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Previous work has shown a relation between L-valued extensions of Formal Concept
Analysis and the spectra of some matrices related to L-valued contexts. To clarify this
relation we investigated elsewhere the nature of the spectra of irreducible matrices
over idempotent semifields in the framework of dioids, naturally-ordered semirings,
that encompass several of those extensions. This initial work already showed many
differences with respect to their counterparts over incomplete idempotent semifields in
what concerns the definition of the spectrum and the eigenvectors. Considering special
sets of eigenvectors also brought out complete lattices in the picture and we argue that
such structure may be more important than standard eigenspace structure for matrices
over completed idempotent semifields. In this paper we complete that investigation in
the sense that we consider the spectra of reducible matrices over completed idempotent
semifields and dioids, giving, as a result, a constructive solution to the all-eigenvectors
problem in this setting. This solution shows that the relation of complete lattices to
eigenspaces is even tighter than suspected.

Keywords: dioids; complete idempotent semifields; all-eigenvectors problem; spectral
order lattices; eigenlattices.

1. Motivation

The eigenvectors and eigenspaces over certain naturally ordered semirings called
dioids seem to be intimately related to multi-valued extensions of Formal Concept
Analysis (Ganter and Wille 1999). For instance (Belohlavek and Vychodil 2010) and
(Belohlavek 2012) prove that formal concepts are optimal factors for decomposing
a matrix with entries in complete residuated semirings over [0, 1]. In those papers
there is a strong formal analogy with the Singular Value Decomposition, with formal
concepts taking the role of pairs of left and right eigenvectors. Indeed, (Valverde-
Albacete and Peláez-Moreno 2008) proved that, at least on a particular kind of
dioids, the idempotent semifields, formal concepts are related to the eigenvectors
of the unit in the semiring. These results, however, cannot be unified both for
theoretical reasons—since idempotent semifields are incomplete (see below)—as well
as for practical reasons—since the carrier set of idempotent semifields is almost never
included in [0, 1].

∗Corresponding author. Email: carmen@tsc.uc3m.es

1



A possible way forward is to develop these theories under the common framework
of the L-fuzzy sets, where L is any complete lattice (Goguen 1967). Such an endeav-
our has already been called for (Gondran and Minoux 2007), although it remains
unfulfilled. Therefore, this paper has a two-fold aim:

(1) to clarify the spectral theory over completed idempotent semifields, and
(2) to take steps towards a common framework for the interpretation of L-Formal

Concept Analysis as a spectral construction.
First steps have been taken in this direction with the development of a spectral

theory of irreducible matrices (Valverde-Albacete and Peláez-Moreno 2014) over
complete idempotent semifields, whose main results are included below, but the
general case, here presented, shows a more intimate relation to lattice theory, as well
as representing a constructive solution to the all-eigenvectors problem for matrices
over complete idempotent semifields.

1.1. Dioids and their spectral theory

A semiring is an algebra S = 〈S,⊕,⊗, ε, e〉 whose additive structure, 〈S,⊕, ε〉, is a
commutative monoid and whose multiplicative structure, 〈S\{ε},⊗, e〉, is a monoid
with multiplication distributing over addition from right and left and with additive
neutral element absorbing for ⊗, i.e. ∀a ∈ S, ε⊗ a = ε.

Given A ∈ Sn×n the right (left) eigenproblem is the task of finding the right
eigenvectors v ∈ Sn×1 and right eigenvalues ρ ∈ S (respectively left eigenvectors
u ∈ S1×n and left eigenvalues λ ∈ S) satisfying:

u⊗A = λ⊗ u A⊗ v = v ⊗ ρ (1)

The left and right eigenspaces and spectra are the sets of these solutions:

Uλ(A) = {u ∈ S1×n | u⊗A = λ⊗ u} Vρ(A) = {v ∈ Sn×1 | A⊗ v = v ⊗ ρ} (2)

Λ(A) = {λ ∈ S | Uλ(A) 6= {εn}} P(A) = {ρ ∈ S | Vρ(A) 6= {εn}} (3)

U(A) =
⋃

λ∈Λ(A)

Uλ(A) V(A) =
⋃

ρ∈P(A)

Vρ(A) (4)

Since Λ(A) = P(At) and Uλ(A) = Vλ(At), from now on we will omit references to
left eigenvalues, eigenvectors and spectra, unless we want to emphasize differences.
With so little structure it might seem hard to solve (1), but a very generic solution
based in the concept of transitive closure of a matrix A+ =

∑∞
i=1A

i and transitive-
reflexive closure A∗ =

∑∞
i=0A

i is given by the following theorem:

Theorem 1.1. (Gondran and Minoux 1977, Theorem 1) Let A ∈ Sn×n. If A∗

exists, the following two conditions are equivalent:
(1) A+

.i ⊗ µ = A∗.i ⊗ µ for some i ∈ {1 . . . n}, and µ ∈ S.
(2) A+

.i ⊗ µ (and A∗.i ⊗ µ) is an eigenvector of A for e, A+
.i ⊗ µ ∈ Ve(A).

In (Valverde-Albacete and Peláez-Moreno 2014) this result was made more specific
in two directions: on the one hand, by focusing on particular types of completed
idempotent semirings—semirings with a natural order where infinite additions of
elements exist so transitive closures are guaranteed to exist and sets of generators
can be found for the eigenspaces—and, on the other hand, by considering more
easily visualizable subsemimodules than the whole eigenspace—a better choice for
exploratory data analysis.
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Specifically, every commutative semiring accepts a canonical preorder, a ≤ b if and
only if there exists c ∈ D with a⊕ c = b. A dioid is a semiring D where this relation
is actually an order. Dioids are zerosumfree and entire, that is they have no non-null
additive or multiplicative factors of zero. Commutative complete dioids are already
complete residuated lattices. Similarly, semimodules over complete commutative
dioids are also complete lattices.

We will make occasional use of the following proposition,

Proposition 1.2. (Golan 1999, p. 150) If f : R → S is a morphism of semirings,
and if X is a right S-semimodule then it is also canonically a right R-semimodule,
with scalar multiplication defined by rx = f(r)x for all r ∈ R and x ∈ X. In
particular, if X is a right S-semimodule then X is a left R-semimodule for every
subsemiring R of S, by the inclusion map, ↪→S (r) = r.

An idempotent semiring is a dioid whose addition is idempotent, and a selective
semiring one where the arguments attaining the value of the additive operation can
be identified.

Example 1. Examples of idempotent dioids are
(1) The Boolean lattice B = 〈 {0, 1},∨,∧, 0, 1 〉
(2) All fuzzy semirings, e.g. 〈 [0, 1],max,min, 0, 1 〉
(3) The min-plus algebra Rmin,+ = 〈R ∪ {∞},min,+,∞, 0 〉
(4) The max-plus algebra Rmax,+ = 〈R ∪ {−∞},max,+,−∞, 0 〉

Of the semirings above, only the boolean lattice and the fuzzy semirings are
complete dioids, since the rest lack the top element > as an adequate inverse for
the bottom in the order.

1.2. Completed idempotent semifields and their spectral theory for
irreducible matrices

A semiring is a semifield if there exists a multiplicative inverse for every element
a ∈ S, notated as a−1, and radicable if the equation ab = c can be solved for a.
As exemplified above, idempotent semifields are incomplete in their natural order.
Luckily, there are procedures for completing such structures (Valverde-Albacete and
Peláez-Moreno 2011) and we will not differentiate between complete or completed
structures,

Example 2. The max-plus Rmax,+ and min-plus Rmin,+ semifields can be completed
as:

(1) The complete min-plus semifield Rmin,+ = 〈R ∪ {−∞,∞},min,
�
+,−·,∞, 0〉 .

(2) The complete max-plus semifield Rmax,+ = 〈R∪{−∞,∞},max,
�
+,−·,−∞, 0〉 .

In this notation we have ∀c,−∞
�
+ c = −∞ and ∞

�
+ c = ∞, which solves several

issues in dealing with the separately completed dioids. These two completions are

inverses Rmin,+ = R
−1
max,+, hence order-dual lattices.

In fact, idempotent semifieldsK = 〈K,
�
⊕,

�
⊕,

�
⊗,

�
⊗, ·−1,⊥, e,>〉 , appear as enriched

structures, the advantage of working with them being that meets can be expressed
by means of joins and inversion as a ∧ b = (a−1

�
⊕ b−1)−1. On a practical note,

residuation in complete commutative idempotent semifields can be expressed in
terms of inverses, and this extends to eigenspaces.

As proven in (Valverde-Albacete and Peláez-Moreno 2014), the set of eigenvalues
on complete dioids is extended with respect to the incomplete case, so it makes sense
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to distinguish between the proper eigenvalues Pp(A), associated with eigenvectors
with finite coordinates, and the improper eigenvalues P(A) \Pp(A) associated with
eigenvectors with non-finite coordinates.

The eigenspaces of matrices over complete dioids have the structure of a complete
lattice. But since these lattices may be continuous and difficult to visualize we in-
troduce the more easily-represented (right) eigenlattices Lρ(A) which are complete
finite sublattices of the eigenspaces to be used as scaffolding in visual representa-
tions1.

The basic building block is the spectrum of irreducible matrices: for a matrix
A ∈ Mn(S), the network or weighted digraph induced by A, NA = (VA, EA, wA),
consists of a set of vertices VA, a set of arcs , EA = {(i, j) | Aij 6= εS}, and a weight
wA : VA × VA → S, (i, j) 7→ wA(i, j) = aij . Then matrix A is irreducible if every
node of VA is connected to every other node in VA though a path, otherwise it is
reducible.

This allows us to apply intuitively all notions from networks to matrices and vice
versa, like the underlying graph GA = (VA, EA), the set of paths Π+

A(i, j) between
nodes i and j or the set of cycles C+

A . In particular, if l(c) is the length of a cycle

c ∈ C+
A and w(c) its weight, then the mean of the cycle is µ⊕(c) = l(c)

√
w(c), and

the aggregate cycle mean of A is µ⊕(A) =
∑
{µ⊕(c) | c ∈ C+

A}. If the semiring is
idempotent and selective, the nodes in the circuits that attain this mean are called
the critical nodes of A, V c

A = {i ∈ c | µ⊕(c) = µ⊕(A)}.
For a finite ρ = µ⊕(A), let Ãρ

+
= (A

�
/ ρ)+ be the normalized transitive closure

of A. Then the critical nodes are V c
A = {i ∈ VA | Ã

+
ii = e}, and we define the set of

(right) fundamental eigenvectors of A for ρ as

FEVρ (A) = {Ã+
·i | i ∈ V c

A} = {Ã+
·i | Ã

+
ii = e}.

