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Bayesian estimation of inefficiency heterogeneity in stochastic
frontier models

Jorge E. Galán • Helena Veiga • Michael P. Wiper

Abstract Estimation of the one sided error component in

stochastic frontier models may erroneously attribute firm

characteristics to inefficiency if heterogeneity is unac-

counted for. However, unobserved inefficiency heteroge-

neity has been little explored. In this work, we propose to

capture it through a random parameter which may affect

the location, scale, or both parameters of a truncated nor-

mal inefficiency distribution using a Bayesian approach.

Our findings using two real data sets, suggest that the

inclusion of a random parameter in the inefficiency distri-

bution is able to capture latent heterogeneity and can be

used to validate the suitability of observed covariates to

distinguish heterogeneity from inefficiency. Relevant

effects are also found on separating and shrinking indi-

vidual posterior efficiency distributions when heterogeneity

affects the location and scale parameters of the one-sided

error distribution, and consequently affecting the estimated

mean efficiency scores and rankings. In particular,

including heterogeneity simultaneously in both parameters

of the inefficiency distribution in models that satisfy the

scaling property leads to a decrease in the uncertainty

around the mean scores and less overlapping of the pos-

terior efficiency distributions, which provides both more

reliable efficiency scores and rankings.

Keywords Stochastic frontier models � Efficiency �
Unobserved heterogeneity � Bayesian inference

JEL Classification C11 � C23 � C51 � D24

1 Introduction

Stochastic frontier models, first introduced in Aigner et al.

(1977) and Meeusen and van den Broeck (1977), are

important tools for efficiency measurement. These models

require the specification of an economic, functional form

based on a production or cost function which includes a

composite error term. This error term can be decomposed

into two parts, firstly a two-sided, idiosyncratic error and

secondly, a non-negative inefficiency component. Mea-

sures of efficiency are obtained from this one-sided error,

which is typically assumed to follow some specific distri-

bution. The most common distributions for the one-sided

error are the half-normal (Aigner et al. 1977), exponential

(Meeusen and van den Broeck 1977), truncated normal

(Stevenson 1980), and gamma (Greene 1990).

However, the estimated inefficiency component often

includes some firm characteristics other than outputs,

inputs, or prices defined from the production or cost

function, which should not be attributed to inefficiency.

These are exogenous variables (e.g. type of ownership,

GDP level in the country of operation) that have an effect

on the technology used by firms or directly on their inef-

ficiency. If these variables are not taken into account in the

model specification, this may affect the estimation of the

inefficiencies or of the frontier significantly.

Firm characteristics can be modeled in the frontier if

they imply heterogenous technologies or in the one-sided

error component if they affect the inefficiency. In the
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former case, covariates are directly included in the func-

tional form and the main interest is to model unobserved

heterogeneity (see Greene 2005). In the case of heteroge-

neity in the inefficiency, covariates are usually included in

the parameters of the one-sided error distribution (see

Huang and Liu 1994).

Heterogeneity in stochastic frontier models has also

been studied in the Bayesian context. The Bayesian

approach to stochastic frontiers introduced by van den

Broeck et al. (1994) presents advantages in terms of for-

mally deriving posterior densities for individual efficien-

cies, incorporating economic restrictions, and in the easy

modeling of random parameters through hierarchical

structures. Hierarchical models have been used to capture

heterogeneous technologies (see Tsionas 2002) and heter-

ogeneity in the inefficiency has been considered through

covariates in the distribution of the non-negative error

component (see Koop et al. 1997). Modeling observed

heterogeneity using non parametric and flexible mixtures

of inefficiency distributions are other interesting recent

contributions (see Griffin and Steel 2004, 2008).

On the other hand, unobserved heterogeneity in the non-

negative error component has been very little explored in

the literature from a frequentist or a Bayesian approach.

However, ignoring its existence means that heterogeneity

which is not captured by observed covariates is wrongly

attributed to inefficiency and consequently leads to bad

efficiency estimates.

In this work, we propose, within a Bayesian framework,

the inclusion of a random parameter in the distribution of

the inefficiency with the aim of capturing unobserved

heterogeneity. This parameter has three characteristics. It

can be allowed to be time-varying, it can be included

simultaneously with observed covariates in the inefficiency

distribution in order to distinguish observed from unob-

served heterogeneity and it can indicate whether or not

observed covariates do a good job in capturing the existing

heterogeneity.

Regarding the one-sided error, we use a truncated nor-

mal distribution, which is one of the most used distribu-

tions in studies involving observed heterogeneity in the

inefficiency. In particular, covariates are often included in

the location parameter of this distribution following the

Battese and Coelli (1995) model. However, it is not clear in

which parameter of the inefficiency distribution heteroge-

neity should be included. Wang (2002) proposed modeling

the covariates simultaneously in the location and scale

parameters of the truncated distribution. Alvarez et al.

(2006) analyze a particular specification of truncated nor-

mal distributed inefficiencies that has the property of pre-

serving the shape while changing the scale of the

inefficiency, and also estimate a model where heteroge-

neity is captured only by the scale parameter of this

distribution. We think that at an individual level, the

moments of the distributions affected have different effects

on the posterior efficiency distributions of each firm. Since

this is possible to be studied from a Bayesian context, a

second aim of this work is to analyze the effects on the

posterior efficiency distributions of including both

observed and unobserved heterogeneity in the location,

scale or both parameters of the truncated normal distribu-

tion. For the latter case, we extend to the Bayesian

framework the scaling property model proposed by Alvarez

et al. (2006). This allows us to think of the inefficiency as

being composed of two parts, one component capturing

natural managerial skills and other component which

depends on observed and unobserved firm characteristics.1

For illustration, we use two data sets which have been

previously analyzed only in the frequentist context. The

first data set is from a controversial report by the World

Health Organization (WHO) on the efficiency of national

health systems (see WHO 2000), while the second evalu-

ates the economic efficiency of US domestic airlines. These

two applications allow us to explore our models in different

directions. In particular, in the WHO application, since the

observed covariates are inefficiency related and time

invariant, we include them in different parameters of the

inefficiency distribution together with a time invariant

random parameter. On the other hand, in the second

application observed heterogeneity variables are time-

varying and frontier drivers, so the unobserved heteroge-

neity component is allowed to change over time and its

effects in the posterior efficiency distributions are evalu-

ated when it is included in the location, scale or both

parameters of the one-sided error distribution.

