
to that context switch is dedicated to choosing the next PCB to and therefor the
next process that will be switched. As stated by the requirement specification,
the policy used for the scheduling is Round Robin without priority, that is, the
PCB are chosen with the order they have been added to the PCB list and are all
allocated a fixed amount of time.

79

Figure 5.23: Implementation - Diagram of Round Robin without priority

Once the PCB has been chosen, the CPU state is switched to program mode, the
register R1 to R12 pushed into the stack. Then the stack pointer and link pointer
of the process that was running prior to the interruption is stopped is stored into
its context, and the state in the PCB table is changed to READY. Immediately
after, the context are switched and the switched context is now ready to be run
when the interrupts finishes.

Please find on figure 5.24 the relevant code snippet in charge of performing the
context switch.

i f (current_pcb != NULL) {
__asm(" cps #0x13 ") ; // Switch to program mode in order to a c c e s s the
r e g i s t e r s and stack po in t e r
__asm(" push {r0−r12 } ") ;
__asm("mov %0, sp " : "=r " (current_pcb−>context . sp)) ;
__asm("mov %0, l r " : "=r " (current_pcb−>context . l r)) ;

}

// Restore saved context
__asm("mov sp , %0" : : " r " (pcb_to_switch−>context . sp)) ;
__asm("mov l r , %0" : : " r " (pcb_to_switch−>context . l r)) ;
i f (pcb_to_switch−>s ta t e != NEW) {

__asm(" pop {r0−r12 } ") ;
}

Figure 5.24: Snippet presenting the context switch

80

Chapter 6

Testing

Across the whole development, two kind of testings has been used. It has been
mentioned in the project description that a TDD was being used. Of course, this
is not possible to perform unit or functional testing on the Kernel Core level due
to the big amount of low-level interaction with board mostly performed in assem-
bly. However, the test driven development has been performed on components
of the Kernel Management Layer and Developper API. In addition to unit and
functional testing, a process of manual testing has been performed, that is, testing
the program manually through a series of use cases. The use cases performed for
the testing are the exact same than the one described on section 4.2.3 - Use Cases.

The purpose of this chapter is the present the different tests performed as well as
their outcome (i.e. If the tests passed or not).

6.1 Functional testing

Unit and functional testing are two kind of testing method. The Unit testing (also
referred as white box testing) is the fact of testing a single function and any call
to an external function/module has to be mocked. Functional testing (referred as
black box testing) is the fact of testing a function as well as all the internal call
as well. The function is tested by knowing what should be the outcome of calling
such function with a given input on a given state and testing these outcomes.

In order to perform to tests, a small library has been implemented that enable
different kind of assertion as well as error counting and stack tracing (in order to
know where the error has occurred). This library has been implemented in the file
named base_test.c and present the following assertion:

81

• assert_equals_integer: Takes two integer parameters and triggers an error
if those two integers aren’t equal.

• assert_not_equals_integer: Takes two integer parameters and triggers
an error if those two integers are equal.

• assert_equals_string: Takes two string parameters and triggers an error
if those two strings aren’t equal.

The library doesn’t have any way of mocking variable or patching function call.
Also some tests can look unitary (mainly the one testing stand-alone function
that do not need the call of other function), we will also refer to those tests are
functional tests.

The source code of the tests are placed under the directory tests/ and following
the following nomenclature:

X_test.c where X is the name of the module being tested.

During this section, the tests will be presented using the table below:

ID ID of the functional test.
Name Name of the function in the test file.
Description Description of the feature(s) being tested.
Post-conditions Conditions that are necessary for the correct

realization of the functional test.
Result Whether the test passed and fulfilled the post

conditions.

Table 6.1: Template for the functional testing.

Below is the presentation of the performed tests for the given modules:

82

6.1.1 Malloc

ID FT-1
Name memory_test_init
Description Test the function memory_init. The test first

call the previous function and check for the
correct value of heap_top, heap_limit and the
heap_list

Post-conditions
• heap_top needs to be equal to the initial

value of the heap

• heap_limit needs to be equal to the
value of heap + 1024 (since 1KiB of data
has been ask to memory_init

• heap_list needs to be set to zero as no
dynamic allocation has been performed
for now.

