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a b s t r a c t

In this paper, we establish the asymptotic validity and analyse the finite sample perfor-
mance of a simple bootstrap procedure for constructing multi-step multivariate forecast 
densities in the context of non-Gaussian unrestricted VAR models. This bootstrap proce-
dure avoids the backward representation, and, as a consequence, can be used to obtain 
multivariate forecast densities in, for example, VARMA or VAR-GARCH models. In the con-
text of bivariate stationary VAR(p) models, we show that its finite sample properties are 
comparable to those of alternatives based on the backward representation. The bootstrap 
procedure is also implemented in a VAR-DCC model which lacks a backward represen-
tation. Finally, joint forecast densities of US quarterly inflation, unemployment and GDP 
growth are obtained.

1. Introduction

Since Sims (1980), Vector Autoregressive (VAR) mod-

and Marcellino, Stock, and Watson (2003) for unemploy-
ment, Batchelor, Alizadeh, and Visvikis (2007) for interna-
tional freight prices, Gupta, Kabundi, and Miller (2011) for
els have been an essential tool for policy making and
forecasting in the context of macroeconomic multivari-
ate time series; see Stock and Watson (2001) for the ad-
vantages and limitations of VAR models. In this paper, we
focus on the forecasting ability of VAR models. It is well
known that, in practice, VAR forecasts of large macroe-
conomic systems may be very imprecise because of the
large number of parameters to be estimated relative to the
available sample sizes. However, VARs are still very popu-
lar when forecasting small or moderate systems in which
the parameters can be estimated with an acceptable level
of precision. For some selected examples of useful VAR
forecasts, see D’Agostino, Gambetti, and Giannone (2013)
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UShouse prices, Baumeister andKilian (2012) for oil prices,
Polito and Wickens (2012) for fiscal forecasts, and Kilian
and Vigfusson (2013) for US growth.

Most of the literature dealing with VAR forecasts fo-
cuses on marginal point forecasts of each of the variables
in the system. However, policy makers and forecasters are
increasingly interested in metrics that require joint mul-
tivariate forecasts. Komunjer and Owyang (2012) point
out the importance of recognizing the multivariate na-
ture of most forecasting problems, which has fundamen-
tal implications for the prospects of rational expectations
in macroeconomic models. Furthermore, joint multivari-
ate forecasts are also important when forecasting future
values of one variable conditional on particular values of
other variables in the system; see Baumeister and Kilian
(2012), Doan, Litterman, and Sims (1984), and Waggoner
and Zha (1999). In order to define spillover measures,
Diebold and Yilmaz (2009) also consider multivariate
2



multi-period-ahead forecasts; see also Klobner and Wag-
ner (2014). On the other hand, the focus of the forecast-
ing literature is moving from point forecasts to density
forecasts that incorporate the uncertainty about the
future evolution of the variables of interest; see Bache,
Jore, Mitchell, and Vahey (2011), Clark (2011), Diebold,
Hanh, and Tay (1999), and Jore,Mitchell, and Vahey (2010),
among others. Traditionally, a multivariate forecast den-
sity for a given horizon can be obtained by assuming
Gaussian forecast errors and a known lag order and model
parameters. However, it has long been recognized that the
parameter uncertainty may be an important issue when
dealing with VAR forecasts in practice; see Fair and Shiller
(1990) and Lewis and Reinsel (1985) for early references.
Furthermore, Kilian (1998a) points out the problems as-
sociated with assuming a known lag order when it needs
to be estimated. Finally, the empirical evidence suggests
that departures from Gaussianity are quite plausible when
dealingwith economic time series; see for example Harvey
and Newbold (2003) and Kilian (1998b). These departures
are a serious concern when forecasting with VAR models,
calling into question traditional techniques for construct-
ing joint multivariate forecast densities.

Forecast densities that incorporate the parameter and
lag order uncertainties without relying on particular as-
sumptions on the error distribution can be obtained using
bootstrap procedures; see Holmes, Morris, Tibshirani, and
Efron (2003) for an interviewwith Bradley Efron about the
advantages of bootstrap procedures. In the context of fore-
casting stationary VAR(p) models, bootstrap methods are
introduced by Kim (1999), who extends the original pro-
cedure proposed by Thombs and Schucany (1990) for uni-
variate AR(p) processes; see Berkowitz and Kilian (2000)
for a review of bootstrap procedures for time series. Be-
cause of the biases associated with the Least Squares (LS)
estimator of the VAR parameters, Kim (2001, 2004) con-
siders bias-corrected forecast regions. The bootstrap pro-
cedure proposed by Kim (1999) has been implemented for
dealing with various different issues in the context of fore-
casting using multivariate VAR and periodic state-space
models; see, for instance, Grigoletto (2005, 2012), Guer-
byenne and Hamdi (in press) and Staszewska-Bystrova
(2011). It uses the backward representation (BR) of the
VAR model to generate the bootstrap samples used to ob-
tain replicates of the estimated parameters. As a conse-
quence, its asymptotic validity relies on the assumption
of Gaussian errors; see Kim (2001). Given that one of the
main attractions of bootstrap procedures is their ability
to make predictions in the context of non-Gaussian VAR
models, this is an important drawback. Furthermore, boot-
strap procedures based on the BR can only be implemented
in models with such representations, which excludes, for
example, multivariate models with Moving Average (MA)
components or GARCH disturbances; see Athanasopoulos
and Vahid (2008) and Lütkepohl (2006) for forecasting us-
ing VARMA models and Kavussanos and Visvikis (2004)
for an empirical example of forecasting with a cointe-
grated VAR-GARCH model. Alternatively, Eklund (2007)
implements a very simple bootstrap procedure for ob-
taining multivariate bootstrap forecasts of several vari-
ables of the Icelandic economy that do not require the BR.
However, the bootstrap procedure implemented by Eklund
(2007) does not incorporate the parameter uncertainty.
Finally, using arguments put forward by Pascual, Romo,
and Ruiz (2004a) in the context of univariate ARIMA mod-
els, one can implement simple bootstrap procedures that
incorporate the parameter uncertainty without requiring
the BR. For example, Lütkepohl, Staszewska-Bystrova, and
Winker (2015), Staszewska-Bystrova and Winker (2013)
and Wolf and Wunderli (2012) implement the bootstrap
procedure originally described by Pascual, Ruiz, and Fresoli
(2011)1 for constructing bands for forecast paths. It is
important to note that the forward bootstrap procedure
implemented in these papers is closely related to the boot-
strap procedure proposed by Kilian (1998a,b,c) for the con-
struction of confidence bands in the context of impulse
response functions.

In this paper, we provide a theoretical justification
of the forward bootstrap procedure. We establish its
asymptotic out-of-sample validity in the context of VAR(p)
models, without relying on particular distributions of the
forecast errors. Furthermore, Monte Carlo experiments
are carried out to analyse its finite sample performance
when it is used to construct joint forecast regions. The
forward bootstrap regions are compared with traditional
and backward bootstrap regions. We show that, regardless
of the error distribution, if the VAR(p) model is persistent
and the sample size is not very large relative to the
number of parameters, the finite sample properties of
the bootstrap regions are clearly better than those based
on Gaussian densities. Furthermore, we show that, when
the VAR(p) model is far from having a unit root and the
forecast errors are truly Gaussian, the loss incurred by
using bootstrapping is not large, while the improvement in
coverage is moderate if the errors are non-Gaussian. In any
case, the bootstrap procedures provide similar coverage
accuracy levels, regardless of whether they are based on
the backward representation or not.

