Universidad Carlos III de Madrid

TESIS DOCTORAL

Portfolio Approaches for Problem
Solving

Autor
Sergio Nufiez Covarrubias

Directores

Dr. D. Daniel Borrajo Millan y
Dr. D. Carlos Linares Lopez

Departamento de Informatica. Escuela Politécnica Superior

Leganés, 22 de Julio de 2016

Tesis Doctoral

Portfolio Approaches for Problem Solving

Autor: Sergio Nifiez Covarrubias

Directores: Dr. D. Daniel Borrajo Milldn y Dr. D. Carlos Linares Lopez

Tribunal Calificador Firma

Presidente:

Vocal:

Secretario:

L0011 oz Twt 10) | TR

Leganés, A e e e de 2016

Quality means daoing it right
when no one is looking

Henry Ford

Agradecimientos

A mis directores de tesis, Carlos Linares Lopez y Daniel Borrajo Milldn, porque para mi es todo un
honor haber realizado este trabajo bajo su direccién. Ellos me dieron la oportunidad de empezar en
el mundo de 1a investigacidn y, lo més importante, siempre me apoyaron y ayudaron cuando me hizo
falta sin dudarlo, por lo que les estaré siempre muy agradecido.

A mi familia, por tener a los mejores padres que uno puede tener, por su dedicacion, trabajo y
sacrificio, porque sin ellos esto no hubiese sido posible. A mi hermano, por escucharme cada vez que
1o he necesitado, por compartir conmigo sus experiencias y por darme su apoyo en cada momento de
mi vida. Y por supuesto, a Erik, cuyos consejos sobre algoritmia avanzada y contribuciones tedricas
han hecho posible que hoy esté escribiendo los agradecimientos de mi tesis.

A mis amigos, especialmente a Carlos, alias Pache, por estar siempre conmigo tanto en los
buenos como en los malos momentos. A Anthony y Rosalia, porque siempre han estado ahi cuando
les he necesitado y han conseguido que les sienta muy cerca de mi a pesar de la distancia. A Jesiis,
Nerea y Moisés, los que empezaron siendo compafieros de trabajo y se han convertido en grandes
amigos, porque ellos han sido un gran apoyo dia tras dia. Y por dltimo, y no menos importante por
ello, a Alicia, cuyo carifio y apoyo ha sido fundamental para terminar la tesis.

A mis compafieros de universidad, AGC, JAI, MAHA, AGG, CGB, ACG, AMV, FCMR y AVG, por
compartir conmigo tantos momentos y aventuras, y en especial a Pani, por estar a mi lado siempre
que me ha hecho falta, a pesar del paso de los afios.

A todas las personas con las que he coincidido en la Universidad Carlos 111 de Madrid. En
especial a todos con los que he pasado buenos momentos, tanto dentro como fuera de 1a universidad.
A todos los miembros del PLG, porque he aprendido mucho de vosotros y con vosotros. Sobre todo
me pustaria agradecer a A lvaro, Ezequiel, José Carlos, Vidal, etc., el haber estado siempre dispuestos
a ayudar y a compartir buenos momentos.

A todos los que habéis compartido este reto conmigo, ya seiis parte del pasado o del presente,
esto es posible gracias a vosotros. A todos, muchas gracias.

vii

Resumen

Durante los Gltimos afios el concepto portfolio ha sido recuperado de 1a Teoria Moderna del Portfolio
con el objetivo de mejorar el rendimiento de los solucionadores actuales. El concepto de portfolio
aplicado a la resolucion de problemas ha demostrado ser muy efectivo aprovechando las virtudes
complementarias de los diferentes solucionadores. Sin embargo, todavia no se han estudiado en
profundidad sus limites y posibilidades. Esta Tesis trata el problema de 1a configuracidn automética
de portfolios secuenciales para resolver problemas combinatorios. Esto comprende, entre otros, tres
retos principales: como seleccionar los solucionadores que conformardn el portfolio; cémo definir
el tiempo asignado a cada solucionador que forma parte del portfolio; y como decidir el orden en el
cual los solucionadores deberian ser ejecutados.

La mayoria de aproximaciones que estudian portfolios son totalmente empiricas. Por lo tanto,
nosoiros proponemos GOP, un nuevo método tedricamente fundamentado, basado en Programacidn
Entera Mixta. Este método obtiene de forma automdtica la configuracion éptima del portfolio (es
decir, el conjunto de solucionadores que componen el portfolio y el tiempo asignado a cada uno de
ellos) para una méirica especifica y un determinado conjunto de entrenamiento. La configuracidn
obtenida s6lo es dptima para el conjunto de entrenamiento. Sin embargo, experimentos con datos de
1a Competicion Internacional de Planificacion y 1a Competicion de SAT muesiran que GOP supera de
forma significativa al resto de aproximaciones bajo las mismas condiciones de experimentacion. De
hecho, MIPSAT, el portfolio secuencial que ha sido autométicamente configurado con GOP, gand la
medalla de plata en la categoria open de 1a Competicion de SAT del afio 2013. Ademas, MIPLAN,
el sistema de planificacion capaz de generar de forma automdtica una configuracién de portfolio
para un determinado dominio de planificacion utilizando GOP, gand la categoria de aprendizaje de
la Competicion Internacional de Planificacion del afio 2014.

El conjunto de entrenamiento utilizado para obtener portfolios secuenciales afecta a la calidad
del portfolio generado y al tiempo necesario para configurarlo. Por lo tanto, en esta Tesis analizamos
el impacto de la composicion y del tamafio del conjunto de entrenamiento en el proceso de configu-
racion del portfolio. Especificamente, nosotros utilizamos GOP para realizar un anilisis a posteriori
con el objetivo de seleccionar los problemas de entrenamiento que proporcionan la informacion mds
relevanie para la técnica de configuracion de portfolios. Los resultados de la experimentacidn re-
alizada sugieren que el mejor conjunto de entrenamiento deberia estar compuesto por un pequefio
niimero de problemas, los cuales s6lo unos pocos solucionadores deberian ser capaces de resolver.

Esta Tesis también aborda el problema relacionado con el orden de los solucionadores en los
portfolios secuenciales. En la literatura no aparecen trabajos que estudien la relacién entre el orden
de los solucionadores en el portfolio y su rendimiento a lo largo del tiempo. Nosotros proponemos
ordenar los solucionadores en los portfolios secuenciales de forma que el portfolio ordenado re-
sultante maximice la probabilidad de obtener el mejor rendimiento en cualquier instante de tiempo.
Ademis, hemos presentado un algoritmo greedy y otro optimo para resolver este problema. Nuestros
resultados demuestran que la aproximacion greedy obtiene de forma eficiente soluciones muy cer-

canas a la dptima. Ademas, esta aproximacion generaliza mejor que el algoritmo Aptimo, el cual
padece sobre-aprendizaje.

En resumen, esta Tesis estudia varios problemas relacionados con el disefio automatico de
portfolios secuenciales. Nosofros hemos disefiado un nuevo método para configurar portfolios
y hemos tratado el problema del orden en el que los solucionadores de los portfolios secuen-
ciales deberian ser ejecutados. Los experimentos realizados muesiran que los portfolios obtenidos
son extraordinariamente competitivos y con mucha frecuencia superan al resto de aproximaciones.

Abstract

In recent years the notion of portfolio has been revived from the Modern Portfolio Theory literature
with the aim of improving the performance of modern solvers. This notion of portfolio applied
to problem solving has shown to be very effective by exploiting the complementary strengths of
different solvers. However, a deeper understanding of the limits and possibilities of portfolios is still
missing. In this Thesis, we deal with the problem of automatically configuring sequential portfolios
for solving combinatorial problems. It comprises, among others, three main challenges: how to
select the solvers to be part in the portfolio; how to define the runtime allotted to each component
solver; and how to decide the order in which the component solvers should be executed.

Most approaches to the study of portfolios are purely empirical. Thus, we propose a new
theoretically-grounded method based on Mixed-Integer Programming named GOP. It automatically
derives the optimal portfolio configuration (i.e., the set of component solvers and the time allotied to
each one) for a specific metric and a given training set. Optimality is only guaranteed for the given
training set. However, experimental results both with data from the International Planning Com-
petition and the SAT Competition show that GOP significantly outperforms others under the same
conditions. Indeed, MIPSAT, the sequential SAT portfolio automatically configured with GOP, won
the silver medal in the Open track of the SAT Competition 2013. In addition, MIPLAN, the plan-
ning system which is able to automatically generate a portfolio configuration for a specific planning
domain using GOF, won the learning track of the International Planning Competition 2014.

The training benchmark used to derive sequential portfolios affects the quality of the resulting
portfolio and the time required to compule it. Hence, we analyze in this Thesis the impact of the
composition and the size of the training benchmark in the portfolio configuration process. Specifi-
cally, we use GOP to perform a posteriori analysis with the goal of selecting the training instances
which provide the most relevant information to the portfolio configuration technique. Empirical re-
sults suggest that the best training benchmark should be composed of a small number of instances
that only a few solvers are able to solve.

This Thesis also addresses the problem related to the order of the component solvers in a se-
quential portfolio. In the literature, not much work has been devoted to a better understanding of
the relationship between the order of the component solvers and the performance of the resulting
portfolio over time. We propose to sort the component solvers in a sequential portfolio, such that
the resulting ordered portfolio maximizes the probability of providing the larpest performance at any
point in time. We also introduce a greedy and optimal algorithms to solve this problem. Moreover,
we show that the greedy approach efficiently obtains near-optimal performance over time. Also, it
generalizes much better than an optimal approach which has been observed to suffer from overfitting.

In summary, this Thesis studies different issues related to the automated design of sequential
portfolios. We design a new portfolio configuration method and address the problem of the order
in which the sequential portfolios should be executed. Experimental results show that the resulting
portfolios are highly competitive and often outperform other state-of-the-art approaches.

Xi

Contents

Agradecimientos

Resumen

Abstract

1

Introduction

1.1 The Portfolio Approach
1.2 Objectives
1.3 ThesisOutline

State of the Art

21 Background00
22 PRelamdWork

Automatic Construction of Sequential Portfolios
3.1 GoP: Automatically Generating Optimal Portfolios

3.2 Analysis of the Utility of Training Instances
3.3 Empirical Evalpation
34 Summaryl
35 Publications

Ordering Component Solvers in Sequential Porifolios

4.1 Formal Description
42 Optimal Approach,
43 Greedy Approach
44 FEmpirical Evaluation
45 Summaryo
46 Publications

Conclusions and Future Work

51 Contributions
52 Futmre Work o oo o

Bibliography

A Candidate Solvers

vii

81
93

List of Figures

21
22

31
2
33
34
35

6
3.7
LX)
i9
3.10
311

312

4.1
4.2

4.3

Overview of the offline phase of the portfolio configuration and execution process. . 9
Overview of the online phase of the portfolio configuration and execution process. . . 10

OS5 portfolio for the sequential optimization track of the IPC 2011. 44
OS5 portfolio for the sequential satisficing track of the IPC2011.. 45
OS5 portfolio for the open track of the SAT Competition 2013. 45

Portfolio derived by GOP repeating the experiments of FD55-1 for optimal planning. . 49
Assessment of GOP against FDSS on the new domains of the IPC 2011 sequential

optimal frack. L. L L e e e e e e e 50
Assessment of GOP against FDSS on the new domains of the IPC 2011 sequential
satisficing track. o L L L Lo 53
Results of the IPC 2011 sequential satisficing track considering the GOP portfolios
asparticipant planmers. L L L L i e e e e e e e e e e e 54
Assessment of GOP against the work by Seipp ef al on the new domains and all the
planning tasks from the IPC 2011 sequential satisficing rack. 55
Results of the overall best quality award for the IPC 2014 learning track. 57
Sequential portfolio submitted to the open track of the SAT Competition 2013.. . . . 58
Correlation between the number of candidate time values for each candidate solver
and the time required to solve the 35 MIPtask. 60
Analysis of the quality of the solutions achieved by GOP over time. 61

Performance of two different orderings of the same portfolio with respect to coverage. 66
Example of the computation of f{m) for computing the optimal ordering of a given

portfolio. L e e e e e e e e e e e 68
Example of a sequential portfolio soried by the greedy approach. 69

Xy

List of Tables

21
22
23
24

31
2
33
34
35
6
3.7

4.1
4.2
4.3

4.4
4.5
4.6
4.7

Al
Al
A3
A4
A5
A6

Benchmark suite defined for the planning and SAT experiments. 15
Summary of the state-of-the-art portfolio approaches for Automated Planning. 28
Summary of the state-of-the-art portfolio approaches for SAT. 33
Summary of some representative portfolio approaches for CSP and ASP. 35
Empirical analysis of the utility of training instances for optimal planning. 46
Empirical analysis of the utility of training instances for satisficing planning. 47
Empirical analysis of the utility of training instances for SAT. 48
Results of the IPC 2014 sequential optimizationtrack. 51
Portfolios derived by GOP repeating the experiments of FDSS for satisficing planning. 52
Results of the IPC 2014 sequential satisficing track. 56
Results of MIPSAT on several core solvers and sequential tracks of the SAT Com-

petition 2003 . . . L L L e e e e 58
Results of the sorted portfolios using GOP portfolios on Automated Planning. 71
Results of the sorted portfolios using random portfolios on Automated Planning. . . . 71
Results of the sorted portfolios using random-uniform portfolios on Automated Plan-

10 1 72
Results of the sorted portfolios using GOP portfolioson SAT. 73
Results of the sorted portfolios using random portfolioson SAT. 73
Results of the sorted portfolios using random-uniform portfolios on SAT. 74
Results of the sorted portfolios using IBACOP 2 on Automated Planning. 74
Optimal planners considered from the IPC2011. 93
Optimal planners considered by Fast-Downward Stone Soup.o ... 04
Satisficing planners considered from the IPC 2001, 04
Satisficing planners considered by FDSS-1.. L oL 95
Satisficing planners considered by FDSS-2. Lo oL 95
SAT solvers considered from the SAT Competition 2013, 96

Xvii

Chapter 1

Introduction

This Chapter introduces the scope in which this work has been developed and defines the objectives
of this Thesis. First, we introduce the notion of portfolio applied to problem solving. Next, we define
the main goals of this Thesis and the challenges faced to accomplish them. Finally, we summarize
the structure of this document.

1.1 The Portfolio Approach

Combinatorial problems arise in many areas of Computer Science and application domains like
finding models of propositional satisfiability formulae (SAT), planning, scheduling, protein structure
prediction, etc. The challenge of these tasks is to find an optimal or satisficing solution in the
potentially large space of possibilities.

The Al community has been actively seeking new ways to improve the heuristics and search
algorithms used for solving combinatorial problems. However, the inherent difficulty of solving
these problems using domain-independent solvers implies that no single solver dominates all others
in every domain; i.e., different solvers perform best on different problems. Also, it has been shown
empirically in some areas of Artificial Intelligence like Automated Planning that if a solver does not
solve a problem quickly, it is very unlikely that it will solve it at all (Howe and Dahlman, 2002).

These facts led to revive the notion of portfolio from the Modem Portfolio Theory litera-
ture (Markowitz, 1952). This notion of portfolio applied to problem solving is based on the following
idea: several solvers are executed (in sequence or concurrently) with specific timeouts, expecting that
at least one of them will find a solution in its allotted time. In case of solving problems optimally,
the portfolio halts as soon as one solver finds a solution; otherwise, all solvers are invoked and the
best solution is returned.

The portfolio approach has been applied to some problem solving tasks with remarkable results.
Indeed, the organizers of the SAT Competition 2013' defined a specific track for algorithm portfolios
and alternative approaches, where the winner was CSHC PARS (Malitsky et al., 2013c), an 8-core
parallel portfolio. Also, the results of the International Planning Competition 2014 (IPC 2014)*
show that three awarded planners and twenty nine out of sixty seven participant planners in the
deterministic tracks were portfolios or planners that consisted of a collection of solvers.

]http: Siwww . satcompetition. org
2htl:l:i: flipc.icaps—-conference.org

http://www.satcompetition.org
http://ipc.icaps-conference.org

2 CHAPTER 1. INTRODUCTION

A number of successful portfolio approaches have been introduced in several areas over the last
years. In fact, even tools aimed to easily generate algorithm portfolios have been recently presented
in order to encourage the common adoption of the portfolio approach (Samulowitz et al., 2013).
Most of the successful approaches rely on some collections of features with the aim of capturing the
structure of each instance (Xu et al., 2008; Cenamor et al., 2014). Then, they exploit that knowledge
to select the most suitable solver for each instance to be solved. However, the usefulness or the pre-
dictive power of the instance features can not be theoretically measured. Indeed, they are manually
selected based on the empirical performance. On the other hand, other approaches focus on greedy
techniques to generate portfolios that run several solvers to solve each test instance (Helmert et al.,
2011). These approaches may not capture all the knowledge from the training data, which affects
the quality of the resulting portfolio configuration. Thus, in this Thesis, we will define a new the-
oretically based technique (termed GOF) to generate sequential portfolios and we will theoretically
address (when possible) some relevant issues related to the automated design of portfolios. The
objectives of this Thesis are detailed in the next section.

1.2 Objectives

The main goal of this Thesis is to improve the current state-of-the-art of the design of sequential
portfolios for problem solving. For this purpose, we mainly focus on two issues: the automated
portfolio configuration process and the execution order of the sequential portfolios. The particular
objectives which we aim to accomplish in this Thesis are:

o Design a new algorithm to automatically configure sequential static portfolios for Automated
Planning. With the purpose of improving the current techniques, a new theoretically based
method will be developed to compute the best linear combination of solvers according to a
given training data set and an optimization criteria

o Analyze the influence of the training instances in the quality of the planning portfolios. In
order to increase our understanding of the relationship between the training data used to con-
figure portfolios and the quality of the resulting portfolio, the influence of the benchmark used
in the portfolio configuration process will be studied.

« Study the relationship between the performance of a sequential planning portfolio over time
and the order in which its component solvers are executed. A formal definition will be pro-
posed for the problem of ordering the component solvers in a sequential portfolio as a function
defined over time. In addition, greedy and optimal algorithms will be developed to solve this
problem.

o Generalize the contributions presented for Al planning to SAT. With the aim of contributing
to other areas of problem solving, the contributions described for Automated Planning will be
generalized and assessed on SAT.

1.3 Thesis Outline

This Thesis is organized as follows: first, Chapter 2 discusses the state-of-the-art in the automated
design of portfolios for Automated Planning and SAT. Next, Chapter 3 describes GOP, the new tech-
nique which is able to compute the optimal portfolio configuration for a given benchmark. This

1.3. THESIS OUTLINE 3

chapter also shows the generalization capability of the portfolios derived with GOP and how to ana-
Iyze the wrility of the training instances in the portfolio configuration process using GOP. Chapter 4
formally defines the problem related to the order in which the component solvers in a sequential
portfolio should be executed. Also, this chapter introduces an optimal and a greedy approaches to
tackle this problem. Finally, Chapter 5 presents the conclusions of this Thesis and introduces future

work.

Chapter 2

State of the Art

This Chapter describes the background and the related work of this Thesis. In particular, we first
focus on presenting the background related to the portfolio approach and the fields of interests in
this research. Then, we discuss previous work about the automated construction of portfolios for
Automated Planning, SAT and other problem solving tasks.