Result Passed

Table 6.2: Functional Test FT-1: memory_test_init

ID FT-2
Name memory_test_free_and_alloc
Description The feature being tested is the ability to real-

located a block that has been freed if the mem-
ory allocation asked is small than or equal to
the freed block. To do so, five memory seg-
ments are allocated, the fourth one is freed
and another memory segments is freed with a
size lower than the freed memory segment.

Post-conditions The memory address of the memory header of
last memory segments allocated needs to be
the same as the one that has been freed and
the size has to be updated.

Result Passed

Table 6.3: Functional Test FT-2: memory_test_free_and_alloc

83

ID FT-3
Name memory_test_four_alloc
Description After calling memory_init, four allocations

are performed. After each of these alloca-
tion, tests are performed to check the correct
value of the assigned block, the memory ad-
dress returned and the correct reachability of
the block from the heap_top

Post-conditions At each allocation, the following tests are per-
formed:

• heap_list is not null (since an allocation
has been performed)

• The correct value has been returned by
thememory_alloc function (i.e. The ad-
dress of the writable memory).

• The size of the control block of the re-
turned writable memory has the allo-
cated field, the size field and the next
correctly set.

Result Passed

Table 6.4: Functional Test FT-3: memory_test_four_alloc

ID FT-4
Name memset_test
Description Test of the function rpi_memset on a memory

segment previously allocated.
Post-conditions The memory needs to be correctly set to the

value specified to the function on the memory
address specified and for the provided length.

Result Passed

Table 6.5: Functional Test FT-4: memset_test

84

6.1.2 Strings

ID FT-5
Name itoa_test
Description Test of the function rpi_itoa on a positive and

a negative value.
Post-conditions Correct string representation of the passed

value whether it is positive or negative.
Result Passed

Table 6.6: Functional Test FT-5: itoa_test

ID FT-6
Name rpi_strlen_test
Description Test of the function rpi_strlen with two null-

ended strings, one being empty and the other
having a non null number of characters.

Post-conditions Correct count of character of both string.
Result Passed

Table 6.7: Functional Test FT-6: rpi_strlen_test

ID FT-7
Name itoh_test
Description Test of the function rpi_itoh with two positive

integers and one null.
Post-conditions Correct representation of all three inte-

gers,whether they are positive or null.
Result Passed

Table 6.8: Functional Test FT-7: itoh_test

85

ID FT-8
Name rpi_sprintf_test
Description Test of the function rpi_sprintf with four

strings that have to be correctly formatted
with different type of variable (string, integer
and hexadecimal). The integer variable to be
formatted into the string can be positive or
negative.

Post-conditions Correct formatting of all four strings with the
correct representation of the variable passed
to the function.

Result Passed

Table 6.9: Functional Test FT-8: rpi_sprintf_test

ID FT-9
Name rpi_strcpy_test
Description Test of the function rpi_strcpy with three

strings that have to be correctly copied to a
dummy string. Each with different length or
feature to be copied. The first string is a regu-
lar string that we copied as such is the dummy
string. The second one is the an empty string,
the copy needs to be equally empty. On the
third one, we want to copy a special location
for a special length from with the string into
the dummy.

Post-conditions Correct copy for all three instances.
Result Passed

Table 6.10: Functional Test FT-9: rpi_strcpy_test

86

ID FT-10
Name rpi_strcmp_test
Description Test of the function rpi_strcmp with four

tests, two that needs to returns equals, two
that shouldn’t be different.