Our proposal of using a random parameter is successful

in capturing unobserved inefficiency heterogeneity whether

its is modeled alone or together with observed covariates.

Moreover, we find that capturing heterogeneity using

models that preserve the scaling property leads to less

uncertainty around mean efficiency scores and less over-

lapping of posterior efficiency distributions.

The rest of this paper is organized as follows. Section 2

presents a brief literature review on heterogeneity in sto-

chastic frontier models and the proposed model. Section 3

presents the Bayesian inference and model selection cri-

teria. Section 4 reports the applications to the WHO and the

US domestic airlines data sets. Finally, in Section 5 we

provide conclusions and consider some possible extensions

of our approach.

1 We also studied these effects using models that follow half-normal

and exponential distributions for the inefficiency. These results are

available from the authors upon request.
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2 Inefficiency heterogeneity in stochastic frontier

models

2.1 A brief literature review

The original stochastic frontier model introduced by Aig-

ner et al. (1977) and Meeusen and van den Broeck (1977)

has the following form:

yit ¼ xitbþ vit � uit ð1Þ

where yit represents the output of firm i at time t, xit is a

vector that contains the input quantities used in the pro-

duction process, vit is an idiosyncratic error that is typically

assumed to follow a normal distribution and uit is the one-

sided component representing the inefficiency and follows

some non-negative distribution.

Firm specific heterogeneity not specified in (1) can be

mistaken for inefficiency if it is not identified. Heteroge-

neity can either shift the efficiency frontier or change the

location and scale of the inefficiency estimations (see

Kumbhakar and Lovell 2000; Greene 2008, for complete

reviews). In general, when external factors are supposed to

capture technological differences and these are out of the

firms’ control, heterogeneity should be specified in the

frontier. In this case, the main interest is capturing unob-

served effects. In the classical context, this has been

modeled through fixed and random effects or models with

random parameters (see Greene 2005). Bayesian approa-

ches have been based on frontier models with hierarchical

structures (see Tsionas 2002; Huang 2004).

When heterogeneity is more related to efficiency and

thus more likely to be under firms’ control, then this should

affect directly the one-sided error term. In the parametric

context, inefficiency heterogeneity is often included in the

location or scale parameters of the inefficiency distribution.

For example, covariates shift the underlying mean of

inefficiency in Kumbhakar et al. (1991), Huang and Liu

(1994) and Battese and Coelli (1995). A reduced form of

these models assumes that the location parameter of the

distribution of uit depends on vectors of covariates zit and

parameters d as follows:

uit �Nþðlit; r
2
uÞ

lit ¼ zitd:
ð2Þ

The scale parameter of the one-sided error component

has also been modeled as a function of firm characteristics.

Reifschnieder and Stevenson (1991) provided one of the

first linear specifications where this parameter varies across

firms. A similar model was proposed by Caudill et al.

(1995) with the aim of treating heteroscedasticity in

frontier models. These authors found biased inefficiency

estimations when heteroscedasticity was not accounted

for.2 The proposed model specifies the variance of a half-

normal distributed inefficiency as an exponential function

of time invariant covariates:

ui�Nþð0; r2
ui
Þ

rui
¼ ru � expðzicÞ:

ð3Þ

Although the original proposal in (3) was presented in a

cross sectional framework, it can be easily extended to

include time-varying covariates and inefficiencies (see

Hadri et al. 2003a, b, for an extension to panel data). It is

also possible to define uit ¼ ui � gðtÞ where g(t) is a

function of time (e.g. the parametric funtion introduced

by Battese and Coelli 1992). The specification in (3) has

the characteristic of changing the scale of the inefficiency

distribution while preserving its shape and is referred in the

literature as the scaling property (see Wang and Schmidt

2002; Alvarez et al. 2006). In general, this property allows

us to think about inefficiency as being composed of two

parts: uit ¼ u�it � f ðzit; dÞ. The first component is a base

inefficiency, which is not affected by firm characteristics

and captures random managerial skills, while the second

component is a function of heterogeneity variables

determining how well management is performed under

these conditions. Another important feature of this property

is that the interpretation of the effects of covariates on the

inefficiency is direct and independent of the inefficiency

distribution. The scaling property also holds when the

inefficiency is exponentially distributed (see Simar et al.

1994), or in a particular case of truncated normal

inefficiency where both parameters are an exponential

function of firm characteristics as follows (see Wang and

Schmidt 2002; Alvarez et al. 2006):

uit �Nþðlit; r
2
uit
Þ

lit ¼ l � expðzitdÞ
ruit
¼ ru � expðzitdÞ:

ð4Þ

Specification (4) for the inefficiency is a variation of a

previous proposal by Wang (2002) where both the mean and

the variance of truncated normal inefficiencies are

simultaneously affected by the same covariates but with

different coefficients. Other authors have also proposed

heterogeneity specifications that include firm characteristics

in the variance of the idiosyncratic error with the aim of

treating heteroscedasticity in frontier models (see Hadri,

1999).

In the Bayesian context, Koop et al. (1997) presented

different structures for the mean of the inefficiency com-

ponent as Bayesian counterparts to the classical fixed and

random effects models. One of these specifications is the

2 In a previous study, Caudill and Ford (1993) also found biased

estimates of the frontier parameters.
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varying efficiency distribution model, which includes firm

specific covariates in the parameter of an exponential dis-

tribution. These covariates link the firm effects and only

the inefficiencies of firms sharing common characteristics

are drawn from the same distribution. The distribution

below presents a time invariant inefficiency that depends

on vectors of binary covariates zi and parameters c:

ui�Exðk�1
i Þ

ki ¼ expðzicÞ:
ð5Þ

Since this model is intended to be a counterpart of a

frequentist random effects model, it is specified to obtain

time invariant inefficiencies. However, as in the case of (3),

it is possible to define uit ¼ ui � gðtÞ or to include time-

varying covariates. Also, it would be possible to draw

inefficiencies for every firm and period of time from the

distribution with a firm specific parameter.

The literature on modeling unobserved firm character-

istics in the inefficiency is still scarce. In the frequentist

context, Greene (2005) proposed a model where the coef-

ficients of the observed covariates are allowed to be firm

specific and vary randomly. In the Bayesian framework,

Koop et al. (1997) propose a model that may capture

unobserved inefficiency heterogeneity. In this case, the

inefficiency is assumed to be exponentially distributed with

firm specific mean and independent priors.