2.1 Background

In this Section, we first give some definitions concerning algorithm portfolios. Next, we describe
the portfolio configuration and execution process. We then formally define Automated Planning
and SAT tasks, two of the most prominent Artificial Intelligence (AI) fields. Finally, we define the
experimental setup which we have used to assess our contributions.

2.1.1 Portfolio Definitions

A portfolio can be classified by its behaviour and by the computational resources that the portfolio
uses to solve each input problem. Therefore, a portfolio is termed sraric if its configuration is not
modified once it has been computed —i. e., neither the component solvers and their allotted time
nor the order of the execution sequence can be altered. If the portfolio has the ability to define a
new configuration for each input instance, then it is termed dynamic. Also, if the portfolio invokes
solvers in sequence, then it is termed as sequential, as opposed to parallel portfolios, which run
multiple solvers concurrently. The base solvers executed by sequential and parallel portfolios can
be, in principle, sequential or parallel. It does not affect to the classification of the portfolio.

In this Thesis attention is restricted to sequential portfolios and preemptive mode (i.e., the ability
to stop execution and resume it later on if necessary) is not allowed. Thus, a sequential portfolio can
be formally defined as shown below.

Definition 2.1 (Sequential Portfolio). A sequential portfolio p is a collection of n pairs (s, t;)1— 4.
where s, is a component solver, t, is the time allotted to its execution and the total allotted time in
the portfolio, ¥, ti, should be less than or equal to a given time limit T.

Using these definitions, the automated process of configuring static sequential portfolios can be
defined as follows:

4] CHAPTER 2. STATE OF THE ART

Definition 2.2 (Portfolio Configuration Task). Given a set of candidate solvers S, a set of training
instances I and a fived time limit T, the portfolio configpuration task consists of auromarically de-
ciding the portfolio configuration p of solvers s € 5 such that it maximizes the performance of the
resulting portfolio for the given benchmark I and its total allotted time does not exceed T, where
performance is measured with different metrics.

2.1.2 Portfolio Configuration and Execution Process

This Thesis focuses on the automated design of algorithm portfolios. Hence, in this Section, we
describe a general scheme for configuring and running portfolios. This scheme can be divided into
three phases. First, the design phase aims to made several relevant decisions about the design of the
portfolio. These decisions will help to define the portfolio configuration task. Second, the offline
phase focuses on generating data which will be either input data for the portfolio configuration
approach (dynamic approach) or the portfolio configuration (static approach). Finally, the online
phase assesses the resulting portfolio using test instances. Each phase is detailed next.

2.1.2.1 Design Phase

Several decisions related to the design (such as target, scope and runtime behaviour among others)
should be made before configuring the portfolio. The most relevant decisions are described next.

Scope The ideal portfolio should achieve a high performance over every benchmark. However,
there are applications whose goal is only to perform well over a specific set of tasks (those that be-
long to the same domain) (Rodriguez-Molins et al., 2010). Therefore, it is necessary to determine
if the portfolio should be configured for achieving a high performance over every possible bench-
mark (domain-independent) or, on the contrary, for obtaining a high performance over a specific
benchmark {domain-dependent).

Target The current portfolio configuration tasks only focus on optimizing an objective function
for a fixed time limit. This function is usually taken from international problem solving competi-
tions. For instance, SAT portfolios aim to maximize the number of instances solved in a fixed time
limit {(Belov et al., 2014). However, the target of a portfolio is not only restricted to achieve a high
performance at a given time value. It can also consider the growth in performance of the portfolio
over time. Thus, the target of the portfolio should be clearly defined since the solvers included in
the resulting portfolio, the time allotted to each solver and the order of each solver in the portfolio
should be defined according to this target.

Computational resources The number of available core processors constraints the resulting port-
folio. If there is a single core processor available, the portfolio will execute the component solvers
in sequence. Thus, the portfolio configuration approach should know whether it can optimize the
portfolio configuration to fully exploit the multiple-core facilities or not. The portfolio configura-
tion is also defined according to the time limit and the available main memory. Therefore, these
computational resources should be defined in the design phase.

Runtime behaviour A portfolio can use all the available time to attempt solving the input in-
stance (static approach) or it can spend a piece of the available time to generate a specific portfolio
configuration for solving the input instance (dynamic approach). Deciding whether using a static

2.1. BACKGROUND 7

or dynamic portfolio is a difficult task. It may seem that the dynamic approach is clearly the best
choice. However, there are some issues behind this choice which should be addressed before making
a decision: How much runtime should be spent on configuring the portfolio? What is the relevant
data that should be gathered for the configuration task? Why are these data relevant? What tech-
niques can be used with the pathered data to configure the portfolio within the time limit defined
for this task? What happens if it can not configure a portfolio within the time limit? Is the dynamic
approach worth it? The answer to the last question is that it depends on several factors. The dynamic
approach is not necessarily better than the static one. It usually depends on the data gathered to

generate the portfolio configuration, among other aspects.

Information sharing The solvers executed by a portfolio approach could share information among
them. This fact may seem to be essential in every portfolio approach. However, it implies some
constraints and challenges which should be considered before making a decision:

« Identify the information to be shared. This information should be relevant and independent of
the particular techniques used by every solver. For instance, in planning, the best solution cost
found so far is usually shared among the component solvers (Seipp et al., 2015).

o Candidate solvers. Every candidate solver to be part in the portfolio should be able to take
the shared information as input, use this information for its purpose (e.g. to solve the input
instance) and generate updated information for the next solver as output.

« Configuration technique. The portfolio configuration technique should be able to optimize the
portfolio configuration to exploit this skill.

« Communication among solvers. The communication process is very simple and cheap in the
case of sequential portfolios. Each solver only receives the shared information when it starts
its execution, since there is only one solver executing at the same time. However, parallel
portfolios can run several solvers concurrently. Hence, solvers may send and receive mes-
sages continuously. This overhead introduced by the communication process may result in a
degraded performance. Therefore, the balance between communication and solving task must
be deeply analyzed. Also, the question if the information to be shared would be centralized or
distributed should be addressed.

Candidate Solvers One of the most relevant tasks in the automated design of portfolios is to
choose the set of solvers that should be considered to be part of the portfolio since its composition
affects the quality of the resulting portfolio. It may seem that a good solution would be to consider
all the available solvers. However, the number of candidate solvers affects the time required to
generate the portfolio configuration. Also, increasing the number of candidate solvers does not
necessarily improve the results. In addition, this set should be consistent with the previous decisions.
For instance, if the portfolio has been designed for sharing information among its solvers, every
candidate solver should be able to process and generate useful data.

In the literature, some approaches consider the participant solvers in the last international com-
petition (Mifiez et al., 2013; Malitsky et al., 2014). Others built new solvers to configure the port-
folio (Seipp et al., 2012; Xu et al., 2010) or choose these solvers at hand (Gerevini et al., 2014;
Valenzano et al., 2012) because there is neither a theoretical study nor an empirical technique to se-
lect the best candidate solver set. However, the questions addressed above should give some insight
about its composition.

8 CHAPTER 2. STATE OF THE ART

Training instances Every portfolio configuration approach requires a set of training instances to
derive a portfolio. The composition of this set also affects the time required to configure a portfolio
and the quality of the resulting configuration. For example, if the training instances are not solved by
any candidate solver, it is very likely that the configuration approach will not be able to distinguish
an empty portfolio from any other portfolio configuration.

Similarly to the set of candidate solvers, the previous decisions constrain the composition of the
set of training instances. For instance, if the scope of the portfolio has been defined as domain-
dependent, only instances from the same particular domain should be considered.

Selecting the fraining instances is a real challenge. In the literature, there are approaches which
took competition benchmarks to compose the training set (Cenamor et al., 2014). Other approaches
used random generators to generate training instances (Rizzini et al., 2015). These penerators usually
require domain expertise for the parameters of each domain generator. Also, these generators do not
guarantee that the generated instances are solvable. Thus, some approaches focus on developing
generators which avoid these limitations (Fern et al., 2004; Fuentetaja and Borrajo, 2006).

Execution sequence The problem of ordering portfolios (Nifiez et al., 2015b) is a relevant issue
which should be considered while configuring the portfolio. However, it is usually addressed as an
independent task. The execution sequence defines the order in which the component solvers of a
portfolio should be executed. In case of parallel portfolios, this sequence could also describe the
execution order of each core processor.

As it will be discussed in Chapter 4, a portfolio should be sorted if its performance over time is
relevant (target of the portfolio). As a consequence, in SAT and optimal planning, the average time
required to solve problems can be significantly reduced while in satisficing planning, better solutions
can be found more quickly, while preserving coverage or quality score respectively.

Portfolio configuration task and portfolio confipuration approach The last step in the design
phase is to define the portfolio configuration task and propose a portfolio configuration approach.
The configuration task defines the particular problem of automatically configuring portfolios. This
definition should include the scope, runtime behaviour, target, etc. of the designed portfolio. On the
other hand, the configuration approach describes how to solve a particular portfolio configuration
task. Therefore, several approaches can solve the same configuration task. In other words, the con-
figuration task is the problem to be solved and the configuration approach is the technique proposed
to solve the problem.

For instance, the work by Nifez er al. (Ninez et al., 2015a) defines “the automared process
of configuring static sequential portfolios as follows: Given a set of candidate solvers and a set of
training instances auromarically find the portfolio configuration of solvers such that it maximizes the
performance of the resulting portfolio in the given benchmark™. This configuration task is solved
{among others) by ASPEED (Hoos et al., 2012} and CPHYDRA (O"Mahony et al., 2008), which will
be described in detail in Section 2.2.

2.1.2.2 Offline Phase

Once the portfolio has been designed, the offline phase aims to generate input data for the portfolio
configuration task. In case of static approaches, this phase also performs the process of configur-
ing the portfolio, as it can be seen in Figure 2.1. Thus, the output data of this phase will be the
configuration of the static portfolio which will be run for every test instance in the online phase.
Every approach in the automated design of portfolios runs every candidate solver with every
training instance in the offline phase. The execution results are processed because planner perfor-

2.1. BACKGROUND 9

Figure 2.1: Overview of the offline phase of the portfolio configuration and execution process.

mance is usually part of the input data for the configuration task. The rest of the input data de-
pends on the particular configuration approach. Some approaches also extract additional knowledge
to generate alternative encodings (Vallati et al., 2014). Others extracts features from the train-
ing instances with the goal of learning predictive models (Gebser et al., 2011; Cenamor et al., 2013)
or computing the distance among the instances (Kadioglu et al., 2011; Rizzini et al., 2015).

2.1.2.3 Online Phase

The goal of the online phase is to assess the resulting portfolio. In case of dynamic approaches, the
portfolio configuration task should be performed at the beginning of the phase, as it can be seen in
Figure 2.2. This task takes the data generated in the previous phase and the input instance, and then
it generates the portfolio configuration. Once this task is over, or in case of static approaches, at the
beginning of the phase, the portfolio is executed with the input instance.

A dynamic portfolio may be able to derive a portfolio configuration several times while solving
the given instance. Therefore, it can gather data from the execution and then compute a more e fficient
portfolio configuration to solve the input instance. However, the total time available should be the
same for static and dynamic approaches.

2.1.3 Automated Planning

Automated Planning is an area of Artificial Intelligence that studies the process of generating the
sequence of actions that an agent should execute to achieve a set of goals from an initial state (Rus-
sell and Norvig, 2010). It is not only a theoretical field since Automated Planning leads to many

10 CHAPTER 2. STATE OF THE ART

Generated Input
data instance

Partfalle Input
configuration instanca Paostfalia
configuration
process

Portfclio Portfolic
Process
Portfalic
axecution
process
(a) Static approach

(b) Dynamic approach
Figure 2.2: Overview of the online phase of the portfolio configuration and execution process.

real world applications (Ghallab et al., 2004). Indeed, the diversity of applications for Automated
Planning is quite broad: contact center (Kumar et al., 2014), mining operations {Burt et al., 2015),
web-service composition (Traverso and Pistore, 2004), etc.

There are several planning models, which are based on various assumptions about the envi-
ronment. For instance, classical planning studies deterministic and fully observable environments.
Temporal planning studies planning tasks with concurrent actions. Planning with continuous ac-
tions focuses on environments where the set of states is not finite since the effects of the actions are
continuous.

In this Thesis we are interested on classical planning which assumes that the environment is
deterministic (the effect of actions is always known in advance), static (only the execution of an
action can change the environment), finite (the number of states and actions is limited) and fully
observable (the state is always fully-known). Formally, a classical planning task is defined as a tuple
P=(FA.I,G) where:

o Fis a set of atomic propositions (also known as facts).

o A is the set of grounded actions. Each action a € A is defined as a triple (prefa), add{a), del(a))
(preconditions, add effects and delete effects) where pre(a), addfa), delfa) C F.

e [C F is the initial state.

o (5 C F is the set of goals.

A plan 7 is a sequence of applicable actions = = (ay,...,a,),¥a; € A that allows for the
transition from the initial state I to a final state g where all goals are satisfied G T g. The cost

2.1. BACKGROUND 11

of a plan « is computed as the sum of the cost of every action in the plan, since actions can have
non-unitary costs. Therefore, a distinction must be made between satisficing planning, that tries to
find a plan preferring those of lower cost, and optimal planning, where the best plan (i.e. the plan
with the lowest cost) must be found. In this work we have focused on both satisficing and optimal
planning.

2.1.3.1 International Planning Competition 2011

The International Planning Competition is a competitive event organized in the context of the Inter-
national Conference on Automated Planning and Scheduling (ICAPS). This competition provides an
empirical environment for assessing planning systems under the same conditions.

The IPC 2011 (Linares Ldpez et al., 2015) was composed of three parts:

e Deterministic Part: It only considers deterministic actions where the transition between two
states after any sequence of actions is fully predictable.

Planning and Learning Part: Planners automatically extract domain dependent knowledge
during an offline training phase and exploit this knowledge in the test phase.

Uncertainty Part: It considers non-deterministic and probabilistic actions in fully observable,
partially observable or unobservable domains.

The Deterministic part was split into two categories: Sequential and Temporal. In this work
we have focused on the satisficing and optimal tracks of the Sequential Deterministic Part and on
the learning track (Planning and Learning Part) of the Planning Competition. The main differences
between satisficing planning and optimal planning can be summarized as follows:

= Satisficing planners can penerate more than one solution, each with a different cost, whereas
optimal planners generate at most one solution. Thus, while the performance of optimal plan-
ners is qualified with a binary variable (whether a particular planning task is optimally solved
or not), satisficing planners are qualified with a list of timestamps (when each particular solu-
tion was generated) along with their cost.

« Commonly, satisficing planners max imize the sum of the quality score of each problem (which
is defined below) over a set of planning tasks while optimal planners maximize coverage; i.e.,
the number of solved problems.

The goal of every participant planner in every track of the competition was to maximize a given
score. Several equations were used to determine the score of the planners. Each one assigned a
value in the range [0, 1] for each triple (planner, planning task, time limit). For instance, in the
sequential optimization track, a score equal to | was assigned if and only if the planner found the
lowest plan cost for the given planning task within the time limit. In any other case, it set a score
equal to 0.

Specifically, in the optimal and satisficing tracks, the score of the resulting plans was computed
using Equation (2. 1) for every task. If a planner s did not solve an instance i, the quality score of this
task was set to zero. Otherwise, the quality score of a solved instance was computed as the lowest
plan cost found by any planner in the competition in time less or equal to ¢, divided by the lowest
plan cost found by the participant planner s within the same time bound. In case of solving planning
tasks optimally, the quality score of the resulting plans was a binary value, since plans have to be

12 CHAPTER 2. STATE OF THE ART

optimal. The planner with the highest froral guality score was declared the winner in each track. The
total quality score, Q}{s, I, t), was computed as the sum of the quality score over all instances i € I.

Lk, ifiis solved by s within ¢
quality_score(s, i,t) = . (2.1)
0, otherwise

The set of planning tasks defined for both tracks was divided in 14 planning domains, each one
consisting of 20 planning tasks. Each participant planner was allotted 30 minutes for every planning
task on a single core processor and a memory limit equal to 6 GB.

2.1.3.2 International Planning Compefition 2014

The IPC 2014 (Vallati et al., 2015) preserves the same structure and evaluation criteria used in
the IPC 2011. Howewver, in this edition, three novelties were introduced. The first one is related
to the available computational resources and core features that participants have to support. Each
participant planner had a memory limit of 4 GB to solve each planning task. Also, every planner
should support conditional effects and negative preconditions. The second nowvelty is relative to
the awards. Specifically, a special award for innovative planning techniques was introduced. It
mainly focused on planners which exploit techniques that are “new™ for deterministic planning and
performed reasonably well in the competition. The last novelty was the agile track, which was
included in the Deterministic part.

The agile track aims to minimize the time required for finding a satisficing solution of a planning
task. The available time to solve each instance is 5 minutes. The evaluation metric does not consider
the cost of the resulting solutions. If a planner = does not solve a problem ¢ within the time limit,
s achieves zero points for the problem i. Otherwise, the score of the planner = which solves the
instance 1 in time ¢ (within the time limit) is computed in the range [0, 1] using Equation (2.2), where
t* is the minimum time in seconds required by the fastest planner in the competition to solve the
problem within the time bound, rounding all times to the ceiling value. Therefore, smaller time
values stand for better scores. The planner with the highest sum of time scores over all planning
tasks is declared the winner of the track.

y (0.0 {1, ift < 1s
ime_score(s,1,t) = 1 .
W, if ¢ - 1s

(2.2}

214 SAT

SAT is one of the most prominent Al challenges. It deals with propositional reasoning tasks us-
ing SAT solvers. These solvers provide a generic combinatorial reasoning and search platform that
can often solve hard structured problems with over a million variables and several million of con-
straints (Harmelen et al., 2008). Many problems typically have multiple translations to SAT since
SAT stands at the crossroads among Logic, Graph Theory, Computer Science, Computer Engineer-
ing and Operations Research (Biere et al., 2009). Therefore, SAT has a good amount of practical
applications in areas like Software and Hardware Verification (Gupta et al., 2006), Scheduling (Hor-
bach et al., 2012) and Test Pattern Generation (Czutro et al., 2014), among others.

Propositional Satisfiability is the problem of deciding whether the variables of a propositional
formula in Conjunctive Normal Form (CNF) can be assigned a boolean value in such a way that the
formula evaluates to true. This is a classic NP-complete problem (Cook, 1971).

2.1. BACKGROUND 13

A propositional formula F' is in CNF form if it is a conjunction (AND,) of clauses, where
each one is a disjunction (OR,) of literals. Each literal can only be a propositional variable or
its negation (NOT, —). For instance, F = (a Vv =b) A (mbvewv —d v —e) Ala v e) Al—cv f)
is a CNF formula with six variables and four clauses. An assignment for a propositional formula
such that all clauses evaluate to true is said to be a satisfiable (SAT) solution. But if there is no
assipnment satisficing all clauses, the propositional formula is said to be unsatisfiable (UNSAT).
Follow ing the example, a SAT solution for the formula F' shown above can be defined as the model
M={a=T,b=1,e=T,d=T,f =T}, where T and | refer to the true and false values
respectively, which can be assigned to a propositional variable. Note that not all the variables have
to be assigned in the model, as shown in the example.

2.1.4.1 SAT Competition 2013

The International SAT Competition is a biennial event for Boolean Satisfiability solvers. It is or-
ganized in the context of the International Conference on Theory and Applications of Satisfiability
Testing (SAT). The aim of this competitive event is to assess the progress in state-of-the-art proce-
dures for solving Boolean Satisfiability problems.