1. Check two regular string (should return
equal)

2. Check two empty strings (should return
equal)

3. Check a regular string with a different
regular string (should return different)

4. Check a regular string with the empty
string (should return different).

Post-conditions Correct recognition of same and different
strings

Result Passed

Table 6.11: Functional Test FT-10: rpi_strcmp_test

ID FT-11
Name rpi_trim_test
Description Test of the function rpi_trim with two strings,

the first string don’t have any leading and
trailing space. The second one has both. The
first one should be unafacted by the trimming
function, the second one should see its leading
and trailing spaces removed.

Post-conditions Correct trimming of both strings.
Result Passed

Table 6.12: Functional Test FT-11: rpi_strcmp_test

87

ID FT-12
Name get_first_word_test
Description Test of the function rpi_trim with three

strings: A regular string with not heading
space, a string with leading spaces and an
empty string. In the first two instances, the
return string should be the first word of the
string. In the last cases, the returned string
should be the empty string.

Post-conditions Correct trimming of both strings.
Result Passed

Table 6.13: Functional Test FT-12: get_first_word_test

6.1.3 Queue

ID FT-13
Name queue_init_test
Description Test of the function queue_init with two pos-

itive integers and one null.
Post-conditions Correct initialization of a queue with the cor-

rect initial value of the head, tail and size el-
ement.

Result Passed

Table 6.14: Functional Test FT-13: queue_init_test

ID FT-14
Name queue_enqueue_test
Description Test of the function queue_enqueue by en-

queueing two elements. The values are
checked first after the first enqueue, being sure
that the head and tail are correctly set as well
as the field of the unique node. Then the sec-
ond element is enqueue and the value of the
variable is checked expecting to have a queue
with the correct values as well as for the node.

Post-conditions Correct values at each steps of the test.
Result Passed

Table 6.15: Functional Test FT-14: queue_enqueue

88

ID FT-15
Name queue_dequeue_test
Description Test of the function queue_dequeue. The tests

consists in enqueuing two elements and then
performing three dequeues. The two first de-
queues are expected to return the correct val-
ues, which are checked. At the third dequeue,
the queue is empty, the function is therefore
supposed to return the NULL value, which is
checked.

Post-conditions Correct values at each steps of the test.
Result Passed

Table 6.16: Functional Test FT-15: itoh_test

6.1.4 Scheduler

ID FT-16
Name create_process_test
Description Tests the function create_process by creating

three processes and at each creation, tests the
correct values in the pcb_list queue.

Post-conditions Correct initialization of a pcb_list as well as
the correct values for each process creation.

Result Passed

Table 6.17: Functional Test FT-16: create_process_test

ID FT-17
Name get_next_pcb_test
Description Tests the function get_next_pcb by creating

three processes and then invoking the tested
function. The function should always return
the next PCB in the queue, or the first one
when asking for the next PCB of the last PCB.

Post-conditions Correct PCB returned for every PCB.
Result Passed

Table 6.18: Functional Test FT-17: get_next_pcb_test

89

ID FT-18
Name context_switch_test
Description Tests the function scheduler by creating three

processes and then invoking the tested func-
tion. The function is in charge of setting the
current_pcb variable to the PCB to be sched-
ule. We therefore test said feature.

Post-conditions Correct value of the current_pcb for each in-
vocation of the scheduler function.

Result Passed

Table 6.19: Functional Test FT-18: context_switch_test

6.2 Validation Testing

As mention in the introduction of this chapter, further test were performed during
the realization of the project as it was not possible to have a code coverage of 100%
with the automated testing. This is why the entirety of the Use Cases have been
tested, these tests are know as validation testing as they involve a user testing the
feature using the same steps than the one defined in the use cases. The use cases
are therefore executed and validated buy checking that the output match the post
conditions of each use cases.

During this section, the tests will be presented using the table below:

ID ID of the validation test
Name Name of the validation test
Result Conditions that are necessary for the correct

realization of the functional test.

Table 6.20: Template for the validation testing.