Theorem 1.3 ((Right) spectral theory for irreducible matrices,
(Valverde-Albacete and Peláez-Moreno 2014)). Let A ∈ Mn(K) be an irreducible
matrix over a complete commutative selective radicable semifield. Then:

(1) The right spectrum of the matrix includes the whole semiring but the zero:

P(A) = K \ {⊥}

(2) The right proper spectrum only comprises the aggregate cycle mean:

Pp(A) = {µ⊕(A)}

(3) If an eigenvalue is improper ρ ∈ P(A)\Pp(A), then its eigenspace (and eigen-
lattice) is reduced to the two vectors:

Vρ(A) = {⊥n,>n} = Lρ(A)

(4) The eigenspace for a finite proper eigenvalue ρ = µ⊕(A) < > is generated from
its fundamental eigenvectors over the whole semifield, while the eigenlattice is
generated by 3:

Vρ(A) = 〈FEVρ (A)〉K ⊃ Lρ(A) = 〈FEVρ (A)〉3

1Right and left eigenlattices will only be distinguished by the indexing them with the standard notation for

a right and left eigenvalue, respectively.
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Refer to (Valverde-Albacete and Peláez-Moreno 2014) for further details.

1.3. Reading guide

In this paper we try and find analogue results to Theorem 1.3 for the reducible
case, and in doing so solve the all-eigenvectors problem for matrices over completed
idempotent semifields. First, we present in Section 2.3 a recursive scheme to render
matrices over idempotent semifields into specialized Upper Frobenius Normal Forms
(UFNF), thus providing in Sections 3.2-3.4 a bottom-up construction of the spectra
of reducible matrices from that of their irreducible ones. By defining particular sets
of fundamental eigenvectors, FEVρ (A) for each particular UFNF form we present
in Section 3.5 an overarching formulation of our results for eigenspaces and eigen-
lattices. Finally, we discuss our findings and approach in Section 4 and relate them
to previous attempts at describing such structures.

2. Preliminaries

2.1. Partial orders and lattices

A (partially) ordered set 2 is an algebra P = 〈P,≤〉 where ≤ is a reflexive, anti-
symmetric and transitive relation on a carrier set P . Every ordered P has a dual
Pd = 〈P,≤d〉 where the converse relation holds, y ≤d x ≡ y ≥ x ⇔ x ≤ y. We
may use x ≤ y and y ≥ x for x, y ∈ P interchangeably, and we use x ‖ y to denote
non-comparability: x ‖ y ⇔ x 6≤ y and y 6≤ x. Low-complexity partial orders are
practically drawn using order (or Hasse) diagrams 3.

Example 3. Every set V with |V | = n elements and the reflexive identity relation
I = {(v, v) | v ∈ V } is called an anti-chain of n elements, and we notate them
as 〈V, I〉 ∼= n. Anti-chains are (vacuously transitive, antisymmetric) partial orders,
one natural transposition of sets to order theory.

Let P = 〈P,≥〉 be an ordered set and Q ⊆ P . Then Q is an order ideal or downset
if for x ∈ Q, y ∈ P whenever y ≤ x then y ∈ Q. Dually, Q is an order filter or upset
if for x ∈ Q, y ∈ P whenever y ≥ x then y ∈ Q. For arbitrary Q ⊆ P , ↓Q = {y ∈ P |
∃x ∈ Q, y ≤ x} (read ‘down Q’), and dually ↑Q = {y ∈ P | ∃x ∈ Q, y ≥ x} (read
‘up Q’). Downsets (upsets) of the form ↓x =↓{x} (↑x =↑{x}) are called principal
order ideals (filters). The family of all downsets of P (or upsets) is denoted by O(P )
(F(P )) and is ordered by set inclusion.

Let P be an ordered set and Q ⊆ P . An element x ∈ P is an upper bound of Q if
y ≤ x for all y ∈ Q. A lower bound is defined dually. The set of all upper bounds
is written Qu and the set of all lower bounds as Ql. Since ≤ is transitive, Ql is
always a downset and Qu an upset. For Q ⊆ P , x ∈ P is the least upper bound, or
supremum or join, of Q if x is an upper bound of Q such that x ≤ y for all upper
bounds y of Q. Dually if Ql has a greatest element this is the greatest upper bound,
or infimum, of Q.

Let L = 〈L,≤〉 be an ordered set. If the supremum exists for every pair x, y ∈ L–
we write x ∨ y–then L is a ∨-semilattice or join semilattice. Dually, if the infimum
exists for every pair x, y ∈ L–we write x ∧ y–then L is a ∧-semilattice or meet

2Essentially, this introductory material follows (Davey and Priestley 2002).
3Recall that these actually depicts the irreflexive, transitive reduction of the orders they represent.
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semilattice. When both suprema and infima exist, then L = 〈L,∨,∧〉 is a lattice.
The order and algebraic operations can be related by the connecting Lemma:

Lemma 2.1. Let L be a lattice and a, b ∈ L. Then a ≤ b⇔ a ∨ b = b⇔ a ∧ b = a.

Example 4. (1) Every set V with |V | = n elements and a total order ≤ ⊆ V ×V
is isomorphic to a lattice called the chain of n elements, 〈V,≤〉 ∼= n. Lattice
1 ∼= 1 is the vacuously-ordered singleton. Lattice 2 is the boolean lattice iso-
morphic to chain 2. Lattice 3 is the lattice lying at the heart of completed
semifields, the 3-blog, isomorphic to chain 3.

(2) Anti-chains are not lattices, except for n = 1.

When the supremum exists for every subset Q ⊆ L, then L is a complete ∨-
semilattice. Similarly, when the infimum exists for every subset Q ⊆ L, then L is a
complete ∧-semilattice. When L is both a complete join- and meet-semilattice, then
it is a complete lattice. Complete lattices have top > =

∨
S and bottom elements

⊥ =
∧
L. The following are two important results:

Proposition 2.2. (1) If L is a complete ∨-semilattice with bottom element ⊥
then it is also a complete lattice (dually for complete ∧-semilattices with >).

(2) Finite lattices are complete.

For an element a ∈ L in a complete lattice, we say that a is join-irreducible if it
cannot be obtained as the join of its strictly lower bounds, a ∈ J (L)⇔ a 6=

∨
{x ∈

L | x < a}. Meet-irreducibles are defined dually, b ∈M(L)⇔ b 6=
∧
{x ∈ L | b < x}.

Next call a subset Q ⊆ L join-dense (supremum-dense) if every element of L can be
obtained as a join of a subset of Q, and dually for a meet-dense (infimum-dense).
The result below is basic:

Proposition 2.3. (Ganter and Wille 1999, Proposition 2) If L is a finite lattice,
(1) a ∈ L is join-irreducible if and only if it has exactly one lower neighbour, and

it is meet irreducible if and only if it has exactly one upper neighbour.
(2) Every join-dense subset of L contains J (L) and every meet-dense subsets of

L contains M(L). Conversely, J (L) is join-dense and M(L) is meet-dense
in L.

Orders can easily be built from other orders and we instantiate on lattices:

• The disjoint union of two lattices L1 and L2 is another lattice L1 ]L2 where
x ≤ y if and only if x, y ∈ L1 and x ≤ y or x, y ∈ L2 and x ≤ y. This is not
complete even if L1 and L2 are.
• The linear or vertical sum of two lattices L1 and L2 is the lattice L1 ⊕ L2

defined as an order 〈L1 ⊕ L2,≤〉 where x ≤ y if and only if x, y ∈ L1 or
x, y ∈ L2 and x ≤ y in either case, or x ∈ P and y ∈ Q. For complete lattices,
the top of L1 is the single lower neighbour of the bottom of L2. For instance
Mn = 1⊕ n⊕ 1.

• For a family of lattices {Li}ni=1 their Cartesian product ×n
i=1 Li will bear the

componentwise order (x1, . . . , xn) ≤ (y1, . . . , yn) ⇔ xi ≤ yi, for all 1 ≤ i ≤
n. When all the factors are the same it is customary to write the resulting
expression as a power, so, for instance, the powers of 2 are the boolean lattices,
2n = ×n

i=1 2, which shows that the product lattice will be complete if the
factors are complete.

We state for later use:

Lemma 2.4. Let L1 × L2 be the product of two complete lattices. Then:
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(1) J (L1 × L2) = (J (L1)× {⊥2}) ∪ ({⊥1} × J (L2))
(2) M(L1 × L2) = (M(L1)× {>2}) ∪ ({>1} ×M(L2))

where ⊥1 and ⊥2 (resp >1 and >2) are the bottom (resp. top) elements of each
factor.

The set of order ideals of a poset P is a lattice O(P ).

Proposition 2.5. Let 〈P,≤〉 be a finite poset. Then 〈O(P ),⊆〉 is a lattice obtained
by the embedding ϕ : P → O(P ), ϕ(x) =↓x, with ∀A1, A2 ∈ O(P ), A1∨A2 = A1∪A2

and A1 ∧A2 = A1 ∩A2.

Note that x ≤ y in P if and only if ↓x ⊆↓y in O(P ). Furthermore, O(P ) can be
obtained systematically from the ordered set in a number of cases:

Proposition 2.6. Let 〈P,≤〉 be a finite poset. Then
(1) O(P ⊕ 1) ∼= O(P )⊕ 1 and O(1⊕ P ) ∼= 1⊕O(P ).
(2) O(P1 ] P2) ∼= O(P1)×O(P2).
(3) O(P d) ∼= F(P ) ∼= O(P )d.
(4) O(n) ∼= n⊕ 1 ∼= 1⊕ n.
(5) O(n) ∼= 2n.

2.2. The condensation digraph of a matrix

A digraph (or directed graph), is a pair G = (V,E) with V a set of vertices and
E ⊆ V × V a set of arcs (directed edges), ordered pairs of vertices, such that for
every i, j ∈ V there is at most one arc (i, j) ∈ E. If (i, j) ∈ E then we say that “i
is a predecessor of j” or “j is a successor of i”, and E ∈ Mn(B) is the associated
relation of G. If there is a walk from a vertex i to a vertex j in G we say that “i
has access to j” or j is reachable from i, i j. Hence, reachability is the transitive
closure of the associated relation,  = E+ (Schmidt and Ströhlein 1993). However,
vertices j ∈ V with no incoming or outgoing arcs cannot be part of any cycle, hence
j 6 j for such nodes, so it is not reflexive, in general. ( ∩IV ) is the reflexive
restriction of  , that is, the biggest reflexive relation included in it.

If there is a walk from a vertex i to vertex j in G or viceversa we say that i
and j are connected, i  j ∨ j  i. Connectivity is the symmetric closure of the
reachability relation: its transitive, reflexive restriction is an equivalence relation on
VG whose classes are called the (dis)connected components of G. Note that each of
the (outwards) disconnected components is actually (inwards) connected. Let K ≥ 1
be the number of disconnected components of G. Then V and E are partitioned into
the subsets of vertices {Vk}Kk=1 and arcs {Ek}Kk=1 of each disconnected component⋃
k Vk = V , Vk ∩ Vl = ∅, k 6= l,

⋃
k Ek = E, Ek ∩ El = ∅, k 6= l and we may write

G = ]Kk=1Gk is a disjoint union of graphs. G is called connected itself if K = 1.
On the other hand, since reachability is transitive by construction, its symmetric,

reflexive restriction i! j ⇔ i  j ∧ j  i is a refinement of connectivity called
strong connectivity. Its equivalence classes are the strongly connected components
of G. For each disconnected component Gk, let Rk be the number of its strongly
connected components. If Rk = 1 then the k-th component is strongly connected,
otherwise just connected and composed of a number of strongly connected compo-
nents itself. G is strongly connected itself if K = R = 1.

