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a b s t r a c t

We propose a new approach to avoid the inherent ill condition in the computation of RBF FD weights,
which is due to the fact that the RBF interpolation matrix is nearly singular. The new approach is based
on the semi analytical computation of the Laurent series of the inverse of the RBF interpolation matrix.
Once the Laurent series is obtained, it can be used to compute the RBF FD weights of any differential
operator exactly without extra cost. The proposed method also provides analytical formulas for the RBF
FD weights in terms of the parameters involved in the problem. These formulas can be used to derive the
exact dependence of the truncation error in the approximation of any differential operator of a given
function. Furthermore, from the analysis presented here one can derive the values of the parameters
involved in the problem for which the RBF interpolation matrix becomes ill conditioned and, hence, for
which the weights cannot be obtained numerically.

1. Introduction

The radial basis functions finite difference method (RBF FD) is
essentially a generalization of the classical finite difference (FD)
method to scattered node layouts [24 26]. In its most general form,
the FDmethod consists of approximating a derivative of a function at a
given point, based on a weighted linear combination of the value of
the function at some surrounding nodes. However, if one allows the
nodes of the stencil to be placed freely, so that a good discretization of
the physical domain is obtained, then the problem of computing the
weights of scattered FD formulas is not well defined [23]. For instance,
what mixed terms should be included in the multivariate polynomial
interpolant to the nodes is not defined [27]. This and other ambiguities
are resolved if RBF interpolation is used to generate the weights in the
FD formula instead.

In fact, the weights of scattered FD formulas can be obtained as the
RBF FD weights in the limit of increasingly flat basis functions. As a
result, this limit has been thoroughly studied by many researchers
during the last few years. In the case of RBF interpolation, Fornberg
et al. [7,10] showed that if a limiting interpolant exists, it must be a
(multivariate) polynomial. From this result they concluded that RBF's
can be a tool for generalizing, to irregular grids and domains, the classical
spectral methods. The existence of a limiting interpolant implies that
the underlying interpolation problem is well behaved, even though the
RBF interpolation matrix might be severely ill conditioned. It should
be pointed out, however, that in certain exceptional situations (5�5

cartesian node layout, for instance) the interpolant diverges in this
limit [7,10].

In the case of RBF FD methods, since the RBF interpolants
usually converge to polynomial interpolants in the limit of
increasingly flat radial basis functions, all classical 1 D and many
higher dimensional FD formulas can be recovered as limiting cases
of the corresponding RBF FD formulas [7,19,22,27]. However,
trying to compute the FD weights using RBF interpolation is made
difficult by the fact that the interpolation matrix becomes ill
conditioned in the flat basis limit. Thus, the underlying problem is
well posed (the weights of the RBF FD formula are well defined
numbers) but the most straightforward computational procedure
(RBF direct) is ill conditioned.

The flatness of the radial basis functions is controlled by a shape
parameter ϵ. Flatness increases as ϵ decreases and, at the same time,
the accuracy of the RBF FD formulas usually increases. In fact, as ϵ goes
to zero, the accuracy approaches a constant corresponding to the
accuracy of standard finite differences. Thus, the values of ϵ where
accuracy is high often lie in the region of ill conditioning. As a result, a
great amount of work has been devoted to develop numerical
algorithms to avoid ill conditioning of the RBF method in the limit
ϵ-0. The first successful approach [11] was based in considering the
parameter ϵ as a complex number, and evaluating the interpolant
using a Contour Padé algorithm. This approach is also used in the RBF
RA method [15]. The main limitation of this method is that it is only
applicable to relatively small node sets. A different approach was later
proposed in [13,14]. It is based on changing the basis to one that is
better suited for numerics, while staying in the same approximation
space. The QR decomposition forms an integral part in this change of
basis, hence the name of the method (RBF QR). It has been used to
compute the weights of RBF FD stencils [20] and to compute RBF FD
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approximations to the Poisson's equation [6]. A somewhat similar
alternative (RBF GA) was recently proposed in [15]. It is also based on
a change of basis, but requires no truncation of infinite sums.
A drawback of this method is that it is limited to Gaussian RBFs. The
low computational cost (compared to RBF QR) and simple implemen
tation makes it a useful alternative for computing RBF FD stencils,
though. Other attempts to circumvent the problem of ill conditioning
have been based on using extended precision arithmetic [17], or using
truncated singular value decomposition [8,21].