ID VT-01
Name System boot
Result Passed

Table 6.21: Validation Test VT-01 - System boot

ID VT-02
Name Kernel compilation
Result Passed

Table 6.22: Validation Test VT-02 - Kernel compilation

90

ID VT-03
Name Kernel compilation
Result Passed

Table 6.23: Validation Test VT-03 - Kernel compilation

ID VT-04
Name ARM timer interrupt
Result Passed

Table 6.24: Validation Test VT-04 - ARM timer interrupt

ID VT-05
Name Context switching
Result Passed

Table 6.25: Validation Test VT-05 - Context switching

ID VT-06
Name Display an image on the screen
Result Passed

Table 6.26: Validation Test VT-06 - Display an image on the screen

ID VT-07
Name Create header picture
Result Passed

Table 6.27: Validation Test VT-07 - Create header picture

ID VT-08
Name Print strings on the serial port
Result Passed

Table 6.28: Validation Test VT-08 - Print strings on the serial port

ID VT-09
Name Print strings on the HDMI ports
Result Passed

Table 6.29: Validation Test VT-09 - Print strings on the HDMI ports

91

ID VT-10
Name Input data handling
Result Passed

Table 6.30: Validation Test VT-10 - Input data handling

ID VT-11
Name Line drawing
Result Passed

Table 6.31: Validation Test VT-11 - Line drawing

ID VT-12
Name Command-Line Interface
Result Passed

Table 6.32: Validation Test VT-12 - Command-Line Interface

6.3 Traceability Matrix

In this section we draw the traceability matrix between the Functional Tests, the
Validation Tests and the Functional Requirement giving information of which test
refers to which functional requirement.

92

FT
-0
1

FT
-0
2

FT
-0
3

FT
-0
4

FT
-0
5

FT
-0
6

FT
-0
7

FT
-0
8

FT
-0
9

FT
-1
0

FT
-1
1

FT
-1
2

FT
-1
3

FT
-1
4

FT
-1
5

FT
-1
6

FT
-1
7

FT
-1
8

V
T
-0
1

V
T
-0
2

V
T
-0
3

V
T
-0
4

V
T
-0
5

V
T
-0
6

V
T
-0
7

V
T
-0
8

V
T
-0
9

V
T
-1
0

V
T
-1
1

V
T
-1
2

FR
-0
1

X
X

X
X

X
X

FR
-0
2

X
X

X
X

X
X

FR
-0
3

X
X

X
X

X
X

FR
-0
4

X
X

X
X

X
X

X
FR

-0
5

X
X

FR
-0
6

X
X

FR
-0
7

X
X

X
FR

-0
8

X
X

X
X

X
X

X
X

X
X

X
X

X
FR

-0
9

X
X

FR
-1
0

X
X

FR
-1
1

X
X

FR
-1
2

X
X

X
FR

-1
3

X
X

X
FR

-1
4

X
X

X
FR

-1
5

X
X

FR
-1
6

X
FR

-1
7

X
FR

-1
8

X
FR

-1
9

X
FR

-2
0

X
X

X
X

X
X

X
X

X
FR

-2
1

X
FR

-2
2

X
X

X
X

X
X

X
FR

-2
3

X
X

FR
-2
4

X
X

X
X

X
X

X
X

X
X

X
FR

-2
5

X
X

X
X

X
X

X
FR

-2
6

X
X

X
X

X
X

X
FR

-2
7

X
X

X
X

X
X

X
FR

-2
8

X
FR

-2
9

X
FR

-3
0

X
X

X
X

X
X

X
FR

-3
1

X
FR

-3
2

X
X

X
X

T
ab

le
6.

33
:
Tr

ac
ea
bi
lit
y
m
at
rix

-F
un

ct
io
na

lR
eq
ui
re
m
en
t
vs

Te
st
s.

93

Chapter 7

Project Planning

This section aims to present the time organization as well as the cost management
of the project. It is divided in two sections, the first one aims to present time line
of the project, that is, how much time has been spent on each of the cycles present
on Chapter 4. The second sections presents the cost planning.