We also illustrate the good performance of the forward
bootstrap procedure by constructing forecast densities in
the context of a Dynamic Conditional Correlation (DCC)
model which does not have a BR. The importance of con-
structing forecast regions which take the non-Gaussianity
of the variables into account is illustrated by using the
forward bootstrap to obtain joint forecast densities of US
quarterly inflation, unemployment and growth rates.

The rest of the paper is organized as follows. Section 2
focuses the discussion and establishes the notation by
describing the traditional and backward bootstrap proce-
dures used for constructing forecast densities. Both pro-
cedures are illustrated in the context of a non-Gaussian
bivariate VAR(2) model. In Section 3, the asymptotic va-
lidity of the forward bootstrap procedure is established.
Section 4 reports Monte Carlo results on several bivari-
ate VAR models with different parameter configurations,
including stationary, persistent and near-cointegrated
models. The finite sample performances of the forward
bootstrap forecast regions are compared with those of

1 Pascual et al. (2011) is a previous version of the present paper by the
same authors.
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Gaussian and backward bootstrap procedures. Section 5
implements the forward bootstrap procedure in data sim-
ulated via a VAR-DCCmodel, while Section 6 illustrates the
results through an empirical application. Finally, Section 7
concludes the paper with suggestions for further research.

2. Multi-step forecast densities and regions for VAR
models

This section establishes our notation and briefly de-
scribes the traditional and backward bootstrap procedures
for constructing forecast densities in stationary VAR mod-
els.

Consider the following multivariate VAR(p) model of
finite lag order p:

Yt = µ + Φ1Yt−1 + · · · + ΦpYt−p + εt ,

t = −p + 1, . . . , T , (1)

where Yt is the N × 1 vector of observations at time t ,
µ is a N × 1 vector of constants, and Φi, i = 1, . . . , p,
are N × N parameter matrices that satisfy the stationarity
restriction. Finally, εt is a sequence of N × 1 independent
white noise vectors with distribution function Fε , positive
definite contemporaneous covariancematrixΣε , and finite
fourth order moments.

The point predictor of YT+h that minimizes the Mean
Squared Forecast Error (MSFE) is its conditional mean,
which, in practice, is obtained by substituting the unknown
parameters with consistent estimates, as follows:YT+h|T = µ + Φ1YT+h−1|T + · · · + ΦpYT+h−p|T , (2)

where YT+j|T = YT+j, j ≤ 0, and, in this paper, θ =

(µ, Φ1, . . . , Φp) denotes the LS estimator of the param-
eters. The MSFE of YT+h|T , denoted by ΣAY (h), can be ob-
tained using the asymptotic distribution to approximate
the parameter uncertainty with all unknown parame-
ters substituted by their sample estimates; see Lütkepohl
(1991) for a detailed description. Obviously, the contribu-
tion of the parameter uncertainty to theMSFE ofYT+h|T de-
pends on the dimension of the system, N , the VAR order,
p, and the sample size, T ; see for instance Baillie (1979)
and Reinsel (1980). As long as N and/or p are big enough
relative to T , the effect of the parameter uncertainty can be
substantial. However, granted that a consistent estimator
is used, the importance of this uncertainty could be small in
systems consisting of only a few variables if T is relatively
large; see Riise and Tjostheim (1984).

If εt is further assumed to be Gaussian for the model
in Eq. (1), then the h-step-ahead forecast density can be
estimated by

YT+h ∼ N(YT+h|T , ΣAY (h)). (3)

From Eq. (3), it is possible to obtain h-step-ahead joint
ellipsoids for the variables within the system. Constructing
these ellipsoids can be quite demanding when N is
larger than two or three. As a consequence, Lütkepohl
(1991) proposes the construction of forecast regions using
Bonferroni cubes based on marginal forecast intervals for
each of the variables in the system.
The forecast density in Eq. (3) incorporates the uncer-
tainty due to parameter estimation through the asymp-
totic distribution, but still relies on Gaussian forecast
errors. Therefore, the corresponding intervals and regions
could be inadequate when this assumption is not satis-
fied. In addition, in this case, the shape of the densities for
h ≥ 2 is generally unknown. Finally, note that the Gaus-
sian forecast densities in Eq. (3) can be misleading in cases
where the asymptotic approximation is unreliable; see Du-
four and Jouini (2006).

As an illustration, we consider the following non-
Gaussian stationary bivariate VAR(2) model previously
considered by Kim (2001):
y1,t
y2,t


=


0.9 0

−0.5 −0.7

 
y1,t−1
y2,t−1


+


−0.2 0
0.8 −0.1

 
y1,t−2
y2,t−2


+


ε1,t
ε2,t


, (4)

where εt = (ε1,t , ε2,t)
′ has a χ2

4 distribution, standardized
so that vech(Σε) = (1, 0.5, 1)′, with vech denoting the
lower-diagonal column stacking operator of a symmetric
matrix; see Kilian (1998a) for the adequacy of this distri-
bution for representing some macroeconomic time series.
The dominant root of the VAR(2) model in Eq. (4) is 0.5, so
the model is far from the non-stationary boundary. Panel
(a) of Fig. 1 displays the true joint one-step-ahead density
of YT+1. After generating a time series of size T = 100,
the VAR(2) parameters are estimated by LS, assuming that
the lag order is known. Panel (b) of Fig. 1 plots the corre-
sponding bivariate density, obtainedunder the assumption
that the forecast errors are jointly Gaussian, as given in Eq.
(3) with YT+1|T = (−2.21, −0.27)′ and vech

ΣAY (1)


=

(1.13, 0.59, 1.02)′. Comparing panels (a) and (b), it is ob-
vious that the Gaussian density fails to capture the asym-
metry of the error distribution.

Alternatively, bootstrap procedures can be imple-
mented so as to obtain forecast densities that incor-
porate the parameter uncertainty without relying on
Gaussian forecast errors. In order to take into account the
conditionality of VAR forecasts on past observations, Kim
(1999) proposes to obtain bootstrap replicates of the series
based on the backward recursion as follows

Y ∗

t = ω + Λ1Y ∗

t+1 + · · · + ΛpY ∗

t+p +υ∗

t ,

t = T − p, . . . , 1, (5)

where Y ∗
t = Yt for t = T − p + 1, . . . , T , (ω, Λ1, . . . , Λp)

are LS estimates of the backward parameters and υ∗
t are

random draws with replacement from the empirical dis-
tribution function of the backward residuals, re-scaled by
the factor [(T − p) / (T − (N + 1)p − 1)]0.5. The bootstrap
replicates in Eq. (5) are then used to obtain bootstrap repli-
cates of the parameters in Eq. (1), and finally, these are im-
plemented to obtain bootstrap replicates of YT+h.

Kim (1999) justifies the use of the backward bootstrap
procedure in finite samples by suggesting that the
asymptotic results of Thombs and Schucany (1990) can
be extended to a multivariate framework. When using
the backward representation, one can bootstrap from the
forward residuals and use the relationship between the
4



(a) Empirical. (b) Gaussian approximation.

(c) Bootstrap based on BR. (d) New bootstrap.

Fig. 1. Kernel estimates of one-step-ahead forecast densities of a simulated bivariate series with T = 100 observations, generated by a stationary VAR(2)
model with χ2

4 errors.

backward and forward residuals to obtain the bootstrap 3. Forward bootstrap procedure

replicates of the former; see Kim (1997, 1998) for the
expression of the backward representation.2 In this case,
the forward residuals need to be serially independent
and identically distributed, but not necessarily Gaussian,
for the bootstrap procedure to be asymptotically valid.
However, the relationship between forward and backward
residuals can be rather complicated in relatively simple
VAR models, and many authors resample directly from
the backward residuals. The backward errors are only
serially independent if the forward errors are Gaussian.
Consequently, the asymptotic validity of the bootstrap
procedures based on the backward representation relies on
the assumption of Gaussian innovations; see Kim (2001).