2.2 The model

In this section, we present a general stochastic frontier

model for panel data that allows the modeling of both

observed and unobserved inefficiency heterogeneity. For

the one-sided error we use an exponential specification of a

truncated normal distribution where the location, scale, or

both parameters can model firm heterogeneity. The general

model in the case of a production function is:

yit ¼ xitbþ z�itdþ vit � uit; vit �Nð0; r2
vÞ

uit �Nþðl � expðzitcI1 þ sitI2Þ; r2
u � ðexpðzitcI3 þ sitI4ÞÞ2Þ;

ð6Þ

where yit is the output of firm i at time t, xit is the row

vector of input quantities, zit
* is a row vector of the

observed heterogeneity variables that affect the technol-

ogy; zit is a row vector of observed covariates with effects

in the inefficiency; sit is a random parameter that captures

time-varying unobserved firm effects in the inefficiency;

and, b; d, and c are the corresponding parameter column

vectors. I1 to I4 are indicator variables taking the value of 1

when either observed covariates or unobserved heteroge-

neity are accounted for in the location or scale parameters,

respectively, and 0 otherwise.

This model nests other specifications in the literature

that capture only observed heterogeneity. When I3 and I4

are equal to zero, the model reduces to an exponential

specification of the Battese and Coelli (1995) model in (2).

If I1 and I2 are equal to 0, the model allows only the scale

parameter to include heterogeneity. This specification has

only been studied before by Alvarez et al. (2006) in the

framework of testing the scaling property. If additionally

the location parameter l is set to zero, our model becomes

an extension of the half-normal model proposed by Caudill

et al. (1995) in (3). Finally, if both parameters are allowed

to include simultaneously the same type of heterogeneity

(I1,I3 = 1 or/and I2,I4 = 1) our proposal becomes an

extension of the scaled Stevenson model in (4). In case

heterogeneity is considered time invariant, the vector of

observed covariates zit and the unobserved heterogeneity

parameter sit can be set to vary only across firms.

It is easy to extend this specification to a hierarchical

model which also allows for additional, unobserved, firm

effects in the technology. However, in practical applica-

tions, mean posterior efficiencies are found to be very close

to 1 for almost all firms (see Huang 2004; Tsionas 2002, for

similar results). From our point of view, these results are

inconclusive as they do not allow us to get reliable effi-

ciency rankings.

3 Bayesian inference

The use of Bayesian methods in stochastic frontier analysis

was introduced by van den Broeck et al. (1994) and has

become very common in recent applications. Bayesian

approaches have various attractive properties and, in par-

ticular, restrictions such as regularity conditions are easily

incorporated and parameter uncertainty is formally con-

sidered in deriving posterior densities for individual

efficiencies.

All the models derived from the general specification in

(6) are fitted by Bayesian methods. In order to do this, we

first need to introduce prior distributions for the model

parameters. We assume proper but relatively disperse prior

distributions throughout. In particular, the distributions

assumed for the parameters in the frontier function are as

follows: b�Nð0;RbÞ; d�Nð0;RdÞ with diffuse, inverse

gamma priors for the variances. Finally, the variance of the

idiosyncratic error term is inverse gamma, that is equiva-

lent to r�2
v �Gðar�2

v
; br�2

v
Þ with low values for the shape

and scale parameters.

Regarding observed inefficiency heterogeneity, the

distribution of the one-sided error component for the

truncated normal model is: uitjc; zit�Nþðl � expðzitcÞ;
r2

u � ðexpðzitcÞÞ2Þ, where l and ru
2 are defined as in
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Griffin and Steel (2007). When models include heter-

ogeneity in the inefficiency c is Nð0;RcÞ distributed

with a diffuse prior for the covariance matrix.

In the case of unobserved heterogeneity in the ineffi-

ciency, the unknown parameter is specified to have a

hierarchical structure: sit �Nðs; r2
sÞ, where s�Nð0; 10Þ

and rs
-2* G(0.5,0.5). The random parameter sit can be

defined to be either time-varying or not.

The complexity of these models makes it necessary to

use numerical integration methods such as Markov Chain

Monte Carlo (MCMC), and in particular the Gibbs sam-

pling algorithm with data augmentation as introduced by

Koop et al. (1995). For our models, implementation was

carried out using the WinBUGS package following the

general procedure outlined in Griffin and Steel (2007). For

models not considering unobserved heterogeneity in the

inefficiency, the MCMC algorithm involved 50,000

MCMC iterations where the first 10,000 were discarded in

a burn-in phase. On the other hand, for models including

our proposal to capture unobserved heterogeneity, hyper-

parameters s and rs
-2 presented slow convergence and high

autocorrelation. In particular, if initial values are set far

from the posterior mean, convergence is observed only

after 50,000 iterations and autocorrelations of order around

20 are identified. Therefore, for these models 550,000

iterations were used for the MCMC, thinning every 25

iterations and discarding the first 50,000. Finally, although

we do not display the details here, sensitivity analysis of

our results to changes in other prior parameters was also

carried out. Results showed that the posterior inference was

relatively insensitive to small changes in these parameters.

3.1 Model selection

The different models are evaluated in terms of three cri-

teria, the DIC3, which is a variant of the Deviance Infor-

mation Criterion (DIC), the Log Predictive Score (LPS)

and the Mean Square Error (MSE) of predictions.

The standard choice for comparing competing models in

Bayesian statistics is to use the Bayes factor, that is the

ratio of the posterior odds to the prior odds in favour of the

first model. However, the accurate calculation of the Bayes

factor is very difficult in complex models which need

MCMC techniques for parameter estimation such as those

we examine here. Therefore, we prefer to use an alternative

Bayesian model choice criterion based on the DIC3. This is

a variant of the DIC which is a within sample measure of fit

introduced by Spiegelhalter et al. (2002) commonly used in

Bayesian analysis.

Defining the deviance of a model with parameters h as

D(h) = -2 log f(y|h), where y are the data, then DIC ¼
2DðhÞ � Dð�hÞ where �h represent some mean posterior

parameter estimates. However, the DIC is well known to

possess a number of stability problems in certain cases

such as random effects models and mixture models (see

Celeux et al. 2006). In particular, we can note here that the

representation we use for the parameters of the inefficiency

term is a type of random effects model in the cases where

we include an unobserved heterogeneity term. Furthermore

and more recently, Li et al. (2012) also remark on the lack

of robustness of the original DIC in models with data

augmentation such as those we examine here. For such

cases, Celeux et al. (2006) recommend the use of the DIC3

criterion as one of the best choices among various alter-

natives to the DIC. The formulation for this criterion is:

DIC3 ¼ �4Eh½log f ðyjhÞjy� þ 2 logbf ðyÞ:

This criterion is based on the expected deviance and an

estimate of the predictive density f̂ ð�Þ which are both easy

and stable to calculate from the MCMC output provided by

WinBugs.