The ill conditioning in the computation of the RBF FD weights is
due to the fact that the RBF interpolation matrix becomes singular
when ϵ¼ 0. The objective of this paper is to propose a novel technique
to avoid the ill conditioning of the problem. This technique is based on
the analytical computation of the Laurent series of the inverse of the
RBF interpolation matrix. The Laurent series is an infinite sum of
matrices multiplied by powers of the parameter δ¼ ðϵhÞ2, where h is
a characteristic inter nodal distance. The matrix coefficients in this
series are computed using a recursive algorithm based on the
analytical method proposed by Avrachenkov and Lasserre for comput
ing inverses of nearly singular matrices [2]. The algorithm is imple
mented in Matlab using floating point arithmetic. The details of the
implementation are described in [16]. Our method is semi analytical
because the Laurent series is derived from analytical formulas, but the
implementation described in [16] involves a quite significant amount
of numerical computations. Once the Laurent series of the inverse of
the RBF interpolation matrix has been obtained (as function of δ), it is
straightforward to compute the RBF FD weights for any differential
operator by just multiplying term by term the Laurent series by the
Taylor series of the differential operator. Hence, with this method, the
problem of ill conditioning in the computation of the RBF FD weights
is completely eliminated.

The recursive algorithm described in [16] is an efficient algo
rithm compared to the computation of the inverse of a matrix
using a symbolic language such as Mathematica. However, the
approach proposed here to compute the RBF weights is not
competitive with other existing algorithms (Contour Padé,RBF
QR, RBF RA, RBF GA methods,…). If one is interested in the
weights of RBF FD formulas for a particular value of δ, these
algorithms are more efficient and can handle larger node layouts.

Our semi analytical approach offers other advantages. For
instance, a very relevant and useful byproduct of the algorithm
is the order of the singularity of the inverse (the exponent of the
leading order of the Laurent series). In this way, it is possible to
predict exactly how the condition number of the inverse
approaches infinity as δ approaches zero. We finally stress that
this approach leads to analytical formulas for the weights in terms
of h and ϵ that can be used to derive exact formulas for the local
truncation error in terms of h, ϵ, and the value of the function and
its derivatives at the node. These formulas can then be used to
derive an optimal value of the shape parameter following the
approach described in [3 5].

The paper is organized as follows. In Section 2 we describe the
RBF FD method to approximate differential operators. In Section 3
we describe how the Laurent series of the inverse can be used to
accurately compute the weights of RBF FD formulas. In Section 4
we present results in 2D and 3D using both equispaced and non
equispaced nodes and we discuss how the Laurent series of the
inverse can be used to compute the optimal value of the shape
parameter. Finally, Section 5 contains the main conclusions.

2. RBF-FD formulation

Consider a stencil consisting of n scattered nodes x1;…; xn, and
a differential operator L. For a given node, say x1, the objective is
to approximate Luðx1Þ as a linear combination of the values of u at

the n scattered nodes, so that

Luðx1Þ � ∑
n

i 1
αiuðxiÞ: ð1Þ

To determine the weighting coefficients αi, a set of base functions
ϕiðxÞ, i¼ 1;…;n, are required. In that base,

Lϕjðx1Þ ¼ ∑
n

i 1
αiϕjðxiÞ; j¼ 1;2;…;n: ð2Þ

This is a system of n linear equations with n unknowns whose
solution yields the weighting coefficients αi. The coefficients αi

depend on the distances from x1 to the other nodes in the stencil,
and on the shape parameter ϵ that controls the flatness of the base
functions. In matrix form, Eqs. (2) can be written as

Aα¼ f; ð3Þ
where the matrix A is the local RBF interpolation matrix whose
elements are

Ai;j ¼ϕjðxiÞ: ð4Þ

The elements of the vector f in (3) are the result of applying the
differential operator L to the RBF basis functions, so that

f j ¼Lϕjðx1Þ:

In the following, we will use the multiquadrics

ϕiðxÞ ¼ 1þϵ2 Jx xi J22
q

as RBFs. Note that as ϵ decreases the multiquadrics becomes
increasingly flat.

For multiquadrics, the elements of the matrix A can be written
in terms of a characteristic inter nodal distance, h, as

Ai;j ¼ 1þðϵhÞ2 Jxi xj J2
h

� �2
s

:

Thus, for a given stencil, the matrix A depends on the locations of
the nodes in the stencil and on the parameter δ¼ ðϵhÞ2. Note that
the matrix A is singular for ϵ¼ 0.

3. RBF-FD weights

To compute the RBF FD weights one has to solve the linear
system (3). This system can be solved numerically, in general.
However, if the shape parameter is small the system becomes ill
conditioned and the errors in the numerical solution are very
large. To overcome this problem we propose a new method which
is based on the solution of (3) using the Laurent series of the
inverse of the interpolation matrix A.