Another important disadvantage of the backward
bootstrap is that it cannot be implemented in models
without this representation, which compromises the
flexibility and applicability of the procedure.

The backward bootstrap procedure is illustrated by
again considering the time series of size T = 100 simulated
by the non-Gaussian bivariate VAR(2) model in Eq. (4).
Panel (c) of Fig. 1 plots a kernel estimate of the joint
backward bootstrap density of YT+1 based on B = 4999
bootstrap replicates. When comparing this density with
its Gaussian counterpart in panel (b), it is clear that the
bootstrap can reproduce the asymmetry and is closer to the
true density plotted in panel (a) of the same figure.

2 For the simpler expression of the backward representation in
which the lag values of the variables in Eq. (1) are substituted by
forward values, Chan, Ho, and Tong (2006) and Tong and Zhang (2005)
show that a necessary condition for the VAR(p) model to have this
backward representation is that the covariance matrices Υ (h) =

E

(Yt − E(Yt ))(Yt−h − E(Yt ))

′

are symmetric for all h. This is a very

strong restriction which is not likely to be satisfied in real data systems.
In this section, we describe the forward bootstrap
procedure and establish its asymptotic validity. Its per-
formance is illustrated for the non-Gaussian stationary
VAR(2) model considered above.

3.1. Description of the algorithm

The forward bootstrap forecast density of YT+h is based
on the same assumption that is used to construct fore-
cast densities when incorporating the parameter uncer-
tainty using the asymptotic distribution, namely, that the
sample used to estimate the parameters is independent of
the sample used to forecast. In this way, we follow Run-
kle (1987) when generating the bootstrap replicates used
to estimate the parameters and use the forward instead
of the BR. The forward algorithm for obtaining bootstrap
replicates of YT+h is a direct generalization of the algorithm
proposed by Pascual et al. (2004a); see Lütkepohl et al.
(2015), Staszewska-Bystrova and Winker (2013) and Wolf
and Wunderli (2012) for implementations of the forward
bootstrap for obtaining path forecasts in VAR models.

For clarity, we next describe the algorithm.
Step 1. After selecting the order p, obtain LS estimates

of the parameters of model (1) and the corresponding
vector of residuals. Denote byFε the empirical distribution
function of the re-scaled residuals.

Step 2. Construct a bootstrap series {Y ∗

1 , . . . , Y ∗

T } as
follows:

Y ∗

t = µ + Φ1Y ∗

t−1 + · · · + ΦpY ∗

t−p +ε∗

t ,

t = 1, . . . , T , (6)

whereε∗
t are random draws with replacement fromFε and

Y ∗
t = Yt , for t = −p + 1, . . . , 0. Obtain θ∗

= (µ∗,Φ∗

1 , . . . ,
Φ∗

p ), a bootstrap replicate of the LS estimates,
5



Fig. 2. A realization of size R = 5000 of YT+1 (◦), generated by a stationary bivariate VAR(2) model with χ2
4 errors, together with 95% one-step-ahead

forecast regions based on a sample size T = 100:Gaussian ellipsoid and cube (discontinuous lines), bootstrap ellipsoid and cube (continuous line), corrected
bootstrap cube (dotted line) and High Density Region (dotted-discontinuous line).

by fitting a VAR(p) model to the bootstrap replicate Ȳ ∗

T+h|T ]SŶ∗(h)−1
[Y ∗

T+h|T − Ȳ ∗

T+h|T ]. Furthermore, the Bonfer-

{Y ∗

1 , . . . , Y ∗

T }.
Step 3. Using the model in Eq. (1), with the parameters

substituted by their bootstrap estimates, and fixing the last
p observations of the original series, obtain recursively a
bootstrap replicate of YT+h as follows:Y ∗

T+h|T = µ∗
+ Φ∗

1
Y ∗

T+h−1|T

+ · · · + Φ∗

p
Y ∗

T+h−p|T +ε∗

T+h, (7)

withε∗

T+h being a random drawwith replacement fromFε ,
andY ∗

T+h|T = YT+h, h ≤ 0.
Step 4. Repeat steps 2 and 3 B times.
It is important to point out that the bootstrap replicates

used in step 2 to obtain bootstrap estimates of the
parameters are obtained as proposed by Runkle (1987)
using the forward expression in Eq. (6) instead of the
backward expression in Eq. (5). However, the last p
observations in the series are still fixed when forecasting
the future values in Eq. (7).

To illustrate the implementation of the forward boot-
strap procedure and the differences between it and the
backward procedure, we again consider the bivariate time
series generated by the non-Gaussian stationary VAR(2)
model in Eq. (4). Panel (d) of Fig. 1, showing the results for
the forward procedure, displays a kernel estimate of the
bootstrap joint density of YT+1, which is very similar to the
density obtained by implementing the backward bootstrap
procedure.

Using the algorithm described above, B bootstrap
replicates of YT+h, denoted by {Y ∗(1)

T+h|T , . . . ,
Y ∗(B)
T+h|T }, are

obtained. Their empirical bootstrap distribution can be
used to obtain the corresponding bootstrap prediction
ellipsoid with probability content (1− δ) 100% as follows:

ET+h =

YT+h|


YT+h − Ȳ ∗

T+h|T


SŶ∗(h)−1

×

YT+h − Ȳ ∗

T+h|T


< Q ∗

K


, (8)

where Ȳ ∗

T+h|T is the sample mean of the B bootstrap
replicates, SŶ∗(h) is the corresponding sample covariance,
and Q ∗

K is the (1 − δ)100% percentile of the empirical
bootstrap distribution of the quadratic form [Y ∗

T+h|T −
roni cube with at least (1 − δ)100% nominal coverage is
given by

CT+h =


YT+h|YT+h ∈

N
i=1


q∗

i (τ ) , q∗

i (1 − τ)


, (9)

where q∗

i (τ ) is the τ th quantile of the empirical bootstrap
distribution of the ith element of Y ∗

T+h|T . The Bonferroni
cubes are defined as in Eq. (9) because they are better
suited for dealing with potential asymmetries of the
error distribution than the percentile-t intervals; see Hall
(1992). In addition, Kilian (1999) shows that, in the absence
of pivotal statistics, as is the case when the VAR process
is close to the nonstationary region, bootstrap percentile
methods that do not rely on studentized statistics have
better coverage accuracies than those based on the
percentile-t .

To illustrate the construction of ellipsoids and cubes,
Fig. 2 plots the forward bootstrap 95% ellipsoid and the
Bonferroni cube in Eqs. (8) and (9) respectively, together
with the corresponding regions constructed from the
Gaussian density in Eq. (3), both obtained for a particu-
lar one-step-ahead realization of the VAR(2) model in Eq.
(4) that is also displayed. We observe that, although the
forward bootstrap density is very different from the Gaus-
sian density, there are no big differences among the cor-
responding ellipsoids, due to the fact that the first two
moments involved in their definition do not differ sig-
nificantly among the procedures, which estimate simi-
lar centers and dispersions of the future values. Note
that Ȳ ∗

T+1|T = (−2.19, −0.26)′ and vech

SŶ∗(1)


=

(1.11, 0.58, 1)′ are very similar to the corresponding quan-
tities used to compute the Gaussian ellipsoid. Also, when
looking at the bootstrap Bonferroni cube, we can observe
that it is located above and to the right of the correspond-
ing Gaussian cube, representing the asymmetries of the
joint distribution of YT+1. Note that, even though the boot-
strap Bonferroni cube is somehowmore adequate to repre-
sent the asymmetry in the forecast error distribution, it is
not satisfactorywhen constructing forecast regions for sys-
tems of correlated non-Gaussian variables, such as those
considered in the illustration. Consequently, we explore
two further alternatives for the construction of these re-
gions. First, we consider the High Density Regions (HDR)
6



proposed by Hyndman (1996) based on kernel estimates
of the joint bootstrap density. Fig. 2 also plots the 95% HDR
computed from the bootstrap replicates, Y ∗