Given a digraph G = (V,E), the reduced or condensation digraph, G = (V ,E) is
induced by the set V = V/! of strongly connected components, and C,C ′ ∈ V ,
(C,C ′) ∈ E iff there exists one arc (i, j) ∈ E for some i ∈ C, j ∈ C ′ and we
say that component C has access to C ′. Clearly, “has access to” is a reflexive,
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antisymmetric relation, so G is a directed acyclic graph (dag). We call accessibility
the transitive closure of this relation, which is clearly a partial order4. Accessibility
is the reachability relation on nodes transferred to classes and completed to an
order. For historical reasons to be made evident in Sections 3.1 and 3.2, we use the
downstream order 〈V ,4〉, where C 4 C ′ if some vertex of C has access to some
vertex of C ′. This the dual of the accessibility order.

Given a matrix over a semiring A ∈Mn(K), its associated digraph GA = (VA, EA)
can be retrieved from its weighted digraph NA = (VA, EA, wA) by retaining just the
set of nodes and arcs. Given a matrix A and its associated digraph GA = (VA, EA)
the condensation digraph of A is the partial order of strong connectivity classes
GA = (V A, EA) as above. We will rather use 〈V A,4〉 also in this case: Figures 1.(a),
2.(b) and 3.(b), are examples of such (duals of) condensation digraphs.

2.3. An inductive structure for reducible matrices

The condensation digraph of A of Section 2.2 has proven crucial to understand the
structure of the spectrum and eigenspaces of A, so we next develop a representation
for it in terms of an Upper Frobenius Normal Form (UFNF) (Brualdi and Ryser
1991), a block structure for matrices. Later, we will use it as a scheme for structural
induction over reducible matrices.

In the following, for a set of indices Vx ⊆ n we write P (Vx) for a permutation of it,
and Exy is an empty matrix of conformal dimension most of the times represented
on matrix patterns as elliptical dots.

Lemma 2.7 (Recursive Upper Frobenius Normal Form, UFNF). Let A ∈ Mn(S)
be a matrix over a semiring and GA its condensation digraph. Then,

(1) (UFNF3) If A has zero lines it can be transformed by a simultaneous row and
column permutation of VA into the following form:

P t
3 ⊗A⊗ P3 =


Eιι · · ·
· Eαα Aαβ Aαω
· · Aββ Aβω
· · · Eωω

 (5)

where either Aαβ or Aαω or both are non-zero, and either Aαω or Aβω or
both are non-zero. Furthermore, P3 is obtained concatenating permutations
for the indices of simultaneously zero columns and rows Vι, the indices of zero
columns but non-zero rows Vα, the indices of zero rows but non-zero columns
Vω and the rest Vβ as P3 = P (Vι)P (Vα)P (Vβ)P (Vω).

(2) (UFNF2) If A has no zero lines it can be transformed by a simultaneous row
and column permutation P2 = P (A1) . . . P (Ak) into block diagonal UFNF:

P t
2 ⊗A⊗ P2 =


A1 · . . . ·
· A2 . . . ·
...

...
. . .

...
· · . . . AK

 (6)

where {Ak}Kk=1,K ≥ 1 are the matrices of connected components of GA.

4Recall that it can be represented as a Hasse diagram by means of its transitive-reflexive reduction.

8



Vι

Vα

Vβ

Vω

Aαβ

Aαω

Aβω

Aββ

(a) GA for A in UFNF3

V1 V2 . . . VK

A11 A22 AKK

(b) GA for A in UFNF2

Figure 1.: Digraphs associated to some of the specialized UFNF of Lemma 2.7

(3) (UFNF1) If A is reducible with no zero lines and a single connected component
it can be simultaneously row- and column-permuted by P1 to

P t
1 ⊗A⊗ P1 =


A11 A12 · · · A1R

· A22 · · · A2R
...

...
. . .

...
· · · · · ARR

 (7)

where Arr are the matrices associated to each of its R strongly connected
components (sorted in a topological ordering), and P1 = P (A11) . . . P (ARR).

Proof. To prove claim 1, let zc(A) and zr(A) be the (possibly empty) sets of zero
columns and rows, respectively, and partition VA = Vι ∪ Vα ∪ Vβ ∪ Vω, where

(1) Vi = zc(A) ∩ zr(A) is the set of indices of zero rows and columns,
(2) Vα = zc(A) ∩ zr(A)c the set of indices of zero columns but non-zero rows,
(3) Vω = zc(A)c ∩ zr(A) the set of indices of zero rows but non-zero columns,
(4) Vβ = zc(A)c ∩ zr(A)c the set of indices on non-zero columns and rows.

Since Vι ⊆ zc(A) and Vα ⊆ zc(A), then Aιι = Eι, and Aαα = Eα; since Vω ⊆ zr(A),
then Aωω = Eω. If both Aαβ and Aαω are null, then Vα ⊆ zr(A), a contradiction.
Similarly, if both Aαω and Aβω are null, then Vω ⊆ zc(A), another contradiction.
Hence the permutation to write A in UFNF3 is P3 = P (Vι)P (Vα)P (Vβ)P (Vω).

An investigation of the associated characteristic digraphs of A—depicted in Fig-
ure 1.(a)—indicates that Vι is the set of completely disconnected, isolated nodes in
GA, Vα is the set of initial nodes of GA, Vω is the set of terminal nodes of GA,
wherefore the only cycles in A might be those in Aββ . Note that this digraph is not
a partial order, since if fails to be reflexive.

To prove claims 2 and 3, use Tarjan’s algorithm (Tarjan 1972; Mehlhorn and
Sanders 2008) to find the set of disconnected components {Ak}Kk=1 on GA. Fur-
thermore, for component Ak the algorithm also sorts topologically its Rk strongly
connected components. Let Arkrk be a block of Ak: with null non-diagonal block
row this corresponds to a terminal class of GA, and with null non-diagonal block
column to an initial class of GA. If both conditions apply, Arkrk is isolated and the
single block in connected component k, Ak = Arkrk .

Clearly, permutation P1(Ak) =
⊗Rk

rk=1 P (Arkrk) renders Ak in UFNF1 (Brualdi
and Ryser 1991). If we gather the permutations of the disconnected blocks in what-

ever order then the permutation that renders A in UFNF2 is P2 =
⊗K

k=1 P1(Ak).
The structure of the associated digraph, as shown in Figure 1.(b) is very simple.

Notice that,
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(1) Upper Frobenius Normal Forms (UFNF) are not unique since they rely on
arbitrary and/or topological sortings of the classes in GA, which might be
non-unique (Brualdi and Ryser 1991).

(2) In UFNF3, Aββ may still have zero columns if Aαβ is non-zero, and/or zero
rows when Aβω is non-zero, hence it also admits a UFNF3 . Therefore we may
iterate this normal form until the innermost embedded Aββ has no zero lines.

(3) In the UFNF1 of a single connected block, initial classes tend to congregate
in the upper left-hand corner of the submatrix while final classes tend to
congregate in the lower right-hand corner.

(4) Irreducible components are the basic recursive blocks and we do not require
a special form for them in this application. Sometimes we refer to them as in
UFNF0 .

Example 5 (UFNF forms of special matrices). (1) A = E is in UFNF3 with
Vι = n̄, Vα = Vβ = Vω = ∅. It does not admit an UFNF2 since Vβ = ∅.
In general, acyclic matrices admit a UFNF3 with Vβ = ∅ . They do not admit
an UFNF2.

(2) Block diagonal matrices with no zero lines are in UFNF3 with Vβ = n̄, Vι =
Vα = Vω = ∅, in UFNF2 with whatever K but not in UFNF1 unless n = 1.
Diagonal matrices are a special case of this with K = n.

(3) Irreducible matrices are in UFNF3 with Vβ = n̄, Vα = Vι = Vω = ∅, in UFNF2

with K = 1, in UFNF1 with R = 1 and in UFNF0.

Given the importance of the transitive closure of a matrix in the calculations
of eigenvalues and eigenvectors highlighted by Theorem 1.1, we use the inductive
structure of reducible matrices over dioids to calculate them. First we prove a simple
lemma.

Lemma 2.8. Let A,B ∈Mn(S) and let P be a permutation such that B = P tAP .
Then B+ = P tA+P and B∗ = P tA∗P .

Proof. For the first claim B2 = P tAPP tAP = P tA2P , since permutations cancel
out by pairs. This is the basic case to induce Bk = P tAkP . Hence

B+ = B ⊕B2 ⊕ . . .⊕Bk ⊕ . . .

= P tAP ⊕ P tA2P ⊕ . . .⊕ P tAkP ⊕ . . .

= P t(A⊕A2 ⊕ . . .⊕Ak ⊕ . . .)P

= P tA+P.

As I = P tIP , and A∗ = I ⊕A+, the second claim follows.

Lemma 2.9. Let A ∈ Mn(A) be a square matrix over an idempotent semiring S.
For partition n̄ = α ∪ β call Per (A) = AβαA

∗
ααAαβ ⊕Aββ. Then

(
Aαα Aαβ
Aβα Aββ

)+

=

(
A+
αα ⊕A∗ααAαβPer (A)∗AβαA

∗
αα A

∗
ααAαβPer (A)∗

Per (A)∗AβαA
∗
αα Per (A)+

)
(8)

Proof. Adapted from (Golan 1999, Ch.25, p 289)

Lemma 2.10 (Inductive structure of transitive closures). (1) If A admits a
UFNF1 and the transitive closures of its strongly connected components ex-
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ist then A+ exists, admits an UFNF1 and can be iterated from

P tA+P =

[
Aaa

+ Aaa
∗AabAbb

∗

· Abb
+

]
. (9)

(2) If A admits an UFNF2 and the transitive closures of its connected components
exist then A+ exists and admits an UFNF2,

P t
2 A

+P2 =


A+

1 · . . . ·
· A+

2 . . . ·
...

...
. . .

...
· · . . . A+

K

 . (10)

(3) If A admits an UFNF3 , Vβ 6= ∅ and the transitive closure A+
ββ exists, then

A+ exists and admits an UFNF3,

P t
3 A

+P3 =


· · · ·
· · AαβA∗ββ AαβA∗ββAβω ⊕Aαω
· · A+

ββ A∗ββAβω
· · · ·

 . (11)

Proof. Starting with claim 1, (9) stems directly from (8) whenAba = Eba. So consider
A with Rk irreducible blocks. If Rk = 1 then A+ = A+

11. If Rk = 2, apply (9) with

Va = V1 and Vb = V2. For Rk, let Va = ∪Rk−1
rk=1 Vrk and Vb = VRk and the (greatly

involved) transitive closure of (7) follows. With the same procedure as above when
further Aba = Eba and Aab = Eba we prove (10) and claim 2.