The SAT Competition 2013' was split into the Main track and the Minisat Hack track. The
goal of the first one is to determine whether a propositional formula in CNF is satisfiable or not.
The second one aims to see how far the performance of Minisat (Eén and Stirensson, 2003) can be
improved by making minor changes in that solver.

The Main track was composed of several tracks, where each one was defined as a combination
of:

e Type of solver. The organizers defined two type of solvers: Caore solvers and Alternative
approaches. The first one only allows participanis to use solvers that employ at most two
different SAT solving engines for all runs and at any time in one track. The second one
represents any solver not covered by the definition of a core solver.

« Computational resources. Resources classified the participant solvers into sequential solvers
or parallel solvers. The first ones only use one core for 5000 seconds CPU time and 7.5 GB
of main memory to solve each SAT instance. The second ones have & cores, 15 GB of main
memory and 5000 seconds wall-clock time available to solve each SAT instance.

Benchmarks. The organizers defined three categories of benchmarks: Application, that encode
several application problems in CNF, Hard-Combinatorial, whose instances aim to reveal
the limits of current SAT solver technology, and Random, where its problems can be fully
characterized.

Also, each category defines three tracks according to the solution of its instances: SAT,
SAT+UNSAT and certified UNSAT. In the case of satisfiable formulas, solvers are required
to output a mode] of the formula. Solvers are only required to emit an unsatisfiability proof in
certified UNSAT tracks.

An instance is solved by a solver if the solver generates the complete answer within the allocated
resources. The solver with the highest number of instances solved is declared the winner in each
track. Ties are broken in favour of lower CPU running times in the sequential tracks and lower
wall-clock times in parallel tracks.

]http: f/fsatcompetition.org/2013/

http://satcompetition.org/2013/

14 CHAPTER 2. STATE OF THE ART

2.1.5 Methods of Empirical Evaluation

The challenges addressed in this Thesis require an empirical environment to assess the resulting port-
folios. In this Section we describe the methods that we used to perform the empirical evaluation of
the portfolio approaches. Fortunately, the Al community has made many efforts to develop methods
and tools to evaluate and compare the performance of different solver techniques. The Intemational
Planning Competition and the SAT Competition aim to assess the progress in the state-of-the-art
procedures for solving planning and boolean satisfiability problems respectively. Both competitions
are intended to evaluate solvers under the same conditions and under settings as fair as possible.
Also, both competitions define benchmark suites, a common framework, evaluation metrics and the
state-of-the-art solvers. Thus, both competitions allow us to analyze how good a portfolio is and
to compare the performance of different portfolios. Specifically, we have evaluated the contribu-
tions of this Thesis on the SAT Competition 2013 and on the IPCs 2011 and 2014, since they define
challenging benchmarks for both areas.

2.1.5.1 Benchmark suites

Every IPC is characterized by a benchmark suite, which is composed of a set of domains with their
problem sets. This has allowed the community to create an extensive and diverse benchmark to use
in our own experimentation. Also, the SAT Competition defines a set of diverse benchmark instances
in each competition to test the capabilities of solving problems of different kinds. Thanks to that,
there is a good set of instances to test solver capabilities.

Table 2.1 describes all the benchmarks used in the empirical evaluation of this Thesis. The
Benchmark column is the id of each benchmark. Next, the Source column shows the competition for
which the instances of each benchmark were defined. The #instrances column details the number of
instances of each benchmark. Finally, the last column shows the planning domains or SAT categories
of the instances which compose each benchmark. It is important to remark that the planning domain
termed THOUGHTFUL was not first used in the IPC 2014, However, it was considered as new in the
satisficing benchmark from that competition because it was not included in the satisficing track of
the IPCs 2008 and 2011.

2.1.5.2 Common framework

The settings of the international competitions are usually taken as a de facto standard. Therefore,
the settings defined for the IPC 2011 have been used to evaluate portfolios in Automated Planning
(see Section 2.1.3.1). On the other hand, the settings used to assess portfolios in SAT have been
taken from the open track of the SAT Competition 2013, the track that was specifically defined for
portfolio approaches. Hence, each portfolio had eight core processors available for 5000 seconds
wall-clock time and 15 GB of memory to solve each SAT instance.

Besides, both competitions release the software used in the competition. Thus, this software
has been used to validate the results of the empirical evaluation of this Thesis. Specifically, all the
generated plans have been validated with vaL, the automatic validation tool (Howey et al., 2004)
while every SAT model has been verified with the EDACC verifier (Balint et al., 2011).

In addition, all the experiments of this Thesis have been executed with the same hardware. We
have used a cluster of Intel Xeon 2.93 GHZ quad core processor with 16 GB of RAM.

2.1. BACKGROUND 15

Benchmark | Source #Instances Planning domains or SAT categories

Barman, CAVE, CHILDSNACK,
CityCar, FLoorTILE, GED,
ALL OPTIMAL IPC DOMAINE 2014 IPC 2014 20 per domain Hiking, MAINTENANCE,
OPENSTACKS, PARKING, TETRIS,
TipyBOT, TRANSPORT, VISITALL

Cave, CHILDSNACK, CITYCAR,
NEW OFTIMAL IPC DOMAINS 2014 IPC 2014 20 per domain GED, Hixing, MAINTENANCE,
TeTRIS

Barman, CAVE, CHILDSNACK,
CityCar, FLoorTILE, GED,
HiginG, MAINTENANCE,
OPENSTACKS, PARKING, TETRIS,
THOUGHTFUL, TRANSPORT,
VisITALL

ALL SATISAICING IPC DOMAINS 2014 IPC 2014 20 per domain

Cave, CHILDSNACK, CITYCAR,
NEW SATISFICING IPC DOMAINS 2014 | IPC 2014 20 per domain GED, Hixing, MAINTENANCE,
TeTrIS, THOUGHTFUL

Barman, ELEVATORS,
FLoorTILE, NOMYSTERY,
OPENSTACKS, PEG-SOLITAIRE,
ALL IPC DOMAINS 2011 IPC 2011 20 per domain ParkinG, PARCPRINTER,
SCANALYZER, SOKOBAN,
TinyBOT, TRANSPORT,
VIsITALL, WOODWORKING

Barman, FLOORTILE,
NEW IPC DOMAINS 2011 IPC2011 20 per domain MNoMysTERY, PARKING,
TioysoT, VISITALL

ELEVATORS, OPENSTACKS,
ParCPRINTER, PEG-SOLITAIRE,
SCANALYZER, SOKOBAN,
TransPORT, WOODWORKING

OPTIMAL IPC DOMAINS 2008 IPC 2008 30 per domain

CYBERSECURITY, ELEVATORS,
OPENSTACKS, PEG-SOLITAIRE,
SATISFICING IPC DOMAINSG 2008 IPC 2008 30 per domain PARCPRINTER, SOKOBAN,
SCANALYZER, TRANSPORT,
WooDWORKING

OPEN TRACK sC 2013 SAT 2013 100 per SAT category Application, Hard-combinatorial,
FULL 5C 2013 SAT 2013 1000 in total Apptication, Hard-combinatorial,
FULL 5 2011 SAT2011 1200 in total Application, Crafted,

Table 2.1: Benchmark suite defined for the planning and SAT experiments.

2.1.5.3 Evaluation metrics

Two metrics have been selected to measure the performance of the sequential portfolios, which
consider time as discrete with a discretization of one second. In case of solving problems optimally

16 CHAPTER 2. STATE OF THE ART

in planning or SAT problems, the performance is measured by the coverage. Otherwise, the quality
score of every solution found is computed to determine the performance.

o Coverage, C'(s, I, 1): number of problems in the benchmark I solved by the solver s in time
less or equal than ¢ per instance. It is the official metric for the SAT competitions and for the
optimal track of the last three IPCs (since 2008).

o The total quality score, (J(=, I, £), is computed as the sum of the quality score over all instances
{see Section 2.1.3.1). It is the metric for the satisficing track of the last three IPCs (since 2008).

The current practice in the portfolio literature is to use the single best solver (SB5) and the virtual
best solver (VBS) to define an upper bound on the solvers performance for a particular intermational
competition. Thus, we have also used these upper bounds to analyze the performance of the portfolio
approaches. SBS is the winner of the respective category of an international competition while VES
is an oracle which selects the best participant solver for each instance (Xu et al., 2012a). The VES
typically achieves much better performance than the 585. However, VBS is not a real portfolio since
it cannot be run on new instances (Xu et al., 2012a).

2154 Solvers

All approaches for configuring portfolios use a set of (publicly available) solvers. We would like to
acknowledge and thank the authors of the individual solvers for their contribution and hard work.
In this Thesis we have used a large number of single solvers and several portfolios. For the sake of
clarity, all of these solvers are described in Annex A.

2.2 Related Work

In this Section we describe the state-of-the-art techniques in the automated design of portfolios with
particular references to the portfolio classification and the general scheme to design portfolios de-
fined in Section 2.1.2. We first discuss the related work on Automated Planning. Then, we present
the related work on SAT. Finally, we discuss existing portfolio generation techniques for other prob-
lem solving tasks like Constraint Satisfaction Problems (CSP) and Answer Set Programming (ASP).

2.2.1 Automated Planning

During the last years, several portfolios have been developed for solving planning tasks. Most of
these portfolios have participated in the last planning competitions (IPC 2008, IPC 2011 and IPC
2014). The competition results show that the participant portfolios on the deterministic track, learn-
ing track and multicore track have often achieved the best scores. These planning portfolios and
several relevant works from the planning literature are described in detail next.

2211 BuUs

The work by Howe er al. (Howe et al., 2000) described BUS, one of the first portfolio approaches
for planning. In this work, the authors also empirically tested the three assumptions that support its
design, which are described next:

1. No single solver outperforms others in every domain. Six planners were executed with 263 in-
stances. The results showed that the best planner solved 110 instances out of the 176 planning
tasks that were solved by at least one of the six planners considered in the experiment.

2.2, RELATED WORK 17

2. Most planners either solve a planning task quickly or fail at solving the instance. Their em-
pirical study confirmed significant differences in time between success and failure solving
planning tasks.

3. The performance of planning solvers can be predicted with domain and problem features.
Their analysis of planner performance sugpested that a subset of five basic features extracted
from domains and problems can be used to predict if a planner will solve an instance and if
50, the time required to solve it.

BUS run 6 planners in a round-robin scheme until a solution was found. In particular, it con-
sidered sTAN (Fox and Long, 1998), 1pp (Koehler et al., 1997), sGp (Weld et al., 1998), BLACK-
BOX (Kautz and Selman, 1998), ucproP (Penberthy and Weld, 1992) and PrRODIGY (Veloso et al.,
1995). Most of these planners were based on GRAPHPLAN (Blum and Furst, 1997). However,
BrLackBoX focused on translating planning tasks to SAT and solving them using several SAT
techniques. This approach is currently exploited by state-of-the-art satisficing planners like SAT-
PLAN (Kautz et al., 2006) and MADAGASCAR (Rintanen, 2014). Indeed, MADAGASCAR achieved
impressive results for several planning domains in the IPC 2011.

For each input instance, BUS exiracts some features from the given problem and planning do-
main. The component planners are then sorted in descending order of the ratio ,ﬁig , where P(A;)
is the expected probability of success of algorithm A,, and T'(A;) is the expected run time of al-
gorithm A;. Both estimations are provided by linear regression models based on instance features.
Once the ordering task is finished, BUS runs the planners as follows. It takes the first planner from
the queue and allocates the expected time that the current planner needs to solve the input instance.
If the planner solves the planning task, the portfolio ends. If the planner terminates unexpectedly, it
is discarded. However, if the time allotted to the planner is reached without success or failure, BUS
studies whether to assign additional time to the current planner and the proceeding planners until
either the problem was solved or reached the predicted time to the next planner.

2212 The works by Roberts ef al.

In this Section we describe three works by Roberts er al which were inspired by BUS (see Sec-
tion 2.2.1.1). The work reported in (Roberts and Howe, 2006) computed two classification models
to predict if a planner will solve a planning task (success) and if so, the time required to solve it
(time). These models were generated using 1839 planning tasks and 57 features automatically ex-
tracted from these problems and domains. The authors attempted to find a subset of features which
minimize the cost required to compute them while preserving the accuracy of the model. It was
found that the model to predict time can be learned without expensive features and these features
are slightly informative to model success. On the other hand, the accuracy for predicting time was
assessed. The results indicated that this model was not accurate enough. Therefore, it was discarded
to compute the time allotied to each planner in the portfolio. Instead, the authors computed a pre-
defined sequence of slices of time, which are then used on a round-robin sirategy. The component
planners were sorted (for each test instance) in decreasing order of the probability of success. In
addition, this work also addressed the issue of selecting the planners which should be run by the
portfolio. The greedy set cover approximation algorithm was applied to compute a subset of non-
dominated planners based on success performance. The results suggested that at least 14 out of the
23 candidate planners may be discarded. In the empirical evaluation of the portfolio approach, two
dynamic portfolios were executed using the round-robin strategy. The first one execuled the full
set of planners while the second portfolio only considered the non-dominated planners. The results
showed that the second portfolio solved more instances.

18 CHAPTER 2. STATE OF THE ART

The second work by Roberts et al (Roberts and Howe, 2007) performed a study of the planner
performance using 28 planners (with their default parameters) and 4726 instances from 385 planning
domains. The authors realized that most of these planning tasks were no longer challenging. Hence,
the study focused only on problems which were solved by at most three planners and whose median
time to solve them was greater than one second. It resulied in a set of 1215 solvable problems from
41 domains. The performance data resulting of that study was used to learn several models to predict
success and time. The inputs to the learning algorithms were restricted to planner performance and
a set of 32 features automatically extracted from problems and planning domains. The evaluation
results of the computed models showed that success can be quite accurately predicted while time is
harder to predict (for instance, high time values are uncommon and therefore very hard to predict).
Finally, the learned models were applied to a portfolio approach which excluded dominated planners
using a greedy set covering algorithm as in the previous work. Thus, the portfolio only considered
10 out of the 28 planners included in the performance analysis. The authors proposed four strategies
to sort the execution order for each input instance, three of which used the learned models:

o cover used the set covering order.

o pSuccess discarded the planners that were predicted to fail and used the predicted probability
of success to sort the remaining planners in decreasing order.

» predTime soried planners in increasing order of the predicted time.

. .?‘g;g;lﬁ' adane used the ratio 22272 1o sort planners in decreasing order (Simon and Kadane,

Moreover, three sirategies were defined to compute the time allotted to each planner and run the
portfolio, where only one exploited the learned models:

o avgPlanner allotted to each planner its average time to succeed and executed planners in
sequence without preemptive mode.

» predlime assigned to each planner its predicted time for a given planning task (using the
learned models) and it also executed the component planners in sequence without preemptive
mode.

o conflnt defined a sequence of time slices to each planner since it used a round-robin sirategy
to run the portfolio. First, it sorted the time required to solve each training instance and then
it performed the analysis for each quartile {25, 50, 75, 80, 85, 90, 95, 97, 99}.

The empirical results indicated that the best portfolio ranked planners using the SimonKadane
strategy and used the conflnr technique to allocate runtimes, which empirically confirms the lower
accuracy to predict time.

The third work by Roberts er al (Roberts and Howe, 2009) extended the previous one by making
a deeper analysis of planner performance using similar sets of planners and planning tasks. The anal-
ysis focused on a good number of issues and questions about the planner performance, which were
examined with several tools like Sammon map, t-test, Wilcoxon signed-rank tests and log-likelihood
ratio test among others. The difficulty of the problems was measured by the number of planners that
are able to solve problems and the time required to solve them. It was found that the full set of over
4000 problems is nor very difficult despite the difficulty of the problems proposed over the years
has significantly progressed (which may bring some insight about the composition of the training

2.2, RELATED WORK 19

set used to configure portfolios). Also, it was noticed that solvable problems are usually solved very
quickly. On the other hand, the progress of the planner capabilities were analyzed. An exhaustive
analysis showed that planners have been considerably improved over time. However, not every old
planner should be considered obsolete or subsumed by others. The performance analysis noticed that
some older planners performed best on some (older too) domains (although these planners did not
perform well on recent IPCs). Besides, the set of problems solved by each planner was not a subset
of the problems solved by any other. Another issue addressed in this work is related to the need to
have challenging problems. The authors followed the methodology described by Taillard (Taillard,
1993) to generate new problems for existing domains and also for a new planning domain. The
results showed that the challenging problems were successfully generated since they increased the
difficulty of the previous problems.

22.1.3 PrP

PEP (Gerevini et al., 2014) was the winner of the learning tracks of IPC 2008 and IPC 2011. It was a
portfolio-based planner with macro-actions, which automatically configured a static sequential port-
folio of domain-independent planners for a specific domain. The portfolio configuration generated
by PEP, called cluster of planners, was composed of an ordered set of triples. Each triple contained
a component planner, a possibly empty set of macro-actions computed for the component planner in
a particular domain and a sequence of increasing slices of times (called time slots). This sequence
of runtimes was used by the round-robin scheme to run the portfolio. In particular, the round-robin
scheme followed a circular order to run each component planner. In each iteration, it mn a particular
planner with its set of macro-actions for the corresponding time slot. The first time that the planner
was executed, the first slice of time defined the time allotted to the planner, the second time the total
time allotted to the planner was defined by the second time slot and so on. Each slot defined the time
that the planner should be executed from the start. Therefore, in each iteration a planner resumed its
execution until its accumulated time was equal to the current time slot. If a planner did not terminate
within its allotted time, it was added to the end of the set and the next one was executed. Otherwise,
the planner was removed from the round-robin scheme.

In this work, the portfolio configuration process consisted of five steps. First, a number of sets
of macro-action were computed for each candidate planner in the given planning domain using
WIZARD (Newton et al., 2007) and Macro-FF (Botea et al., 2005). Second, the performance of
each candidate planner was measured with and without the sets of macro-actions computed for each
planner. In particular, PEP measured the number of solved problems, time required to generate
each solution and the quality score of every generated plan. Third, the sequence of time slots for
each candidate planner was computed using a variation of the time allocation strategy proposed by
Roberts ef al (Roberts and Howe, 2007) (see Section 2.2.1.2). The fourth step focused on selecting
a cluster of planners. It simulated the round-robin execution of each possible cluster of at most
k planners (k& = 3 in their experiments) with the same training instances used in the second step.
The simulation results were compared by a statistical analysis based on the Wilcoxon sign-rank test.
Using the statistical results, a similar graph to the one used by Long erf al (Long and Fox, 2003} (to
show the IPC 2002 results) was computed with the goal of selecting the cluster of planners for the
portfolio configuration. The last step in the configuration process sorted the component planners of
the selected cluster in ascending order of the first time slot of each planner.

The most recent version of PEP considers nine candidate planners: METRIC-FF (Hoffmann,
2003), yausp (Vidal, 2004), Macro-FF, MARVIN (Coles and Smith, 2007), SGPLANS (Chen et
al., 2006), FAST DOWNWARD, LAMA 2008 (Richter and Westphal, 2010), LPG-TD (Gerevini et al.,
2006) and PARLPG (Vallati et al., 2013). Since PARLPG was based on running LPG (Gerevini et

20 CHAPTER 2. STATE OF THE ART

al., 2003} with a domain-specific parameter configuration, PEP performed an additional step (after
the first step of the portfolio configuration process) to compute the parameter configuration for LPG
on the given planning domain. On the other hand, PEP is able to compute two variants of PEP.
PBP.s focuses on speed while PEP.Q aims to improve the quality score of the generated plans. Both
versions exploit configuration knowledge for a given planning domain. Nevertheless, PEP can be
used without this knowledge. In that case, the portfolio runs all candidate planners (without macro-
actions) using a round-robin strategy and it assigns predefined time slots to each planner before being
randomly sorted.