Let us assume that the locations of the nodes are given. Then,
the RBF interpolation matrix depends only on the parameter
δ¼ ðϵhÞ2. Consider the Taylor series expansion

AðδÞ ¼ ∑
1

k 0
δkAk ð5Þ

of the RBF interpolation matrix. For δ¼ 0, the matrix Aðδ¼ 0Þ ¼ A0

is singular (all its elements are equal to one). However, it is not
singular for δ40. We seek to compute the Laurent series of the
inverse of the RBF FD matrix AðδÞ for δ40. Thus, we have to
compute the matrix coefficients Hk in

A�1ðδÞ ¼ ∑
1

k �p
δkHk; ð6Þ

where p is the order of the singularity of the inverse. In the
following, we use the algorithm described in [16] to compute the
matrices Hk in terms of the matrices Ak in (5).
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Let us start by the simplest example of an equispaced, three
node stencil (½x1 h; x1; x1þh�) to approximate the first and second
order derivatives in 1D. In this case, the matrix AðδÞ and the first
terms of its Taylor series are given by,

AðδÞ ¼
1 1þδ

p
1þ4δ

p

1þδ
p

1 1þδ
p

1þ4δ
p

1þδ
p

1

2
64

3
75�

1 1 1
1 1 1
1 1 1

2
64

3
75

þδ
0 1=2 2

1=2 0 1=2
2 1=2 0

2
64

3
75þδ2

0 1=8 2
1=8 0 1=8
2 1=8 0

2
64

3
75þ⋯

ð7Þ
Clearly, to leading order (δ¼ 0) the matrix A is singular. The first
few terms of the Laurent series of A�1ðδÞ are

A�1ðδÞ � 1

δ2

1=4 1=2 1=4
1=2 1 1=2
1=4 1=2 1=4

2
64

3
75þ1

δ

3=4 5=4 1=4
5=4 3 5=4
1=4 5=4 3=4

2
64

3
75

þ
0 1=16 1=2
1=16 0 1=16
1=2 1=16 0

2
64

3
75þ⋯ ð8Þ

Notice that the order of the singularity is p¼2 and, therefore, as
δ-0 the inverse approaches infinity as δ�2 ¼ ðϵhÞ�4. In (8), only
the matrices Hk with kr0 are given.

The Laurent series (6) can also be derived using symbolic
languages such as Mathematica or Maple. However, the computa
tional complexity is much larger if one uses symbolic computation
[1]. In fact, we have not been able to calculate the Laurent series of
the perturbed matrix for stencils larger than 13 nodes in a
reasonable time. These limitations disappear if the Laurent series
is computed with the algorithm described in [16], which compu
tational complexity grows algebraically with the number of nodes
(pn3), but exponentially with the order of the singularity. In fact,
the computational complexity of the proposed algorithm is
Oð2n3BÞ, where

B¼ 2 ∑
2p�1

j 1
∑
jþ1

i 1

j!ð2i 1Þ!
ðj iþ1Þ!ðði 1Þ!Þ3

!

and p is the order of the singularity. If we plug the numbers in the
formula, the numerical complexity grows as

p¼ 1 : B¼ 14
p¼ 2 : B¼ 598
p¼ 3 : B¼ 18694
p¼ 4 : B¼ 544254
p¼ 5 : B¼ 15287758
p¼ 6 : B¼ 420038854
p¼ 7 : B¼ 11368586038
p¼ 8 : B¼ 304362660958

Using the proposed method, the Laurent series can be computed in
seconds for singularities up to order five, which corresponds to fairly
large stencils in 2D, and even larger in 3D. For instance, the computa
tional time on an Intel Core i7 950 @3.07 GHz processor, for 9, 11 and
13 equispaced nodes in 2D are 5.7, 5.9 and 7.5 s respectively. With a
symbolic language (Mathematica) the corresponding times are 4.8,
38.5 and 29134 s respectively. For stencils with more than 13 nodes it
is not possible to obtain the solution. Timing results for other
techniques to avoid ill conditioning can be found in Fig. 8 of Ref. [15].

Once the inverse of the RBF FD matrix is known, the weights of
the RBF FD formula are given by α¼ A�1; f. The components of
the vector f are the result of applying the differential operator to
each of the RBF basis functions, and evaluating the resulting

functions at x1. Vector f can also approximated by its Taylor series

f ¼ ∑
1

k q
δkfk;

where q is the order of the leading term in the expansion of f. For
instance, in the case of the RBF FD formula to approximate the
first derivative,

f ¼ δ
h

ð1þδÞ�1=2

0
ð1þδÞ�1=2

2
64

3
75� δ

h

1
0
1

2
64

3
75þδ2

h

1=2
0

1=2

2
64

3
75þδ3

h

3=8
0
3=8

2
64

3
75þ⋯

ð9Þ

and, therefore, q¼1. Multiplying this series by the Laurent series
for A�1ðδÞ (8) we obtain the RBF FD weights

α¼ A�1f ¼ 1
h

1=2
0

1=2

2
64

3
75þδ

h

1=4
0

1=4

2
64

3
75þδ2

h

9=16
0
9=16

2
64

3
75þ⋯ ð10Þ

which are equal to those computed in [3]. The leading order
approximation to the RBF FD weights are the standard finite
difference weights. Notice that H�2f1 ¼H�2f2 ¼ 0. Thus, the lead
ing order approximation is given by H�1f1 The order δ correction to
the weights in (10) is computed from H�2f3þH�1f2þH0f1, and
the order δ2 correction from H�2f4þH�1f3þH0f2þH1f1. Thus, to
compute the weights to order δ2 it is necessary to compute the
Laurent series for A�1ðδÞ up to order one only, and the Taylor series
for f up to order four.