We also compare the models in terms of their predictive

performance. In order to do this, we calculate the LPS and

the MSE of predictions. The LPS is a proper scoring rule

developed in Good (1952) that assesses the post-sample

behaviour of the models associated with the Kullback-

Leibler divergence between the actual sampling density

and the predictive density (see Griffin and Steel 2004;

Ferreira and Steel 2007, for previous applications of LPS in

stochastic frontier models).3 In general, LPS examines how

well a model performs when its implied predictive distri-

bution is compared with observations not used in the

inference sample. The procedure consists of partitioning

the sample into two sets. The first, is a training data set

used to fit the model and the second is a prediction set used

to evaluate the predictive performance of the first set. In

our implementation for the panel data models, the training

data set contains the observations up to the penultimate

time period at which data are observed for each firm. Then,

if ti represents the index of the last time point when data are

observed for firm i, the predictive set contains the set of

observations y1;t1 to yk;tk for the k firms in the sample. The

average of the log predictive density functions evaluated at

observed out-of-sample values are calculated and the for-

mulation is the following:

LPS ¼ �1

k

X
k

i¼1

log f ðyi;ti jprevious dataÞ

Finally, the calculation of the predictive MSE involves

again the partition of the sample into two parts as earlier.

The models are fitted using the training sample and their

3 More details on this criterion and an approximate lower bound for

the LPS are described in Fernandez et al. (2001).
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estimated parameters are used to predict the data for the

last observation of every firm. The MSE is calculated as

follows:

MSE ¼ 1

k

X
k

i¼1

yi;ti � E ðb0xi;ti � ui;tiÞjprevious data
� �� �2

;

where k is the number of firms as earlier and ui;ti is the

mean of the inefficiency component, which is different

depending on the distribution and varies with the firm for

models with heterogeneity in the inefficiency.

4 Empirical applications

In this section, we analyze two data sets, estimate the

models presented in Sect. 2 and interpret the results.

4.1 Application to WHO data set

Evans et al. (2000) estimated the technical efficiency of

191 countries in the provision of health by using a classical

fixed effects stochastic frontier model for an unbalanced

panel. The original data set covers 5 years from 1993 to

1997 and the production function model proposed was the

following:

lnðDALEitÞ ¼ ai þ b1 lnðHExpitÞ þ b2 lnðEducitÞ

þ b3

1

2
ln2ðEducitÞ þ vit;

where DALE is the disability adjusted life expectancy, a

measure that considers mortality and illness and represents

health output. Input amounts are measured by HExp and

Educ, which are health expenditure and the average years

of education, respectively.

Their results were reported by the WHO and suffered

from several criticisms since the authors did not consider

the effects of heterogeneity in their study, even though

the sample included countries with very different char-

acteristics such as Switzerland, China, or Zimbabwe. This

led to unexpected country health system performance

rankings.

Greene (2004) proposed to capture differences among

countries in this sample by including eight exogenous vari-

ables: Tropics, PopDen, GEff, Voice, Gini, GDP, PubFin,

and OECD. Tropics is a binary variable that takes the value 1 if

the country is located in the tropic and 0 otherwise. This is out

of the control of the countries and distinguishes them by the

type of diseases found in this region. PopDen is the country

population density, which may capture effects of dispersion

but also congestion in the provision of health. These two

variables are characteristics of the health provision in each

country and then they are included as covariates in the pro-

duction function following Greene (2004). Regarding the

other variables, GEff is an indicator of government efficiency;

Voice is a measure of political democratization and freedom;

Gini is the income inequality coefficient; GDP is the per capita

country gross domestic product; PubFin is the proportion of

health care financed with public resources, and OECD is a

binary variable that takes the value 1 if the country belongs to

the organization and 0 otherwise. These variables are policy

related and more likely to be drivers of the efficiency in the

sense that income, inequality and government characteristics

may affect the way health services are managed. However, in

this field there is no theory on where these variables should be

placed at (see Greene 2004).4

For this application the general model is:

lnðDALEitÞ ¼ aþb1 lnðHExpitÞþb2 lnðEducitÞ

þb3

1

2
ln2ðEducitÞþb4Tropicsi

þb5 lnðPopDeniÞþ zidþ vit� uit;vit�Nð0;r2
vÞ

uit�Nþðl � expðzicI1þ siI2Þ;r2
u

� ðexpðzicI3þ siI4ÞÞ2Þ:
ð7Þ

We begin our analysis by estimating models where

unobserved heterogeneity is not considered, that is

I2,I4 = 0. Model I is the heterogeneity free base model

where I1,I3, and d are also equal to zero. Model II

includes the covariates in the frontier as technology

heterogeneity variables but not in the inefficiency

(I1,I3 = 0). Models III to V consider observed

heterogeneity in the inefficiency distribution and not in

the production function (d¼ 0). In particular, Model III

does it only through the location parameter, that is I1 = 1

and I3 = 0. Model IV includes the observed covariates

through the scale parameter (I1 = 0, I3 = 1). Finally,

Model V preserves the scaling property since both

parameters of the inefficiency distribution includes the

same covariates and coefficients (I1,I3 = 1).

Table 1 reports the estimation results. They show that

models considering observed heterogeneity improve from

the base model in terms of fit and predictive performance.

In particular, models including heterogeneity in the inef-

ficiency distribution exhibit the lowest values for the three

model comparison criteria. This suggests that covariates in

zi are inefficiency related. Regarding the estimated frontier

coefficients, we observe decreasing returns to scale in

health provision for all models and countries. This implies

that efforts of countries in terms of increasing health

expenditure or education are reflected in less than propor-

tional life expectancy improvements. Results for the

4 After performing some tests Greene (2004) chose a model that

includes Gini and GDP in the inefficiency and the rest of covariates in

the production function.

7



inefficiency covariates suggest that higher equality,

income, government efficiency or pertaining to the OECD

increase the efficiency of health provision. However,

higher levels of democracy and public finance of health

services lead to lower efficiency.