Finally, claim 3 also follows from the procedure above considering that E+
ιι = Eιι

and E∗ιι = Iι, and the same holds for Eαα and Eωω.
Notice that, if Vβ = ∅ then A has no cycles and A+ = EA and A∗ = IA. But if

Vβ 6= ∅, when Aββ has zero rows or columns we iterate the UFNF3 on it. When Aββ
has no zero rows or columns it admits an UFNF2 and the existence of a non-zero
A+
ββ and A∗ββ can be ascertained by (10).

The lemma above clarifies our notation: the higher the index of the UFNF the more
abundant in null elements is the transitive closure, from that of the irreducible
matrices—in UFNF0, transitive closures with no null elements—to matrices with
zero lines—in UFNF3, transitive closures with many zero elements.

The particular choice of UFNF is clarified by the following Lemma, since the
condensation digraph will prove important later on:

Lemma 2.11 (Scheme for structural induction over reducible matrices). Let A ∈
Mn(S) be a matrix over an entire zerosumfree semiring and GA its condensation
digraph. Then:

(1) If A is irreducible then GA ∼= 1.
(2) If A is in UFNF2 then GA =

⊎
GAk .

(3) If A is in UFNF3 then GA = GAββ .

(4) GAt = (GA)d.

Proof. It is well-known that if A is irreducible, there is a cycle between every pair
i, j of nodes in VA, hence GA is just one strongly connected component whence
claim 1. Claim 2 follows from the description of the disconnected components of GA
above. Notice from the digraph of A in UFNF3 shown in Figure 1.(a) that only the
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Aββ may have the cycles needed to define the classes in GA, whence claim 3. Finally,

since GAt has all its edges inverted, GAt = 〈V At , EAt〉 = 〈V A, E
d
A〉 = (GA)d.

Note that for A in UFNF1, GA may adopt any form as a connected ordered
set. Also, by the remarks after Lemma 2.7, even Aββ may have nodes that do not
participate in any cycle and case UFNF3 should be recurred in this component to
finally find the reflexive restriction of the reachability relation in A.

3. Results

3.1. Generic results for reducible matrices

First we recover some definitions from (Valverde-Albacete and Peláez-Moreno 2014):
call the support of a vector the set of indices of v whose coordinates are non-null,
supp(v) = {k ∈ n̄ | vk 6= ε}. We say that v has full support if all of its coordinates
are non-null, otherwise we say that it has partial support. For the case of complete
semirings, call the saturated support of an eigenvector the set of indices of v whose
coordinates are the infinite, sat-supp (v) = {k ∈ n̄ | vk = >}. The rest of the
support is the finite support, fin-supp (v) = {k ∈ n̄ | ε 6= vk 6= >}.

This distinction of supports is crucial since we call an eigenvalue proper when it
has at least one eigenvector with finite coordinates, otherwise it is improper. The
set of proper (left) eigenvalues is the proper (left) spectrum, Pp(A) = {ρ ∈ P(A) |
∃v ∈ Vρ(A) fin-supp (v) 6= ∅} , so the improper spectrum is P(A) \Pp(A).

The following lemma clarifies the order relation between eigenvectors.

Lemma 3.1. Let X be a naturally-ordered semimodule.

(1) Vectors with incomparable supports are incomparable.
(2) If X is further complete, vectors with incomparable saturated supports are

incomparable.

Proof. Let v and w be two vectors in X . Comparability of supports lies in the ⊆
relation: if supp(v) ‖ supp(w) then supp(v) 6⊆ supp(w) and supp(w) 6⊆ supp(v).
Therefore from supp(v) ∩ supp(w)c 6= ∅ we have v(supp(v) ∩ supp(w)c) 6= ⊥ and

w(supp(v)∩ supp(w)c) = ⊥, hence v 6≤ w. Similarly, from supp(w)∩ supp(v)C 6= ∅
we have w 6≤ v, therefore v ‖ w. Claim 2 is likewise argued on the support taking
the role of n, and the saturated support taking the role of the original support.

Let A ∈ Mn(S) be a matrix and 〈V A,4〉 its downstream order. Consider a
class Cr ∈ V A and call Vu = (

⋃
C′∈↓Cr C

′) \ Cr, Vd = (
⋃
C′∈↑Cr C

′) \ Cr and Vp =

VA \ (Vu ∪ Cr ∪ Vd) the sets of upstream, downstream and parallel vertices for Cr,
respectively. Due to permutation Pr = P (Vu)P (Cr)P (Vp)P (Vd) we may suppose a
blocked form of A(Cr) like the one in Figure 2 without loss of generality. Notice that
any of Vu, Vd or Vp may be empty. However, if Vu (resp. Vd) is not of null dimension,
then Aur (resp. Ard) cannot be empty.

Proposition 3.2. Let A ∈Mn(K) be a matrix over a complete commutative selec-
tive radicable semifield with C+

A 6= ∅. Then a scalar ρ > ⊥ is a proper eigenvalue

of A if and only if there is at least one class in its condensation digraph Cr ∈ GA
such that ρ = µ⊕(Arr).

Proof. For ρ 6= >, call B = Ãρ = A
�
/ ρ = A

�
⊗ ρ−1 and Bxy = Ãρxy =
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A(Cr) =


Auu Aur Aup Aud
· Arr · Ard
· · App Apd
· · · Add


(a) Blocked form of A(Cr)

Vu

Cr Vp

Vd

Aur Aup

Aud

Ard Apd

(b) Dual condensation digraph of A(Cr)

Figure 2.: Matrix A focused on Cr, A(Cr) = Pr
t ⊗ A⊗ Pr and associated digraph.

The loops at each node, weighted by (possibly empty) Auu, Arr, App, Add are not
shown.

Axy
�
⊗ ρ−1,∀x, y ∈ {u, r}. Use (9) in Lemma 2.10 to find the transitive reflexive

closure B∗ whose columns indexed by Vr are B∗·r = [(B∗uuBurB
∗
rr)

t(B∗rr)
t⊥p⊥d]

t
,

therefore

A
�
⊗


B∗uuBurB

∗
rr

B∗rr
·
·

 =


AuuB

∗
uuBurB

∗
rr �
⊕AurB∗rr

ArrB
∗
rr

·
·

 =


B∗uuBurB

∗
rr

B+
rr

·
·

 �
⊗ ρ (12)

where the last term is obtained by factorizing ÃρrrB∗rr = B+
rr and

ÃρuuB∗uuBurB
∗
rr �
⊕BurB∗rr = B+

uuBurB
∗
rr �
⊕ IuBurB∗rr = B∗uuBurB

∗
rr. This declares

as eigenvectors of A for ρ those columns of B+ correlated to those of B+
rr where

B∗rr = B+
rr. Since we are looking for partially finitely supported eigenvectors and

Arr is irreducible, from Theorem 1.3 we know this to be the case for the critical

nodes of GArr , V
c
r = {i ∈ Cr | (Ãρrr)

+

ii = e}, which select fully finite fundamental

eigenvectors of Arr for ρ, FEVρ (Arr) = {(Ãρrr)
+

·i | i ∈ V c
r }. Therefore the columns

of (Ãρ)
+

selected by V c
r are (partially) finitely supported eigenvectors of A for ρ

and ρ ∈ Pp(A).
If ρ = > and we assemble vt = [vu

t vr
t ⊥d ⊥p]t as candidate eigenvector, we

have

A
�
⊗


vu
vr
⊥d
⊥p

 =


Auu

�
⊗ vu

�
⊕Aur

�
⊗ vr

Arr
�
⊗ vr
⊥d
⊥p

 =


vu
vr
⊥d
⊥p

 �
⊗>. (13)

For v ∈ Vρ(A) surely vr ∈ Vρ(Arr). If vu ∈ V>(Auu) we must have
Auu

�
⊗ vu

�
⊕Aur

�
⊗ vr = vu

�
⊗>

�
⊕Aur

�
⊗ vr = vu

�
⊗>, what entails vu

�
⊗> ≥ Aur

�
⊗ vr,

whence vu ≥ (Aur
�
⊗ vr)

�
/> or vu ∈ V>(Au)

⋂
↑
[
(Aur

�
⊗ vr)

�
/>
]
. The assembled

vector is partially finitely supported if > ∈ Pp(Arr), whereas this is not warranted if
only > ∈ Pp(Auu) since (Aur

�
⊗ vr)

�
/> is not (even partially) finitely supported.

A warning about notation seems necessary now. fundamental eigenvectors come
in many flavors:
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(1) To emphasize that they have finite components (respectively, only saturated
components) we use FEVf(A) (respectively, FEV>(A)).

(2) For a particular ρ, to emphasize that they issue from the whole matrix we use
FEVρ (A), and if they issue from a particular UFNF form we use FEVx

ρ (A)
where x ∈ {0, 1, 2, 3}.

Lemma 3.3. Let A ∈ Mn(S) be a reducible matrix over a complete radicable
selective semifield. Then, there are no other finite eigenvectors in Vρ(A) contributed

by Ãρ than those selected by the critical circuits in Cr ∈ V A such that µ⊕(Arr) = ρ,

FEVf(A) = ∪µ⊕(Arr)=ρ
Cr∈V A

{(Ãρ)+

·i | i ∈ V
c
r }.

Proof. If ρ = µ⊕(Arr), from Proposition 3.2 we see that the finite eigenvectors

mentioned really belong in Vρ(A). If ρ > µ⊕(Arr) then (Ãρrr)
+

ii < e = (Ãρrr)
∗
ii

hence the columns selected by Cr do not generate eigenvectors. If ρ < µ⊕(Arr)

then (Ãρrr)
+

ij = > and whether those classes with cycle mean ρ are upstream or
downstream of Cr the only value that is propagated is >, hence the eigenvectors
are all saturated.

Recall from Section 2.3 that zc(A) is the set of empty columns of A.

Theorem 3.4 (Spectra of generic matrices). Let A ∈Mn(D) be a reducible matrix
over an entire zerosumfree semiring. Then,

(1) If C+
A = ∅ then P(A) = Pp(A) = {ε}.

(2) If C+
A 6= ∅ and further D is a complete selective radicable semifield,

(a) If zc(A) 6= ∅ then P(A) = K and Pp(A) = {⊥} ∪ {µ⊕(Arr) | Cr ∈ V A}.
(b) If zc(A) = ∅ then P(A) = K \ {⊥} and Pp(A) = {µ⊕(Arr) | Cr ∈ V A}.

Proof. If GA has no cycles C+
A = ∅, claim 1 follows from (Valverde-Albacete and

Peláez-Moreno 2014, Lemma 3.6,claim 2) . But if C+
A 6= ∅ then by Proposition 3.2,

Pp(A) ⊇ {µ⊕(Arr) | Cr ∈ V A} and no other non-null proper eigenvalues may exist
by Lemma 3.3. By (Valverde-Albacete and Peláez-Moreno 2014, Lemma 3.6) ⊥ is
only proper when zc(A) 6= ∅ hence claims 2a and 2b follow.

Note that since Λ(A) = P(At) this also addresses the question of left spectra
when we substitute zc(A) for zr(A), the set of empty rows.