Fig. 1 shows the error in the approximation of the first
derivative of function uðxÞ ¼ expð x2Þ (black) with the RBF FD
formula for three nodes. There is a very good agreement between
the error using the RBF FD weights computed by direct numerical
solution of the linear system (3) (solid line) and the error using the
Taylor series for the weights (10) (dashed line). Notice that for
small values of δ, the matrix A becomes ill conditioned and the
weights cannot be computed numerically. Notice also, that there is
an optimal value δ� 4� 10�4 for which the error is minimum.
This optimal value is located in the region where the matrix A is
well conditioned and, therefore, the weights can be computed
numerically without problem. However, in the case of the function
uðxÞ ¼ expð 1:5x2Þ (red), the optimal value of δ lies in the region of

Fig. 1. Error in approximation of first derivative with the RBF-FD formula for three
nodes. Solid line: numerically computed weights. Dashed line: weights computed
from Taylor series (10). Black: function uðxÞ expð�x2Þ, x 1, h 0.01. Red: function
uðxÞ expð�1:5x2Þ, x 1, h 0.01. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)
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ill conditioning and, therefore, the weights can only be computed
from the Taylor series (10).

Similarly, the Taylor series for the second derivative in 1D is

f ¼ δ

h2

ð1þδÞ�3=2

1
ð1þδÞ�3=2

2
64

3
75� δ

h2

1
1
1

2
64
3
75þδ2

h2

3=2
0
3=2

2
64

3
75þδ3

h2

15=8
0

15=8

2
64

3
75þ⋯;

ð11Þ
so that the corresponding RBF FD weights are

α¼ A�1f ¼ 1

h2

1
2
1

2
64

3
75þ δ

h2

1
2
1

2
64

3
75þδ2

h2

195
64
219
32

195
64

2
664

3
775þ⋯:

If the number of nodes in the stencil increases, the inverse A�1ðδÞ
approaches the singularity faster. For instance, with a stencil of
four nodes (½x1 h; x1; x1þh; x1þ2h�), we obtain

A 1ðδÞ � 1

δ3

1
36

1
12

1
12

1
36

1
12

1
4

1
4

1
12

1
12

1
4

1
4

1
12

1
36

1
12

1
12

1
36

2
666664

3
777775þ

1

δ2

1
3

19
24

2
3

5
24

19
24 2 15

8
2
3

2
3

15
8 2 19

24
5
24

2
3

19
24

1
3

2
666664

3
777775þ⋯

We observe that, in 1D, the order of the singularity of the
inverse of the RBF FD matrix corresponding to a stencil of n nodes
is δ1 n. We also point out that the leading order term in the Taylor
series of the weights, i.e. αðδ¼ 0Þ, gives the weights for standard
finite differences in all the cases.

The same procedure can be used to derive the Laurent series of
A�1ðδÞ and the corresponding Taylor series for the weights of
stencils in 2D and 3D. Some relevant results using equispaced and
non equispaced nodes are presented in Section 4.

3.1. Condition number

The ill conditioning of system (3) is determined by the condi
tion number of matrix A: Ncond ¼ JAJ JA�1 J . This number can be
estimated from the leading order term of the Laurent series using
the fact that JA0 J ¼ n and that in 1D the order of the singularity is
p¼ n 1. Thus, Ncond � nJH1�n Jδ

1�n. Fig. 2 shows with a dashed
line, the dependence for n¼2, 3 and 4 equispaced nodes in 1D of
the condition number of the inverse matrix A�1ðδÞ with δ. With a
solid line we show the dependence estimated from the leading
order term of the Laurent series, Ncond � nJH1�n Jδ

1�n. Notice that
for small values of δ both curves are undistinguishable until the
matrix becomes ill conditioned. Similarly in 2D and 3D, if the
singularity of the inverse is of order p and the size of A is n then
Ncond � nJH�p Jδ

�p. If we consider that the matrix becomes ill
conditioned when the condition number is greater than 1016, then
the minimum value of δ that can be used to avoid ill conditioning
is simply given by

δmin ¼
nJH�p J
1016

� �1=p

: ð12Þ

These critical values are shownwith a dashed vertical line in Fig. 2.
In fact, since JH�p J is of order one or smaller, a simple rule to find
an effective value of δ is simply to take δ� ð10�16nÞ1=p.

3.2. Local truncation error

The Taylor series solution for the RBF FD weights can also be
used to derive approximate formulas for the local truncation error
in approximating derivatives of a given function. These formulas

depend on the values of the parameters δ and h, and on the values
of the function and its derivatives at the node. They can be very
useful in order to locate the optimal value of the shape parameter
that minimizes the error.