Focusing on models III to V which are those including

inefficiency heterogeneity, we observe that the best fit and

predictive performance is obtained by the scaling property

model (Model V). Results for the predictive efficiency dis-

tribution suggest that including covariates in the location

parameter of the inefficiency increases its mean, while

including them in the scale parameter decreases its disper-

sion. In particular, the scaling property model which includes

covariates in both parameters of the one-sided error distri-

bution presents the highest mean and the lowest dispersion of

the predictive efficiency distribution among all models.

The most clarifying insights come from the efficiency

rankings since they allow country comparisons. Figure 1

shows efficiency rankings’ scatter plots comparing the base

model against the other four models. For Model II, which

includes the covariates in the frontier, most countries

preserve a similar position except for small changes in the

middle rankings. Spearman’s rank correlation with the base

model is 0.92. In contrast, models III to V differ widely

from the base model in the top and middle positions and the

Spearman’s rank correlations with the base model are 0.76,

0.77 and 0.75, respectively.5 However, badly performing

countries are always roughly the same regardless of the

model used. This latter group is composed mainly of

central African countries (e.g. Zambia, Botswana, Zimba-

bwe), which share some characteristics related to low

income, tropical diseases, etc.

In order to observe in detail the changes that occur in the

top ranked countries under the different models, Table 2

shows the top 20 most efficient countries under all five

models. Although there are differences, the ranking is quite

stable when we consider the first two models. They include

countries such as Oman, Yemen and Cape Verde and other

developing countries from Middle East, Asia, North of

Table 1 Posterior means of the

parameter distributions
Parameters Model I Model II Model III Model IV Model V

Production function

a 3.5741 3.4786 3.8447 3.7107 3.7688

b1 0.0613 0.0255 0.0239 0.0639 0.0413

b2 0.2262 0.2359 0.2497 0.2483 0.1601

b3 -0.0396 -0.0488 -0.0612 -0.0462 -0.0327

b4 -0.0168 -0.0143 -0.0054 -0.0433 -0.0088

b5 0.0009 -0.0023 0.0005 0.0013 0.0009

d1(Gini) -0.1469

d2ðln GDPÞ 0.0617

d3(GEff) -0.0142

d4(Voice) 0.0178

d5(OECD) -0.0261

d6ðln PubFinÞ -0.0364

Inefficiency

c1(Gini) 3.7799 8.2122 5.0537

c2ðln GDPÞ -0.2661 -0.2798 -0.6618

c3(GEff) -0.0431 -0.1324 -0.0539

c4(Voice) 0.0774 0.1592 0.0300

c5(OECD) -0.0923 -3.3892 -1.0498

c6ðln PubFinÞ 0.0618 0.3762 0.0760

l -1.5837 -1.4106 -0.6204 -1.4226 -0.3720

ru
2 0.2382 0.2141 0.4056 0.0537 0.0581

Pred. eff. mean 0.8779 0.8773 0.9076 0.7853 0.9144

Pred. eff. SD 0.1037 0.1033 0.1375 0.0813 0.0715

DIC3 -2,517.2820 -2,809.5814 -3,015.7270 -2,989.3070 -3,094.4026

LPS -122.8900 -130.4520 -180.5074 -169.2150 0.0869

MSE 0.1387 0.1051 0.1028 0.0933 -185.9830

5 Among models with inefficiency heterogeneity, rank correlation is

very high (0.99).
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Africa and Latin America in the top positions. However, this

changes completely when observed heterogeneity affects the

inefficiency. In models III to V, developed countries rank in

the first positions, as might be intuitively expected, and for

the scaling property model all top 20 countries are from this

group. Differences are important compared to the base

model. For example, Japan, Norway and Sweden which are

the top 3 countries under Model V, rank in positions 45, 70

and 72, respectively, under the base model.

In fact, using a scaling property model with heteroge-

neity in both parameters of the inefficiency distribution has

an important effect over the ranking. Figure 2 shows that

while most of the African countries continue to exhibit low

efficiency; there is a significant change in the positions of

the top and middle ranked observations. The best per-

forming countries, in particular, the developed countries

are very sensitive to the inclusion of relevant covariates

such as income and inequality that distinguish them from

developing countries.

The main evidence is that models that include ineffi-

ciency heterogeneity lead to important moves and shrink-

ages of the individual posterior efficiency distributions

changing the estimated mean efficiency scores and rank-

ings. Figure 3 shows the posterior 90 % credible intervals
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Model V

1 50 100 150 191

Model IV

1 50 100 150 191

Model III

1 50 100 150 191
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B
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Fig. 1 Efficiency rankings - Base model vs. heterogeneity models

Table 2 Top 20 most efficient countries

Model I Model II Model III Model IV Model V

1. Oman 1. Yemen 1. Japan 1. Luxembourg 1. Japan

2. Solomon Islands 2. Jamaica 2. Sweden 2. Spain 2. Norway

3. Yemen 3. Morocco 3. Italy 3. Greece 3. Sweden

4. Jamaica 4. Armenia 4. France 4. Malta 4. Austria

5. Morocco 5. Turkey 5. Spain 5. Armenia 5. Luxembourg

6. Cape Verde 6. Oman 6. Iceland 6. Cyprus 6. Italy

7. Georgia 7. Cape Verde 7. Greece 7. Jamaica 7. Belgium

8. Indonesia 8. Honduras 8. Germany 8. Georgia 8. Finland

9. Armenia 9. Cuba 9. Norway 9. Japan 9. Spain

10. Sri Lanka 10. China 10. United Kingdom 10. Slovakia 10. France

11. Venezuela 11. Nicaragua 11. Ireland 11. Italy 11. Denmark

12. China 12. El Salvador 12. Singapore 12. France 12. Switzerland

13. Saudi Arabia 13. Sri Lanka 13. Jamaica 13. New Zealand 13. Iceland

14. El Salvador 14. Moldova 14. Malta 14. Ireland 14. Greece

15. Honduras 15. Mexico 15. Portugal 15. Norway 15. Canada

16. Azerbaijan 16. Costa Rica 16. Czech Republic 16. Sweden 16. Netherlands

17. Turkey 17. Azerbaijan 17. Georgia 17. Oman 17. United Kingdom

18. Costa Rica 18. Colombia 18. Slovakia 18. Singapore 18. Australia

19. Dominican Rep. 19. Spain 19. Oman 19. Portugal 19. Germany

20. Egypt 20. Greece 20. Armenia 20. Czech Republic 20. New Zealand
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of efficiencies for some selected countries. It can be seen