2214 FAST DOWNWARD STONE SOUP

FasT DOWNWARD STONE SOUP (FDSS) (Helmert et al., 2011) was one of the awarded planners in
the IPC 2011. In particular, two portfolios (denoted as FD55-1 and FD55-2) were generated using
the FDSS technique to the sequential (optimal and satisficing) tracks of IPC 2011. This technique
explores the space of static portfolios that can be configured with a set of candidate planners using a
hill-climbing search algorithm. It takes a set of domain-independent planners as the initial portfolio,
and allocates zero seconds to every planner. In each step, the algorithm generates the set of possible
successors. Each successor increases the allotted time of one planner by a slice of the total time. To
evaluate the successors, the algorithm uses the IPC evaluation metric (see Section 2.1.3.1) and a set
of training problems: the whole collection of planning tasks used in all the past IPCs (a total of 1116
training instances ranging from 1998 to 2008). The best successor is selected as the current portfolio
for the next iteration and it continues until the total time has been reached.

In satisficing planning, all candidate planners considered all actions to be of unit cost when com-
puting the heuristics and, for weighted-A* (Pohl, 1970), the g-values. FD55-1 and FDSS-2 commu-
nicate the cost of the best solution found among the component planners in the sequential portfolio.
Thus, the component planners can prune states using that cost as an upper bound for the g-value.

The FDSS portfolios sort the execution sequence. The FD55-1 portfolio for the satisficing track
sorts planners by decreasing order of coverage. The component planners of FDSs-1 for optimal
planning are sorted by decreasing memory usage. The remaining portfolios were sorted by other
arbitrary orderings, which were not detailed by the authors.

In addition, all configurations for satisficing planning modify the configuration of the sequential
portfolio once the first solution is found. Initially, all search algorithms ignore action costs in both
variants. Once the first solution is found, FDS5-1 re-runs the successful planner and the remaining
planners in the portfolio using all actions with their real cost. Instead, when the first solution is
found, FD55-2 discards all planners in the portfolio and it runs an anytime search algorithm with the
same heuristic and search algorithm that successfully found the first solution using RWA* (Richter
et al., 2010).

In a nutshell, the FDSS technique derives sequential domain-independent portfolios maximiz-
ing the IPC evaluation metric for a fixed time limit. The resulting portfolios sort the component
solvers using empirical criteria. Also, these solvers share the best solution found so far among them.
Moreover, the FDSS portfolios for satisficing planning are able to change their configuration using
predefined rules once the planning task has been solved.

2.2.1.5 The work by Seipp ef al

The work by Seipp ef al (Seipp et al., 2012) automatically built static sequential portfolios leaming
them from domain-independent tuned planners. These tuned planners were restricted to configura-
tions of the Fast Downward planning system (Helmert, 2006) which provides several state-of-the-art

2.2, RELATED WORK 21

search algorithms and planning heuristics. This work can be split into two parts. First, a planner was
automatically configured (by using the parameter tuning framework ParamIL5 (Hutter et al., 2000))
to excel in each of the 21 planning domains used in past IPCs (1998-2006). Harder problems were
excluded with the goal of accelerating the tuning process. The easiest problems were also discarded
because they are not helpful for the tuning process. ParamlILS starts with an initial configuration.
The authors took the initial configuration of the configuration process of FD-Autotune (Fawcett et
al., 2011) since Fast Downward has not a default configuration.
In the second part, the authors used seven methods to learn portfolios of those tuned planners:

e Stone soup, the technique defined by FDSS (see Section 2.2.1.4), searches a good portfolio
configuration on the space of static portfolios using a hill-climbing search.

o Uniform distributes the overall allotted time uniformly among all the planners.

e Selector employs brute force to compute the best subset of planners assigning the same amount
of time to each planner within the subset and then it picks up the best one.

o Cluster applies the k-means clustering algorithm (MacKay, 2003) to the set of tuned planners
(generating k clusters of planners) and selects the best planner from each cluster. All the
available time is uniformly distributed among the k selected planners.

o Increasing Time Limit is the technique which iteratively increases the portfolio time limit by
a slice of the total time. In each iteration, it increases the allotted time of the planner which
maximizes the score of the instances that can be solved within the current time limit (excluding
the instances that are already solved by the portfolio).

o [Domain-wise is the iterative technique that in each iteration selects the most promising plan-
ning domain and then includes the planner that requires less time to improve the score on that
domain.

o Randomized Iterative Search takes an initial portfolio configuration and then improves the
portfolio using a randomized local search method. This iterative technique continues until the
score of the portfolio does not improve after a large number of iterations.

All the portfolio generation techniques focused on the total quality score (see Section 2.1.3.1).
However, for the sake of fairness, the authors made some adjustments to this meftric. In particular,
the scores were normalized by the number of instances on each domain. Also, the score of the tuned
planners on domains which they were tuned was discarded. On the other hand, the authors did not
detail neither if the portfolios were able to share information among their component planners nor
the order of the component planners in the resulting portfolios.

All the resulting portfolios were assessed on the IPC 2011 sequential satisficing track. Interest-
ingly, the resulis showed that configuring planners for a set of known domains can be very helpful
to build portfolios that perform well on unknown domains. It was also found that the portfolio
learned with the uniform method did not achieve a remarkable training performance. However, it
was the best portfolio on the test set. On the other hand, as a result of this work, the portfolio derived
with the uniform technique was submitted to the satisficing track of the IPC 2014. It was termed
Fast Downward Uniform Portfolio (Seipp and Garimort, 2014) and was the sixth classified on the
competition.

22 CHAPTER 2. STATE OF THE ART

2216 ARVANDHERD

ARVANDHERD (Valenzano et al., 2012) was the winner of the multi-core track of the IPC
2011. It was a manually configured parallel portfolio which run several configurations of LAMA
2008 (Richter and Westphal, 2008) and ARvVAND (Nakhostet al., 2011). LaAMA 2008 was a planning
system based on heuristic search with landmarks (Porteous et al., 2001) that won the satisficing track
of the IPC 2008. Since this planner was able to use several heuristics to guide the search, the version
included in the portfolio considered three heuristics: the landmark count heuristic (Richter et al.,
2008) and two versions of the FF heuristic (Hoffmann and Nebel, 2001), a version which ignores
action costs and another version that considers action costs. Also, this version used random operator
ordering and restarts. In particular, if the planner exceeded a memory bound without finding a plan, it
was set to restart with a new random seed and a different configuration. On the other hand, ARVAND
was a stochastic planner which used heuristically evaluated random walks. The version included in
the portfolio was a particular parallelized version of the planner which included a shared walk pool
and a shared UCB (Auer et al., 2002) configuration selector. In each core, a particular configuration
executed an independent search episode. Once the search finished, it sent the trajectory to the shared
walk pool and the reward for the current configuration to the shared UCB system. Then, it received
the trajectory (from the shared walk pool) which should be executed with the configuration received
from the UCB shared system.

ARVANDHERD executed a single configuration of its version of LaMA 2008 at a time with the
aim of avoiding memory partitioning issues. If the configuration exceeded a fixed memory bound,
the planner was set to restart with another configuration and a new random seed in the same core. The
remaining cores executed the parallelized version of ARVAND. The set of ARVAND configurations
used in the portfolio was manually selected and it was based on the expertise of the authors. The
authors designed the portfolio with these planners for several reasons. First, LAMA 2008 was the
state-of-the-art planner. Second, this planner had a high memory consumption while ARVAND had
low memory requirements. Finally, the weakness of one planner was usually complemented by the
strengths of another.

2.2.1.7 The works by Cenamor ef al.

In this Section, we describe two works by Cenamor er al related to the use of predictive models.
Cenamor ef al. (Cenamor et al., 2012) focused on analyzing the IPC 2011 results from a Data Min-
ing perspective. It followed the CRISP-DM methodology (Chapman et al., 2010) with the goal of
generating predictive models. First, a set of features was automatically extracted from the problems
and domains defined in the competition. The SAS* problem representation (Béckstriym and Nebel,
1995; Helmert, 2009) and its induced graphs were also used to extract useful features. Moreover, the
time required to generate every plan in the competition and the quality score of the resulting plans
were collected. Second, the set of features and the planner performance were processed to com-
pute the input data for the learning algorithms. Third, a good number of learning algorithms were
executed with the purpose of selecting the best classification model to predict success and the best
regression model to predict time. In particular, the regression models aimed to predict three different
time values: the time required to solve problems (i.e. first plan found), the time needed to find the
best solution and the median time value of the plans generated. Finally, the learned models were as-
sessed over problems from unknown domains (using the leave-one-domain-out technique) and over
new problems from known domains (using the cross validation approach). The results showed that
the accuracy significantly worsened when the models were evaluated on new domains. In addition,
the authors performed a semantic analysis of the computed models.

2.2, RELATED WORK 23

The work (Cenamor et al., 2013) extended the previous one by focusing on the deployment
phase of the CRISP-DM methodology. This phase aimed to configure dynamic portfolios using
the classification and regression models. The best classification model was penerated by the J48
algorithm (Quinlan, 1993) while the best regression model was computed by instance-based learn-
ing (Briscoe and Caelli, 1996) with & = 3. In this work, the regression model focused only on
predicting the time expected to find the best plan. On the other hand, five strategies were defined
to compute portfolios, which sorted the component planners by the confidence of the predictive
models:

o FEgual Time applied the uniform method (which allocated the same amount of time to each
planner) to configure the portfolio.

e Best Confidence Estimation selected the candidate planner with the highest confidence value
provided by the classification model for each test instance. In case of a tie, all the planners
with the highest confidence value were included in the portfolio and the overall allotted time
was uniformly distributed among them. Otherwise, it selected the planner with the lowest
confidence value of failure for the test instance.

s Best 5 Confidence applied the uniform method to the five planners with the highest confidence
value of success for each test instance.

s Best 10 Confidence is the same strategy than the previous one but it selected the ten planners
with the highest confidence value (instead of 5).

e Best 5 Regression selected the five planners with the highest confidence value of success (re-
garding each test instance) to be part in the portfolio. Next, it computed the sum of the pre-
dicted time for each planner using the regression model. Finally, the time allotied to each
planner was a linear proportion of its predicted time with respect to the sum of the predicted
times and the total time.

e Best 10 Regression is the same strategy than Best 5 Regression but selecting 10 planners in-
stead of 5.

All strategies were applied to the satisficing track of the IPC 2011 using the split evaluation and
the leave-one-domain-out approach. The first technique aimed to assess the generalization capability
of the resulting portfolios to new problems of known domains (which were used to configure the
models). The second approach evaluated the portfolios on new domains. The results showed that the
strategies based on predictive models achieved good performance over problems of known domains.
However, the performance of the resulting portfolios on unknown domains was worse.

221.8 ASAPand AGAP

The work by Vallati er al described AsAP (Vallati et al., 2014), a domain-dependent static portfolio
configuration approach. It was based on exploiting different encodings or reformulations of a given
planning domain. In particular, it considered macro-actions (Chrpa, 2010) and (outer and inner)
entanglements (Chrpa and McCluskey, 2012) to create alternative encodings. A macro-action is a
planning operator which comprises a sequence of actions that can be executed at one time while
entanglements refer to relationships between planning predicates and operators. ASAP was able to
compute at most four different encodings since macro-operators and entanglements could not be
found on some planning domains. Specifically, it considered one encoding with macro-operators
and three encodings with the three possible combinations of the outer and inner entanglements.

24 CHAPTER 2. STATE OF THE ART

The offline phase of the portfolio configuration process aimed to select the best pair
{encoding, planner) for a given planning domain. For this purpose, first, a knowledge extraction
process was performed (macro-operators and both entanglements). Second, it generated three en-
codings considering only outer, only inner and both entanglements. Also, an encoding with macro-
operators was computed and the resulting useless single operators were discarded. Third, all the
possible combination of pairs {encoding, planner) were generated and then executed with every
training instance (e.g. for each pair, the planner was executed with every training instance reformu-
lated with the considered knowledge). Fourth, the performance of each pair was measured. Since
ASAPwas able to generate two different versions, ASAPs and ASAPq (which focused on maximizing
runtime and quality score respectively), it measured the time required to generate the best plan for
each planning task, the length of every resulting plan and the number of solved problems. Finally,
the best pair {encoding, planner) was selected to be executed over every test instance. ASAPS
selected the pair that achieved the highest IPC time score (see Section 2.1.3.2) while ASAPq used
the total quality score (see Section 2.1.3.1). Tie-breaking was addressed by using a second criteria,
which considered coverage, the number of problems in which each pair was the fastest and the mean
runtime of solved instances.

ASAP considered a manually selected set of candidate planners. It was composed of LAMA
2011 (Richter and Westphal, 2010), LPG (Gerevini et al., 2003), METRIC-FF (Hoffmann, 2003),
MP (Rintanen, 2012), PROBE (Lipovetzky and Geffner, 2011), SATPLAN (Kautz et al., 2006) and
SGPLAN (Chen et al., 2006). On the other hand, ASAP was empirically analyzed on a selection
of planning domains. Moreover, ASAP was assessed against the most recent version of PEP (see
Section 2.2.1.3) on the domains defined for the kearning track of the IPC 2011. The results showed
that AsaPg outperforms PBP.q while the time score achieved by AsAPs was slightly lower than the
time score of PEP.5.

AGAP (Chrpa and Vallati, 2014) was an improved version of ASAPq which took part in the learn-
ing track of the IPC 2014. There are two main differences between both approaches. First, AGAP
considered the same set of candidate planners but excluding SATPLAN. Second, AGAP used differ-
ent encodings for the given domain. [t was also able to generate at most four encodings considering
entanglements and macro-operators. However, it considered one encoding with only outer entangle-
ments, two encodings using macro-operators which exploit outer entanglements (Chrpa et al., 2014)
and another one using macro-operators from inner entanglements (Chrpa et al., 2013).

2219 AlPACA

AlIPACA (Malitsky et al., 2014) was a dynamic sequential portfolio of domain-independent planners
that took part in the optimal track of the IPC 2014. It was based on the algorithm selection technique,
which aims to select the most suitable solver for each input instance and which has been successfully
applied to the portfolio approach in SAT, MaxSAT and CSP. AIIPACA was designed to select the
planner that solves the input instance in the shortest time span. The choice relied on predictive
models (random forest) which were generated using planner performance and instance features.
Specifically, it measured the time required by each participant planner in the optimal track of the
IPC 2011 to solve every available planning task from all the previous IPCs. Also, it extracted a set
of 65 features from each available problem.

For each test instance, AIIPACA exiracted its set of instance features and it then predicted the
planner which will be able to minimize the time required to solve the given instance. The selected
planner was executed until the total time was exceeded or the planner generated the optimal plan.
In the latter case, the solution was validated. If the plan was valid, AIIPACA ends. Otherwise, it
executed a default planner for the remaining time. In particular, it run the Fast Downward planner

2.2, RELATED WORK 25
with the LM-CUT heuristic.

22.1L10 IBACOP and LIBACoOP

The IBACOP (Cenamor et al., 2014) planning portfolios were the winners of the satisficing track
and the runner-up of the multi-core track of the IPC 2014. Two versions of IBACOP were configured
for each track. The first version, IBACOP, was a static sequential portfolio. It was configured by a
two step strategy. First, a Pareto efficiency analysis (Censor, 1977) was applied to all the participant
planners of the satisficing track of IPC 2011, plus LPG-TD using the whole collection of instances
defined for that track. The analysis considered the quality score of the best plan generated and
the time required to generate the first solution for each training instance. It resulted in a set of 12
planners, where each dominated all others in at least one training domain. Second, the portfolio
configuration strategy applied the uniform method to the resulting set of planners. The order of the
component planners in the portfolio was arbitrary. On the other hand, a variation of the IBACOP
portfolio was made to participate in the agile track. The configuration strategy allotted to each
component planners its average time to solve training instances within 300 seconds instead of using
the uniform method. Since the time available to solve each problem in the agile track was equal
to 300, not all the component planners were executed in the portfolio. The resulting portfolio was
ordered by the time allotted to each planner in ascending order and the planners were executed in
sequence until the total time was exceeded.

IBACOP 2 was a dynamic sequential portfolio configured with the methodology described in
Section 2.2.1.7 with a few improvements. It considered the set of planners selected by the Pareto
analysis performed by IBACOP instead of all the participant planners of the satisficing track of the
IPC 2011. Also, the set of training instances used to learn the predictive models was extended. In
particular, it considered all the available planning tasks from the IPC 2005 to IPC 2011 excluding
those instances which were not solved by any planner. The set of features extracted from the problem
and domain definitions and from the SAS* formulation and its induced graphs was also improved.
Moreover, the authors used Random Forests (Breiman, 2001) to generate the classification model,
since it achieved a 99.83% of accuracy in the training instances. Finally, the Best 5 Confidence (see
Section 2.2.1.7) strategy was selected to generate a portfolio configuration for each input problem.

Two sequential dynamic portfolios, termed LIBACOP and LIBACOP 2 (Cenamor et al., 2014)
were also configured for the IPC 2014 learning track following the methodology used by IBACOP
with two differences. First, the Pareto analysis was applied to all the participant planners from the
satisficing track of the IPC 2011 plus LPG-TN and SGPLAN. This analysis selected a subset of
15 planners. Second, since both versions were derived for the learning track, the predictive models
were leamed for each domain in which both versions should be evaluated. The authors used Random
Forests in the classification task and Decision Tables (Kohavi, 1995) to predict time. LIBACOP
applied the Best 5 Confidence strategy to generate a portfolio configuration for each input planning
task in a particular planning domain. LIBACOP 2 used the same strategy to select the 5 planners to
be part in the portfolio. However, it used the regression model to assign the runtime to each planner
instead of the uniform method. The base configuration of both versions (i.e. the configuration of the
portfolios without exploiting domain knowledge) resulied from applying the uniform method to the
set of planners selected by the Pareto analysis.

22111 CEDALION

The work by Seipp er al (Seipp et al., 2015) described CEDALION, a new portfolio configuration
approach which addressed the solver configuration problem in the automated process of configuring

26 CHAPTER 2. STATE OF THE ART

sequential portfolios. The classical algorithm configuration problem aims to find a configuration
of a parameterized algorithm such that it maximizes a performance metric on a given benchmark.
However, CEDALION made the time allotied to each planner in a sequential portfolio part of the
solver configuration space. Thereby, it used an algorithm configuration method to greedily generate
the portfolio configuration such that each component added to the portfolio maximizes the portfolio
performance per additional time spent. Moreover, CEDALION provided theoretical performance
guarantees.

CEDALION defined an iterative method to generate sequential portfolios for a given highly
parameterized planning algorithm, a training benchmark, a performance metric and a time limit.
It starts with an empty portfolio. In each iteration, it uses an algorithm configuration method
to generate a new solver configuration and its allotted time with the goal of improving the per-
formance of the current portfolio. If the portfolio obtained by adding the new solver configuration
does not improve the performance, CEDALION terminates. Otherwise, the new configuration and
its allotted time are added to the current portfolio. Also, all the training tasks solved by the current
portfolio with the best quality regarding the given performance metric are removed from the training
benchmark. CEDALION iterates until the total time exceeds the given time limit.