7.1 Temporal Planning

On Chapter 4 we presented the six cycles necessary to realize the project. The
time spent on each phase is variable depending on the difficulty of the tasks. The
biggest amount of time spent goes to the Context Switch phase due to the difficulty
of designing, implementing and debugging and all the concept involved in context
switching. The phase dedicated to the execution of a hello world, serial output
and command line interface shares a similar amount of time spent (around two
months and a half) due to the extensive amount of research needed for the two first
phases. Finally, the HDMI output phase and serial input phase were the shortest
since they were pretty similar the phase 2 (i.e. serial output) and therefore, the
amount of research were already done beforehand.

The project has officially started the 5th of October 2014 and finished the 25th of
September 2015.

A Gantt diagram is displayed on figure 7.1 displaying graphically the time-lapse
for each phase and process of each phase.

95

Figure 7.1: Gant Chart of the Project

7.2 Cost Projection

This section is aimed to perform an estimation of the physical resources needed
and their related amount of money spent throughout the realization of the project.
It is necessary to take into account the deprecation of the material being used. The
project being realized in Spain, we will refer to the country’s law dedicated the
mater, that is the Ley del impuesto de sociedades [15]. The amortization [16] of a
computer is of 8 years. We will consider both the Raspberry Pi and the MacBook
Pro to fall into that category.

As seen from the previous section, the project spans between eleven and twelve
months, for our deprecation calculation we will therefore use a full year.

96

Material Cost for one unit Deprecation Total for one year
Personal
computer

e 1500 8 years e 187,5

Raspberry
Pi B+

e 30 8 years e 3,75

Total e 191,25

Table 7.1: Cost projection for physical resources taking into account deprecation

In terms of fungible resources, only electricity has been used. A MacBook Pro 13"
uses about 12,1 Watts [4]. A Raspberry Pi consumes about 1,21 Watts [3]. For a
total of 13,31 Watts. Finally, the price per kWh is estimated to be e 0,138280 [5]

We estimate the amount of average work of 17 hours a week with these devices,
a total of 952 hours. We therefore can estimate the amount of energy spent to
be 12.67112kWh. We can therefore estimate the amount of electricity spent to
e 1,76.

Finally, we need to draw the cost of human resources. The amount of hour spent
by each member can be obtained from the previous section. The table 7.2 shows
the amount spent for each member.

Member Cost per hour Hours worked Total
Project
Manager

e 35 120 hours e 4 200

Requirement
Engineer

e 20 60 hours e 1 200

Analyst e 25 80 hours e 2 000
Designer e 25 150 hours e 3 750
Developer e 20 210 hours e 4 200
Tester e 15 110 hours e 1 650
Total e 17 000

Table 7.2: Human resource cost

With all these data, we can obtain the final cost of the project:

97

Concept Cost
Physical Resources e 191,25
Fungible Resources e 1,76
Human Resources e 17 000

Risk (15%) e 2 578,96
Total without Tax e 19 771,97

Taxes e 3 954,394
Total with Tax e 23 726,364

Table 7.3: Cost Projection Total

98

Chapter 8

Conclusions and line of work

This final section aims to conclude the work performed in this bachelor thesis
project, underline the goals, experiences and impressions. In a second part of this
conclusion, several lines of work are given for a future project based on this one.

8.1 Conclusions

The major goal of this Bachelor Thesis was to implement a understandable and
modular kernel dealing with a device on the bare metal level. It has been possible
to implement more than what was initially planned. Several satisfying milestone
were reached: Execute arbitrary code on the board, initialization of a serial con-
nection with another device, dealing with graphic card concept and output data
on the screen, handling input from a user and the most interesting one: Context
switching. This later has been the hardest part if we exclude the initial study
of the Raspberry Pi. Context switching are simple on the paper but harder to
implement and overall to debug on a bare metal level, which make it even more
satisfying when finally finding the solution.