that when covariates affect the location parameter (Model

III), the gap between the worst and the best performing

countries increases, which leads to a separating effect on

the posterior distributions. On the other hand, the intervals

are narrower when the observed heterogeneity affects the

scale parameter of the inefficiency (Model IV), which

implies that estimation uncertainty diminishes. For the

scaling property model (Model V) both effects are

observed. This leads to less dispersion and overlapping of

posterior efficiency distributions, which allow for more

reliable conclusions about efficiency scores and rankings.6

As mentioned previously, one of the advantages of

preserving the scaling property is the decomposition of the

one-sided error term into a base and a heterogeneity

component. In particular, for Model V, uit ¼ u�it � expðzicÞ
where uit

** N?(l,ru
2). Table 3 presents this decomposition

in terms of efficiency for countries in Fig. 3. We observe

that countries such as Yemen and Brazil present higher

base efficiency but lower total efficiency than developed

countries. This may indicate that these countries present

good managerial skills in health provision but under their

specific characteristics, they exploit their management

abilities to a lesser extent than the developed countries.

One of the countries taking great advantage of environ-

mental characteristics is the USA, where efficiency in

health provision is highly dependent in their particular

attributes. These results are in line with those obtained by

contrasting the base model and Model V. Other group of

Fig. 2 Heat map of efficiency

rankings—Base model versus

Model V

6 Similar results were obtained from other scaling-type models

following half-normal and exponential distributions but they per-

formed a bit worse in terms of fit and predictive performance. Results

are available from authors upon request.
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countries, mainly from Africa exhibit low base and low

total efficiency. This may indicate both, poor natural

managerial abilities, and inability to perform well under

their relative bad conditions. Consequently, these countries

present very bad performance under all models whether

heterogeneity is considered or not.

Overall, we observe that observed heterogeneity vari-

ables are inefficiency related and their inclusion in the

parameters of the one sided error component distribution

has a large impact on the countries’ efficiency ranking.

Moreover, allowing observed heterogeneity to affect

simultaneously both the location and scale parameters of

the one-sided error distribution in a way such that the

scaling property is preserved has relevant effects on

shrinking and separating the distributions of posterior

individual efficiencies.

4.1.1 Unobserved inefficiency heterogeneity

Results obtained above allows us to test our proposal to

capture latent heterogeneity through a random parameter.

Since previous results favor the scaling property model, we

analyze unobserved heterogeneity in models that satisfy

this property.

First, we estimate Model A where we assume no

information about observed heterogeneity variables in zi.

That is, we impose I2,I4 = 1 and I1,I3 = 0 in Eq. (7).

Notice that these covariates are time invariant, so for this

application the random parameter capturing unobserved

effects is defined to be firm specific and constant over time,

as well.

We propose to estimate two additional models, where

observed covariates are also considered to affect ineffi-

ciency. In these cases all indicator variables in Eq. (7) are

equal to 1. This allows us to analyze the efficacy of the

parameter si to capture information from omitted covari-

ates and to identify those which are relevant. Model B

considers the variables Gini and GDP in addition to the

random parameter. These two variables capture the most

relevant aspects of inequality and income distinguishing

countries and were also found to be the most inefficiency

related by Greene (2004) after performing a frequentist

based test. Finally, we estimate Model C where si is esti-

mated along with all the covariates in zi.

Results are presented in Table 4. In general, we observe

that all model comparison criteria improve compared to

models I and II when the unobserved component is inclu-

ded in the inefficiency distribution. This implies that the

random component captures part of the heterogeneity

identified by covariates in zi and therefore, it is a good

alternative when no observed heterogeneity variables are

available.

A second finding is that when si is included simulta-

neously with observed variables in the inefficiency distri-

bution, this parameter can be used as an indicator of the

Table 3 Posterior mean of base and total efficiency for selected

countries

Country Base efficiency Total efficiency

Brazil 0.6716 0.9149

Cameroon 0.2543 0.6313

Japan 0.6371 0.9970

Sierra Leone 0.2808 0.4260

Spain 0.6579 0.9953

United States 0.3702 0.9867

Yemen 0.7312 0.8950

Zimbabwe 0.2491 0.4750

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Zimbabwe

Yemen

United States

Spain

Sierra Leone

Japan

Cameroon

Brazil

Model VModel IVModel IIIModel I

Fig. 3 90 % credible intervals of the posterior efficiency distributions for selected countries with half-normal inefficiencies
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suitability of the observed covariates to capture ineffi-

ciency heterogeneity. In fact, it is observed that Model B,

which includes only two covariates in zi besides the ran-

dom parameter, improves in terms of fit and predictive

performance in comparison to Model A but it is not as good

as Model V that include six covariates. This would mean

that Gini and GDP are relevant heterogeneity variables but

they are not able to capture all the inefficiency heteroge-

neity. On the other hand, Model C that includes all

observed covariates plus the parameter si performs a little

worse than Model V (see model comparison criteria in

Tables 1, 4). This would imply that the six covariates in zi

capture all the relevant inefficiency heterogeneity.

These conclusions are the same when we compare the

posterior predictive efficiencies of models including the

unobserved component to those of models I and V (see

Fig. 4). It can be seen that the predictive efficiency dis-

tribution becomes less disperse to the extent inefficiency

heterogeneity is better identified by the random parameter,

observed covariates or a combination of both. Also, it is

observed that the predictive efficiency distribution of

Model C is very close to that of Model V, which suggests

that the parameter si is irrelevant when the observed

covariates are able to capture most of the inefficiency

heterogeneity.

4.2 Application to airlines

The airline industry is an interesting sector where perfor-

mance and efficiency have been studied in the literature

using parametric and non-parametric methods. Usually,

production functions are employed to evaluate technical

efficiency and environmental covariates are often included

in the frontier as exogenous variables (see Coelli et al. 1999).