T+1|T . We can
see that the shape of the HDR seems to be a more ad-
equate representation of the realization of YT+1 than ei-
ther the ellipsoid or the Bonferroni cube. However, HDR
are unfeasible when the dimension of the system is large,
as, in this case, there are no satisfactory kernel estima-
tors of the bootstrap densities. Consequently, we also ex-
plore a simple modification of the Bonferroni cube that
takes into account the correlation between the variables
in the system. The modified Bonferroni cube is defined
by the following four points:


q∗

1(τ ), q∗

2(τ ) + p21,hq∗

1(τ )

,

q∗

1(1 − τ), q∗

2(τ ) + p21,hq∗

1(1 − τ)

, [q∗

1(τ ), q∗

2(1 − τ)

+ p21,hq∗

1(τ )], and

q∗

1(1 − τ), q∗

2(1 − τ) + p21,hq∗

1(τ )

,

where p21,h = σ ∗

21,T+h/σ 2∗
1,T+h, with σ ∗

21,T+h and σ 2∗
1,T+h

being elements of SY∗(h). Note that the proposed trans-
formation re-expresses the original cube in a direction
defined by the association between y1,T+h and y2,T+h, as
measured by p21,h. Furthermore, the volume of the mod-
ified cube remains unchanged, since the coordinates for
the first variable stay the same, while those of the sec-
ond variable are transformed by the same amount, ei-
ther p21,hq∗

1(τ ) or p21,hq∗

1(1 − τ). Fig. 2 plots the modified
Bonferroni cube, which is rotated in the direction of the
correlation observed between y∗

1,T+1|T and y∗

2,T+1|T , and,
as a consequence, gives a more appropriate picture of the
values of y1,T+1 and y2,T+1 that can be expected one step
ahead.

Before establishing the asymptotic validity of the for-
ward bootstrap procedure, we should mention that it can
be modified easily by introducing asymptotic stationarity
bias corrections of the bootstrap parameters and the en-
dogenous lag order bootstrap algorithm, as was proposed
by Kilian (1998c); see Staszewska-Bystrova and Winker
(2013) for an implementation of the forward bootstrap al-
gorithm using both modifications.

3.2. Asymptotic validity

Consider the stationary VAR(p) model in Eq. (1), where
the errors are given by

εt(θ) = Yt − µ − Φ1Yt−1 − · · · − ΦpYt−p,

t = 1, . . . , T . (10)

In Eq. (10), the errors depend explicitly on the unknown
parameters contained in θ . If θ is estimated by θ , the
corresponding estimated residuals are given by

εt(θ) = Yt − µ − Φ1Yt−1 − · · · − ΦpYt−p,

t = 1, . . . , T , (11)

which haveFε(θ) as the empirical distribution function.
The following theorem establishes the asymptotic

validity of the empirical bootstrap distribution ofY ∗

T+h|T , as
given in Eq. (7), to approximate the distribution of a future
value YT+h.
Theorem. Let {Yt , t = −p + 1, . . . , 1, 2, . . . , T } be a
realization of a stationary VAR(p) process, defined as in
Eq. (1),θ be the LS estimator of θ , andY ∗

T+h|T be obtained by
following steps 1–4 in the previous subsection. Then, Y ∗

T+h|T ,
conditioned on {Yt , t = −p+1, . . . , 1, 2, . . . , T }, converges
weakly in probability to YT+h as T → ∞.

Proof. Following the arguments of Pascual et al. (2004a),
consider first the one-step-ahead bootstrap future value
given byY ∗

T+1|T = µ∗
+ Φ∗

1YT + · · · + Φ∗

pYT−p+1 +ε∗

T+1. (12)

For h = 2, we haveY ∗

T+2|T = µ∗
+ Φ∗

1
Y ∗

T+1|T + · · · + Φ∗

pYT−p+2 +ε∗

T+2. (13)

ReplacingY ∗

T+1|T in Eq. (13) with its expression in Eq. (12),
it follows thatY ∗

T+2|T = N0(θ∗) + N1(θ∗)YT + · · · + Np(θ∗)YT−p+1

+M1(θ∗)ε∗

T+1 +ε∗

T+2, (14)

whereNi(θ∗) andMi(θ∗) are appropriately defined contin-
uous functions of the estimated parameters.

Proceeding in this way, the following expression is
obtained for the h-step-ahead bootstrap forecast:Y ∗

T+h|T = N0(θ∗) + N1(θ∗)YT + · · · + Np(θ∗)YT−p+1

+M1(θ∗)ε∗

T+1 + M2(θ∗)ε∗

T+2 + · · · +ε∗

T+h, (15)

where the functionsNi(θ∗) andMi(θ∗) are different for dif-
ferent horizons. Eq. (15) defines the bootstrap future values
as a function of the observed realization {Y−p+1, . . . , YT },
the independent randomdrawsε∗

T+h, and continuous func-
tions of the bootstrap parameter estimatesθ∗.

In order to establish the asymptotic convergence ofY ∗

T+h|T , we start by considering the terms involving Ni(θ∗)

for which the asymptotic validity of θ∗ is needed. The
asymptotic validity of the bootstrap LS estimator is estab-
lished by Bose (1988), who proves the almost sure con-
vergence in probability of θ∗ to θ . Therefore, given that
Ni(θ∗) are continuous functions of the parameters, it fol-
lows that Ni(θ∗)

p
→Ni(θ) almost surely. Moreover, note

that YT−i+1 are fixed values, and consequently, the terms

involving Ni(θ∗)YT−i+1
d

→Ni(θ)YT−i+1 in probability. Sec-
ond, using the same arguments as before, we can see
that Mi(θ∗)

p
→Mi(θ) almost surely. Finally, consider the

terms ε∗

T+i, which are random draws with replacement
fromFε(θ). Using the results of Bickel and Freedman (1981)
and Freedman (1984), it is straightforward to prove that
d2(Fε(θ), Fε(θ)) → 0 in probability as T → ∞, where
d2 is a Mallow’s metric. Given that convergence in d2 im-
plies weak convergence of the corresponding random vari-
ables, it follows that ε∗

T+i
d

→ εT+i in probability. On the
other hand,ε∗

T+i are independent ofMi(θ∗). Consequently,

Mi(θ∗)ε∗

T+i
d

→Mi(θ)εT+i by the independence ofε∗

T+i and
the bootstrap version of Slutsky’s Theorem. Consequently,
all terms in Eq. (15) convergeweakly in probability, and, as
a result, Y ∗

T+h|T
d

→ YT+h in probability as T → ∞. �
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Fig. 3. Monte Carlo averages of the empirical coverages of Bonferroni forecast cubes based on the: (i) Gaussian (♦), (ii) Gaussian with asymptotic MSFE
(▽), (iii) bootstrap with BR (◦), and (iv) new bootstrap (�) densities, for a stationary VAR(2) model (first row), a persistent VAR(5) model (second row)
and a near-cointegrated VAR(10) model (third row) with T = 100 and Gaussian (first column), Student-5 (second column) and χ2

4 (third column) errors.
Nominal coverage: 95%.
Before concluding this section, it is important to remark
that, even though asymptotic validity is established for
centered residuals, Stine (1987) shows that it is still valid
if they are also re-scaled. Furthermore, the asymptotic bias
correction of the parameters proposed by Pope (1990) does
not alter the asymptotic validity of our procedure, since
the bias and its bootstrap version are Op(T−1); see Kilian
(1998c) for further details. Finally, Kilian (1998a) also
shows that the endogenous lag order bootstrap algorithm
is still asymptotically valid for standard lag order selection
criteria, such as the AIC considered in this paper.