Since only UFNF3 can have empty colums, we have the following corollary.

Corollary 3.5. Let A ∈ Mn(K) be a matrix over a complete selective radicable
semifield with C+

A 6= ∅. Then P(A) = K \ {⊥} and Pp(A) = {µ⊕(Arr) | Cr ∈ V A},
unless A is in UFNF3 and zc(A) 6= ∅ whence ⊥ ∈ Pp(A) ⊆ P(A) too.

This solves entirely the description of the spectrum: only the description of the
eigenspaces is left pending. Our aim in this respect will be to find results for other
UFNFs similar to the following corollary of Theorem 1.3 for UFNF0:

Corollary 3.6. Let A ∈ Mn(K) be an irreducible matrix over a complete com-
mutative selective radicable semifield. For ⊥ < ρ < >, FEV0

ρ (A) is join-dense in
Vρ(A).

3.2. Eigenspaces of matrices in UFNF1

If for every parallel condensation class Vp ⊆ VA in A(Cr) illustrated in Figure 2
Aup 6= Eup or Apd 6= Epd or both, then A is in UFNF1 with a single connected
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block. In this case, we can relate the order of the eigenvectors to the downstream
order. Define the support of a class supp(C) as the support of any of the non-null
eigenvectors it induces in A.

Lemma 3.7. Let A ∈ Mn(S) be a matrix in UFNF1 over a complete zerosumfree
semiring. Then, for any class Cr ∈ V A, supp(Cr) =

⋃
{Clr | Clr ∈↓Cr}.

Proof. From (12) and (13), since Arr is irreducible, if ρ = µ⊕(Arr) then for any vr ∈
Vρ(Arr) we have that supp(vr) = Vr, hence Vr ⊆ supp(Cr). Also, since S is complete

and zerosumfree (Ãρ)
+

rr exists and is full (Valverde-Albacete and Peláez-Moreno

2014, Proposition 2.7). Since (Ãρ)
+

uuÃ
ρ
ur must have a full column for any Clr ∈↓Cr

signifying precisely that Cr is downstream from Clr , the product (Ãρ)
+

uuÃ
ρ
ur(Ãρ)

+

rr
for the nodes in Clr must be non-null and Vlr ⊆ supp(Cr).

The reason to use use the downstream order is that Lemma 3.7 establishes a
bijection between downsets in 〈V A,4〉 and supports of condensation classes which
is actually an isomorphism of orders C 4 C ′ ⇔ supp(C) ⊆ supp(C ′). Now call
FEV1,>(A) = {v>r | Cr ∈ V A} the set of saturated fundamental eigenvectors of A.

Proposition 3.8. Let A ∈Mn(K) be a matrix over a commutative complete selec-
tive radicable semifield admitting an UFNF1. Then

(1) Each class Cr ∈ V A generates a distinct saturated eigenvector, v>r .

(2) FEV1,>(A) = {v>r | Cr ∈ V A} ∼= 〈V A,4〉 ∼= G
d
A.

Proof. Let v ∈ Vρ(A) where ρ = µ⊕(Arr) then by Lemma 3.7 supp(v) =↓ Cr,
hence v>r = >v ∈ Vρ(A) is the unique saturated eigenvector, since sat-supp (>v) =
supp(>v) = supp(C), and the bijection follows. This is actually an order isomor-
phism between saturated eigenvectors and the (saturated) supports of the classes
they emerge from, whence the order isomorphism in claim 2.

Notice that V At = V A but EAt = E
d
A, so FEV1,>(At) ∼= 〈V A,4d〉 ∼= GA.

For every finite ρ ∈ Pp(A) we define the witness nodes V c
ρ = {i ∈ n | (Ãρ)

+

ii =

e} by analogy with the critical nodes of the irreducible case, and FEV1,f
ρ (A) =

{(Ãρ)+

·i | i ∈ V c
ρ } the (maybe partially) finite fundamental eigenvectors of ρ. Next,

let δ−1
ρ (ρ′) = e if ρ′ = ρ and δ−1

ρ (ρ′) = > otherwise. for ρ ∈ P(A) the set of (right)
fundamental eigenvectors of A in UFNF1 for ρ as

FEV1
ρ (A) = ∪ρ′∈P(A){δ−1

ρ (ρ′)
�
⊗FEV1,f

ρ′ (A)}. (14)

Actually, this definition absorbs two cases, explained in the lemma below.

Lemma 3.9. Let A ∈ Mn(K) be a matrix over a commutative complete selective
radicable semifield admitting an UFNF1. Then,

(1) for ρ ∈ P(A) \Pp(A),

FEV1
ρ (A) = FEV1,>(A) .

(2) for ρ ∈ Pp(A), ρ 6= >,

FEV1
ρ (A) = FEV1,f

ρ (A) ∪ FEV1,>(A) \ (>
�
⊗FEV1,f

ρ (A)).
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(3) for ρ ∈ P(A), ρ 6= >,

FEV1,>(A) = >
�
⊗FEV1

ρ (A) .

Proof. If ρ ∈ P(A) \ Pp(A), then for all ρ′ ∈ K, δ−1
ρ (ρ′) = >. By Proposition

3.8 claim 1 follows as we range ρ′ ∈ Pp(A). Similarly, when ρ ∈ Pp(A), those
classes whose ρ′ 6= ρ supply a single saturated eigenvector. However, if ρ′ = ρ, then
δ−1
ρ (ρ′) = e obtains the (partially) finite fundamental eigenvectors FEV1,f

ρ (A), the
saturated eigenvectors of which cannot be considered fundamental, since they can
be obtained from FEV1,f

ρ′ (A) linearly, and will not appear in FEV1
ρ (A). Claim 3 is

a corollary of the other two.

Call V>(A) = 〈FEV1,>(A)〉K the saturated eigenspace of A .

Corollary 3.10. Let A ∈Mn(K) be a matrix over a commutative complete selective
radicable semifield admitting an UFNF1. Then,

(1) For ρ ∈ P(A), V>(A) ⊆ Vρ(A) .
(2) For ρ ∈ P(A) \Pp(A), furthermore, V>(A) = Vρ(A).

Proof. By (Valverde-Albacete and Peláez-Moreno 2014, Corollary 3.2), we have
FEV1,>(A) ⊆ Vρ(A), hence V>(A) ⊆ Vρ(A). For ρ ∈ P(A) \ Pp(A), FEV1

ρ (A) =

FEV1,>(A) by Lemma 3.9 so V>(A) = 〈FEV1
ρ (A)〉K = 〈FEV1,>(A)〉K = Vρ(A).

Hence, V>(A) provides a common “scaffolding” for every eigenspace, while the
peculiarities for proper eigenvalues are due to the finite eigenvectors. Also, since
V>(A) is a complete lattice, FEV1,>(A) ⊆ V>(A) is actually an order embedding.

Proposition 3.11. Let A ∈ Mn(K) be a matrix over a commutative complete
selective radicable semifield admitting an UFNF1. Then

(1) For ρ ∈ P(A) \Pp(A),

U>(A) = 〈FEV1,>(At)
t〉3 ∼= O(GA) V>(A) = 〈FEV1,>(A)〉3 ∼= F(GA).

(15)

(2) for all ρ ∈ Pp(A), ρ < >

Uλ(A) = 〈FEV1
λ (At)

t〉K Vρ(A) = 〈FEV1
ρ (A)〉K .

Proof. If v>r ∈ FEV1,>(A) then λv>r = λ(>v>r ) = v>r , whence V>(A) =
〈FEV1,>(A)〉3. In fact, the generation process may proceed on only a subsemir-
ing of K which need not even be complete. For instance, we may use any of the
isomorphic copies of 2 embedded in K, for instance {⊥, k} ∼= 2, with k 6= ⊥.

Since the number of saturated eigenvectors is finite, being identical to
the number of condensation classes, we only have to worry about bi-
nary joins and meets. Recall that v>r ∨ v>k = v>r �

⊕ v>k and v>r ∧ v>k =

v>r
�
⊕ v>k =

(
(v>r )−1

�
⊕(v>k )−1

)−1
. Then supp(v>r �

⊕ v>k ) = supp(v>r ) ∪ supp(v>k ) and

supp(v>r
�
⊕ v>k ) =

(
suppc

(
v>r
)
∪ suppc

(
v>k
))c

= supp(v>r ) ∩ supp(v>k ) for Cr, Ck ∈
V A and Proposition 2.5 gives V>(A) ∼= O(〈V A,4〉) ∼= F(〈V A,4d〉) ∼= F(GA).

For ρ ∈ Pp(A), FEV1
ρ (A) ⊆ Vρ(A) implies that 〈FEV1

ρ (A)〉K ⊆ Vρ(A), and
Lemma 3.3 ensures that no finite vectors are missing. And dually for left eigen-
spaces.
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This actually proves the following corollary.

Corollary 3.12. FEV1
ρ (A) is join-dense in Vρ(A).

Now, Vρ(A) is a hard-to-visualize semimodule. An eigenspace schematics is a
modified order diagram where the saturated eigenspace is represented in full but

the rays generated by finite eigenvalues {κ
�
⊗ (Ãρ)

+

·i | i ∈ V c
r , ρ = µ⊕(Arr)} are

drawn with discontinuous lines, as in the examples below.
Apart from the eigenspace schematics, we are introducing in these examples yet

another representation inspired by (15). The (left) right eigenlattices of A for (λ ∈
Λ(A)) ρ ∈ P(A),

Lλ(A) = 〈FEV1
ρ (At)

t〉3 Lρ(A) = 〈FEV1
ρ (A)〉3.

Example 6 (Spectral lattices of irreducible matrices). Since irreducible matri-
ces are in UFNF1 with a single class, FEV0

µ⊕(A) (A) = FEV1
µ⊕(A) (A). For ρ ∈

P(A) \ Pp(A) we have FEV0,>(A) = {>n}, whence 〈V A,4〉 ∼= 1 and V>(A) =
{⊥n,>n} ∼= 2 ∼= F(1). For ρ ∈ Pp(A), ρ < >, as proven in (Valverde-Albacete and
Peláez-Moreno 2014), Vρ(A) is finitely generable from FEV0

ρ (A), but the form of
the eigenspace and eigenlattice for Λp(A) = {µ⊕(A)} = Pp(A) depends on the criti-
cal cycles and the eigenvectors they induce. However, from (Valverde-Albacete and
Peláez-Moreno 2014, Example 7), if µ⊕(A) = >, then V>(A) may be non-finitely
(join-) generable from FEV0

> (A).

Example 7. Consider the matrix A ∈ Mn(Rmax,+) from (Akian, Bapat, and
Gaubert 2007, p. 25.7, example 2) in UFNF1 depicted in Figure 3.(a). The dual
condensed graph GA in Figure 3.(b) has for vertex set V A = {C1 = {1}, C2 =
{2, 3, 4}, C3 = {5, 6, 7}, C4 = {8}} , so consider the strongly connected compo-
nents GAkk = (Ck, E ∩ Ck × Ck), 1 ≤ k ≤ 4. Their maximal cycle means are
µk = µ⊕(Akk) : µ1 = 0, µ2 = 2, µ3 = 1 and µ4 = −3 , respectively, corre-
sponding to critical circuits: Cc(GA11

) = {1 	} , Cc(GA22
) = {2 → 3 → 2} ,

Cc(GA33
) = {5 	, 6 → 7 → 6} , Cc(GA44

) = {8 	} . Note that node 4 does not
generate an eigenvector in either spectrum, since it does not belong to a critical
cycle.