In the empirical evaluation, CEDALION used SMAC (Hutter et al., 2011), the sequential model-
based algorithm configuration method that uses predictive models to guide the search in the param-
eter configuration. Also, the authors restricted the solver configuration space to be the same of the
Fast Downward planning system defined in (Fawcett et al., 2011) with the aim of fairly assessing
CEDALION against FDSS, FD-AUTOTUNE and the work (Seipp et al., 2012) (see Section 2.2.1.5).
Moreover, the authors generated the training and test sets from the collection of planning tasks de-
fined in the IPC 2011. It results in two different sets (without overlapping) which contains instances
from all the planning domains defined in the competition. Therefore, the experiments only evaluated
the generalization capability of the portfolios to new problems of known domains. On the other
hand, all the generated portfolios allowed their component planners to share the best cost found so
far among them. The resulis of the empirical evaluation using the satisficing, optimal, agile and
learning settings showed that the portfolios generated by CEDALION outperform (in some cases) the
state-of-the-art Fast Downward portfolios.

2.2.1.12 The work by Rizzini ef al

The work by Rizzini er al (Rizzini et al., 2015) described four techniques to configure dynamic
sequential portfolios of domain-independent planners for optimal planning. These techniques were
based on planner performance from training executions and the set of 311 instance features described
in (Fawcett et al., 2014). The planner performance was measured by the time required to generate
optimal solutions. However, if a planner did not solve an instance within the time limit, its per-
formance was defined by the Penalized Average Runtime score which determines a penalty equal
to ten times the time limit (PAR10). On the other hand, all the portfolios derived by the proposed
techniques executed four phases for each instance to be solved. First, the pre-solving phase aimed to
solve the easiest instances using a static portfolio defined for 1.11% of the available time. Second, if
the input instance was not solved in the previous phase, a feature extraction process was performed.
Third, the main phase focused on generating and running the portfolio configuration to solve the
input instance. Finally, the backup solving phase, which was executed in case of failure, run a set of
planners for the remaining time.

The four configuration approaches presented in this work differed from the technique used in
the main phase to generate the portfolio configuration. The similarity-based approaches, instance-
set-core-based and weight-based, computed the Euclidean distance between the input instance and

2.2, RELATED WORK 27

each training problem in the feature space. Instance-set-core-based focused on iteratively selecting
the planner that maximized the performance of the training instances closest to the input instance
{e.g. those training problems whose distance to the given instance was lower than a given threshold).
Unlike the previous technique, weight-based assigned to each training problem a weight equal to its
distance with respect to the input instance. Finally, it iteratively selected the planner that showed
the best weighted sum of the PAR10 scores on each training problem. Both techniques allotted to
the selected planner a runtime that maximized the ratio of instances solved per runtime spent. Also,
they discarded (afier each iteration) the training instances solved by the selected planner within its
runtime. On the other hand, the iterative model-based approaches, simplified model-based and full
model-based, leamed a random decision forest model to predict the next planner that should be
executed and a regression forest model to predict its runtime. Full model-based also considered
a second classification model which was learned including features from the planners that failed
solving the input instance.

The proposed techniques were evaluated against two static configuration approaches. A partic-
ular version of FDSS that restricted the number of the component planners and the offline greedy
portfolio configuration method defined by Streeter ef al (see Section 2.2.2.1). The authors also
included PLANZILLA in the empirical evaluation, an adaptation of SATZILLA to optimal planning.
The evaluation was performed to analyze the peneralization capability of the resulting portfolios to
new problems from known domains and to new planning domains. In the first scenario, the results
showed that only the portfolios derived by the model-based approaches frequently outperform the
considered static portfolios. However, it was found in the second scenario that all the techniques
proposed in this work derived portfolios which generalized better than PLANZILLA and the static
portfolios considered.

22113 Summary

This Section summarizes the main differences among the approaches described in the related work
for Automated Planning. For each approach, Table 2.2 shows the scheduling strategy (which can
be sequential, sequential round robin or parallel), how many components solvers were included in
the penerated portfolio, the granularity for which the approach generates portfolios and the main
technique used to derive portfolios.

For the sake of clarity, all the techniques based on predictive models have been classified as
Empirical Performance Models (EPM). Also, Table 2.2 only describes the best technique from each
work included in the related work, which has been selected according to empirical results or results
from the IPCs.

2.2.2 SAT

Algorithm selection (Rice, 1976) has been shown to be very useful to solve SAT instances. It aims to
select the most suitable solver (from a collection of candidates) for each input instance. The portfolio
approach based on this problem typically runs all the candidate solvers with a set of training instances
gathered from previous SAT competitions. Next, a number of features that describe the structure
of each training instance are extracted. Then, the expected time required to solve every training
instance by each candidate solver is learned using the instance features (offline phase). Finally,
it generates a portfolio of solvers that maximizes the probability that a specific instance is solved
{online phase). Originally, only one solver was selected to solve each input instance. However,
modern approaches have introduced the pre-solvers and the backup solver. Pre-solvers refer to a
particular static portfolio defined for a limited amount of time with the aim of solving the easiest

28

CHAPTER 2. STATE OF THE ART

Scheduling Portfolio
Approach Sirale gy generated #Components Technique
EUS Sequential RR per-instance Some solvers EFM (linear e gression maodels)
Roberts e al Sequential RRE per-instance Some solvers EPMs and quartile analysis
PP Sequential RR per-domain Some solvers Statistical amalysis
FLES Saguential per-several-domains Some solvers Greedy algorithm
Seipp e al. Saguential per-several-domains Some solvers Uniform method
AEVANDHERD Parallel per-several-domains Some solvers Manually configured
IBACOP 2 Saguential per-instance Some solvers EPM (Random Forest) and uniform method
ASAP Seguential per-domain Single sobver Bast training performance
ADAP Seguential per-domain Simgle sobver Bast training performance
AlPACA Seguential per-instance Single solver 4+ backup EPM (Random Forest)
CEDALION Seguential per-several-domains Some solvers Greedy algorithm using algorithm conf.
Rizzini er al. Saguential per-instance Pre. 4+ some solvers + backup K-MN vanation and EPM (Random Forest)

Table 2.2: Summary of the state-of-the-art portfolio approaches for Automated Planning.

test instances, while the backup solver is the one to be executed in case of failure. It is typically the
solver which achieved the best performance on the training benchmark.

Among others, there exist approaches that focused either on computing a static schedule of
solvers (Nifiez et al., 2013; Streeter et al., 2007) or selecting the most promising solver (Kadioglu
et al., 2010; Nikolic et al., 2013) to solve each test instance. In this Section, we describe a broad
range of the most relevant works about SAT portfolios. For an extensive overview on algorithm
selection, we refer to a recent survey (Kotthoff, 2014).

2221 The work by Streeter ef al

The portfolio considered in the work by Streeter er al (Streeter et al., 2007) interleaved the execution
of the component solvers using the preemptive mode (i.e., the ability to stop execution and resume it
later on if necessary). Additionally, the total time allocated in the portfolio was not restricted by any
threshold. Hence, the overall time allotted to the portfolio was less or equal to the maximum time the
authors were willing to spend on any single solver when solving any particular instance multiplied
by the number of component solvers.

This work introduced an optimal and greedy algorithms for computing the optimal sequential
portfolio for a training benchmark and proved that the problem is NP-complete. The optimal al-
gorithm only worked (in polynomial time) with a small number of candidate solvers k since the
optimal portfolio was leamed by computing a shortest path in a graph, whose vertices were arranged
in a k-dimensional grid. The offline greedy algorithm aimed to maximize the number of instances
solved per runtime spent. In each iteration, it added to the portfolio the pair {solver,time) that
maximized the ratio %, where C'(solver,t;) was the number of training instances solved
by sofver within t,, the total allotted time to solver in the portfolio (t; = time). Each pair meant
the time that solver should be executed afler resuming its execution. At the end of each iteration,
the training instances that were already solved by the current portfolio configuration were removed
from the training benchmark. The algorithm iterated until the training benchmark was empty. The
authors experimented with both algorithms on SAT and planning (among others). The empirical
results showed the sirength of the portfolio approach for problem solving.

2.2, RELATED WORK 29

2222 SATzZILLA

SATziLLA was a portfolio-based algorithm selection for SAT which won ten medals in the SAT
Competitions 2007 and 2009, and also won the SAT Challenge 2012, It was improved over the
years (Xu et al., 2008; Xu et al., 2009; Xu et al., 2012b). The most recent version, SATZILLA
2012, introduced an algorithm selector based on cost-sensitive classification models. The offline
phase of this version can be split into four main steps. First, it selected a set of pre-solvers and their
shorter runtimes based on training performance. Second, the backup solver was selecied. It was the
solver that achieved the best training performance on instances with expensive feature computation
time and that were not solved by the pre-solvers. Third, a classification model (decision forest) was
learned using features with a low computation cost. This model was aimed to predict whether the
computation time required to exiract a more comprehensive set of features is lower than or equal to
a given threshold. Finally, SATZILLA 2012 computed a cost-sensitive classification model (decision
forest) for every pair of solvers in the portfolio to predict which performs better on a given instance.

For each input instance, SATZILLA predicted whether the feature computation time for the test
instance was too costly or not. Then, the pre-solvers were executed with their allotted times. If the
test instance was not solved by the pre-solvers, a feature exiraction process was performed. Next,
SATziLLA selected the best candidate solver for the input instance using instance features and the
classification models generated in the offline phase. Finally, it executed the selected solver for the
remaining time. If the feature computation time was too costly or, in case of failure extracting the
features or running the selected solver, the backup solver was executed.

The authors also proposed to use techniques to automatically generate portfolios for analyzing
individual solvers (Xu et al., 2012a). They analyzed the contributions of individual SAT solvers
measuring their contribution to SATZILLA. Interesting conclusions were found, e.g., that the solvers
that contributed most to SATZI1LLA were the solvers that exploited novel strategies instead of solvers
with best performance.

2223 HYDRA

HyDRrA addressed the algorithm configuration and the algorithm selection problem together (Xu
et al., 2010). It was an anytime algorithm that automatically built solvers to complement a sequen-
tial portfolio. These solvers were generated by applying an algorithm configuration procedure to a
highly parameterized algorithm. Specifically, the iterative HyDRA algorithm took five inputs: a pa-
rameterized algorithm, a training benchmark, an algorithm configuration procedure, a performance
mefric and a portfolio configuration method based on algorithm selection. It started with an empty
set of component solvers. In each iteration, it used the algorithm configuration procedure to gener-
ate a new solver that maximized the performance on the training benchmark. For each instance, the
performance of the new solver was defined as the best performance (according to the input metric)
achieved by itself or by the current set of component solvers. Next, the new solver was added to the
set of component solvers and a portfolio was computed. HYDRA iterated until a given condition was
satisfied. Also, HYDRA was able to discard solvers that were added to the set of component solvers
On previous iterations.

In the empirical evaluation, HYDRA was applied to SAT producing high-performance portfo-
lios using SATZILLA (Xu et al., 2008). The set of component solvers was generated by applying
the FoCUSEDILS (Hutter et al., 2009) procedure to SATENSTEIN (KhudaBukhsh et al., 2009), a
highly parameterized solver that can be configured to instantiate a broad range of high-performance
stochastic local search based SAT solvers. The authors assessed HYDRA against 17 SAT challenger
solvers and the best portfolios of those solvers. The results indicated that the portfolios derived by

30 CHAPTER 2. STATE OF THE ART

Hypra outperformed all challengers and achieved at least the same performance of the considered
portfolios.

2224 1SAC and ISAC+

The work by Kadioglu ef al. described 1SAC, an instance specific algorithm configuration (Kadio-
glu et al., 2010). It aimed to provide a configuration of a given parameterized algorithm for each
instance to be solved. The authors continued the idea of stochastic offline programming described
in (Malitsky and Sellmann, 2009). This approach defined an iterative offline method that performed
three tasks. First, the k-means clustering technique was applied to the training benchmark using a
distance metric in the space of the instance features. Second, a parameter configuration for the given
parameterized algorithm was computed for each cluster using local search. Finally, the distance
metric in the feature space was adjusted. This metric was based on the difference in performance
of solving a training instance from one cluster with a parameter configuration computed for another
cluster. The method iterated until the metric did not improve anymore.

The offline phase of 1SAC took a highly parameterized algorithm, a training benchmark and a
collection of features extracted from each training instance as inputs. Then, the instance features
were normalized in the range [—1, 1| by scaling and translating the values of each feature. Next,
the g-means cluster algorithm was applied to the training benchmark using the normalized features.
This clustering technique automatically determined the number of clusters (Hamerly and Elkan,
2003). Then, the clusters that contained less instances than a manually selected threshold were
re-distributed, starting with the smallest cluster. Finally, an algorithm configuration was computed
for each cluster using GGA, a gender-based genetic algorithm for the automatic configuration of
algorithms (Ansotegui et al., 2009). In addition, I1SAC computed a parameter configuration for the
entire training benchmark.

For each test instance, [SAC extracted and normalized a collection of features. MNext, it deter-
mined the cluster that the test instance belonged to. Finally, the parameter configuration computed
for that cluster was used to solve the input instance. In case the test instance was not near enough
to any cluster, the configuration computed for the entire training benchmark was used. The authors
assessed 1SAC on SAT, MIP and set covering with remarkable results.

15aC+ and 15AC+ 2014 won nine tracks in the MaxSat Competitions 2013 and 2014.
ISAC+ (Ansotegui et al., 2014) was an improved version of 1SAC. Specifically, it used the 15AC
offline phase with the aim of generating one parameter configuration for each cluster. However,
15AC+ used the CSHC algorithm selector (see Section 2.2.2.8) to select the best algorithm configura-
tion for each test instance instead of the same clusters generated in the offline phase.

2225 ArgoSmArT k-NN

The work by Nikolic er al. (Nikolic et al., 2013) introduced ArgoSmArT k-NN, a simple algorithm
selection portfolio based on the k-nearest neighbours method (Duda et al., 2000). It was considered
simple for several reasons. First, neither a backup solver nor pre-solvers were considered. Second, it
did not predict feature computation time. Third, any knowledge about the structure of the instances
families was not assumed in advance. Fourth, the approach used neither feature selection nor feature
generation techniques. Finally, ArgoSmArT k-NN was independent of the distribution of the training
benchmark.

In the offline phase, ArgoSmArT k-NN computed a PAR10 penalty score for each candidate
solver on every training instance. It was computed as the time required to solve each training instance
{within the time limit), considering a penalty equal to ten times the time limit for each unsolved

2.2, RELATED WORK 31

instance. Next, the best k value for the k-nearest neighbours technique was selected using the leave
one out method on the training instances. This method iteratively extracted one instance from the
full training benchmark and then it attempted to solve that instance using the rest of instances as
training benchmark. In the online phase, a subset of the features defined by SATZILL A was extracted
from the input instance. In particular, ArgoSmArT k-NN only considered 29 features with a low
computation cost. Next, it selected the k training instances closest to the test instance in the feature
space. The distance between instances was computed (without feature normalization) using the
distance measure defined in (Nikolic et al., 2009). Finally, the solver with the lowest penalty value on
the selected instances was executed with the input instance. Tie-breaking was resolved by selecting
the solver that achieved the best performance over the entire training benchmark.

The authors performed an empirical evaluation with the aim of fairly assessing ArgoSmArT k-
NN against SATziLra 2009 on the instances defined for the SAT Competition 2009. The same
training benchmark and the same 13 candidate solvers considered by SATZILLA were used to con-
figure ArgoSmArT k-NN. The results indicated that ArgoSmArT k-NN (with both & values used,
k=1 and k = 9) outperformed SATZILLA.

2226 Satisfiability Solver Selector

Satisfiability Solver Selector (35) (Malitsky et al., 2012b; Kadioglu et al., 2011) was a dynamic
sequential portfolio that won seven medals in the SAT Competition 2011. It scheduled a set of
candidate solvers using algorithm selection with a fixed-split solver schedule approach. The offline
phase of the competition version was composed of three tasks. First, 35 extracted a collection of
48 features from each training instance and run the 38 candidate solvers with all the 6667 training
instances. The second phase aimed to compute a desirable size k of the local neighbourhood for
a given instance using cross validation. Finally, the third phase derived the pre-solver schedule by
solving a MIP task to compute the optimal sequential schedule of candidate solvers that maximizes
the number of solved training instances using 10% of the available time. The MIP task was solved
using the column generation approach. Therefore, the solutions found were not optimal though they
were near-optimal in practice. In the online phase, a collection of features was extracted from the
input instance. Then, the instance features were normalized. Next, 35 selected the subset of & most
similar training instances to the input one using the Euclidean distance in the feature space. The
best candidate solver for these k instances was selected. Finally, 35 executed the fixed schedule of
candidate solvers for 10% of the available time and the selected solver for the remaining time.

35 was generalized to the parallel case and parallel solvers were considered as candidate compo-
nents of the portfolio (Malitsky et al., 2012a). The authors generalized the MIP task considering the
processor where each solver should be executed such that the total makespan should be within the
time limit. Also, the MIP task restricted the number of solvers included in the resulting schedules.
The parallel version of 35 required to solve the MIP task in both (offline and online) phases. First,
the MIP task was solved in the offline phase to compute the pre-solver schedule considering all the
training instances for 105 of the available time. Second, it was solved at runtime to compute the
parallel schedule that maximizes the number of problems solved on the set of the k training instances
closest to the given instance. The performance of the parallel version of 35 was assessed and it was
found that this dynamic parallel portfolio significantly increases the ability to solve SAT instances.

2227 The work by Hutter ef al.

The work by Hutter er al (Hutter et al., 2014) focused on empirical performance models for predict-
ing runtime on SAT, MIP and the Travelling Salesperson Problem (TSP). First, the authors aimed to

32 CHAPTER 2. STATE OF THE ART

improve the runtime prediction accuracy for parameterized algorithms. Specifically, they described
a new method that aimed to encode categorical parameters as real valued parameters. Thus, all ex-
isting models could be extended to manage those inputs. Also, new techniques based on Random
Forests and approximate gaussian processes were introduced. Second, the authors focused on defin-
ing new relevant features for SAT, MIP and TSP problems. Third, an extensive empirical evaluation
was performed to analyze the performance of previous modeling approaches and the proposed tech-
niques on three different problems: to predict the runtime of standard solvers on unseen instances
{with their default configurations), to predict the runtime of new configurations of a parameterized
solver on a particular instance, and both problems together. The results showed that the best pre-
dictions on each of the three aforementioned problems were achieved by the techniques introduced
in their work. Finally, the authors improved the Random Forest based technique by using statistical
methods to manage better the data obtained from executions that erminated prematurely.