4. Small sample properties

In this section, we carry out Monte Carlo experiments
to analyse the finite sample properties of the forward
bootstrap procedure and compare them with those of the
alternatives. We consider three different bivariate data
generating processes (DGP), with different configurations
of parameters and lag orders which reproduce stationary,
persistent or near-cointegrated processes. DGP1 is the sta-
tionary VAR(2) model defined in Eq. (4). DGP2 and DGP3
are a persistent VAR(5) model and a near-cointegrated
VAR(10) model, respectively; see Kilian (1998a) for simi-
lar specifications which are described in detail in the Ap-
pendix. In each DGP, we consider three distributions of the
errors, namely Gaussian, Student-5 and χ2

4 , which are ad-
equately centered and re-scaled. For each of the resulting
nine specifications, we generate M = 2000 replicates of
sizes T = 100 and 300. The sample sizes have been cho-
sen to be in concordance with those usually encountered
in practice when forecasting with real macroeconomic se-
ries. For each generated series, the lag order is estimated
according to the AIC. The maximum lag orders are equal
to 12 and 16 for T = 100 and 300, respectively. After es-
timating the lag order, the VAR parameters are estimated
by LS and bias-corrected using the asymptotic correction
of Pope (1990), taking into account the stationarity restric-
tion proposed byKilian (1998a). Forecast densities for hori-
zons of h = 1, . . . , 8 steps ahead are constructed under
the assumption of Gaussian errors without parameter un-
certainty, and computing the MSFE as in Eq. (3) using the
asymptotic approximation. Forecast densities are also con-
structed using B = 1999 bootstrap replicates obtained by
the backward and forward bootstrap procedures. The boot-
strap procedures are implemented using the asymptotic
bias and endogenous lag order corrections proposed byKil-
ian (1998a,c). In each case, we construct the corresponding
95% ellipsoids and Bonferroni cubes.

We calculate the empirical coverage of each forecast
region based on R = 5000 future values of the process
YT+h. Fig. 3 plots the averages through the Monte Carlo
replicates of the empirical coverages of the Bonferroni
regions constructed for all models considered when T =

100.3 We can observe that, regardless of the distribution
of the error and the procedure used to construct the cubes,
the average coverages are rather close to the nominalwhen

3 Results for T = 300 and the ellipsoids are not reported, to save
space. For the same reason, we do not report the results without bias and
endogenous lag-order corrections. They are qualitatively similar to those
reported in this paper. All of these results are available upon request.
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dealing with the VAR(2) models considered in this paper.
Note that, in this case, the number of parameters is rather
small and the roots of the model are far from the non-
stationary region. As a consequence, the uncertainty in
the LS estimator is not important when constructing the
forecast regions. When the errors are non-Gaussian, we
can see that the Gaussian coverages are slightly under
the nominal, while the bootstrap cubes maintain their
accuracy.

The second and third rows of Fig. 3 plot the cover-
ages corresponding to the persistent VAR(5) and near-
cointegrated VAR(10) models, respectively. These models
are interesting because the number of parameters is rather
large and they are close to the non-stationarity bounds.
We can observe that the coverages of the two bootstrap
cubes are rather similar, regardless of whether they use
the BR or the forward representation. The bootstrap cov-
erages are very close to the nominal, although they dete-
riorate with the forecast horizon in both models, a feature
that is more pronounced in the VAR(10) model. This dete-
rioration may be due to the fact that this model is close to
the non-stationary bounds, and consequently, it may have
more difficulties when forecasting in the long run. Fig. 3
also shows that, in the VAR(10) model, incorporating the
parameter uncertainty may be important even when the
errors are Gaussian. The coverages of the Gaussian cubes in
which the MSFEs do not incorporate the parameter uncer-
tainty are smaller than those of cubes constructed by any
of the procedures that take into account this uncertainty.
Also, when the errors are non-Gaussian, the coverages are
under-estimated by both cubes based on Gaussian densi-
ties.

To summarize, the simulations carried out in this sec-
tion show that the forward bootstrap procedure performs
better than traditional methods based on Gaussian densi-
ties, and performs no worse than the bootstrap procedure
based on the BR. In addition, they suggest that, as the per-
sistence of the system increases, it becomes important to
take the parameter uncertainty into account in order to ob-
tain coverages which are close to the nominal ones.

5. Bootstrap forecasts of returns, volatilities and corre-
lations in the DCC model

Multivariate GARCH models (MV-GARCH) are useful
for representing the dynamic dependence in the second
order moments of multivariate time series. Forecasting
correlations is a key issue in financialmanagement, deriva-
tive pricing models or hedging strategies; see for exam-
ple Engle (2009). The asymptotic validity of the forward
bootstrap procedure has been established above for lin-
ear VAR models. However, given that the bootstrap pro-
cedure considered in this paper does not rely on the BR, it
can be extended to deal with conditionally heteroscedas-
tic models; see Pascual, Romo, and Ruiz (2006) and Reeves
(2005) for bootstrap procedures in the context of forecast-
ing univariateGARCHmodels. In this section,we showhow
to use the forward bootstrap procedure to obtain forecast
intervals and regions for returns, volatilities and correla-
tions in the context of the Dynamic Conditional Correlation
(DCC) model proposed by Engle (2002). This implemen-
tation can also be seen as a multivariate extension of the
bootstrap procedure proposed by Pascual et al. (2006) for
univariate GARCHmodels. TheDCCmodel is a popularMV-
GARCH model that simplifies the estimation of the con-
ditional covariance by, first, estimating univariate GARCH
models for each variable in the system, and, second, esti-
mating the conditional correlationmatrix using the result-
ing standardized residuals.

In order to simplify the exposition, we will present the
results for the following VAR(p)-DCC(1, 1) model:

Yt = µ + Φ1Yt−1 + · · · + ΦpYt−p + εt

εt = H1/2
t at , (16)

where at is a sequence of N × 1 independent white noise
vectors with an identity covariance matrix, and Ht is a
N×N positive definite conditional covariancematrix given
by

Ht = DtRtDt , (17)

with Dt being a diagonal matrix containing the univariate
GARCH(1, 1) conditional standard deviations of each
variable in the system, given by

σi,t =


ωi + αiε

2
i,t−1 + βiσ

2
i,t−1, i = 1, . . . ,N. (18)

The matrix Rt is the conditional correlation matrix of the
standardized errors εs

t = D−1
t εt . In order to ensure the

positiveness of the correlation matrix, Rt is defined as
follows:

Rt = Q s
t QtQ s

t , (19)

where

Qt = (1 − α − β)Q + αεs
t−1ε

s′
t−1 + βQt−1, (20)

with Q being the unconditional correlation matrix. Finally,
Q s
t is a diagonal matrix, with its elements being the inverse

square root of the elements in the main diagonal of Qt . All
of the parameters are assumed to satisfy the stationarity
and positivity conditions.