This project has been very interesting has many things weren’t seen during the de-
gree but many concepts of what has been studied could and have been be applied.
The adventure through low level programming made me realize how interesting,
yet difficult, this world is as there are no security policy or advanced debug tool
to prevent the program to write on forbidden addresses. The whole process was
a lot of study and research of the Raspberry Pi board, ARM processor, cross-
compiler, assembler and more advanced concept of computer science. Finally, the
implementation was a lot of trial and error mitigated by the automated functional
testing from the library, which was impossible to be used when the code reached a

99

too close-to-the-metal level. Testing on the board is impossible until having basic
outputs (a blinking LED at first and finally serial outputs), debugging getting
more easy as the tools are getting built.

In the end, I believe that we can say that the initial goals of the project were
reached with a satisfying outcome.

8.2 Future works

The project, although being a solid base, lacks of many functionality that modern
operating systems employ. A main research direction is a feature that were planned
at first was to develop Virtual Memory for the process, allowing them not to step
on each other toes and overall to render safe a process from another one. This
involves implementing a module translating the address from virtual memory to
physical memory.

Another direction is also the implementation of a file system. None is included in
this project and every program or data need to be included within the kernel at
compilation time, no data can be retrieved from the SD Card. This would require
the implementation of a FAT-32 driver (the file system in which the SD Card needs
to be formatted to in order allow the firmware to boot from it) in the kernel.

The kernel is also devoid of USB support as it was too ambitious for the project,
USB standards being more than 200 pages. An interesting feature would be to
implement USB drivers in order to use an external keyboard or flash drive.

Finally, there are no explicit system calls in the kernel, a good research direction
would be to implement such feature into the kernel.

100

List of Acronyms

• API - Application Program Interface

• ARM - Advanced RISC Machines

• CLI - Command Line Interface

• CPSR - Current Program Status Register

• FIQ - Fast Interrupt Request

• GPIO - General Purpose Input/Output

• HDMI - High-Definition Multimedia Interface

• IRQ - Interrupt Request

• ISR - Interrupt Service Routine (Interrupt Handler)

• JPEG - Joint Photographic Experts Group

• LLVM - Low Level Virtual Machine

• LR - Link Register

• OS - Operating System

• PCB - Process Control Block

• PID - Process ID

• PCIe - Peripheral Component Interconnect Express

• PWM - Pulse Width Modulator

• RISC - Reduced Instruction Set Computer

• RPI - Raspberry Pi

• RTOS - Real-Time Operating System

• SATA - Serial AT Attachment

101

• SoC - System on Chip

• SPSR - Saved Processor Status Register

• SP - Stack Pointer

• SVC - Supervisor

• TDD - Test-driven development

• USB - Universal Serial Bus

102

Bibliography

[1] BCM2835 ARM Peripherals, 2012. http://www.raspberrypi.org/
wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf.

[2] Gartner Says Worldwide PC, Tablet and Mobile Phone Shipments to Grow
5.9 Percent in 2013 as Anytime-Anywhere-Computing Drives Buyer Behavior,
2013. https://www.gartner.com/newsroom/id/2525515.

[3] How Much Less Power does the Raspberry Pi B+ use
than the old model B?, 2013. http://raspi.tv/2014/
how-much-less-power-does-the-raspberry-pi-b-use-than-the-old-model-b.

[4] 13-inch MacBook Pro - Environmental Report, 2014. https:
//www.apple.com/environment/pdf/products/notebooks/13inch_MBP_
PER_Oct2013.pdf.

[5] Tarifa fija anual 2014, 2014. http://tarifasgasluz.com/faq/
tarifa-fija-anual-2014.

[6] Archlinux ARM for Raspberry-Pi, 2015.

[7] ARM RaspberryPi, 2015. http://wiki.osdev.org/ARM_RaspberryPi.

[8] Config.txt, 2015. https://www.raspberrypi.org/documentation/
configuration/config-txt.md.

[9] Cygwin environment, 2015. https://www.cygwin.com/.

[10] FreeRTOS, 2015. http://www.osrtos.com/rtos/freertos.

[11] Github Raspberry Pi Firmware, 2015. https://github.com/raspberrypi/
firmware/tree/master/boot.