As an example, consider the Laplacian of the function,

uðxÞ ¼ exp x
1
4

� �2

y
1
2

� �2
" #

cos ð2πyÞ sin ðπxÞ; ð13Þ

which was used by Wright and Fornberg [27], and consider the
six node stencil ½ð0;0Þ; ð 1:17h;0:72hÞ; ð 0:82h; 1:21hÞ,
ð0:4h; 0:5hÞ; ð1:16h;0:28hÞ; ð0;1:19hÞ� which is shown in the inset
of Fig. 3. The error in approximating the Laplacian at x1 ¼ ð0;0Þ
with the RBF FD method using the weights computed numerically
by solving system (3) is shown as a function of δ in the
Figure (solid line). The Laurent series for the inverse of the
interpolation matrix can be used to derive the Taylor series for
the weights of the Laplacian using the same procedure described

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

100

105

1010

1015

1020

1025

1030

δ

Fig. 2. Solid line: condition number estimated by nJH1 n Jδ1 n , as a function of δ.
Dashed line: Condition number of inverse matrix A 1 as a function of δ. The three
curves correspond to n 3, 4, 5 equispaced nodes. The minimum values of δ (12) are
shown with vertical dashed lines.

Fig. 3. Error in approximating the Laplacian of function (13) at x1 ð0;0Þ with n 6
non-equispaced RBF-FD formula. Solid line: numerically computed RBF-FD weights
(h 0.01). Dashed line: weights computed with Taylor series (14). Red line: Eq. (15).
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)

4



in Section 3. It results in

α¼ A�1f ¼ 1

h2

3:1233
0:5527
0:4986
1:0407
0:5511
0:4802

0
BBBBBBBB@

1
CCCCCCCCA
þ δ

h2

2:8168
0:4415
0:9759
0:0201
0:6916
0:6876

0
BBBBBBBB@

1
CCCCCCCCA
þδ

2

h2

0:2521
0:3870
3:9009
7:0213
4:1827
0:0713

0
BBBBBBBB@

1
CCCCCCCCA
ð14Þ

The error in approximating the Laplacian with the RBF FD weights
approximated by its Taylor series (14) are shown with a dashed
line in the Figure. Notice that there is very good agreement with
the numerical results obtained using the exact RBF FD weights.
Therefore, the Taylor approximation can be used to locate the
optimal value of the shape parameter (δn) using the procedure
described in [3].

In fact, substituting uðxiÞ by its Taylor series in the vicinity of x1,
and the weights α by Eq. (14) results in,

∑
6

i 1
αiuðxiÞ ¼ uð2;0Þðx1Þþuð0;2Þðx1Þþ

δ
h
½ 0:5065uð1;0Þðx1Þþ0:1388uð0;1Þðx1Þ�

þh½ 3:88910 2uð3;0Þðx1Þþ0:1317uð2;1Þðx1Þ
þ0:3898uð1;2Þðx1Þþ2:35910 3uð0;3Þðx1Þ�þ⋯

where uðm;nÞ denotes the partial derivative of function u with
respect to x, m times and respect to y, n times. Thus, the local
truncation error is approximated by,

τ6ðx1Þ ¼ ∑
6

i 1
αiuðxiÞ Δuðx1Þ

����
����

¼ δ
h
½ 0:5065uð1;0Þðx1Þþ0:1388uð0;1Þðx1Þ�
����
þh½ 3:88910�2uð3;0Þðx1Þþ0:1317uð2;1Þðx1Þ

þ0:3898uð1;2Þðx1Þþ2:35910�3uð0;3Þðx1Þ�þ⋯
���� ð15Þ

This approximation to the local truncation error is represented in
red in Fig. 3. Notice that there is very good agreement with the
actual error (except for large values of δ).

Fig. 4 shows the corresponding results for h¼0.0002. In this
case, the minimum error occurs in the region of ill conditioning

where only the Taylor series (14) can be used to compute the
weights of the RBF FD formula.

In Figs. 3 and 4 one can clearly notice the existence of an
optimal value of the shape parameter for which the local trunca
tion error is zero to leading order. From (15) this optimal value δn

corresponds to,

δn

h2
¼ 3:88910�2uð3;0Þ þ0:1317uð2;1Þ þ0:3898uð1;2Þ þ2:35910�3uð0;3Þ

0:5065uð1;0Þ þ0:1388uð0;1Þ

ð16Þ

Substituting the partial derivatives for function (13) by their exact
values at x1 ¼ ð0;0Þ results in δn ¼ h2n32:5754 (δn ¼ 0:0032 for
h¼0.01 and δn ¼ 1:303� 10�6 for h¼0.0002), which agrees with
the location of the minimum error in Figs. 3 and 4.