Therefore Λp(A3) = Pp(A3) = {2, 1, 0,−3} each left eigenspace is the span
of the set of eigenvectors chosen from distinct critical cycles for each class of

A: Uµ1
(A) = 〈(Ã3

µ1)
+

1·〉 , Uµ2
(A) = 〈(Ã3

µ2)
+

2·〉 , Uµ3
(A) = 〈(Ã3

µ3)
+

{5,6}·〉 , and

Uµ4
(A) = 〈(Ã3

µ4)
+

8·〉 –as described by the row vectors of Figure 3.(c)–and the

right eigenspaces are Vµ1
(A) = 〈(Ã3

µ1)
+

·1〉 , Vµ2
(A) = 〈(Ã3

µ2)
+

·2〉 , Vµ3
(A) =

〈(Ã3
µ3)

+

·{5,6}〉 , and Vµ4
(A) = 〈(Ã3

µ4)
+

·8〉 –as described by the column vectors of

Figure 3.(d).
The saturated eigenspace is easily represented by means of an order diagram like

that of Figure 3.(e). Note how it is embedded in that of any proper eigenvalue like ρ =
2 in Figure 3.(f). Since the representation of continuous eigenspaces is problematic,
we draw schematics of them, as in Figure 3.(f). Figure 3.(g) shows a schematic view
of the union of the eigenspaces for proper eigenvalues V(A3) = ∪ρ∈Pp(A)Vρ(A3) .

3.3. Eigenspaces of matrices in UFNF2

Let the partition of VA generating the permutation that renders A in UFNF2, block
diagonal form, be VA = {Vk}Kk=1, and write A =

⊎K
k=1Ak, Ak = A(Vk, Vk).
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A3 =



0 · 0 · 7 · · ·
· · 3 0 · · · ·
· 1 · · · · · ·
· 2 · · · · · 10
· · · · 1 0 · ·
· · · · · · 0 ·
· · · · −1 2 · 23
· · · · · · · −3


(a) A reducible matrix in UFNF1

1

3

2

4

5

6 7

8

0

0 7

3

0

1

2

10

1
0

0

−1

2

23−3

C1

C2
C3

C4

(b) Class diagram (rectangles) overlaid on Gd
A3

1
2
3
5
6
7
8



0 > > > > > > >
· 0 1 −2 · · · 6
· −1 0 −3 · · · 5
· · · · 0 −1 −2 20
· · · · −3 0 −1 21
· · · · −2 1 0 22
· · · · · · · 0


(c) Left fundamental eigenvectors

1 2 3 5 6 7 8

0 −3 −2 6 5 4 >
· 0 1 · · · >
· −1 0 · · · >
· 0 1 · · · >
· · · 0 −1 −2 >
· · · −3 0 −1 >
· · · −2 1 0 >
· · · · · · 0


(d) Right fundamental eigenvectors

⊥8

>v1

>v2 >v5

>v2 ⊕>v5

>v8 ≡ >8

(e) V>(A3)

⊥8

>v1

>v2 >v5

>v2 ⊕>v5

>v8 ≡ >8

v3

v2

(f) Schematics of V2(A3)

⊥8

>v1

>v2 >v5

>v2 ⊕>v5

>v8 ≡ >8

v1

v3

v2
v5

v6

v7

v8

(g) Schematics of V(A3)

Figure 3.: Matrix A3 (a), its associated digraph and class diagram (b), its left (c)
and right (d) fundamental eigenvectors annotated with their eigennodes to the left
and above, respectively; the eigenspace of improper eigenvectors V>(A3) in (e), a
schematic of the right eigenspace of proper eigenvalue ρ = 2, V2(A3) in (f) and the
schematics of the whole right eigenspace V(A3) in (g).

Lemma 3.13. Let A =
⊎K
k=1Ak ∈Mn(S) be a matrix in UFNF2, over a semiring,

and Vρ(Ak) (Uλ(Ak)) a right (left) eigenspace of Ak for ρ (λ). Then,

Uλ(A) ∼=
K

×
k=1

Uλ(Ak) Vρ(A) ∼=
K

×
k=1

Vρ(Ak).
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Proof. Let vk ∈ Vρ(Ak) and assemble v = [(v1)
t
. . . (vK)

t
]
t
. Then

A⊗ v =

 A1 ⊗ v1

...
AK ⊗ vK

 =

 v
1 ⊗ ρ

...
vK ⊗ ρ

 =

 v
1

...
vK

⊗ ρ = v ⊗ ρ, (16)

and dually for left eigenvectors. Likewise, for v ∈ Vρ(A) we have A ⊗ v = v ⊗ ρ
whence Ak ⊗ v(Vk) = v(Vk) ⊗ ρ, since A is block diagonal, with v(Vk) the slice of
v selected by the nodes in Vk. From this, we have v(Vk) ∈ Vρ(Ak), completing the
isomorphism.

Note that the procedure is constructive and how the combinatorial nature of the
proof makes the claim hold in any semiring. Clearly, if ρ ∈ Pp(Ak) for any k, then
ρ ∈ Pp(A). Since Pp(Ak) = Λp(Ak) we have an alternative proof to Corollary 3.5 for

matrices admitting an UFNF2, Pp(A) = Λp(A) =
⋃K
k=1 P

p(Ak).
In complete semirings, looking for generators for the eigenspaces and taking into

consideration both (14) and Lemma 2.4, with δk(k) = e and δk(i) = ⊥ for k 6= i, we
define the right fundamental eigenvectors as

FEV2
ρ (A) =

K⋃
k=1

[
K

×
i=1

δk(i)
�
⊗FEV1

ρ (Ai)

]
. (17)

Lemma 3.13 proves that FEV2
ρ (A) ⊂ Vρ(A), but we also have,

Lemma 3.14. Let A ∈Mn(D) be a matrix in UFNF2 over a complete idempotent
semiring with ρ ∈ P(A). Then,

(1) If ρ ∈ Pp(A), then FEV2,f
ρ (A) =

⋃
k|ρ∈Pp(Ak)

[
×K

i=1 δk(i) �
⊗FEV1,f

ρ (Ai)
]
.

(2) If ρ ∈ P(A) \Pp(A) then FEV2
ρ (A) = FEV2,>(A).

(3) If ρ ∈ Pp(A) then FEVρ (A) = FEV2,f
ρ (A) ∪ FEV2,>(A) \ >

�
⊗FEV2,f

ρ (A).

(4) FEV2,>(A) = >
�
⊗FEV2

ρ (A).

Proof. The tuple eigenvector ×K
i=1 δk(i) �

⊗FEV1
ρ (Ai) has ⊥ in every compo-

nent except the k-th which equals v ∈ FEV1
ρ (Ak). So for ρ ∈ Pp(Ak) then

×K
i=1 δk(i) �

⊗FEV1,f
ρ (Ai) ⊆ FEV2,f

ρ (A) whence claim 1. For ρ ∈ P(A) \ Pp(A) we

know that FEV1
ρ (Ak) = FEV1,>(Ak) = >

�
⊗FEV1

ρ (Ak), whence we prove claim 2
as,

FEV2
ρ (A) =

K⋃
k=1

[
K

×
i=1

δk(i)
�
⊗FEV1,>(Ai)

]
=

K⋃
k=1

[
K

×
i=1

δk(i)
�
⊗>

�
⊗FEV1

ρ (Ai)

]

= >
�
⊗

K⋃
k=1

[
K

×
i=1

δk(i)
�
⊗FEV1

ρ (Ai)

]
= >

�
⊗FEV2

ρ (A) .

Claim 3 follows the proof of Lemma 3.9.2, and claim 4 is a corollary of 2 and 3.

So call FEV2,>(A) the saturated fundamental eigenvectors of A, and define the
(right) saturated eigenspace as V>(A) = 〈FEV2,>(A)〉D. The next is proven along
the lines of Corollary 3.10,
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Corollary 3.15. Let A ∈ Mn(S) be a matrix in UFNF2 over a complete selective
radicable idempotent semifield. Then

(1) For ρ ∈ Pp(A), Vρ(A) ⊇ V>(A).
(2) For ρ ∈ P(A) \Pp(A), Vρ(A) = V>(A).

Notice that the very general proposition below is for all complete dioids.

Proposition 3.16. Let A ∈Mn(D) be a matrix in UFNF2 over a complete dioid.
Then,

(1) For ρ ∈ P(A) \Pp(A),

U>(A) = 〈FEV2,>(At)〉3 ∼= O(GA) V>(A) = 〈FEV2,>(A)〉3 ∼= F(GA).

(2) For ρ ∈ Pp(A), ρ < >,

Uλ(A) = 〈FEV2
ρ (At)〉D Vρ(A) = 〈FEV2

ρ (A)〉D.

Proof. That the generation process ranges over 3 follows a similar proof to that of
Proposition 3.11, claim 1. Since A =

⊎K
k=1Ak we have GA =

⊎K
k=1GAk , whence,

by the properties of the filter and ideal completions V>(A) ∼= ×K
k=1 V>(Ak) ∼=

×K
k=1F(GAk)

∼= F(
⊎K
k=1GAk)

∼= F(GA). And dually for left eigenspaces and the
order filters.

By Proposition 3.11, Vρ(Ak) is finitely generated, and Lemma 3.13 clarifies how
this is induced on Vρ(A). Looking for a set of join-dense elements, if the Vρ(Ak)
where finite lattices we know from Lemma 2.4 that the FEV2

ρ (A) defined above are
precisely the join-irreducibles obtained from the factor lattices, whence Vρ(A) =
〈FEV2

ρ (A)〉D. The other claim is proven dually.

To better represent eigenspaces, we define the spectral lattices of A,

Lλ(A) = 〈FEV2
ρ (At)

t〉3 Lρ(A) = 〈FEV2
ρ (A)〉3.

This is clearly the product of the component spectral lattices, Lρ(A) =

×K
k=1 Lρ(Ak).

Example 8. Consider matrix A4 = A2 ] A3 composed of matrices A2 in Fig-
ure 4.(a), and A3 in Figure 3.(a). By Corollary 3.5, Pp(A4) = Pp(A2)

⋃
Pp(A3) =

{>, 2, 1, 0,−3}.
For any ρ ∈ P(A4) \ Pp(A4), since V>(A2) = {⊥4,>4} and V>(A3) is as in

Figure 3.(e), then V>(A4) = V>(A2)× V>(A3) as depicted in Figure 4.(c).
When ρ ∈ Pp(A3) but ρ 6∈ Pp(A2), say ρ = 2, we get for V2(A4) a schematic such

as in Figure 4.(d). With eigenvectors such as v2 = >4 ∈ Vρ(A2) = V>(A2) and

v3 = [−2101⊥⊥⊥⊥]t ∈ Vρ(A3) we assemble v = [(v2)
t
(v3)

t
]
t ∈ Vρ(A4).