[12] Kali Linux, 2015. http://docs.kali.org/kali-on-arm/
install-kali-linux-arm-raspberry-pi.

[13] Low Level Virtual Machine, 2015. http://llvm.org/.

103

http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.gartner.com/newsroom/id/2525515
http://raspi.tv/2014/how-much-less-power-does-the-raspberry-pi-b-use-than-the-old-model-b
http://raspi.tv/2014/how-much-less-power-does-the-raspberry-pi-b-use-than-the-old-model-b
https://www.apple.com/environment/pdf/products/notebooks/13inch_MBP_PER_Oct2013.pdf
https://www.apple.com/environment/pdf/products/notebooks/13inch_MBP_PER_Oct2013.pdf
https://www.apple.com/environment/pdf/products/notebooks/13inch_MBP_PER_Oct2013.pdf
http://tarifasgasluz.com/faq/tarifa-fija-anual-2014
http://tarifasgasluz.com/faq/tarifa-fija-anual-2014
http://wiki.osdev.org/ARM_RaspberryPi
https://www.raspberrypi.org/documentation/configuration/config-txt.md
https://www.raspberrypi.org/documentation/configuration/config-txt.md
https://www.cygwin.com/
http://www.osrtos.com/rtos/freertos
https://github.com/raspberrypi/firmware/tree/master/boot
https://github.com/raspberrypi/firmware/tree/master/boot
http://docs.kali.org/kali-on-arm/install-kali-linux-arm-raspberry-pi
http://docs.kali.org/kali-on-arm/install-kali-linux-arm-raspberry-pi
http://llvm.org/

[14] Mailboxes, 2015. https://github.com/raspberrypi/firmware/wiki/
Mailboxes.

[15] Nuevas Tablas de amortización 2015, 2015. http://www.ficolsa.com/
buzon-clientes-2/90-fiscalidad/202-amortizacion-2015.html.

[16] Nuevas Tablas de amortización 2015, 2015. http://www.ficolsa.com/
buzon-clientes-2/90-fiscalidad/202-amortizacion-2015.html.

[17] OpenElec, 2015. http://openelec.tv/get-openelec.

[18] OSMC Mediacenter, 2015. https://osmc.tv/.

[19] PI4J, 2015. http://pi4j.com/.

[20] Raspberry Pi Bare Bones, 2015. http://wiki.osdev.org/Raspberry_Pi_
Bare_Bones.

[21] Raspbian OS, 2015. https://www.raspbian.org/.

[22] Response Time and Jitter, 2015. http://www.chibios.org/dokuwiki/doku.
php?id=chibios:articles:jitter.

[23] Retropie, 2015. http://blog.petrockblock.com/retropie/.

[24] Universal asynchronous receiver/transmitter, 2015. https://en.wikipedia.
org/wiki/Universal_asynchronous_receiver/transmitter.

[25] Wikipedia - Raspberry Pi, 2015. https://en.wikipedia.org/wiki/
Raspberry_Pi.

[26] Yagarto ARM Cross-Compiler, 2015. http://www.yagarto.org/.

[27] Kent Beck. Test-Driven Development by Example. "Addison-Wesley Profes-
sional", 2003.

[28] Eric Biggers. Porting the Embedded Xinu Operating System to the Raspberry
Pi. Macalester College, May 2014.

[29] Barry Boehm. Spiral Development: Experience, Principles, and Refinements
Spiral Development Workshop February 9, 2000. Software Engineering Insti-
tute, July 2000.

[30] IEEE Computer Society. Software Engineering Technology Committee, Insti-
tute of Electrical, and Electronics Engineers. IEEE recommended practice for
software requirements specifications. Institute of Electrical and Electronics
Engineers, October 1994.