The evolution of the conditional correlation matrix in
Eq. (19) is a nonlinear process where

RT+h|T = Q s
T+h|TQT+h|TQ s

T+h|T (21)

and

QT+h|T = (1 − α − β)Q + αET (εs
T+h−1ε

s′
T+h−1)

+ βQT+h−1|T , (22)

with ET (εs
T+h−1ε

s′
T+h−1) = ET (RT+h−1). Consequently, the

h-step-ahead forecast of the correlation matrix cannot
be solved forward directly so as to provide a convenient
method for forecasting. To overcome this problem, Engle
and Sheppard (2001) propose using the approximation
ET [Rt+h] = ET [Qt+h]. In this case, RT+h can be forecast
directly by

RT+h|T = (1 − α − β)Q
h−2
j=0

(α + β)j

+ (α + β)h−1RT+1|T . (23)
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Note that the one-step-ahead forecast of the correlation
matrix, RT+1|T , can be solved backward, which results in

RT+1|T = Q + α

T−1
j=0

β j(εT−jD−2
T−jε

′

T−j − Q ). (24)

On the other hand, the h-step-ahead forecast of the
volatility of each of the returns is given by

σ 2
i,T+h|T = ωi

h−2
j=1

(αi + βi)
j
+ (αi + βi)

h−1σ 2
i,T+1|T ,

i = 1, . . . ,N. (25)

An analogous expression is valid for the one-step-ahead
forecast of the ith variance, σ 2

i,T+1|T , which is given by

σ 2
i,T+1|T =

ωi

1 − αi − βi

+ αi

T−1
j=0

β
j
i


ε2
i,T−j −

ωi

1 − αi − βi


,

i = 1, . . . ,N. (26)

Eqs. (24) and (26) show that, given the model parameters,
the one-step-ahead forecasts of the conditional variances
and correlations depend only on the observed data
{Y1, . . . , YT }.

Using Eqs. (23) and (25), it is possible to construct
HT+h|T , after which, assuming that at is Gaussian, one can
obtain the forecast density of YT+h, which is given by

YT+h|Y1, . . . , YT ∼ N(YT+h|T ,HT+h|T ). (27)

In practice, the parameters in Eqs. (23) and (25) are
unknown and must be estimated. The density in Eq.
(27) does not incorporate the parameter uncertainty, and,
as a consequence, will underestimate the uncertainty
associated with the forecast of YT+h. In order to estimate
the parameters, in this paper, we first estimate the VAR(p)
parameters using LS, assuming that p is known. Then,
as was proposed by Engle (2002), the parameters of
the DCC model are estimated in two steps using the
VAR residuals as follows: (i) the parameters involved in
each conditional variance equation are estimated in a
univariate fashion usingQuasiMaximumLikelihood (QML)
by maximizing the Gaussian log-likelihood, and (ii) the
parameters governing the correlation dynamics are also
estimated by QML using the standardized residuals.4

On the other hand, note that, even if the errors were
truly Gaussian, the forecast density in Eq. (27) is valid for
h = 1 and provides an approximation for h ≥ 2. Fur-
thermore, when the errors are non-Gaussian, the future
densities of returns predicted using Eq. (27) could be inap-
propriate. Finally, even assuming Gaussian errors, it is not
straightforward to obtain forecast intervals and regions for
future volatilities and correlations. The forward bootstrap

4 The procedure can be modified adequately to deal with the cDCC
model of Aielli (2013); see Fresoli and Ruiz (2014) for a detailed analysis
of the finite sample properties.
procedure can be implemented to deal with the parameter
uncertainty and non-Gaussianity of the errors.

Next, we describe the bootstrap procedure for obtain-
ing forecast densities of the returns, volatilities and corre-
lations associated with YT+h.

Step 1. Select the orders of the VAR and GARCH
components and estimate the model parameters as
described above. Obtain at , which has an empirical
distribution function given byFa.

Step 2. Recursively obtain bootstrap replicates of the
standardized correlated residuals,εs∗

t , and the correlation
matrix as follows:

εs∗
t = R

∗
1
2

t a∗

t , t = 1, . . . , T , (28)

wherea∗
t are random draws with replacement fromFa and

R∗
t = Q s∗

t Q ∗
t Q

s∗
t with

Q ∗

t = (1 −α − β)Q +αεs∗
t−1εs∗′

t−1 + βQ ∗

t−1,

t = 2, . . . , T .

The recursion starts with R∗

1 = Q ∗

1 = Q , where Q contains
the sample correlations of {Y1, . . . , YT }.

Step 3. Obtain bootstrap replicates of εt and their
variances as follows:

σ 2∗
i,t = ωi +αiε∗2

i,t−1 + βiσ
2∗
i,t−1,

i = 1, . . . ,N, t = 2, . . . , T , (29)ε∗

i,t =εs∗
i,tσ

∗

i,t , i = 1, . . . ,N, t = 1, . . . , T , (30)

where σ 2∗
i,1 = ωi/(1 −αi − βi).

Step 4. Construct a bootstrap replicate of Yt as follows:

Y ∗

t = µ + Φ1Y ∗

t−1 + · · · + ΦpY ∗

t−p + ε∗

t , t = 2, . . . , T ,

where Y ∗
t = Yt for t = −p + 1, . . . , 0. Obtain bootstrap

estimates of the parametersθ∗
= [vec(µ∗), vec(Φ∗

1 ), . . . ,

vec(Φ∗
p ),α∗,β∗, . . . ,ω∗

1,α∗

1 ,
β∗

1 , . . . ,ω∗

N ,α∗

N ,β∗

N ] and the
sample correlation matrix, Q ∗, by fitting Eq. (20) to the
bootstrap replicate {Y ∗

1 , . . . , Y ∗

T }. Given the bootstrap esti-
mates of the parameters,θ∗, and the residuals of the fitted
VAR(p) model, {ε1, . . . ,εT }, compute the correlations and
variances at the forecast origin T as follows:

Q ∗

T = Q ∗
+α∗

T−1
j=0

β∗j(εT−j−1D∗−2
T−j−1ε′

T−j−1 − Q ∗)

σ 2∗
i,T =

ω∗

i

1 −α∗

i − β∗

i

+α∗

i

T−1
j=0

+β∗j
i

×

ε2
i,T−j−1 −

ω∗

i

1 −α∗

i − β∗

i


, i = 1, . . . ,N. (31)

Obtain also the value of the standardized error at T ,εs∗
T =

D∗−1
T εT . Keep the values of Q ∗

T ,σ 2∗
i,T ,εs∗

T andεT .
Step 5. Obtain future values of the correlated standard-

ized errors and the correlations through the following re-
cursions

εs∗
T+h|T =R∗

1
2

T+h|Ta∗

T+h (32)Q ∗

T+h|T = (1 −α∗
− β∗)Q ∗

+α∗εs∗
T+h−1|Tεs∗′

T+h−1|T

+β∗Q ∗

T+h−1|T ,
10



(a) ρ12,T+1 . (b) ρ12,T+2 .

(c) ρ12,T+20 .

Fig. 4. Kernel estimates of the empirical (continuous line) and bootstrap (discontinuous line) densities of (a) one-step-ahead, (b) two-step-ahead and (c)
twenty-step-ahead conditional forecasts of the correlations of a bivariate VAR(1)-DCC(1, 1) model with T = 1000 and Student-7 errors.
wherea∗

T+h are random draws with replacement fromFa
and R∗

T+h|T = Q s∗
T+h|T

Q ∗

T+h|T
Q s∗
T+h|T with εs∗

T |T = εs∗
T andQ ∗

T |T = Q ∗

T .
Step 6. Obtain bootstrap replicates of future errors εT+h

and their conditional variances as follows:σ 2∗
i,T+h|T = ω∗

i +α∗

iε∗2
i,T+h−1|T + β∗

i σ 2∗
i,T+h−1|T ,

i = 1, . . . ,N, t = 2, . . . , T , (33)ε∗

i,T+h|T =εs∗
i,T+h|Tσ ∗

i,T+h|T ,

i = 1, . . . ,N, t = 2, . . . , T , (34)

whereσ 2∗
i,T |T = σ 2∗

i,T andε∗2
i,T |T =ε∗2

i,T .
Step 7. The bootstrap replicate of the future value YT+h

is generated byY ∗

T+h|T = µ∗
+ Φ∗

1
Y ∗

T+h−1|T

+ · · · + Φ∗

p
Y ∗

T+h−p|T +ε∗

T+h|T , (35)

whereY ∗

T−j|T = YT−j for j > 0.
Step 8. Repeat steps 2–7 B times.
It is worth noting that the one-step-ahead bootstrap

forecasts, Q ∗

T+1|T and σ 2∗
i,T+1|T , incorporate only the param-

eter uncertainty, since the only components which vary
from one bootstrap replicate to another are the bootstrap
estimates of the parameters

α∗,β∗

and

ω∗

i ,α∗

i ,
β∗

i


,

while {ε1, . . . ,εT } is kept fixed among all bootstrap repli-
cates. As a consequence, all forecasts of returns, volatilities
and correlations are conditional on the observations of the
system at time T .