2228 CSHC PARS

CSHC PARS (Malitsky et al., 2013c) was the winner of the open track of the SAT Competition 2013,
the track that was specifically defined for portfolio approaches (alfernarive approaches, see Sec-
tion 2.1.4.1). It was an 8-core parallel dynamic portfolio. Specifically, it always run LINGELING
587 (Biere, 2011) on four core processors, CCASAT (Cai and Su, 2012) on one core, and three
different versions of the sequential dynamic portfolio CSHC on one core each. Each version only
differed from the category of the training benchmark used for its configuration (e.g. instances from
the industrial, crafted or random categories). CSHC was based on algorithm selection. It used the
same pre-solver scheduler technique defined by 35 (see Section 2.2.2.6) and multi-class classifica-
tion models (based on cost-sensitive hierarchical clusiering) to select the best solver for each given
instance. CSHC generated several classification models with the aim of improving stability. Since
there were a number of models to predict the best solver for each test instance, it used a Penalized
Average Runtime technique (PAR10) to aggrepate the different classification information. In a nut-
shell, it gathered from each model the training instances of the cluster that the test instance belongs
to. Then, it selected the solver that achieved the best average runtime (with timeouts penalized as
ten times the time limit) on the set composed of all the gathered instances.

The offline phase of CSHC aimed to generate the cost-sensitive multi-class classification models.
In the competition, CSHC considered two different sets of features. Thus, in the online phase, it
attempted to extract the first set of features for a time limit of 400 seconds. In case of exceeding the
time limit, it tried to compute the second collection of features for 100 seconds. In case of failure, it
executed a manually selected backup solver. Otherwise, CSHC executed the 35 pre-solver schedule
for 10% of the available time and the predicted solver for the remaining time. Moreover, in case
of detecting a low confidence in the prediction, CSHC executed a recourse action (Malitsky et al.,
2013b). In particular, it increased the time allotted to the pre-solvers.

The learning method termed cost-sensitive hierarchical clustering was also defined by the au-
thors of CsHC (Malitsky et al., 2013a). They empirically showed that CSHC was less sensitive to the
features with litile predictive power than 35. Also, it was found that the time required to configure
a CSHC portfolio was orders of magnitude lower than SATzZiLLA 2012, Moreover, an empirical as-
sessment indicated that the CSHC portfolios outperformed both 35 and SATZiLLA 2012 on different
SAT and MaxSAT benchmarks.

2.2, RELATED WORK 33

2229 AvtoFoLio

The work by Lindaver et al described AuToFOL10 (Lindauer et al., 2015), a portfolio approach that
applied algorithm configuration to a highly parameterized algorithm selection framework. Specif-
ically, it used the algorithm configuration method termed sMmAC (Hutter et al., 2011} in order to
automatically configure CLASPFOLIO 2 (Hoos et al., 2014) for a given algorithm selection sce-
nario. CLASPFOLIO 2 was a portfolio framework which implemented several algorithm selection
approaches and the parameters of the respective machine learning techniques. It took as input an
algorithm selection scenario, which was composed of performance data, instance features, a set of
solvers and a set of instances among other data.

The configuration space considered by AUTOFOLIO was mainly defined by three groups of pa-
rameters. First, the group of parameters which is composed of those that set the algorithm selection
approach, the machine learning technique and the configuration of that learning technique. It pro-
vided at least three machine learning techniques for each of the six algorithm selection approaches
considered. Second, the collection of parameters which define the preprocessing techniques to be
used. It supported three techniques to preprocess the performance data and four methods for feature
preprocessing. Third, it defined several parameters related to the pre-solving schedules such as the
number of pre-solvers considered and the time allotted for presolving. The authors evaluated AUT-
OFOLI1O on 13 algorithm selection scenarios from the Algorithm Selection Library (Bischl et al.,
2015). These scenarios included several problem solving tasks like SAT, MaxSAT, CSP and ASP
among others. The empirical results indicated that AUTOFOLIO improved the performance on 7 sce-
narios while matching the performance of the previous state-of-the-art approaches on the remaining
SCENArios.

22210 Summary

This Section concludes the related work for SAT summarizing the main differences among the state-
of-the-art approaches. For each approach, Table 2.3 shows the scheduling strategy (which can be
sequential, sequential round robin or parallel), how many components solvers were included in the
generated portfolio, the granularity for which the approach generates portfolios and the main tech-
nique used to derive them.

Table 2.3 describes the greedy algorithm proposed by Streeter ef al since their optimal algorithm
only worked with a small number of candidate solvers. On the other hand, the work by Hutter et
al focused on predictive models and instance features so that no portfolio is generated. Therefore,
this work has been excluded from the summary. In general, this summary only includes the most
representative approach from each work described in the related work.

Scheduling Portfolio
Approach Strategy generated #Components Tachnigue
Stmeeter er al. Sequential RR per-several-instances Some solvers Gready algorithm
SATZILLA 2012 Saguential per-instance Pre. + single solver + backup EPM (C5 Random Fomst)
HYDRA Seguential per-instance Pre. + single solver + backap SATZILLA and algorithm conf. (gready)
ISAC+ Seguential per-instance Single sohver CEHC and algorithm conf. (g-means)
ArgoSmArT k-NN Seguential per-instance Single sohver K-MNM
35 (8C2011) Sequential per-instance Pre. + single sobver MIP (CG) and K-NN
CSHC PARE Parallel per-instance Pre. + single solver + backup EPM (C5HC) and 35 MIP
AUTOFOLIO Seguential per-instance Pre. + single solver + backup Algorithm conf. to portfolio framew ork

Table 2.3: Summary of the state-of-the-art portfolio approaches for SAT.

M CHAPTER 2. STATE OF THE ART

2.2.3 Portfolio Approaches for other Problem Solving Tasks

The portfolio approach has been successfully applied to several areas of problem solving. Thus, in
this Section, we describe some relevant works from CSP and ASP, two prominent and widely studied
fields.

2231 The work by Gomes ef al.

The work by Gomes ef al. (Gomes and Selman, 2001) was one of the first works on analyzing the
effectiveness of the algorithm portfolio approach applied to problem solving. It considered portfolios
composed of stochastic algorithms for solving hard combinatorial search problems. In particular,
the authors focused on Constraint Satisfaction Problems and Mixed-Integer Programming problems.
Also, three different strategies for running portfolios were analyzed without allowing the component
algorithms to share information among them. First, the algorithms included in a portfolio were
concurrently executed on a parallel machine. Second, all the component algorithms were executed
on a single core processor by interleaving their execution (like in a round-robin strategy). Finally, the
portfolio executed the same stochastic algorithm with short timeouts using different random seeds.
The results showed that the last sirategy outperforms others when only one core processor was
available. Moreover, the authors discussed various theoretical results concerning optimal portfolios.
In addition, they provided results of the computational advantage of the portfolio approach on hard
combinatorial search and reasoning problems.

2232 CPHYDRA

An example of optimal sequential portfolio was CPHYDRA (O"Mahony et al., 2008), the winner of
the CSP Competition 2008. It won four out of the five categories defined in the competition and was
the second best participant in the fifth one. CPHYDRA was based on Case-Based Reasoning, a lazy
machine learning approach that uses past experiences to solve new problems. These experiences,
termed cases, contain a description of a past execution and its respective solution. For each instance
to be solved, this approach selects similar cases from the case base (e.g., the whole collection of
cases) and use it to solve the input instance.

CPHYDRA built a case base of problem solving experiences. The description of each case was
composed of a collection of features that describe a training instance. On the other hand, the solution
of every case was defined by the time required by each candidate solver to solve the training instance.
For each test instance, CPHYDRA extracted a collection of features. Then, the most similar & cases
to the input instance were selected from the case base using the k-nearest neighbours technique. In
particular, k was set to 10 and the Euclidean distance was used to measure the similarity between
cases. Next, CPHYDRA used a constraint model based on the knapsack problem to compute the
portfolio configuration schedule for the k similar cases. The authors weighted the cases in the
objective function according to their distance to the input instance. The constraint problem was
solved by a simple complete search procedure. In case of detecting that the generated portfolio was
useless, CPHYDRA applied an alternative procedure to discard dominated solvers and to distribute
the remaining time. Finally, the resulting portfolio configuration was executed to solve the test
instance.

2233 ASPEED

Another optimal approach for configuring (sequential and parallel) portfolios was called As-
PEED (Hoos et al., 2015). It formulated the problem of computing the optimal static portfolio accord-

2.2, RELATED WORK 35

ing to a set of training data as a multi-criteria optimization problem using Answer-5et Programming
(ASP). The approach was split into two steps. The first step computed the optimal portfolio min-
imizing the L>-norm on the vector defined by the time allotted to each solver. This norm led to
a significant reduction of candidate portfolios and it also resulted in portfolios with a more homo-
geneous distribution of time slices. The second step aimed to sort the component solvers in the
portfolio with the purpose of minimizing the total execution time in the training data. Therefore,
the resulting portfolio achieved the best performance in the training set and minimized the execution
time in that instance set. The authors applied ASPEED on ASP, CSP, MaxSAT, QBF and SAT with
successful results.

2234 CLASPFOLIO 1

CLASPFOLIO 1 (Gebser et al., 2011) was an algorithm selection portfolio that won the NP track
of the ASP Competition 2011. It was inspired by an earlier version of SATZILLA. However, the
approach relied on Support Vector Repression (Basak et al., 2007) and several manually selected
configurations of the CLASP solver (Gebser et al., 2007) instead of Ridge Regression and a set of
different candidate solvers. In the offline phase, CLASPFOLIO 1 aimed to generate predictive models
using the aforementioned machine learning method. The performance of every configuration on each
training instance was computed as :kE::; where £ (i) was the time required by the configuration k to
solve the instance i and ¢* (1) was the minimum time required by any of the considered configurations
to solve the same instance. In the online phase, CLASPFOLIO 1 performed four tasks. First, a logic
program was instantiated by the ASP grounder GRINGO. Second, CLASPRE, a light-weight version
of CLASP, was used to collect a set of features from the input instance and to solve the easiest test
instances. Third, in case the test instance was not solved by CLASPRE, the learned models were
used to predict the performance of each configuration. Finally, the configuration with the highest
predicted performance was selected to solve the input instance.

2235 Summary

This Section concludes the analysis of the state-of-the-art with a summary of some representative
approaches for CSP and ASP. Similar to previous summaries, for each approach, Table 2.4 shows
the scheduling strategy (which can be sequential, sequential round robin or parallel), how many
components solvers run the generated portfolio, the granularity for which the approach generates
portfolios and the main technique used to derive portfolios.

The work by Gomes er al has been excluded from the summary because it does not propose
techniques to generate portfolios. This work analyzes the effectiveness of the algorithm portfolio
approach and proposes different strategies to execute the component solvers, among other contribu-
tions.

Scheduling Portfiolio
Approach Sirategy penerated #Components Technique
CPHYDREA Sequential per-instance Some solvers Case-Based Reasoning and Constraint Programming
ASPEED Sequential per-several-instances Some sobvers ASP
CLASPFOLIO 1 Sequential per-instance Single sohver EPM (Support Vector Re gression)

Table 2.4: Summary of some representative portfolio approaches for CSP and ASP.

Chapter 3

Automatic Construction of
Sequential Portfolios

The study of the state-of-the-art shows the portfolio approach as a promising avenue. This approach
exploits the complementary strengths of different solvers in several ways. We focus on static sequen-
tial portfolios (see Section 2.1.1, page 5). In particular, we propose to derive the best achievable per-
formance for a given benchmark with a linear combination of candidate domain-independent solvers
solving a MIP task. To do so, we define an objective function which consists of a weighted combi-
nation of quality score and runtime to assess the performance of solvers. This metric is then used to
compute the best portfolio with respect to the selected combination of parameters and performance
criteria.

Specifically, in this Chapter, we present a new approach (termed GOP— Generation of Optimal
Portfolios) which derives the optimal static sequential portfolio (to be denoted as 0SS portfolio) for
a specific metric and a given training set; i.e., the optimal combination of solvers for a particular per-
formance criteria with regard to the set of candidate solvers and the training benchmark considered.
Actually, the resulting portfolio defines an upper bound on the solvers performance for the given
training data set. Using this upper bound, the performance of any solver can be analyzed since it
shows how far a solver is from the best performance achievable with a linear combination of solvers
for the instances set. Also, this approach helps better understanding the performance of new solvers
with respect to existing systems. It is important to remark that optimality is only guaranteed for
the given training set; empirically, we show that the resulting portfolios also perform very well on
unseen instances.

Additionally, we have studied the wriliry of the training instances since most approaches configure
portfolios using all the available instances. We revisit in this Chapter the well known problem in the
machine learning literature of the impact of training instances in the result. We study the convenience
of using all training instances, and show that using a smaller training set our approach generates
portfolios whose performance is equivalent to the one obtained by using all instances. These re-
sults could lead in the future to more efficient ways of selecting training instances and generating
portfolios.

The Chapter is organized as follows. First, Section 3.1 describes GOP. Next, Section 3.2 presents
the utility analysis of the training instances. Then, in Section 3.3, GOP is empirically assessed on
Automated Planning and SAT. Finally, Section 3.4 concludes with a summary and Section 3.5 shows
the list of the published works related to this Chapter.

37

38 CHAPTER 3. AUTOMATIC CONSTRUCTION OF SEQUENTIAL PORTFOLIOS

3.1 Gopr: Automatically Generating Optimal Portfolios

GOP automatically derives an optimal combination of solvers with regard to the set of candidate
solvers and the set of training problems. By optimal we mean that it is guaranteed to provide the
best quality (in terms of the selection of weights discussed below) when running over the same set
of training instances, and in sequence without any exchange of information among them —so that
the followed order is not relevant.

GOP consists of three steps. First, every candidate solver is executed with every training problem
from the input set to generate raw data. Second, raw data are processed to compute the parameters
of the MIP model. Third, the MIP task generates the optimal configuration of a static sequential
portfolio for the collection of training problems and candidate solvers. This optimal configuration is
the best linear combination of the candidate solvers with regard to the objective function (maximize
coverage or quality score or minimize time) of the MIP model. Each task is described in detail next.

3.1.1 Inputs to GOP

The inputs to GOP consist of a set of candidate solvers, S, a set of training instances, I, and the
available time to solve each instance T". The set of training instances I can be split into subsets
called domains or categories. Each candidate solver s € 5 is executed with every training instance
i € I to obtain the set R, of solutions. Each solution r £ K, stores a pair {cost gy, runtimegyp),
where cost 54 15 the cost of the corresponding solution and runtime gy, 15 a timestamp with the time
required to find it. In case of solving problems optimally or SAT problems, a candidate solver s € §
generates at most one solution v £ K, for each training instance i € I, since r should be optimal
(as in the case of Automated Planning) or because it is required only to find a single solution —as in
the case of SAT. Otherwise, the candidate solver can generate an arbitrary number of solutions.

Each execution generates raw data such as the runtime of each solution, or the memory consump-
tion at each time tick. However, we only need a subset of the raw data, which shall be computed to
generate the input data for the MIP model.

3.1.2 MIP Model Input Data

GOP processes the runtime spent (in seconds) and the score of each solution r £ R, for each training
instance ¢ = [and candidate solver = € 5. The quality score of each solution, denoted as g(=,1,7), is
computed according to the official metric used in the IPC since 2008 (see Equation (2.1} on page 12).
This equation computes the quality score in the interval [0, 1]. In case of solving problems optimally
in planning or in SAT tasks, the value 1 means that the training problem ¢ < I has been solved by the
solver s € 5. Otherwise, the value 1 means that the solver = € S has found the best known solution.

Runtime is computed using Equation (3.1). This equation already takes into account whether
every training problem has been solved or not. The runtime value of each solution, denoted as
rt(s,1,7), is normalized in the interval [0, 1] if the solver s solves the training problem 1. Otherwise,
the runtime value is higher than 1 with the objective that the MIP discards solution r of solver = for
instance i:

Tuntresic - if i is solved by s within the time bound T
ri(s,1,7) = G-h
I, otherwise

3.1. GOP: AUTOMATICALLY GENERATING OPTIMAL PORTFOLIOS 39

3.1.3 Mixed-Integer Programming Model

Linear Programming is a mathematical technique focused on solving combinatorial problems where
a linear objective function should be maximized (or minimized). These optimization problems are
subject to some linear constraints. The value resulting from evaluating the objective function over a
solution assesses its quality.

MIP is Linear Programming where some variables are constrained to be integers. The MIP model
defined by GOP aims to assign a candidate solver s € 5 and a solution r £ R, from that candidate
solver s (in case of multiple solutions) to each training instance ¢ < I such that this assignment
maximizes its objective function. The outcome of the MIP is the runtime allocated to each candidate
solver = € 5. This runtime is the time required for the solver s to solve each training instance ¢ € [
with the solution r € R,, selected by the MIP.

The MIP model should define the following elements: parameters, decision variables, objective
function and constraints. The model input data is stored as two parameters:

qls,1,7) Normalized plan quality score (see Equation (2.1) on page 12) for the solution r £ Hy
found by the candidate solver = € 5 for the training problem i £ 1.

rt(s,i,7) Normalized runtime (see Equation (3.1)) spent by the candidate solver s € S to solve the
training problem i £ I with the solution r € R,;,.

Decision variables store the outcome of the MIP solver which serve to fully characterize the
resulting portfolio:

solved_bygqr 15 an auxiliary variable that stores each decision made for the model to solve each
training instance i € I. If the solution » € K, of the candidate solver s £ 5 is selected to
solve the instance ¢ £ I, the variable takes the value 1. Otherwise, it takes the value (L.

quality; is an auxiliary variable that stores the quality score of the solution selected to solve the
training instance ¢ € I.

time, is the output variable. It stores the allotted time to each candidate solver = £ S in the interval
[0,1].

Constraints are used to model the availability of computational resources, mainly time. First,
the sequential execution of all solvers should not exceed the current available time. Since the time
required to find every solution is normalized in the interval [0, 1], this constraint is defined as shown
in Equation (3.2):

Z time, < 1 (3.2)

sES

On the other hand, each candidate solver s £ 5 can be assigned by the MIP to solve a subset
of training instances 1 € I, each one with a particular solution r £ R, The time required for the
solver = to solve every assigned instance ¢ € [is the largest execution time that the solver = takes to
solve all problems assigned to it. However, this value can not be computed with a linear expression.
Therefore, the next constraint is added to guarantee that the allotted time to each solver is equal to
or higher than the required time:

timeg = solved_by,,.-ri(s,i,7),Vs e S, i € I,r € Ry (3.3)

40 CHAPTER 3. AUTOMATIC CONSTRUCTION OF SEQUENTIAL PORTFOLIOS

The final quality score achieved by the resulting portfolio is computed with another consiraint as
shown in Equation (3.4). Although it does not constrain the model in any particular way, it is defined
here to be used in the objective function later:

quality, = " " solved_by,,. - q(s,i,r),¥i € 1 (3.4)
sES reERL:

As we have commented before, the MIP only selects one solution r € R, found by a solver
s £ 5 to solve each particular training problem ¢ € I even if other solvers solve it as well. This
is useful for computing the overall time used and the total quality score achieved by the resulting
portfolio as shown in Equations (3.3) and (3.4), where solved_by . is used. Constraint (3.5) is used
to enforce the selection of a single solution per training problem.