In 3D, we approximate the Laplacian of function

uðxÞ ¼ exp x
1
4

� �2

y
1
2

� �2
" #

cos ð2πyÞ sin ðπxÞ cos ðπz=2Þ ð17Þ

Fig. 5 shows the local approximation error in computing the
Laplacian of function (17) using the RBF FD method with 31
random nodes. The RBF FD weights are computed numerically
(solid line) and with the Laurent series of the inverse (dashed line).
For δo3� 10�4, the RBF FD weights cannot be computed
numerically due to ill conditioning. For δ-0, the RBF FD weights
approach standard finite difference weights, and the local approx
imation error approaches 3�10 4.

4. Results

4.1. Equispaced nodes

Table 1 shows the leading order of the RBF FD weights for the
Laplacian in 2D, i.e., the standard finite difference weights, as a
function of the number of nodes in the stencil n. We assume that
the nodes are in a square lattice and that a stencil of n nodes uses
the n nearest nodes in the lattice. Table 2 shows the first order
correction to the RBF FD weights. We also show in the last row of
these tables the order p of the singularity of the inverse. The order
of the singularity is 2 for nA ½5;6�, 3 for nA ½7;8�, 4 for nA ½9;14�,
5 for nA ½15;16�, 6 for nA ½17;22�. Similarly in 3D the order of the

Fig. 4. Error in approximating the Laplacian of function (13) at x1 ð0;0Þ with n 6
non-equispaced RBF-FD formula. Solid line: numerically computed RBF-FD weights
(h 0.0002). Dashed line: weights computed with Taylor series (14). Red line: Eq.
(15). (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this paper.)

Fig. 5. Error in approximating the Laplacian of function (17) at x1 ð0;0;0Þ with
n 31 random nodes as a function of δ. Solid line: numerically computed RBF-FD
weights (h 0.01). Dashed line: weights from Laurent series for the inverse.

5



singularity of the inverse is 2 for nA ½7;10�, 3 for nA ½11;16�, 4 for
nA ½17;23�, 5 for nA ½24;27�.

Another relevant property of RBF FD formulas is the order s of
the local truncation error (error¼ OðhsÞ). For equispaced nodes in
2D, the order is s¼2 for nA ½5;12�, s¼4 for nA ½13;28�, s¼6 for
nA ½29;52�. In 3D the order of approximation for the laplacian is
s¼2 for nA ½7;32�, s¼4 for nA ½33; �. If only nodes located in the
three axes are used, then the order of the approximation is 2 for
n¼7, and 4 for n¼13.

Similar to what was done in Eq. (15), one can use the weights in
Tables 1 and 2 to derive the dependence of the local approxima
tion error on h, δ and the value of the function and its derivatives
at x1. For instance, in the case of a thirteen node stencil the
resulting error is

τ13ðx1Þ ¼
h4

90
½uð6;0Þðx1Þþuð0;6Þðx1Þ� h2δ½0:9008uð4;0Þðx1Þ

0:5318uð2;2Þðx1Þþ0:9008uð0;4Þðx1Þ�
4:6214δ2½uð2;0Þðx1Þþuð0;2Þðx1Þ�þ⋯ ð18Þ

In Ref. [3] the coefficients in this error formula were numerically
computed by choosing appropriate polynomial functions and fitting
the results to a power dependence with h and δ. The coefficients
obtained in that way were 1/90, 0.93, 0.5 and 4.4, respectively,
which are in pretty good agreement with the exact values shown in
(18). Fig. 6 shows the local approximation error with the RBF FD
weights computed numerically (solid line) and with the RBF FD
computed from the three first terms of its Taylor series shown in
Tables 1 and 2 (dashed line). We also show the error computed from
Eq. (18). Notice that for δo10�3 the RBF FD weights cannot be
computed numerically due to ill conditioning. Fig. 7 shows the error as
a function of h. Notice that for n¼13 the approximation error is Oðh4Þ
since all the terms is Eq. (18) are of order h4.

4.2. Non equispaced nodes

For non equispaced nodes the order of the singularity of the
inverse is 2 for nA ½5;6�, 3 for nA ½7;10�, 4 for nA ½11;15�, 5 for

Table 1

Leading order RBF-FD weights for Laplacian (α0h
2).

Node n 5 n 6 n 7 n 8 n 9 n 10 n 13

(0,0) �4 �4 �4 �4 �372/77 �372/77 �5
(0,1) 1 1 1 1 109/77 109/77 4/3
(1,0) 1 1 1 1 109/77 109/77 4/3
(0,�1) 1 1 1 1 109/77 109/77 4/3
(�1,0) 1 1 1 1 109/77 109/77 4/3
(1,1) 0 0 0 �16/77 �16/77 0
(1,�1) 0 0 �16/77 �16/77 0
(�1,�1) 0 �16/77 �16/77 0
(�1,1) �16/77 �16/77 0
(0,2) 0 �1/12
(2,0) �1/12
(0,�2) �1/12
(�2,0) �1/12
p 2 2 3 3 4 4 4

Table 2

First order RBF-FD weights for Laplacian (α1h
2=δ).