The bootstrap procedure for the DCC model is il-
lustrated for a bivariate VAR(1)-DCC(1, 1) model with
Student-7 errors, an interceptµ = (0, 0)′, and autoregres-
sive parameters given by vec(Φ1) = (−0.5, 0, 0.5, 0.5),
univariate GARCH parameters given by (ω1, α1, β1) =
(0.05, 0.05, 0.90) and (ω2, α2, β2) = (0.01, 0.10, 0.85),
conditional correlation parameters (α, β) = (0.1, 0.88),
and an unconditional correlation matrix vech(Q ) = (1,
0.5, 1). After generating a time series of size T = 1000
via this model, the bootstrap procedure is used to obtain
forecast densities of future returns, volatilities and corre-
lations. Here, we focus on forecast densities of the cor-
relations, because the forecast densities of the levels and
their conditional variances have been considered by Pas-
cual et al. (2006) in a univariate context already. Fig. 4
plots h-step-ahead bootstrap densities for h = 1, 2 and
20, obtained for the conditional correlation, ρ12,t , together
with the corresponding empirical densities, where the lat-
ter have been obtained by simulating 2000 future values
of the process. We can see that the one-step-ahead em-
pirical density has all of its mass concentrated at a fixed
point. The reason for this is that, in a DCC model, ρ12,T+1 is
observable with the information available at time T . How-
ever, by incorporating the parameter uncertainty involved
in ρ12,T+1, one can obtain an estimate of the density of
ρ12,t which suggests that the one-step-ahead uncertainty
can be rather large. Also note that the observed value of
ρ12,T+1 is very likely according to this bootstrap density.
Panel (b) of Fig. 4 plots the two-step-ahead bootstrap den-
sity, together with the empirical density of the realizations
of ρ12,T+2. We can observe that, as expected, the dispersion
of the bootstrap density is larger than that for T + 1. How-
ever, the empirical density of the two-step-ahead condi-
tional correlation is still more concentrated in the center of
the distribution than the bootstrap density. Finally, panel
(c) of Fig. 4 plots the bootstrap and empirical densities for
twenty-step-ahead conditional correlations. In this case,
we observe that the bootstrap density is a good approxima-
tion of the empirical density. It is also important to point
out that the uncertainty around ρ12,T+20 is so large that
11



Table 1
Descriptive statistics of quarterly US inflation (π ), unemployment (u) and GDP growth (g), observed
from 1948Q1 to 2009Q3, with p-values in parentheses.

Series Mean Sd Skewness Kurtosis KD ADFa Q (8) Q2(8)

π 0.91 0.83 0.79 5.43 1478.7
(0.00)

−3.66
(0.00)

130.09
(0.00)

129.45
(0.00)

u 0.56 0.15 0.15 3.45 33.26
(0.08)

−2.68
(0.07)

890.00
(0.00)

839.74
(0.00)

g 0.80 1.02 −0.10 4.20 19.85
(0.00)

−7.25
(0.00)

55.49
(0.00)

29.29
(0.00)

(π , u, g) 1.46 21.19 1669.4
(0.00)

a MacKinnon’s p-value approximation.
the correlation could be zero or even negative. Note that
the quality of the approximation of the bootstrap density
to the empirical density improves as the forecast horizon
increases. This is due to the fact that, as we forecast further
into the future, the role played by the error uncertainty be-
comes more important, to the detriment of the parameter
uncertainty. After all, this simulated example underscores
the flexibility of the forward bootstrap procedure for deal-
ing with more complicated models.

6. Empirical application

In this section, we use the forward bootstrap proce-
dure to construct forecast densities of quarterly US infla-
tion (πt ), the unemployment rate (ut ) and GDP growth (gt ),
observed from1948Q1 to 2011Q3.5 Inflation rates are com-
puted as usual by πt = log(IPIt/IPIt−1) × 100, where IPI is
the Implicit Price Deflator. Unemployment is measured by
the civilian unemployment rate. Finally, the GDP growth
is given by gt = log(GDPt/GDPt−1) × 100, where GDP is
the Real Gross Domestic Product.Where relevant, monthly
data have been transformed into quarterly data by tak-
ing the observations of the last month of the quarter. The
whole sample period has been split into an estimation pe-
riod from 1948Q1 to 2009Q3 (T = 247) and an out-of-
sample period from 2009Q4 to 2011Q3. Table 1 reports the
sample mean, standard deviation (sd), skewness and kur-
tosis of each of the series during the estimation period, to-
gether with the joint measures of skewness and kurtosis
proposed by Mardia (1970). Table 1 also displays the nor-
mality test statistics and corresponding p-values based on
the bootstrap procedure proposed by Kilian andDemiroglu
(2000) and denoted by KD. The normality is always re-
jected either individually or jointly at the 10% level. Table 1
also displays the Augmented Dickey-Fuller (ADF) statistics,
which reject the non-stationarity hypothesis for all series.
Finally, the Box-Ljung statistics of order 8 for the original
series and their squares, denoted by Q (8) and Q2(8) re-
spectively, are displayed in the last two columns of Table 1.
We can observe that there is a dynamic dependence in the
conditional mean. However, the Box-Ljung statistics of the
squared observations are smaller than those of the levels,
suggesting that the second order moments do not have
significant dependence further to those generated by the
conditional mean dependence. Hence, we fit a VAR model.

5 The data were obtained from the Federal Reserve Bank of St. Louis
webpage: www.stlouisfed.org.
Following Kilian (1998a, 2001) and Marcellino, Stock, and
Watson (2006), the lag order of the VAR is selected by the
AIC, with the maximum lag order being equal to 14, which
choosesp = 4. Given that normality has been rejected, the
traditional approach to forecasting using Gaussian densi-
ties may be misleading, and it is advisable to obtain boot-
strap forecast densities. Consequently, the forward pro-
cedure with the bias and lag-order corrections is imple-
mented for constructing out-of-sample bootstrap forecast
densities for h = 1, . . . , 8.

For each of the three variables considered two-by-two,
Fig. 5 plots 95% one-step-ahead bootstrap forecast ellip-
soids and cubes for 2009Q4 (one step ahead) and 2011Q3
(eight steps ahead), together with the corresponding re-
gions obtained under the assumption of Gaussian errors.
Fig. 5 also plots the HDRs and the Bonferroni cubes which
have been modified to take into account the correlations
between the variables. In each case, the corresponding ob-
served out-of-sample values are displayed by a dot. First,
we can see that the Gaussian and bootstrap ellipsoids are
rather similar, with the exception of the one-step-ahead
GDP growth-unemployment ellipsoids, in which case the
bootstrap is larger than that obtained under the assump-
tion of Gaussianity. Also note that, when h = 1, the HDRs
suggest non-elliptical densities, but when h = 8, HDRs
are closer to the corresponding ellipsoids, suggesting that
the Gaussianity may be plausible as the forecast horizon
increases. Second, with respect to the Bonferroni cubes,
note that the Gaussian cubes are much smaller than those
obtained using the forward bootstrap procedure. Finally,
when looking at the modified Bonferroni cubes, we can
observe that, when h = 1, they only differ from the cor-
responding original cube in the case of the GDP growth-
unemployment region. It is worth mentioning that, when
looking at whether or not the regions contain the true
observations, we observe that all regions contain them
when h = 8. However, when h = 1, the GDP growth-
unemployment observation falls outside the Gaussian
regions, but is close to the boundary of the bootstrap ellip-
soid and cube, though clearly within the bounds of modi-
fied Bonferroni cube.