3.4. Eigenspaces of matrices in UFNF3

When there are empty columns zc(A) = Vι ∪ Vα 6= ∅ the situation is clear,

Corollary 3.17. Let A ∈Mn(S) be a matrix over an entire zerosumfree semiring
in UFNF3. Then ε ∈ P(A) and Vε(A) = 〈I· zc(A)〉S if and only if zc(A) 6= ∅.

Proof. This is a corollary of (Valverde-Albacete and Peláez-Moreno 2014, Proposi-
tion 3.7 and Lemma 3.6) for A in UFNF3.
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A2 =


· −2 > ·
· · −3 >

0.25 · · −5
−7 0.3 · ·


(a) Irreducible matrix A2

A4 =

[
A2 ·
· A3

]
(b) Reducible matrix A4

(⊥4,⊥8)

(⊥4,>v1)

(⊥4,>v2)
(⊥4,>v5)

(⊥4,>v2 ⊕>v5)

(⊥4,>v8)

(>4,⊥8)

(>4,>v1)

(>4,>v2)
(>4,>v5)

(>4,>v2 ⊕>v5)

(>4,>v8)

(c) V>(A4) ≡ Vρ(A4) for ρ ∈ P(A4)/Pp(A4)

(⊥4, v3)

(⊥4, v2)

(>4, v3)

(>4, v2)

(d) Schematics of Vρ=2(A4)

Figure 4.: Example spectral eigenspaces for matrix A4 = A2 ] A3 (eigenvector
components indexed on the factor matrices they appertain to) for an improper
eigenvalue (c) and for a proper eigenvalue (d).

Note that:
(1) Since Λ(A) = P(At), unlike for any other type of UFNF, P(A) and Λ(A) may

differ for UFNF3 due to (independently) empty rows or columns.
(2) If Vβ = ∅, the corollary describes P(A) completely, since the columns A.ω are

non-void by definition and A would then have no cycles; this means that ε
would then be the single eigenvalue of A.

(3) When the semiring is also a complete dioid D, if ρ = ⊥ ∈ Pp(A), the eigenspace
V⊥(A) = 〈I· zc(A)〉D. is a complete lattice. The eigenlattice L⊥(A) = 〈I· zc(A)〉3
is also complete, since 3 is a complete subsemiring of D.

Example 9. Consider a matrix A over any entire zerosumfree semiring in UFNF3

A =

· x x· · x
· · ·


where x 6= ε. Since it has an empty column (row) ε ∈ Pp(A) (ε ∈ Λp(A)). And since
it has no cycles GA = ∅, there are no other eigenvalues hence Λ(A) = {ε} = P(A).
When the semiring is a complete dioid, the schematics of the null eigenspaces and
its eigenlattice are isomorphic to those in Figures 5.(b) and 5.(c).

Proposition 3.18. Let A ∈ Mn(D) be a matrix over a commutative dioid in
UFNF3 with GA 6= ∅. Then:

(1) P(A) contains all finite eigenvalues of Aββ, P(A) ⊇ P(Aββ) \ {ε}.
(2) Further, if S is a semifield, then every eigenvector of Aββ for ρ can be uniquely

extended to an eigenvector of A for ρ.
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(3) Further, if S is a complete (as a dioid) semifield,
(a) Pp(A) contains all proper finite eigenvalues of Aββ, Pp(A) ⊇ Pp(Aββ) \
{⊥}.

(b) Every vβ ∈ V>(Aββ) can be uniquely extended to an eigenvector of A for
>.

(c) for ρ ∈ P(A) \ {⊥}, Vρ(A) ∼= Vρ(Aββ).

Proof. If ⊥ ∈ P(Aββ) this means there are zero columns zc(Aββ) = m and {ej | j ∈
zc(Aββ)} ⊆ Vε(Aβ). But if this is the case, since the j-th column of Aαβ cannot be
empty—or else j actually belongs in zc(A) not in zc(Aββ)—then A·j 6= εn and ej
cannot be an eigenvector of A for ε.

Since any null eigenvalue of P(Aββ) is blocked from appearing in P(A) and GA =

GAββ , we assume Vβ 6= ∅, ⊥ 6∈ P(Aββ) and we will suppose that Aββ is in UFNF2.
If ρ−1 exists when S is a semifield, by (Valverde-Albacete and Peláez-Moreno

2014, Lemma 3.14) we can reduce the problem of finding its eigenspace to that of
finding the eigenspace for e in B = Ãρ. Therefore we work out B∗ and B+ and
compare them. Since A is in UFNF3 its closures are given by Lemma 2.10, claim 3.
Comparing them as demanded by Theorem 1.1,


Iι · · ·
· Iα BαβB∗ββ BαβB∗ββBβω ⊕Bαω
· · B∗ββ B∗ββBβω
· · · Iω

 =


· · · ·
· · BαβB∗ββ BαβB∗ββBβω ⊕Bαω
· · B+

ββ B∗ββBβω
· · · ·

 .
Clearly, no eigenvector for ρ 6= ε can be obtained from columns in Vι ∪ Vα ∪ Vω. If
ρ ∈ P(Aββ) and vβ ∈ Vρ(Aββ) we may write,

B ⊗


·

Bαβ ⊗ vβ
vβ

·

 =


·

Bαβ ⊗ vβ
vβ

·

⇔ A⊗


·

Ãραβ ⊗ v
β

vβ

·

 =


·

Ãραβ ⊗ v
β

vβ

·

⊗ ρ (18)

so vt = [⊥Vι
(
(Aαβ ⊗ vβ)⊗ ρ−1

)t
(vβ)

t ⊥Vω ]
t ∈ Vρ(A), proving claims 1 and 2.

For 3a and 3b, if ρ = > in a complete idempotent semifield we have that

(Aαβ
�
⊗ vβ)

�
/> = (Aαβ

�
⊗ vβ)

�
⊗⊥ is saturated wherever Aαβ

�
⊗ vβ is and null oth-

erwise, hence (Aαβ
�
⊗ vβ)

�
/> = ((Aαβ

�
⊗ vβ)

�
/>)

�
⊗>. Therefore, the reasoning in

the paragraph above applies to

[⊥Vι
(

(Aαβ
�
⊗ vβ)

�
/>
)t

(vβ)
t ⊥Vω ]

t

∈ V>(A). (19)

For the final claim, the bijection between the spaces is proven above: now consider

two fundamental eigenvectors vβ1 , v
β
2 ∈ Vρ(Aββ) in whatever relation (equality, com-

parable, incomparable). From (18) and (19), their extensions to the eigenspace of
A, v1, v2 ∈ Vρ(A) stand in the same relation. The order isomorphism is proven.

Note that if Aαβ = ⊥ any eigenvector vβ ∈ Vρ(Aββ) can be extended to v ∈ Vρ(A)
by padding it with nulls. From (18), it seems natural to define for A in UFNF3 and
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A5 =

[
· 1
... A4

]

(a) Matrix A5

⊥n

k e1

>e1

(b) Schematics of V⊥(A5)

⊥n

e1

>e1

(c) Lρ=⊥(A5)

Figure 5.: A matrix with zero columns but no zero rows and some of its spectral
eigenspaces: matrix A5 (a), the schematics of its null eigenspace V⊥(A5) (b), and
the spectral lattice of the null eigenspace L⊥(A5) (c). The other eigenspaces are
isomorphic to those of A4 in Ex. 8.

ρ 6= ⊥ ∈ P(A),

FEV3
⊥ (A) = {I·i | i ∈ zc(A)} (20)

FEV3
ρ (A) =

[⊥Vι
(

(Aαβ
�
⊗ vβ))

�
/ ρ
)t

(vβ)
t ⊥Vω ]

t

if zc(Aββ) = ∅, vβ ∈ FEV2
ρ (Aββ)

[⊥Vι
(

(Aαβ
�
⊗ vβ))

�
/ ρ
)t

(vβ)
t ⊥Vω ]

t

if zc(Aββ) 6= ∅, vβ ∈ FEV3
ρ (Aββ)

(21)

These definitions boil down to a Aββ either in UFNF2, as in Example 10, or as an
empty matrix, as in Example 9. By the isomorphism, the finitely and saturatedly
supported set of fundamental eigenvectors can also be defined for ρ ∈ P(A) \ {⊥}
and the properties in Lemma 3.14 and Corollary 3.15 also hold, hence

Proposition 3.19. Let A ∈ Mn(K) be a matrix over a complete commutative
idempotent semifield in UFNF3. Then:

(1) For ρ ∈ P(A) \Pp(A),

Uλ(A) = 〈FEV3,>(At)
t〉3 ∼= O(GA) Vρ(A) = 〈FEV3,>(A)〉3 ∼= F(GA).

(2) For ρ ∈ Pp(A) \ {⊥},

Uλ(A) = 〈FEV3
ρ (At)

t〉K Vρ(A) = 〈FEV3
ρ (A)〉K.

Proof. From Proposition 3.18, claim 3 as a whole, the generators for Vρ(Aββ) can
be extended uniquely to generators of Vρ(A), hence the claims about generation
follow. Since GA ∼= GAββ , we have V>(A) ∼= V>(Aββ) ∼= F(GAββ) ∼= F(GA).

Define the spectral lattices as usual in the following example.

Example 10. Retaking A4 from Example 8, let A5 be as in Figure 5.(a) with V 5
α =

{1}, V 5
ι = V 5

ω = ∅, V 5
β = {2−13} , and V 5

αβ = 0 is a conformant matrix with those

values. We see that since Pp(A5) ⊇ Pp(A4) , and A5 has zero columns, zc(A5) =
{1}, Pp(A5) = {>, 2, 1, 0,−3,⊥} . Yet, as zr(A5) = ∅, Λp(A5) = {>, 2, 1, 0,−3} .
Therefore P(A) = Rmax,+ but Λ(A) = Rmax,+\{⊥}, whence we have a schematics of
V⊥(A5) = 〈I·1〉Rmax,+

as in Figure 5.(b), V⊥(A5) = Lρ=⊥(A5) ∼= 3 as in Figure 5.(c)

but U⊥(A5) = Lλ=⊥(A5) = {⊥n} ∼= 1 .
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A6 =

· · · · ·· · 1
...
... A5


(a) A matrix with zero columns and rows

⊥n

k1e1

>e1

k2e2

>e2
k1e1

�
⊕ k2e2

>(e1
�
⊕ e2)

(b) V⊥(A6)

⊥n

e1

>e1

e2

>e2
e1

�
⊕ e2

>(e1
�
⊕ e2)

(c) Lρ=⊥(A6)

Figure 6.: A matrix with zero columns and rows and some of its spectral eigenspaces:
matrix A6 (a), the schematics of its null eigenspace V⊥(A6) (b), and the spectral
lattice of the null eigenspace L⊥(A6) (c). The other eigenspaces are isomorphic to
those of A4 in Ex. 8 via A5.