> Y solved by, <=1Viel (3.5)
S refa;

Although the usual goal for configuring portfolios is to maximize the total quality score or the
number of solved instances, we consider an objective function that maximizes a weighted sum of
overall running time (the sum of time, for all solvers =) and quality score of the solutions (guality).'
Since runtime should be minimized, the values computed in the MIP model are substracted from 1

as follows:

air

marimize : wi (3} quality,)
+ wa(l -3, g time,s)

If the objective of the MIP task only consists of optimizing a single value (such as quality score),
it just suffices to set the corresponding weight to 1 while setting the rest of weights to zero —
e. g., when optimizing only quality score, the following weights should be used directly: wy = 1,
ws = (L If, on the other hand, the objective is to maximize a non-null linear combination of the two
aforementioned values, the problem becomes harder. Instead of facing this task as a multi-objective
optimization problem, we just solve the MIP task in two steps while preserving the value of the
objective function from the MIP solution. For example, if the objective is to maximize the quality
score while minimizing the overall running time, then wy = 1 and ws = 0 so that only the quality
score is taken into account. If one solution exists at least, then a second execution of the MIP model is
issued to find the combination of candidate solvers that achieves the same total quality score (denoted
as (}) while minimizing the overall running time, just by setting wy = 0 and ws = 1. To enforce
a solution with the same quality, an additional constraint is added: 3", _; quality, =) — ¢, where
e is just any small real value used to avoid floating-point errors. Clearly, a solution is guaranteed to
exist, since a first solution was already found in the previous step.

Algorithm 1 shows the steps followed where the guality score was maximized first, and then
running time was minimized among the combinations that achieved the optimal quality. Note that
this is different than solving the multi-objective optimization problem posed by finding the optimal
configuration that simultaneously optimizes resources. We have used this algorithm since it was
empirically found that the MIP solver tends to distribute all the available time among the candidate
solvers selected to be part in the portfolio. Running the procedure depicted in Algorithm 1, it is
possible to have some slack time which will be distributed uniformly among the selected solvers.

I'The MIP model defined in this Section is flexible. It allows us to add in the future other esources, like memory con-
SUmpion.

3.2, ANALYSIS OF THE UTILITY OF TRAINING INSTANCES 41

Algorithm 1 Build a portfolio optimizing quality score and time
Input: Candidate solvers 5, training instances [and solutions sets R
Output: Output variables ¥s £ S time,
modely = generateMIPmodel(S, I, R.;)
soluriony Q4 1= solve MIP{model,, wy = 1, ws = 0)
if a solution exists then
maodels = addConstraint(meodely EiEfq;ruuiityi = —0.001)
solutionz Qg = solve MIP{modelz, wy = 0, w2 = 1)
return solurion:
else
return no solution
end if

3.1.4 GOP Output

The output of the MIP task is just the allocated runtime to each candidate solver, which can be either
zero (i.e., the candidate solver should be excluded from the portfolio) or a positive number. The
MIP task does not specify any particular order to execute the solvers. The execution sequence of
the obtained portfolios is arbitrary and it is based on the order in which the candidate solvers were
initially specified.

3.2 Analysis of the Utility of Training Instances

One of the main factors that influences the time required to solve the MIP task defined in the previ-
ous section is the size of the training instance set. Thus, in this Section we analyze the question of
whether there is a subset of the training problems that results in a portfolio with a similar or even
equal performance (measured in total quality score or coverage) with regard to the same set of candi-
date solvers. We refer to this particular problem as the analysis of the wriliry of the training instances.
For example, when optimizing quality score, if all training problems are solved by all solvers with
the same score, they do not provide any urility to configure the OSS portfolio since any combination
of the candidate solvers will provide the same result. Similarly, the training problems that are not
solved by any solver are equally irrelevant since the MIP task will not be able to distinguish between
an empty portfolio or a particular combination of the candidate solvers.

We propose to split the training problems in subsets that contain those training instances that are
solved by a maximum number of solvers. The first set is composed of all instances that are solved by
at most one solver. The second set (which is a superset of the previous one) consists of all instances
that are solved by at most two solvers, and so on. In general, the i-th set consists of all training
instances that are solved by i solvers or less. This analysis aims to study whether the performance
of the portfolios obtained with every subset is closer to the performance achieved by the portfolio
computed with the full set of training instances. Thus, each resulting portfolio is assessed on a
benchmark which contains (among others) the training instances used to compute it. In this analysis,
we evaluate the resulting portfolios over the training set because: first, we are assessing neither the
proposed portfolio generation technique nor the performance of the resulting portfolio; secondly, if
we would evaluate the resulting portfolios over a different (test) set, results would be biased by other
factors, such as generalization capability. Thus, by fixing the training set we expect to highlight the
differences due solely to the training instance set considered. We report in the experiments section
the results of this analysis, which could lead in the future to efficient algorithms to select a priori

42 CHAPTER 3. AUTOMATIC CONSTRUCTION OF SEQUENTIAL PORTFOLIOS

better training instances to generate high performance portfolios.

3.3 Empirical Evaluation

This Section describes the experiments performed in Automated Planning and SAT. The MIP solver
selected to solve the MIP task in all experiments has been SCIP, one of the fastest non-commercial
MIP solvers, which supports the modeling language ZIMPL®. Also, the same model described in
Section 3.1 has been used to solve all the MIP tasks. Indeed, this model has also been used by
MIPLAN (Nifiez et al., 2014a), the winner of the learning track of the IPC 2014.

In satisficing planning, the number of solutions found for a particular planning task depends
on each satisficing planner. Therefore, the solution quality score should be modeled as a vector
instead of a scalar. However, while ZIMPL allows the definition of multi-dimensional parameters, it
is not possible to use multi-dimensional dynamic parameters —i. e., each with a different size. As a
consequence, all parameters were enforced to have the same length equal to the maximum number
of solutions found by any planner to any planning task. For those planners that found less solutions,
we just used Equations (2.1) and (3.1) (defined on pages 12 and 38 respectively) for introducing
additional entries as if they were unsolved. Note that if not all the solutions found in the training data
are considered, the portfolio derived by GOP might not be optimal with regard to the set of candidate
solvers and the training benchmark considered. It could be possible to find a different static portfolio
configuration which achieves a better score on the training set. As an example, consider 7' = 1800
seconds, two candidate solvers, sy and so, and two training instances, i; and is, as input data. Let us
assume that the performance of these solvers with respect to the set I of the two planning tasks is:

e =y only solves iy and it finds two solutions, H,,;, = {ry,m2}, where g(sq,1;,7) = 0.8 at
Tt{SI,'I-l,TI} = 10 and q{sl,il,rg] = 1.0at rt{sl.. i’l‘. r2:| = 1700.

e =5 only solves ia with two solutions H,,;, = {ry,ra}, resulting in g{saq, iz, 1) 0.8 at

Tt(s9,ia,7) = 10 and g(sa,i3,7m2) = 1.0 at rt(sa, 12, 7a) = 1700.

Assume further that only the best solution found by each candidate solver is considered. Thus,
GOP would derive a portfolio configuration which would only be able to solve one instance with a
quality score equal to 1, since the available time to solve each instance is equal to 1800. However,
the static portfolio composed of s; and ss with #; = 10 and 5 = 1700 would achieve a total score
equal to 1.8. Therefore, the portfolio generated by GOP would not be optimal with respect to the
whole training data set.

Algorithm 1 has been used to derive every GOP portfolio. This algorithm is a two steps opti-
mization process. The first step maximizes the quality score and the second one aims to minimize
the total allotted time while preserving the optimal score. We have empirically observed that (in
satisficing planning) the first step is much faster than the second one. Thus, we report both times for
all the satisficing experiments as well as for the experiments for optimal planning and SAT in which
the computation times are representative.

In this Section we have performed five sets of experiments. First, in Section 3.3.1, the 0558
portfolio has been computed for several international problem solving competitions. Second, Sec-
tion 3.3.2 details the empirical analysis of the training instances to configure sequential portfolios.
Third, the quality of the portfolios automatically derived by GOP has been assessed in Section 3.3.3.

Yhttp://scip. zib. de/f
Ihttp://zimpl.zib.de/

http://scip.zib.de/
http://zimpl.zib.de/

3.3. EMPIRICAL EVALUATION 43

Next, Section 3.3.4 describes the experiments in which GOP has been assessed against the state-of-
the-art optimal portfolio approaches. Finally, the quality of the solutions achieved by GOP over time
has been analyzed in Section 3.3.5.

3.3.1 OSS Portfolio for Problem Solving Competitions

The first experiment aims to compute the OSS portfolio for different problem solving competitions,
which allows us to analyze the performance of any solver on those particular benchmarks. Since
in this experiment the performance is tested with the same training instances, the resulting portfolio
provides us only with the best achievable performance given the participant solvers and instances
of a particular competition. Therefore, this experiment does not assess the performance of the 058
portfolio on a different set of instances. It analyzes the performance of the awarded solvers regarding
the upper bound defined by the OS5 portfolio.

3311 Optimal Planning

In this Section we have computed the OS5 portfolio for the sequential optimization track of the IPC
2011 considering all the instances defined for that competition (see Table 2.1 on page 15). The set of
candidate planners is composed of all participant planners, where the portfolios have been removed
from the selection and their solvers have been added instead as shown in Table A.1 (see Annex A on
page 93). In particular, the Merge-and-Shrink portfolio and the two variants of FD5S were discarded
and the following solvers added: two versions of Merge-and-Shrink (Nissim et al., 2011) and the A*
search algorithm (Hart et al., 1968) with the blind heuristic.

The OSS portfolio for the IPC 2011 has been configured by running Algorithm 1. It took
GOP 10.75 seconds to compute it. Figure 3.1 shows the resulting portfolio, which solves 200 train-
ing problems. The benchmark used in the IPC 2011 was composed of 280 planning tasks. However,
there were 77 problems that were not solved by any planner. Therefore, there are only three solvable
instances that the 0SS portfolio is not able to solve. Recall that the OSS portfolio is a static portfolio
which has a fixed available time T. Hence, it is usually not able to solve all the solvable instances
because, in many cases, a static sequential portfolio which solves all the solvable instances does not
exist (due to the time constraint).

The metric used in the competition ranks the participant planners according to their performance
{coverage). But it does not provide any information about how good the performance of each partic-
ipant planner is. However, the OSS portfolio computed in this Section shows how far each planner
is from the best linear combination of the participant planners.

For instance, the winner of the IPC 2011 was FD55-1 (which solved 185 problems) and the
runner-ups were Selective Max and Merge-and-Shrink (both planners solved 169 planning tasks).
The OS5 portfolio automatically built by GOP solves 200 planning problems. This value defines an
upper bound for the number of solved problems on this competition taking into account its competing
planners and problem instances. Therefore, it shows that the performance of FDss-1 is 122 . 100 =
92.5% of the best performance achievable while the performance of the runner-ups is 55 - 100 =
84.5% with regard to the same upper bound.

Moreover, this OSS portfolio is a reasonable estimator of the expected performance of state-of-
the-art planners. It can be used in other competitions as a reference performance to analyze whether
the participant planners result in a significant advance in the state-of-the-art or not.

44 CHAPTER 3. AUTOMATIC CONSTRUCTION OF SEQUENTIAL PORTFOLIOS

Allotted time (s)

- 888 EE

%‘“«_
@-fqr

Figure 3.1: OSS portfolio for the sequential optimization track of the IPC 2011.

3.3.1.2 Satisficing Planning

In this experiment, we have used the entire benchmark defined for the IPC 2011 and all the entrants of
that competition (for details, see Tables 2.1 and A.3 on pages 15 and 94 respectively). The participant
portfolios have been used instead of their component planners since these portfolios implement their
own anytime behavior.

Figure 3.2 shows the computed portfolio, which has been configured by running Algorithm 1. It
took GOP 382 462.14 seconds, less than 4.5 days (circa 5.5 hours for the first step and about 4.3 days
for the second step) to compute it. This portfolio solves 265 training problems with a total quality
score of 252.75. Remarkably, 13 problems were not solved by any planner so that the largest number
of solvable instances is 267. Therefore, the planner automatically built by GOP falls below only by
two instances.

Once the OSS portfolio for the competition has been computed, we are able to analyze the
performance of the awarded planners against the upper bound defined by it. The winner of the
sequential satisficing track of IPC 2011 was LAMA-2011 (Richter and Westphal, 2010), which solved
250 problems with a total quality score of 216.33. The nunner-up was FDS5-1 and it solved 232
problems with a total score of 202.08. These results show that LAMA-2011 is very effective solving
planning tasks and finding high quality solutions. The performance of LAMA-2011 measured in
coverage is therefore 222 - 100 = 94.3% while the performance of FDSS-1 is 23 - 100 = 87.5% with
regard to the upper bound defined by the OSS portfolio. Interestingly, LAMA-2011 has more room
for improving the quality score since its performance (total score) is equal to 21523 . 100 = 85.6%
according to the total quality score achieved by the 0SS portfolio. Mevertheless, the total score
achieved by LAMA-2011 is quite high.

3313 SAT

The OSS portfolio for the open track of the SAT Competition 2013 has been computed using the
results of this competition, removing the disqualified solvers. We have considered all the instances
and all the participant solvers (instead of their component solvers) that took part in the open track

3.3. EMPIRICAL EVALUATION 45

EDD

@
=

Allotted time (s)
.
8

Figure 3.2: OS5 portfolio for the sequential satisficing track of the IPC 2011.

{see Tables 2.1 and A.6 on pages 15 and 96 respectively for details).

Algorithm 1| was executed to compute the OS5 portfolio, which took Gop 22.06 seconds. The
configuration of the resulting portfolio is shown in Figure 3.3. This portfolio solves 234 instances.
However, there are 253 instances that were solved by at least one participant solver. Thus, there are
19 solvable instances that the OS5 portfolio is not able to solve.

The aim of this experiment is to analyze the performance of the awarded solvers using the upper
bound defined by the OSS portfolio. Thus, it shows that the performance of the winner of this track
(CSHC PARS (Malitsky et al., 2013c)) is Jog 234 100 — 100.0% of the best performance achievable
while the performance of MIPSAT (the portfn]m automatically configured with GOP that won the

silver medal in this track) is 33: 100 = 98.71% with regard to the defined upper bound.

T
MINIPURE 1.0:1 —h 131.2 -

Glucans strict —[JJ| 261.96 =

e |

5,000

Allotted time {s}l

Figure 3.3: OSS portfolio for the open track of the SAT Competition 2013.

46 CHAPTER 3. AUTOMATIC CONSTRUCTION OF SEQUENTIAL PORTFOLIOS

3.3.2 Analysis of the Utility of Training Instances

The second experiment aims to empirically analyze the influence of the training instances in the
portfolio configuration process, where the utility of every training instance has been considered as
discussed in Section 3.2. In particular, this analysis focuses on the influence of the composition and
the size of the training set in the quality of the resulting portfolios under the hypothesis that not all
instances provide the same information for configuring portfolios.

In a nutshell, this analysis consists of three steps. First, a number of subsets of training instances
are defined by splitting the training benchmark as described in Section 3.2. Next, Algorithm 1 is
used to derive a sequential portfolio for each subset. Finally, each resulting portfolio is evaluated on
the entire training benchmark.

This is an a posteriori analysis since it involves the execution time of each solver with every
training instance. Also, this analysis does not evaluate GOP. We only use GOP with the aim of
empirically analyzing a specific issue in the automated design of portfolios. Moreover, it is important
to remark that we only evaluate portfolios over the training set in this empirical analysis.

3.3.2.1 Optimal Planning

In this analysis, we consider the same fraining data set used in the previous experiment on optimal
planning. Namely, the entire benchmark and all the participants from the sequential optimization
track of the IPC 2011, discarding portfolios and considering their component planners instead. The
results of this analysis are shown in Table 3.1. From the table, it results that the same performance
(measured in coverage and time) is achieved by all the sequential portfolios derived using all sets
of training problems but the first one (which consists just of those problems that were solved by at
most one planner). As it can be seen in Table 3.1, the minimum set of training problems necessary
to configure the OS5 portfolio for the IPC 2011 is the second one, which contains only 27 problems.
This fact empirically confirms our initial intuition: not all training problems provide the same utility.

Training IPC Computation Computation — Total

Planners | Size Score Score Time - Step1 Time- Sep2 Time
i 18 17 190 L) ool 1753
2 n 24 200 002 00z 1705
3 29 26 200 o2 00z 1705
+ 39 36 200 o3 o 1705
5 52 49 200 .06 e 1705
6 58 35 200 0.23 007 1705
7 61 58 200 014 Do 1705
B 73 72 200 013 iz 1705
9)| s 200 022 nig 1705

10] 103 100 200 012 040 1705
11] 178 175 200 139 127 1705
12 | 203 200 200 9. L34 1705

Table 3.1: Results of the utility analysis of planning tasks for optimal planning. For each subset,
identified by the maximum number of planners that solve its instances, the table shows the size of
the problem subset, the number of problems solved in the problem subset by the resulting portfolio,
the number of problems solved by the resulting portfolio in the IPC 2011, the computation time
(seconds) required to obtain the portfolio, and the total allotted time (seconds) in the portfolio.

3.3. EMPIRICAL EVALUATION 47
3.3.2.2 Satisficing Planning

In the analysis for satisficing planning, all the entrants of the IPC 2011 sequential satisficing track
and all the planning tasks defined for that competition are considered. The results of this analysis
are shown in Table 3.2. As it can be seen, our results indicate that a restricted number of planning
instances suffices to derive the 0SS portfolio. In fact, the eighth subset achieves the same number of
solved problems, though with lower quality score, and the nineteenth set with 226 instances serves to
derive the same OS5 portfolio that is computed with all planning tasks —280 in total. Remarkably,
GOP finds alternative configurations for the fourteenth, fifteenth, and sixteenth sets that solve 266
problems (one less that the maximum feasible) but with lower quality score and that is why that
configuration is discarded when considering more planning tasks. The quality score does not grow
monotonically as shown in Table 3.2, so we conjecture that the wiliry of planning tasks is not fully
captured by our definition of subsets, though it seems to be very accurate.

Training IPC Computation Computation — Total

Planners | Size Scome Score Time-Step1 Time - Step2 Time
i 1 1.0071 65.86/72 nm 0.0 7
2 i 3003 21076/236 nm 0.m 9m
3 3 50005 210217244 002 002 1195
+ 7 TOWT 22204248 004 005 1343
5 9 B6%0 222.90/249 0.06 008 1430
6 12 115812 227 .83/252 013 0a1 1782
7 | MV 23535261 062 041 1792
B 30 2B2T30 4257165 110 Lle 179
9 H 415644 24305264 255 251 17w
10 57 LTS 2382307264 6.47 1172 1800
11 T4 67.0272 4973764 26.30 le684 1799
12 9 25180 251.80265 T75.26 oT 1w
13 | 113 103.1e/111 25184265 175.40 554347 1800
14 | 133 12213132 25225266 31224 4211197 1798
15 | 158 14675157 25225266 32108 4962627 1798
16 | 182 169927181 252.25/266 104661 13354297 1798
17 | 204 191067202 252.46/265 4,083.19 60284 1799
18 | 214 200467212 25246/265 8.200.01 04680225 1200
19 [226 21189224 25175265 12,186.80 30528758 1800
20 | 231 21683229 25275165 13,998.41 158,359.14 1800
21 | 237 12283235 25275165 16,728.20 19632832 1800
27 | 249 1D34B06247 25275265 1944820 23212103 1800
23 | 253 I3RTN2I51 0 25275165 15,151.51 211,140,553 1800
24 | 261 MeTNI50 25275165 12,379.08 25684209 1200
25 | 266 25175264 25275265 11,835.37 21466978 1200
26 | 266 25175264 25275265 11,760.60 21475856 1800
27 | 267 25275265 25275165 14,630.29 37062677 1800

Table 3.2: Results of the utility analysis of planning tasks for satisficing planning. For each subset,
identified by the maximum number of planners that solve its instances, the table shows the size of
the problem subset, the quality score and coverage achieved in the problem subset by the resulting
portfolio, the quality score and coverage achieved by the portfolio in the IPC 2011, the computation
time (seconds) required to obtain the portfolio, and the total allotted time (seconds) in the portfolio.