Node n 5 n 6 n 7 n 8 n 9 n 10 n 13

(0,0) �10/3 �10/3 �6 �26/3 �1217
205

�1354
209

�1502
173

(0,1) 5/6 5/6 13/6 13/6 �2717
1095

2147
604

1318
519

(1,0) 5/6 5/6 7/2 29/6 �2717
1095

397
346

1318
519

(0,�1) 5/6 5/6 13/6 29/6 �2717
1095

1380
457

1318
519

(�1,0) 5/6 5/6 5/6 13/6 �2717
1095

397
346

1318
519

(1,1) 0 �4/3 �4/3 �1391
1395

598
8421

92
173

(1,�1) �4/3 �8/3 �1391
1395

� 983
1344

92
173

(�1,�1) �4/3 �1391
1395

� 983
1344

92
173

(�1,1) �1391
1395

598
8421

92
173

(0,2) �643
601

� 935
1038

(2,0) � 935
1038

(0,�2) � 935
1038

(�2,0) � 935
1038

p 2 2 3 3 4 4 4

Fig. 6. Error in approximating the Laplacian of function (13) at x1 ð0;0Þ with
n 13 equispaced RBF-FD formula as a function of δ. Solid line: numerically
computed RBF-FD weights (h 0.01). Dashed line: weights from Taylor series in
Tables 1 and 2. Red line: Eq. (18). (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)

10−2 10−1 100
10
−8

10
−6

10
−4

10
−2

100

102

h

Fig. 7. Error in approximating the Laplacian of function (13) at x1 ð0;0Þ with
n 13 equispaced RBF-FD formula as a function of h. Solid line: numerically
computed RBF-FD weights (h 0.01). Dashed line: weights from Taylor series in
Tables 1 and 2.
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nA ½16;21�. These results can be easily inferred from the power
dependence with ϵ of the eigenvalues of the A matrix, that were
numerically computed in [12]. In 3D the order of the singularity of
the inverse is 2 for nA ½6;10�, 3 for nA ½11;20�, 4 for nA ½21;35�. The
order of the local truncation error with respect to h in 2D is s¼1
for nA ½5;9�, s¼2 for nA ½10;14�, s¼3 for nA ½15;20�. The order of
the local truncation error in 3D is s¼0 for nA ½6;9�, s¼1 for
nA ½10;19�, s¼2 for nA ½20;35�.

The order of the singularity is related to the degree of the
polynomial used to interpolate data in the stencil. For instance, in
2D with a polynomial of degree 2 one has to satisfy 6 conditions
(coefficients of 1; x; y; x2; xy; y2), and therefore with up to six node
stencils a second degree polynomial is used which implies a
singularity of order 2. A polynomial of degree 3 (10 conditions)
allows interpolation in up to ten node stencils and, therefore, the
order of the singularity is 3. Similarly, a second degree polynomial
in 3D (ten conditions) implies singularity of order two for up to ten
node stencils.

The order of the local truncation error is also related to the number
of conditions that can be satisfied. For instance, in 2D with a nine
node stencil it is not possible to satisfy all 10 conditions for interpola
tion with a second degree polynomial and, therefore, the order of the
local truncation error is one, but with ten nodes the error becomes of
order two since all ten conditions are satisfied. In general, the upper
limit for the number of nodes corresponding to a certain singularity
order is the lower limit for the order of the local truncation error.

Random nodes are rarely used in practical applications. In fact,
there are different techniques which are used to create near
uniform node distributions with irregular domains [9]. For
instance,Minimum Energy (ME) nodes correspond to the minimum
of the potential energy for electrostatic repulsion of scattered
point charges. Thus, the nodes try to reach an hexagonal lattice
distribution in which all the nodes are equidistant thereby mini
mizing the potential energy of the system.

Tables 3 and 4 show the leading order and first order correction
to the RBF FD weights for the Laplacian using nodes distributed in

Table 3

Leading order RBF-FD weights for Laplacian (α0h
2) with hexagonal lattice.

Node n 7 n 9 n 11 n 13 n 15 n 17 n 19

(0,0) �4 �4.541 �4.969 �5.079 �5.024 �5.333 �5.563
(1,0) 2/3 1.027 0.842 0.889 0.874 1 1.076
(0.5,0.866) 2/3 2/3 0.924 1.047 1.024 1 1.076
(�0.5,0.866) 2/3 2/3 0.924 0.846 0.825 1 1.076
(�1,0) 2/3 1.027 0.842 0.889 0.874 1 1.076
(�0.5,�0.866) 2/3 2/3 0.924 1.047 1.024 1 1.076
(0.5,�0.866) 2/3 2/3 0.924 0.846 0.825 1 1.076
(2,0) �0.090 �0.076 �0.053 �0.061 0 0.038
(�2,0) �0.090 �0.076 �0.053 �0.061 0 0.038
(0,1.732) �0.128 �0.123 �0.093 �0.111 �0.187
(0,�1.732) �0.128 �0.123 �0.093 �0.111 �0.187
(1.5,0.866) �0.067 �0.028 �0.111 �0.187
(�1.5,�0.866) �0.067 �0.028 �0.111 �0.187
(1,1.732) �0.028 0 0.038
(�1,�1.732) �0.028 0 0.038
(1.5,�0.866) �0.111 �0.187
(�1.5,0.866) �0.111 �0.187
(�1,1.732) 0.038
(1,�1.732) 0.038
p 3 4 4 4 5 5 6

