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Abstract

In order to obtain the inter-yarn friction coefficient in aramid fibers, a new methodology is 
developed. Experimental yarn pull-out test and 3D numerical model have perfomed in 

Kevlar®129 (K129) aramid. An optimization of classic numerical models in order to simulate 
pull-out tests and obtain the inter-yarn friction is carried out. Numerical simulation results 
were compared to experimental yarn pull-out curves and based on linear dependence of the 
pull-out load with the friction coefficient, the inter-yarn friction coefficient of K129 aramid 
Keywords: Aramid; Mechanical testing; Yarn; Friction coefficient

has been obtained.
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owed that maximum pull-out force for the warp yarn was
an that for the weft yarn. It was also observed that the

pull-out force increased with the sample length.
ood et al. [6] also performed yarn pull-out tests of Kevlar®

ns from fabric. It was proved that the sample length and
verse tension are proportional to the pull-out energy.
the width did not show any effect on the energy. Finally,

l approach to measure the force and the corresponding
ssipation modeling yarn pull-out was presented for a wide
fiber types and fabric architectures.
s of the tribological properties of Kevlar® S706 were
ut by King et al. [7]. Comprehensive experiments were
d at different strain rates to have a better understanding
tional forces that resist yarn slip.
ey et al. [8] included the clamping of the fabric along the
e edges. A wide range of fabric structures was selected for
iments including Kevlar® 29, Spectra, and Zylon. Results
hat the pull-out force has a strong dependency with the
e force and yarn count.
al. [9] characterized the friction behavior between Kevlar

ns. For these tests different pre-load along the width of
c (0-600N) were applied while using a standard force-

ent device to perform the load versus displacement
ents. The force increased with the pre-load. Also was

at the friction coefficient between yarns is more impor-

the friction projectile and the fabric.

tudies were performed by Bilisik et al. [10,11]. Two materi-
sed in both studies, Twaron CT® 714 (CT714) and Twaron
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Mechanical properties for yarn pull-out simulation of K129 aramid.
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Table 2
Linear trend equations for every peak from the comparison of simulation curves and

their determination coefficient (R2).

Linear trend equation R2 Maximum force (N) �
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