For any non-null ρ ∈ P(A5) the eigenspace is a copy of that of A4, Vρ(A5) ∼=
Vρ(A4), and likewise for the left eigenspaces. For instance, for ρ = 2 from Ex. 8

we have v4 = [(v2)
t

(v3)
t
]
t ∈ Vρ(A4) . Then, by (19), its isomorphic image in

Vρ(A5) is v5 = [(0
�
⊗ v4)

t
(v4)

t
]
t
.

Furthermore, let A6 be as in Figure 6.(a) with V 6
ι = {1}, V 6

α = {1}, V 6
ω = ∅,

V 6
β = {3−15} , and V 6

αβ = 1 are conformant matrices with those values. We see that

zc(A6) = {1, 2} but zr(A6) = {1} . Analogously, Pp(A6) ⊇ Pp(A5)/{⊥} , but since
A6 has empty columns and rows, we have that Λp(A6) = {>, 2, 1, 0,−3,⊥} = Pp(A6)
and Λ(A) = Rmax,+ = P(A) .

The isomorphism for matrix A5 proceeds onto the eigenspaces of A6 whence

Vρ(A6), that is v6 = [⊥ (1
�
⊗ v5)

t
(v5)

t
]
t

. However, for A6 we have U⊥(A6)

isomorphic to V⊥(A5) in Figure 5.(b), and Lλ=⊥(A6) ∼= 3 isomorphic to Lρ=⊥(A5)
in Figure 5.(c), yet V⊥(A6) = 〈{e1, e2}〉Rmax,+

and Lρ=⊥(A6) = 〈{e1, e2}〉3 as in

Figures. 6.(b) and 6.(c).

3.5. Final results

We now undertake an overarching formulation of our results. We concentrate on
right eigenspaces: left eigenspaces admit dual proofs. Without loss of generality, we
suppose A in an UFNF, and use structural induction on the particular form as a
general technique to prove Theorem 3.20, as also illustrated in Proposition 2.6 and
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Lemma 2.11. The crux of it is the definition of the fundamental eigenvectors,

FEVρ (A) =


FEV1

ρ (A) as in (14), if A in UFNF1 or UFNF0

FEV2
ρ (A) as in (17), if A in UFNF2

FEV3
ρ (A) as in (21), if A in UFNF3

(22)

Theorem 3.20 (Eigenspaces of generic matrices). Let A ∈ Mn(K) be a matrix
over a complete commutative radicable selective semifield. Then,

(1) For any improper eigenvalue, ρ ∈ P(A) \Pp(A),

Uλ(A) = 〈FEVλ (At)t〉3 ∼= O(GA) Vρ(A) = 〈FEVρ (A)〉3 ∼= F(GA). (23)

(2) For proper finite eigenvalues, ⊥ < ρ < > ∈ Pp(A),

Uλ(A) = 〈FEVλ (At)t〉K Vρ(A) = 〈FEVρ (A)〉K. (24)

Proof. (1) If A is in UFNF0, Example 6 provide the definitions and proofs needed
for (24) and (23).

(2) If A is in UFNF1 then Proposition 3.11 proves the theorem.
(3) If A is in UFNF2, this is Proposition 3.16
(4) If A is in UFNF3 this is Proposition 3.19.

This proves the desired corollary:

Corollary 3.21. Let A ∈Mn(K) be a matrix over a complete commutative selective
radicable semifield. For ⊥ < ρ < > ∈ Pp(A), FEVρ (A) is join-dense in Vρ(A).

We took special notice of the lattices arising from these cases and their properties–
specially F(GA) and O(GA) the lattices of order filters and ideals, respectively, of
the condensation digraph of A using examples to illustrate them.

Since the eigenspaces of proper eigenvalues, albeit complete lattices, are continu-
ous, we defined more easily representable finite sublattices that show the principal
order structures in the eigenspaces, our hypothesis being that these will prove ef-
fective in data mining tasks.

Proposition 3.22 (Eigenlattices of generic matrices). Let A ∈Mn(K) be a matrix
over a complete commutative radicable selective semifield. The eigenlattices

Lλ(A) = 〈FEVλ (At)t〉3 Lρ(A) = 〈FEVρ (A)〉3,

are complete finite sublattices of the eigenspaces.

Proof. When ρ ∈ P(A) \ Pp(A), Lρ(A) = Vρ(A) = V>(A). When ρ ∈ Pp(A), by
Proposition 1.2 Lρ(A) is a subsemimodule of Vρ(A). But since both the generator
set FEVρ (A) and the semiring guiding the generation 3 are finite, the span is finite.
Since it is a complete idempotent semifield, the lattice is complete.

4. Conclusions and discussion

This paper completes the course set out in (Valverde-Albacete and Peláez-Moreno
2014), to characterize the spectrum of matrices with entries in completed idempo-
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tent semifields, as opposed to the best-known theory for matrices over incomplete
idempotent semifields.

To the extent of our knowledge, this was pioneered in (Jun, Yan, and zhi Yong
2005) and both (Valverde-Albacete and Peláez-Moreno 2014) and this paper can
be understood as systematic explorations to try and understand what was stated
in there. For this purpose, the consideration of particular UFNF forms for the
matrices has been crucial: while the description in (Jun, Yan, and zhi Yong 2005)
is combinatorial, ours is constructive (see Theorem 3.20).

It is now clear that the spectral theory for incomplete idempotent semifields,
as summarized for instance in (Bapat 1998; Butkovič, Cunninghame-Green, and
Gaubert 2009), presents important differences with the new theory here. These
stem fundamentally from the appearance of the top-eigenvalue either in trivial or in
proper form, the possible incidence of saturated supports and the (complete) order
properties of eigensemimodules.

The usual notion of spectrum as the set of eigenvectors with more than one (non-
null) eigenvector appears in this context as too weak: when a matrix has at least one
cycle then all the values in the semifield (except, possibly, the bottom ⊥) belong to
the spectrum. If the matrix has at least one empty column (resp. empty row) and
a cycle then all of the semifield is the spectrum. Rather than redefine the notion of
spectrum we have decided to introduce the proper spectrum as the set of eigenvalues
with at least one vector with finite support.

For incomplete idempotent semifields both notions of spectrum coincide, a re-
flection of the fact that, in general, matrices over incomplete idempotent semifields
admit less eigenvalues. The reason for this is easily seen in what follows: recall the
condensation digraph of a matrix, GA. An initial component C ∈ V A of this rela-
tion is not accessed by any other, except itself, ↓C = {C}; a component is final if
it has only access to itself, ↑C = {C}; it is isolated if it is both initial and final,
which means the class is just one strongly connected component.

Note that saturated supports will be generated for dominated classes in reducible
matrices, as stated by Lemma 3.7, claim 3. Furthermore, a class Cr ∈ V A is dom-
inated if its maximal cycle mean is smaller than that of any of the classes in its
order ideal: ∃Clr ∈↓Cr, µ(Alrlr) > µ(Arr) , and we say that Clr is dominating.

Proposition 4.1. In the conditions of Proposition 3.2 with K an incomplete idem-
potent semifield, Cr is spectral if and only if it is not dominated.

Although “missing” the eigenvalues from the dominated classes, P(A) for A ∈
Mn(K) with K incomplete is never empty as some classes are never dominated: Call
a class Cr ∈ V A basic if its maximal cycle mean is that of the matrix µ⊕(Arr) =
µ⊕(A) .

Corollary 4.2. In the conditions of Proposition 3.2, with K an incomplete idem-
potent semifields, basic and initial classes are always spectral.

The situation in complete semifields is much more regular, since (Ãρ)
+

always
exists.

Lemma 4.3. Let A ∈ Mn(S) be a matrix over a complete radicable semiring. If
Clr is dominating for any class Cr ∈ V A, then Vlr ⊆ sat-supp (Cr) .

Consequently, the top element in the semifield may be an eigenvalue and part of
the eigenvectors, which extends spectra and eigenspaces enormously, as proven in
this paper.

We next show an example of the differences between spectra in Rmax,+ and in
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Rmax,+ .

Example 11. Compare the following results to those of Ex. 7. Consider matrix A3

from Figure 3, whose right spectrum is P(A)Rmax,+
= {2, 1, 0}, since C4 is domi-

nated by C2 and C3 . Then the right eigenspace for each class of A is Vµ1
(A11) =

〈(Ã11)
+

·1〉Rmax,+
, Vµ2

(A22) = 〈(Ã22)
+

·2〉Rmax,+
, and Vµ3

(A33) = 〈(Ã33)
+

·{5,6}〉Rmax,+
, as

described by the column vectors with no > components of Figure 3.(d).
Likewise, the left spectrum (being the right spectrum of At) is Λ(A)Rmax,+

=
{2, 1,−3}, since C1 is dominated by C2 and C3—a coincidence brought about by
a certain symmetry of this condensation digraph GA—and the left eigenspaces

are Uµ2
(A22) = 〈(Ã22)

+

2·〉Rmax,+
, Uµ3

(A33) = 〈(Ã33)
+

{5,6}·〉Rmax,+
, and Uµ4

(A44) =

〈(Ã44)
+

8·〉Rmax,+
, as described by the finite row vectors of Figure 3.(c).

Our choice of definition for eigenvalues, on the other hand, results in almost
identical left and right spectra. Indeed, any discrepancy between left and right
spectra may only reside in the presence of the bottom eigenvalue, exclusively entailed
by empty columns (resp. emtpy rows) in right (left) spectra, as collected in Theorem
3.4.

Regarding the eigenspaces, we found not only that they are complete continuous
lattices for proper eigenvalues, but also that they are finite (complete) lattices for
improper eigenvalues. Looking for a device to represent the information within each
proper eigenspace we focus on the fundamental eigenvectors of an irreducible matrix
for each eigenvalue: those with unit values in certain of their coordinates. The span
of those eigenvectors by the action of the 3-blog generates the finite eigenlattices.
Interestingly, since improper eigenvectors only have non-finite coordinates, their
span by the 3-blog is exactly the same finite lattice as their span by the whole
semifield itself.

With these building blocks it is easy to build finite lattices for reducible matrices
of any UFNF description, as proven above. We believe this is a useful technique
to understand and visualize the concept lattices of formal contexts with entries in
an idempotent semifield (Valverde-Albacete and Peláez-Moreno 2008, 2011) which
generalizes Formal Concept Analysis (Ganter and Wille 1999).

The only discrepant note in this, otherwise regular, structure is the top eigenvalue
and its eigenspaces, for which we have presented an example that shows that the
consideration of the fundamental eigenvectors does not provide a set of join-dense el-
ements. Even more surprising fact is that the fundamental eigenvectors as described
in (Valverde-Albacete and Peláez-Moreno 2014, Example 7) seem to supply a set
of meet-irreducibles of V>(A). This is, of course, related to the issue that the meet
is not join-linear nor viceversa. One can still choose fundamental eigenvectors and
generate discrete–diamond–lattices therefrom but it is doubtful that they represent
the eigenspace faithfully. This is a matter to be further looked into.
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