104

https://github.com/raspberrypi/firmware/wiki/Mailboxes
https://github.com/raspberrypi/firmware/wiki/Mailboxes
http://www.ficolsa.com/buzon-clientes-2/90-fiscalidad/202-amortizacion-2015.html
http://www.ficolsa.com/buzon-clientes-2/90-fiscalidad/202-amortizacion-2015.html
http://www.ficolsa.com/buzon-clientes-2/90-fiscalidad/202-amortizacion-2015.html
http://www.ficolsa.com/buzon-clientes-2/90-fiscalidad/202-amortizacion-2015.html
https://osmc.tv/
http://pi4j.com/
http://wiki.osdev.org/Raspberry_Pi_Bare_Bones
http://wiki.osdev.org/Raspberry_Pi_Bare_Bones
https://www.raspbian.org/
http://www.chibios.org/dokuwiki/doku.php?id=chibios:articles:jitter
http://www.chibios.org/dokuwiki/doku.php?id=chibios:articles:jitter
http://blog.petrockblock.com/retropie/
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter
https://en.wikipedia.org/wiki/Raspberry_Pi
https://en.wikipedia.org/wiki/Raspberry_Pi
http://www.yagarto.org/

[31] Brian Kernighan and Dennis Ritchie. The C Programming Language. Prentice
Hall, 1978.

[32] Dennis M. Ritchie and Ken Thompson. The UNIX Time-Sharing System.
Bell Laboratories, July 1974.

105

	Acknoledgements
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 The Raspberry Pi
	1.3 Research context
	1.4 Main objectives
	1.5 Document structure

	2 State of the Art
	2.1 Operating System
	2.2 ARMv6
	2.2.1 CPU modes
	2.2.2 Interrupt vector table
	2.2.3 Registers

	2.3 Serial Communications
	2.3.1 Introduction
	2.3.2 UART

	2.4 Raspberry Pi B+
	2.4.1 Hardware
	2.4.1.1 GPIO
	2.4.1.2 The Message-Handling Unit: The Mailbox

	2.4.2 Booting Process
	2.4.2.1 config.txt
	2.4.2.2 kernel.img

	2.4.3 Famous Operating Systems
	2.4.4 Raspberry Pi in the Scientific Literature

	3 Developing Environment
	3.1 Methodology
	3.2 Software
	3.2.1 Operating System
	3.2.2 Programming Language
	3.2.3 Cross-Compiler
	3.2.4 Clang
	3.2.5 GNU Screen
	3.2.6 Atom
	3.2.7 Git
	3.2.8 BitBucket
	3.2.9 TexMaker
	3.2.10 draw.io

	4 Project Description
	4.1 General Constraints
	4.2 Requirements Specifications
	4.2.1 User Requirements
	4.2.2 Functional Requirements
	4.2.3 Use Cases

	4.3 Software Development Process

	5 Proposal
	5.1 Design
	5.1.1 Kernel Core Layer
	5.1.2 Kernel Management Layer
	5.1.2.1 Kernel module
	5.1.2.2 GPIO module
	5.1.2.3 UART module
	5.1.2.4 Scheduler module
	5.1.2.5 ARMTimer module
	5.1.2.6 Interrupts module
	5.1.2.7 Queue module
	5.1.2.8 Malloc module
	5.1.2.9 Mailbox module

	5.1.3 CLI module
	5.1.4 Developer API Layer
	5.1.4.1 Character module
	5.1.4.2 Screen Text module
	5.1.4.3 Strings module
	5.1.4.4 Standard Input/Output

	5.2 Implementation
	5.2.1 Source code tree
	5.2.2 Makefile
	5.2.3 Booting process of the kernel
	5.2.4 Dynamic memory allocation
	5.2.5 Context Switching

	6 Testing
	6.1 Functional testing
	6.1.1 Malloc
	6.1.2 Strings
	6.1.3 Queue
	6.1.4 Scheduler

	6.2 Validation Testing
	6.3 Traceability Matrix

	7 Project Planning
	7.1 Temporal Planning
	7.2 Cost Projection

	8 Conclusions and line of work
	8.1 Conclusions
	8.2 Future works

	Bibliography
	List of Acronyms