In this application we use a Cobb-Douglas cost function

with an output quadratic term to evaluate economic effi-

ciency of the airline industry. The model in (6) can be

easily extended to a cost function and as in the previous

application we consider individual characteristics to cap-

ture firms heterogeneity. We use a data set of 24 US

domestic airlines over 15 years, from 1970 to 1984, with a

Table 4 Posterior means of the parameter distributions for unob-

served heterogeneity models

Parameters Model A Model B Model C

Production function

a 3.8459 3.7533 3.7322

b1 0.0257 0.0242 0.0245

b2 0.2121 0.3724 0.4133

b3 -0.0361 -0.0854 -0.0994

b4 -0.0045 -0.0031 -0.0081

b5 -0.002 -0.0049 -0.0057

Inefficiency

c1 (Gini) 1.9501 1.2605

c2ðln GDPÞ -0.5424 -0.3633

c3 (GEff) -0.0699

c4 (Voice) 0.0244

c5 (OECD) -0.7456

c6ðln PubfinÞ 0.0826

s -4.6167 -0.8029 -0.7449

rs
-2 1.0396 2.1922 1.9758

l -1.6546 -1.4855 -0.3916

ru
2 0.0791 0.0990 0.0566

Pred. eff. mean 0.8325 0.8767 0.9145

Pred. eff. SD. 0.0904 0.0995 0.0712

DIC3 -2957.82 -3017.61 -3085.19

LPS -146.771 -152.95 -180.4269

MSE 0.1037 0.1014 0.0882

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

Model I

Model A

Model B

Model C
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Fig. 4 Kernel densities of posterior efficiency distributions
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total of 246 observations. This is a revised sample obtained

from a data set used by Greene (2008).7

The general model for this application is the following:

ln Cit ¼ aþ b1 ln Pmit þ b2 ln Pfit þ b3 ln Plit þ b4 ln Peit

þ b5 lnðyitÞ þ b6

1

2
ln2ðyitÞ þ b7t þ b8t2 þ zitdþ vit

þ uitvit �Nð0; r2
vÞuit �Nþðl � expðzitcI1 þ sitI2Þ;

r2
u � ðexpðzitcI3 þ sitI4ÞÞ2Þ; ð8Þ

where Cit is the total cost supported by airline i at time t in

the output production, and Pmit, Pfit, Plit, Peit are the input

prices of material, fuel, labor and equipment, respectively.

Cost and prices are normalized by the property price. yit is

the output of airline i at time t and it is an index that

aggregates regular passenger, mail, charter, and other

freight services. In order to capture possible technological

changes over the 15 years covered by the sample we

include a trend and its square into the model.

Regarding heterogeneity, zit is a vector containing

information of three observed covariates (load factor,

average stage length and points served); while sit is the

unobserved heterogeneity random parameter for firm i at

time t. Load factor is the effective performed tonne-pas-

senger per kilometer by the airline as a proportion of the

total available tonne-passenger per kilometer. Stage length

is the ratio of total performed kilometers to the total

number of departures. And, points served is the number of

destinations.

Variables in zit, as well as other variables of size, are

commonly used in productivity and efficiency analysis of

the airlines sector but their behavior as drivers of either the

frontier or the inefficiency is an open issue. Coelli et al.

(1999) present a review on studies using environmental

variables in both cases and note that variables in zit may be

argued to have effects on costs and inefficiency.8 In partic-

ular, airlines face high fix but low variable costs, thus we

would expect airlines with high load factor to incur in lower

costs to transport the same outputs than airlines with a low

value for this variable. Its effect on inefficiency would also

be negative since a higher load factor implies a higher

capital utilization ratio. Airlines operating with high stage

length would incur in lower takeoff, landing, parking and

other airport costs. Also, they are expected to be more

efficient since their aircrafts are being productive for longer

time periods. Finally, points served are expected to have a

positive effect on total costs since a larger network requires

more resources but also more managerial skills which may

result on higher or lower inefficiency depending on the

routes optimization carried out.

Similarly to the WHO application, first we estimate

models not considering unobserved inefficiency heteroge-

neity (I2 , I4 = 0), and then we analyze the effects of the

unobserved component in a subsection. The base model

(Model I) does not consider any type of heterogeneity;

therefore, d ¼ 0 and I1,I3 = 0. Model II considers only

frontier heterogeneity by including the observed covariates

in the cost function. Models III to V consider covariates in

zit as determinants of the inefficiency and include them in

the location, scale or both parameters of the one-sided error

distribution, respectively.9

Table 5 reports the estimation results. We observe that

Model II which includes the observed heterogeneity vari-

ables in the cost function present the best fit and predictive

performance, suggesting variables in zit to be drivers of the

frontier.10 Nevertheless, models with inefficiency covari-

ates also improve results from the base model. Among

these models, the one that includes covariates in both

parameters of the inefficiency distribution and preserves

the scaling property (Model V) presents the best values in

terms of DIC3 and LPS. However, differences are narrower

than in the previous application, in particular compared to

Model III, which exhibits the lowest value of MSE. As in

the WHO application, models including observed hetero-

geneity in the scale parameter of the inefficiency exhibit

lower dispersion of the predictive efficiency distribution.

Regarding the estimated coefficients, we identify increas-

ing returns to scale and expected effects of covariates on

costs and inefficiency as discussed above. From the esti-

mation results obtained for Model II we conclude that load

factor and stage length affect negatively costs, while the

network size has the opposite effect. Overall, considering

heterogeneity has effects on the estimations of posterior

mean efficiencies with respect to the base model, as we

observe in Fig. 5.

4.2.1 Unobserved inefficiency heterogeneity

Since the observed covariates are related to frontier het-

erogeneity, our benchmark is Model II. We assume that it

7 The original data set includes 256 observations, ten years of

observations for an extra airline company. We excluded this firm

since we do not have data for the exogenous variables of this airline.
8 Coelli et al. (1999) evaluate both alternatives for a technical

efficiency analysis and conclude statistically in favor of a model

including them in the inefficiency term.

9 For all models, monotonicity conditions were found to be not

satisfied because of negative signs obtained for prices coefficients.

This result was also obtained by Greene (2008). Therefore, we impose

regularity conditions by requiring the cost function to have positive

elasticities on prices (qcit/qpit [ 0). We follow the procedure

described in Griffin and Steel (2007) by restricting coefficients b1

to b4 to be positive through truncated normal prior distributions for

these parameters.
10 In fact, most of the efficiency studies applied to airlines have

treated size and network environment variables as frontier drivers (see

Coelli et al. 1999).
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The effects on the individual posterior efficiencies using

the random parameter are similar to those found in the

previous application using observed covariates. That is,

when sit is considered in the location parameter of the one-

sided error distribution, the posterior efficiencies of dif-

ferent airlines are more separated from each other, and

when it is included in the scale parameter, we observe a

shrinking effect and consequently a decrease in the dis-

persion of the posterior efficiency distributions. Figure 6

shows these effects for some selected airlines. We can

observe that Model C, which includes the random param-

eter in both parameters of the inefficiency distribution and

satisfies the scaling property, separates and shrinks the

individual posterior efficiency distributions providing both

more reliable efficiency scores and rankings.