Finally, we compare the empirical coverages obtained
when constructing the forecast densities assuming Gaus-
sian errors with and without parameter uncertainty and
when implementing the backward and forward bootstrap
procedureswith the bias and lag-order corrections. For this
purpose, we carry out a rolling window estimation with
T = 100 observations, starting with data from 1948Q1
to 1972Q3. For each estimation period, we construct joint
12



(a) Inflation-GDP growth, h = 1. (b) Inflation-GDP growth, h = 8.

(c) GDP growth-Unemployment, h = 1. (d) GDP growth-Unemployment, h = 8.

(e) Inflation-Unemployment, h = 1. (f) Inflation-Unemployment, h = 8.

Fig. 5. 95% Gaussian ellipsoids and cubes (discontinuous lines), bootstrap ellipsoids and cubes (continuous lines), corrected bootstrap cubes (dotted lines)
and HDRs (dotted-discontinuous lines) for one-step-ahead (first column) and eight-step-ahead (second column) forecasts of Inflation-GDP growth (first
row), GDP growth-Unemployment (second row) and Inflation-Unemployment (third row).
Fig. 6. Empirical coverages of Bonferroni cubes for US inflation, unemployment and GDP growth based on rolling window estimates with T = 100
observations: (i) Gaussian without parameter uncertainty (♦), (ii) Gaussian with asymptotic parameter uncertainty (▽), (iii) backward bootstrap (◦), (iv)
forward bootstrap (�) and (v) corrected cube (×). Nominal coverage: 95%.
out-of-sample 95% ellipsoids and Bonferroni cubes for the
three variables in the system for h = 1, . . . , 8. Therefore,
for each h and procedure, we obtain 148 out-of-sample re-
gions. The empirical coverages for each h and procedure
are calculated by counting how many regions contain the
true out-of-sample observation. The results are plotted in
Fig. 6. First of all, we observe that the coverages of the
Gaussian cubes are clearly smaller than those of the boot-
strap ones. In concordancewith theMonte Carlo results re-
ported above, this behavior of the Gaussian regions could
be expected, due to the non-Gaussianity of the forecast er-
rors and the persistence of the estimated model. Note also
13



that the performances of all bootstrap regions are remark-
ably similar. It is obvious that there is no gain from us-
ing the BR. Finally, the coverages obtained when using the
modified cube are similar to the original ones, though, as
we have seen before, their shapes seem to be more infor-
mative. After all, the results reported in Fig. 6 are in line
with those obtained using simulated data, in the sense that
there are no large differences between using the forward
bootstrap procedure and that based on the BR.

7. Conclusions

In this paper, we establish the asymptotic validity and
analyze the finite sample performance of the multivariate
extension of the bootstrap procedure proposed by Pascual
et al. (2004a) for constructing forecast densities in
multivariate VAR(p) models. The main attraction of the
new bootstrap procedure is that it does not require the
backward representation. As a result, we establish its
asymptotic validity in non-Gaussian models. Furthermore,
the forward procedure can be implemented inmultivariate
models without a BR, as we illustrate by computing
forecast intervals for the conditional correlations in a DCC
model. Finally, ourMonte Carlo experiments show that the
procedure works properly for incorporating the parameter
uncertainty and is robust in the presence of non-Gaussian
errors. When compared with alternatives, the forward
bootstrap procedure is comparable with other bootstrap
procedures based on the BR, and clearly better than
procedures based on Gaussian forecast errors. On the other
hand, the performance of the forward bootstrap procedure
is comparable with the latter when the errors are Gaussian
and the VAR model has roots close to the unit circle,
and clearly better in the presence of highly persistent
VARmodels. Consequently, applied researchers are best to
construct forecast densities using the forward bootstrap
procedure, regardless of whether there is evidence of fat
tails or skewness in the forecast error distribution. Our
empirical example shows that there might be important
differences between theGaussian andbootstrap coverages.
Furthermore, the forward procedure is computationally
simple and asymptotically valid, and is consequently an
attractive alternative when dealing with density forecasts
in multivariate models.

The flexibility of the procedure proposed in this paper
suggests its implementation in other multivariate models.
For example, as Pascual, Romo, and Ruiz (2004b) proposed
for univariatemodels, it can also be implemented to obtain
forecast regions for the original observations when a VAR
model is fitted to log-transformed observations; see Ariño
and Franses (2000) and Bardsen and Lütkepohl (2011).

Finally, further effort should be directed into the con-
struction of bootstrap forecast regions. In this sense, it is
worth noting that the prediction ellipsoids are only ap-
propriate when the distribution of the future values of
the variables in the system is approximately multivari-
ate Gaussian. When the distribution of YT+h departs from
Gaussianity, the quality of such approximations deterio-
rates. The Bonferroni cubes do provide a better solution by
capturing the asymmetry of the distribution. However, the
shape of these cubes could not be appropriate when the
variables are correlated, and usually their volumes are too
high. Consequently, it would be interesting to obtain re-
gions that depart from either the elliptical or rectangular
shapes.
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Appendix

Themodels used in theMonte Carlo simulations are the
following.
(a) Stationary VAR(5) model

The autoregressive matrices are given by vec(Φ1) =

(0.6337, −0.3424, 0.4688, 0.6755),vec(Φ2) = (−0.0401,
0.3005, 0.0100, 0.1967), vec(Φ3) = (0.4806, −0.5201,
0.2582, −0.2529), vec(Φ4) = (0.2952, 0.2041, 0.2734,
0.0241) and vec(Φ5) = (−0.2299, 0.1266, −0.1449,
0.3240), where vec is the column stacking operator. The
dominant root of |I2 − Φ1(z−1) − · · · − Φ5(z−5)| = 0 is
0.89. The intercept is given by µ = (0.0053, 0.0018)′. Fi-
nally, the contemporaneous covariance matrix of the error
is given by vech(Σε) = 10−3

× (0.5412, 0.4045, 0.4649)′.
(b) Near-cointegrated VAR(10)

The autoregressive matrices are given by vec(Φ1) =

(1.1763, 0.0542, 0.7126, 1.2874), vec(Φ2) = (−0.2624,
−0.0668, −0.7618, −0.3596), vec(Φ3) = (0.0250,
−0.0160, 0.0305, −0.0168), vec(Φ4) = (0.0000, 0.0939,
0.0830, −0.0510), vec(Φ5) = (0.1485, −0.0512, 0.3678,
0.0656), vec(Φ6) = (−0.2795, −0.0278, −0.7140,
0.1410),vec(Φ7) = (0.2671, −0.1424, 0.3072, −0.3053),
vec(Φ8) = (−0.0786, 0.4398, 0.2189, 0.4045), vec(Φ9)
= (−0.1181, −0.3490, −0.1909, −0.2209), vec(Φ10) =

(0.0915, 0.0828, −0.0229, 0.0071). The dominant root of
|I2 − Φ1(z−1) − · · · − Φ10(z−10)| = 0 is 0.97 and the
intercept is given by µ = (0.1121, 0.1116). Finally, the
vech(Σε) = 10−4

× (0.025, 0.009, 0.387).
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