Table 4

First order RBF-FD weights for Laplacian (α1h
2=δ) with hexagonal lattice.

node n 7 n 9 n 11 n 13 n 15 n 17 n 19

(0,0) �10/3 �7.894 �9.305 �9.335 �9.289 �9.746 �10.39
(1,0) 5/9 3.416 2.353 2.333 2.253 2.436 2.838
(0.5,0.866) 5/9 0.796 2.037 2.474 2.476 2.436 2.838
(�0.5,0.866) 5/9 0.796 2.037 1.798 1.647 2.436 2.838
(�1,0) 5/9 3.416 2.353 2.333 2.253 2.436 2.838
(�0.5,�0.866) 5/9 0.796 2.037 2.474 2.476 2.436 2.838
(0.5, �0.866) 5/9 0.796 2.037 1.798 1.647 2.436 2.838
(2,0) �1.060 �0.836 �0.606 �0.684 0 0.480
(�2,0) �1.060 �0.836 �0.606 �0.684 0 0.480
(0,1.732) �0.940 �0.906 �0.625 �0.812 �1.586
(0,�1.732) �0.940 �0.906 �0.625 �0.812 �1.586
(1.5,0.866) �0.426 �0.085 �0.812 �1.586
(�1.5,�0.866) �0.426 �0.085 �0.812 �1.586
(1,1.732) �0.336 0 0.480
(�1,�1.732) �0.336 0 0.480
(1.5,�0.866) �0.812 �1.586
(�1.5,0.866) �0.812 �1.586
(�1,1.732) 0.480
(1,�1.732) 0.480
p 3 4 4 4 5 5 6
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an hexagonal lattice. The last row of the Tables shows the order of
the singularity of the inverse. Notice that the symmetries of the
node distribution result in an increase in the order of the
singularity of the inverse with respect to the order of the
singularity for random nodes. For instance, in the case of 19 nodes,
the order of the singularity is six for hexagonally distributed
nodes, and three for random nodes. Also the order of the local
truncation error with respect to h increases: s¼2 for nA ½7;15�.

5. Conclusions

In this paper we show how the Laurent series for the inverse of
the interpolation matrix can be effectively used to compute the
weights of RBF FD formulas avoiding problems of ill conditioning.
This technique is based on the computation of the Laurent series of
the inverse of the RBF interpolation matrix in powers of the
parameter δ¼ ðϵhÞ2, where h is the characteristic inter nodal
distance and ϵ is the shape parameter. The matrix coefficients of
this Laurent series are computed using a recursive algorithm
described in [16] which is based on the method proposed by
Avrachenkov and Lasserre [2]. The Laurent series is then used to
derive the Taylor series for the weights in powers of δ. In this way,
it is possible to compute the RBF FD weights for any differential
operator exactly, without any rounding errors due to ill
conditioning. In particular, the leading order term in the Taylor
series corresponds to the standard finite difference weights.

The exponent of the leading order term of the Laurent series
(the order of the singularity of the inverse) describes how the
inverse approaches infinity as δ approaches zero. This result can be
used to predict when the matrix becomes ill conditioned so that
the weights cannot be computed directly by solving the corre
sponding linear system numerically.

Finally, it should be pointed out that this method leads to
analytical formulas for the weights in terms of h and δ that can be
used to derive the exact dependence of the local truncation error
in terms of these parameters, and the value of the function and its
derivatives at the node. These formulas can then be used to derive
an optimal value of the shape parameter for a given function and
stencil.

The computational cost of the algorithm to obtain the Laurent
series of the inverse, grows exponentially with the order of the
singularity. As a result, the proposed technique is only feasible in a
reasonable time for singularities of order seven or less, that is, 36
nonequispaced nodes or 24 equispaced nodes in 2D. It should be
pointed out that in some applications RBF stencil sizes in the range
30 80 nodes have been common and these sizes are beyond the
capabilities of the method. In those cases, other available algo
rithms (Contour Padé, RBF QR, RBF GA, etc.) could be used.

The order of the singularity for a specified number of nodes
decreases with increasing number of dimensions. Therefore, the
proposed method is specially well suited for the solution of PDEs
in 3D or higher dimensions with stencil sizes such that the order
of the singularity is five or less.
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