Preserving the scaling property makes it possible to

decompose inefficiency for Model C. In this case, uit ¼
u�it � expðsitÞ where uit

** N?(l,ru
2). Table 7 exhibits the

decomposition in terms of efficiency for the airlines plotted

above. The difference between the base and total efficiency

allows us to distinguish the way unobserved firm effects

are handled by airlines managers. For instance, airline 12

presents lower base efficiency but higher total efficiency

than airline 17, suggesting that the former handles their

specific characteristics better.

Finally, using the results of Model C, in Fig. 7 we plot

the probabilities of being the most efficient airline in the

sample period for some selected firms. This can be easy

Table 6 Posterior means of the parameter distributions for unob-

served heterogeneity models

Parameters Model A Model B Model C

Cost function

a 1.6660 0.4699 2.9144

b1ðln PmÞ 0.4359 0.3034 0.1534

b2ðln Pf Þ 0.1937 0.1970 0.2373

b3ðln PlÞ 0.1553 0.2362 0.3300

b4ðln PeÞ 0.1469 0.1541 0.2036

b5ðln yÞ 0.8707 0.8782 0.9761

b6ð12 ln2 yÞ 0.0447 0.0264 0.0431

b7(t) -0.0323 -0.0127 -0.0270

b8(t2) 0.0007 -0.0008 -0.0006

d1(Load) -1.0958 -1.1420 -0.8560

d2ðln StageÞ -0.2472 -0.2351 -0.2047

d3ðln PointsÞ 0.1063 0.0705 0.1354

Inefficiency

s -3.4905 -4.2213 -3.5143

rs
-2 1.7290 0.8951 1.2549

l 0.6105 0.3428 0.3206

ru
2 0.1047 0.0519 0.0757

Pred. eff. mean 0.7739 0.8349 0.7969

Pred. eff. SD 0.0889 0.0187 0.0469

DIC3 -971.7110 -938.8550 -984.3692

LPS -40.5279 -36.7801 -39.6470

MSE 0.0089 0.0092 0.0086

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

8

7

6

5

4

3

2

1

Model AModel II Model B Model C

Fig. 6 90 % credible intervals

of the posterior efficiency

distributions for selected

airlines

Table 7 Posterior mean of base and total efficiency for selected

airlines

Airline ID Base efficiency Total efficiency

1 0.4837 0.8245

2 0.3052 0.7669

5 0.4017 0.7614

8 0.6238 0.8092

12 0.3571 0.8970

17 0.5466 0.7194

18 0.5824 0.8352

19 0.3920 0.7317
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calculated in the Bayesian context from the posterior

individual distributions of efficiencies and might be very

useful in empirical studies. We observe that for the last

10 years of the sample period, airline 8 is the most likely to

be the benchmark firm. Also, it is possible to see

improvements and declines in the airlines’ performance

along time. For instance, airline 11 presents a high relative

improvement of its performance especially in the last

3 years, while airline 16 starts being the most likely

benchmark firm and decreases very fast its probability up

to being zero in year 9.

Summing up, the performance indicators suggest that

firm characteristics such as the distance between destina-

tions, the capacity offered, and the size of the network

differentiate the airlines in terms of the cost frontier they

face. However, there is still latent inefficiency heteroge-

neity related to unobserved factors. This is captured

through a time varying random parameter that improves fit

and predictive performance. The way this parameter is

included in the inefficiency has different effects in terms of

separating and shrinking the individual posterior efficiency

distributions. The most desirable effects are obtained when

the unobserved heterogeneity component is included both

in the location and scale parameters of the inefficiency

distribution in models that satisfy the scaling property.

5 Conclusions and extensions

In stochastic frontier analysis the inefficiency component

may be erroneously estimated when firm characteristics are

not taken into account. These firm characteristics induce

heterogeneity that might result in different firm frontiers, or

may have an impact directly on the inefficiencies. This

issue has been widely studied before. However, unobserved

inefficiency heterogeneity has been little explored.

In this work we have put forward the modeling of het-

erogeneity in a Bayesian context by capturing both the

observed and unobserved heterogeneity in the inefficiency

component distribution. We have proposed to capture

latent heterogeneity through a random parameter which can

be allowed to be time-varying depending on the applica-

tion. Also, the effects of including both types of hetero-

geneity in different parameters of a truncated normal

distributed inefficiency were studied. The models were

fitted to two data sets previously studied only in the

frequentist context and the results were compared to those

obtained with models that ignore heterogeneity or include

it in the frontier.

Our findings suggest that unobserved inefficiency het-

erogeneity can be properly captured by a random param-

eter. Models including this parameter whether alone or

simultaneously with observed covariates improve in terms

of fit and predictive performance as long as latent hetero-

geneity remains unidentified. In this sense, it can be used to

distinguish unobserved heterogeneity from inefficiency and

to validate the suitability of observed covariates to capture

it.

Differences in efficiency rankings and mean scores were

observed when inefficiency heterogeneity was included in

different parameters of the one-sided error distribution.

This was found to be related to effects in the posterior

efficiency distributions. In particular, considering firms’

heterogeneity in the location parameter of the inefficiency

has an effect on separating the firm specific posterior

efficiency distributions from each other, which leads to

more reliable rankings. On the other hand, when hetero-

geneity affects only the scale parameter of the inefficiency,

an important shrinking effect is observed on the individual

posterior efficiency distributions. This results in less

uncertainty around mean individual efficiency scores.

Finally, including the heterogeneity in both parameters of
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Fig. 7 Probability of being the

most efficient firm in the sample
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the inefficiency distribution in models that preserve the

scaling property leads to both separating and shrinking

effects. This allows less overlapping of the posterior effi-

ciency distributions and provide both more reliable effi-

ciency scores and rankings. These results are consistent

whether we use observed covariates or our proposal to

model unobserved heterogeneity.

Preserving the scaling property was also found to lead to

better fit and predictive performance indicators. Models

with this property were extended to the Bayesian context

and can be used with our proposal to capture unobserved

inefficiency heterogeneity. This allows to decompose

inefficiency into a base component measuring natural

managerial skills and other measuring the effect of latent

factors causing unobserved heterogeneity.

In this paper, we propose a intuitive procedure to cap-

ture unobserved inefficiency heterogeneity that can be

easily extended in the future to different specifications and

distributions of the one-sided error.
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