48 CHAPTER 3. AUTOMATIC CONSTRUCTION OF SEQUENTIAL PORTFOLIOS

3323 SAT

The analysis of the training instances has also been applied to SAT. We have retrieved the results
of the open track from the SAT Competition 2013 removing the disqualified solvers to perform the
empirical analysis. The results are shown in Table 3.3. These results show that the performance
achieved by the first portfolio is very high. Indeed, the portfolio derived with the second subset
{which is only composed of 37 instances) solves only four instances less than the optimal configura-
tion. The portfolio derived with the sixth subset solves the same number of instances than the 055
portfolio computed in the previous section. However, the number of solved instances does not grow
monotonically as it can be seen in Table 3.3. The portfolio configured with the fifth subset solves
three instances less than the portfolio derived with the previous subset. Despite of that, the definition
of subsets is very accurate for our purpose. Hence, our initial hypothesis is empirically validated
since our approach does not need a large training data set to configure high performance portfolios.

Training Competition Computation — Computation Total

Solvers | Size Soore Score Time - Step 1 Time - Siep 2 Time
1 10 5 5 0.0 001 4431.02
2 kT n 130 017 004 46351.40
K] 68 52 130 042 051 4631.40
4 Bl 63 33 047 023 4893.61
5 o4 T 30 0.82 088 4631.40
6 [106 .1 34 1.20 093 483731
7| 1is 08 34 172 L30 483731
& 151 133 34 1.94 ile 483731
9 189 170 34 in 1640 466739
10| 253 34 34 6.85 1521 4667.39

Table 3.3: Results of the utility analysis of training instances for SAT. For each subset, identified
by the maximum number of solvers that solve its instances, the table shows the size of the training
subset, the number of instances solved in the training subset by the resulting portfolio, the number
of instances solved by the resulting portfolio in the SAT Competition 2013, the computation time
(seconds) required to obtain the portfolio, and the total allotted time (seconds) in the portfolio.

3.3.3 Assessment of GOP to Configure Sequential Portfolios

The main goal of every portfolio configuration technique is to derive portfolios which achieve the
best performance on every test benchmark. Thus, the third experiment aims to evaluate GOP against

the state-of-the-art portfolios on several problem solving competitions.

3.3.3.1 Optimal Planning

In this Section, the performance of the sequential portfolios automatically generated by GOP has
been evaluated in optimal planning. Specifically, we have assessed GOP against FDSS and we have
evaluated GOP on the IPC 2014.

Comparison against Fast Downward Stone Soup The first experiment aims to evaluate GOP
against the two versions of FDSS submitted to the IPC 2011. FDSs-1 was the result of applying
the portfolio generation technique defined by FDSS to a particular training data (which is described

3.3. EMPIRICAL EVALUATION 49

below) while FDS5-2 used the uniform method with a manually selected set of planners. Specifically,
FDSS-2 was composed of LM-CUT (Helmert and Domshlak, 2011), B1oLP (Domshlak et al., 2011},
the two variants of M&S-bisim (Nissim et al., 2011) and blind search.

Training The set of candidate planners is composed of all the planners considered in the de-
sign of FDS5-1%, which are listed in Table A.2 (see Annex A on page 94). On the other hand, instead
of using all the 1163 instances from the IPCs in the range covering the period from 1998 to 2008
{as it was done to configure FD55-1) we have considered a subset composed of only the 240 plan-
ning tasks contained in the benchmark denoted as OPTIMAL IPC DOMAINS 2008 in Table 2.1 (see
Section 2.1.5.1 on page 15).

The portfolio generated by running Algorithm 1 is shown in Figure 3.4. The time taken to
compute this portfolio was 3.09 seconds. This portfolio, denoted as GOP-1, solves 165 problems in
the benchmark defined for the IPC 2008 (iraining set). However, there are only 167 planning tasks
that are solved by some planner considered in the set of candidate planners. Therefore, GOP-1 solves
all solvable training tasks but two of them.

Lo |]
1200]
2 100]
.5 -]
w0]
200 & _
: [
_\?'\ "
& fﬁ

Figure 3.4: Portfolio derived by GOP repeating the experiments of FD55-1 for optimal planning.

Test All the domains selected in the IPC 2008 are included in the IPC 2011. Hence, in order to
test the generalization power of both GOP and FDSS, only the new domains defined in the IPC 2011
have been used (see Table 2.1 on page 15 for details).

GOP-1 solves the same number of problems than FDS5-1 and FDSS-2, 65. Therefore, the se-
quential portfolio automatically derived by GOP under the same conditions as FDSS, provides the
same performance as the winner of the IPC 2011. Also, this result endorses the idea that it is not
necessary to use a large number of problems to train a portfolio. Instead, a smaller number of more
informative problems can be used. We expect that the time necessary to solve the MIP task is sig-
nificantly smaller than the time necessary to traverse the state-space of portfolio configurations with
a hill-climbing search algorithm as in the case of FDSS. This statement can not be guaranteed be-
cause the published experiments of FDSS do not show the time required to compute the portfolios.

4The M&S-LFPA algorithms have been considered. However, they failed on all IPC 2008 tasks because they do not
SUppoTt action-costs,

50 CHAPTER 3. AUTOMATIC CONSTRUCTION OF SEQUENTIAL PORTFOLIOS

Remarkably, the planners selected for GOP-1 are the same ones as those picked in the configuration
of FD55-1 except for BIOLP.

As discussed above, the metric used in the IPC 2011 does not provide any information about
the quality of the achieved performance. Hence, we do not know how good the previous results
are. We only know the number of solved problems (65) and the size of the test problems set (120).
Therefore, we have computed the OS5 portfolio (0SS Gop-1) for the new domains defined in the
IPC 2011 using the same set of candidate planners considered by FD5S-1 and GoOP-1. Also, we
have generated the vES, the SBS and the OS5 portfolio (OS8S IPC) for these domains using all
the participant solvers in the IPC 2011. The performance of the resulting portfolios is shown in
Figure 3.5. As it can be seen, the performance shown by GOP-1 and FDSS is very high since they are
equal to g% - 100 = 94.2% with regard to the performance of the 0SS Gop-1 portfolio. Recall that
085 GOP-1 has been derived using the set of candidate planners considered in the design of FDS5-1
whereas the VBS considers all the participant solvers in the IPC 2011. Thus, in this experiment,
0SS GoP-1 is able to solve more instances than VES.

085 GOP-1

VES

OS5 1IPC

5BS - FDS5-1

GOP-1

FDE5-2

Coverage

Figure 3.5: Assessment of GOP against FDSS on optimal planning. The figure shows the coverage of
VES, SBS, FDSS and OS5 portfolios for all planning tasks defined in the new domains introduced in

the IPC 2011 sequential optimization track.

IPC 2014 With the aim of assessing GOP on the IPC 2014, we have generated and submitted
two sequential portfolios for the sequential optimization track: MIPLAN and DPMPpLAN. The first
portfolio, MIPLAN, is the result of applying GOP to the whole collection of planning tasks from the
IPC 2011 and a set of candidate planners composed of all the planners considered in the design of
FDsS and all the participants in the IPC 2011 (removing portfolios and adding their solvers instead).
On the other hand, the idea behind DPMPLAN is to transform the objective function defined by Gop
into a temporal objective function so that the MIP task will maximize the original objective function
for each instant of time (measured in seconds). For more detailed information, please refer to (Niflez
et al., 2014b).

After the competition, we realized that the temporary files were not removed after each execu-
tion, as dictated by the competition rules: “If your planner generates any temporary files, we will
automatically clean these up after each planner run, restoring the planner directory to its previous
stare.”” This fact caused that our portfolios achieved a score equal to zero in several planning do-
mains. Therefore, we have re-run the competition under the same empirical conditions defined by

jhttps:j}helins.hud.ac.uk}sccmmvjZ?E—L4Iplanneraub.html

https://helios.hud.ac.uk/scommv/IPC-14/plannersub.html

3.3. EMPIRICAL EVALUATION 51

the organizers. Also, we have used the same pool of instances and the source code of the partici-
pant planners which were used to run the original competition (without fixed versions). Specifically,
we have executed the five best participant planners according to the official results, MIPLAN and
DPMpPLAN. We have only executed the five best planners because to the best of our knowledge, this
problem only affected the results of our portfolios in the optimization track.

Table 3.4 shows the official competition results and the results obtained by re-running the com-
petition. As it can be seen, the score achieved by our portfolios is more than twice the score obtained
in the competition. Specifically, MIPLAN, the 14th best planner according to the official results,
solves the same number of instances than RIDA (Franco et al., 2014), the fifth classified. Note that
the difference in performance between MIPLAN and the four best planners is due to the fact that
these planners are a significant improvement in the state-of-the-art of optimal planning prior to the
IPC 2014. These participants are not portfolio based approaches.

Participant planner | IPC Official Results || IPC Re-execution Results

SymBA-2 151 154
SymBA-1 143 151
COAMER-ED 120 133
SPMA&S 114 126
RIDA 113 117
DyNAMIC-GAMER 99 106
MIPLAN 47 117
DPMPLAN 43 115

Table 3.4: Resulis of the IPC 2014 sequential optimization track. For each competition results, the
table shows the number of problems solved by each participant planner.

3.3.3.2 Satisficing Planning

In this Section, the quality of the sequential portfolios automatically derived with GOP has been
assessed apainst FDSS and the work by Seipp er al. under the same conditions. Also, GOP has been
empirically evaluated on the IPC 2014.

Comparison against Fast Downward Stone Soup FDSS was designed using a number of heuris-
tics and search algorithms implemented in the Fast Downward planning system (Helmert, 2006).
Specifically, it only considered weighted-A* (with a weight of 3) and greedy besi-first search,
with “eager” (standard) and “lazy™ (deferred evaluation) variants of both search algorithms. On
the other hand, only four heuristics were considered: additive heuristic ADD (Bonet and Geffner,
20011), pr/additive heuristic FF (Hoffmann and Nebel, 2001; Keyder and Geffner, 2008), causal graph
heuristic ©G (Helmert, 2004), and context-enhanced additive heuristic CEA (Helmert and Geffner,
2008). Note that FDSS did not consider the landmark heuristic used in LAMA.

Training Two variants of FDSS were considered by its authors. FDS5S-1 was configured con-
sidering all possible combinations of greedy best-first search and the single-heuristic algorithm for
weighted-A* resulting in a total number of 38 configurations, which are described in Table A.4 (see
Annex A on page 95). However, FD55-2 was designed using the different combinations of greedy
best-first search with a single heuristic, yielding eight different combinations, as it can be seen in
Table A.5 (see Annex A on page 95).

Both variants of FDSS were configured using a very large number of planning tasks: 1116 training
instances from all the past IPCs. Instead, we have generated two sequential portfolios applying GOP

52 CHAPTER 3. AUTOMATIC CONSTRUCTION OF SEQUENTIAL PORTFOLIOS

only over a subset composed of the 270 planning tasks from the sequential satisficing track of the
IPC 2008. This training benchmark, denoted as SATISFICING IPC DOMAINS 2008, is detailed in
Table 2.1 (see Section 2.1.5.1 on page 15). For the sake of fairness, GOP-1 and GOP-2 have been
derived from the same set of candidate planners considered in the design of FDS5-1 and FDSS-
2 respectively, with GoP-1 and GOP-2 selecting a different set of candidate planners. The time
required to execute each candidate planner with each training instance was 213 computation days,
since the time limit to solve each training instance is 30 minutes. All the candidate planners were run
with the iterated search of Fast Downward because GOP, unlike FDS5, does not modify the behavior
of the portfolio once the first solution is found.

The time required to derive GOP-1 by running Algorithm | was 92,914.36 seconds — circa
26 hours (less than 45 minutes for the first step and about 25 hours for the second step). The
configuration of the generated portfolio is shown in Table 3.5. This portfolio solves 269 problems
with a total quality score of 266.631 in its training data set The time taken to compute GOP-2 was
151.23 seconds. Table 3.5 shows the resulting portfolio, which solves 269 planning tasks with a
total score equal to 267.289. Since both varianis of GOP have been configured with different sets of
candidate planners, the best solution found for each training problem can be different and thus, the
overall performance shown here by both variants of GOP differs.

Component Planners Allotted Time ()
Search Evaluation Heuristics | agor-1 cop-2 cop-1L08
Greedy best-first Eager FF v 413 52
Weighted-A* w=3 Lary FF 115 0 449
Greedy best-first Eager FF, OO 74 o iz
Greedy best-first Eager ADD, FF, CG 16 o 16
Greedy best-first Eager FF, O, CEA A o 36
Greedy best-first Eager FF, CEA] o 2
Greedy best-first Eager ADD, FF 2 o 2
Greedy best-first Eager O, CEA 28 o 28
Greedy best-first Eager ADD, CG] o 42
Greedy best-first Lary FF 1 3440 1
Greedy best-first Eager CEA 1 172 1
Greedy best-first Eager ADD, CEA 15 o 15
Greedy best-first Lary FF, OO, CEA 1 0 1
Weighted-A* w=3 Eager FF 2 0 73
Greedy best-first Eager ADD & 23 0
Greedy best-first Lary ADD, FF, CG 746 0 0
Weighted-A* w=3 Lary CEA 12 0 2
Weighted-A* w=3 Eager CEA] o 13
Weighted-A* w=3 Lary ADD 4 o 10
Weighted-A* w=3 Eager ADD] o 170
Weighted-A* w=3 Eager G 2 0 i
Greedy best-first Eager oo 3 108 4
Greedy best-first Lary ADD, CG] 0 1
Weighted-A* w=3 Lary [ae] 400 0 382
Greedy best-first Lary co 1 366 1
Greedy best-first Lary CEA] 358 0
Greedy best-first Lary ADD] 11 0
LAMA-2008 | 0 o 434

Table 3.5: Configuration of GOP-1, GOP-2 and GOP- 1108 derived with the set of candidate planners
considered for the design of FD55-1, FD55-2 and FDS5-1 adding lama-2008, respectively. Each
component planner is defined by a search algorithm, an evaluation method and a set of heuristics.

3.3. EMPIRICAL EVALUATION 33

LAMA-2011 uses a combination of landmarks count and FF heuristics that performs very well.
However, FDSS considered neither the landmarks count heuristic nor the LAMA planner. Thus, we
have configured an additional portfolio adding 1.AMA-2008 (Richter and Westphal, 2008) instead of
LAMA-2011 to the set of candidate planners considered for the design of FD55-1, and then running
GOP over all training instances to configure the new portfolio denoted as GoOP-1L08, which is shown
in Table 3.5. The time taken to compute this portfolio was 21,225.75 seconds, less than 6 hours (31
minutes for the first step and 5.4 hours for the second step).

Test, new domains GOP-1 and GOP-2 have been compared with FD55-1 and FDS5-2 on the
sequential satisficing track of the IPC 2011. All domains considered in the training data (IPC 2008)
are included in the IPC 2011. Therefore, these domains were discarded resulting in a new test
benchmark denoted as NEW IPC DOMAINS 2011 (see Table 2.1 on page 15). We have excluded
GOP-1L08 in this evaluation because LAMA-2008 was not considered in the design of the FDSS
portfolios.

Figure 3.6 shows the performance of both variants of FDSS and GOP over all the new domains.
As reference, it also shows the performance of both GOP portfolios trained on the test domains
(OS5 Gop-1 and OSS GoP-2). The performance shown in Figure 3.6 has been computed taking
into account only GOP, FDSS and OSS GoOP portfolios. Our results indicate that GOP-1 performs
better than both variants of FDSS.

a3
GOP-1 - [Juality scor
Jﬁ‘w O Coversge

Performance

Figure 3.6: Assessment of GOP against FDSS on satisficing planning. The figure shows the perfor-
mance of GOP, FD55 and OS5 GoOP portfolios for all planning tasks defined in the new domains
introduced in the IPC 2011 sequential satisficing track.

To obtain an overall view of the performance of the resulting portfolios if they would have en-
tered the IPC 2011, we have compared their performance with all the other entrants over all the new
domains. It was found that LAMA-2011, the SBS, performs better than both variants of Gop. While
GOP-1 solves 83 problems with a total quality score of 69.272, LAMA-2011 solves 92 problems with
a total score equal to 82.051 —i. e., almost thirteen points above. Also, GOP-1 is far from the VBES
{since it solves 108 planning tasks) as well as GOP-1 trained on the test set, which solves 89 planning
tasks with a total quality score of 78.968.

Finally, GOP-1L08 was executed over the test set, since we have already compared GOP with
FDS5. GOP-1L08 achieves a performance very close to the winner of the IPC 2011, LamMa-2011,

nY. CHAPTER 3. AUTOMATIC CONSTRUCTION OF SEQUENTIAL PORTFOLIOS

since GOP-1L08 solves 90 problems with a total score of 79.301, while LAMA-2011 solves 92 prob-
lems with a total quality score of 82.291 —less than three points more.

Test, all domains The performance of the GOP portfolios has been assessed over the IPC 2011
discarding all domains included in the IPC-2008. However, all participant planners for the IPC-2011
had available all domains of the IPC-2008. Indeed, FDSS considered all domains selected in the IPC-
2008 to configure its portfolios. Hence, we re-run the IPC 2011 for the sequential satisficing track
with GOP-1L08, GOP-1 and GOP-2 as participant planners. The performance of the best planners
(including the VES and the OSS portfolio for the entire IPC 2011) are shown in Figure 3.7. The
results clearly indicate that GOP- 1L08 performs better than the SBS, LAMA-2011, in terms of quality
score. GOP-1L08 solved less problems than LAMA-2011 because all the GOP portfolios were con-
figured with the aim of maximizing quality score (while minimizing the overall running time). If the
GOP portfolio had been configured to maximize coverage, it is expected that the resulting portfolio
would have solved more than 246 instances. On the other hand, GOP-1 and GOP-2 perform better
than the corresponding variants of FDSS.

27
e Jﬁ o [
85 IPC 31 e
WLTE

065 (E0F-1L08

29809

CHP-1L0E

|

2181

I (WL 47 [Thalty scom

I
g
8

.07

LAMA-HI e

W

26

1
Lee)

W

21208

68 (.2 =
) R
o=
FSS-1
- e
o=
(EOF-2 15741 B
293
FSS-2 -
ﬁ
.

L L L L L L
o .1 40 a a0 Lo 130 L4 180 (1) 1]] 0 280 1]
Performance:

Figure 3.7: Performance of best participant planners in the IPC 2011 sequential satisficing track
including GOP-1L08, GOP-1, GOP-2, LAMA-2011, vBS and OSS portfolios.

Comparison against Seipp et al. The contribution of Seipp er al (Seipp et al., 2012) can be split
into two parts: first, it was shown that using planners learnt for each domain can lead to good resulis;
second, it was empirically found, among a wide number of learning methods, that distributing the
overall allotted time uniformly among all planners produced the best test results despite that it did not
achieve a remarkable training score. While we are not dealing with the first part of their contribution
{where do planners come from) we tested their second contribution. So, we assume planners are
given beforehand and compare our approach with portfolios generated by distributing the allotted
time uniformly among a set of candidate planners.

3.3. EMPIRICAL EVALUATION 35

Training We have generated two sequential portfolios. The first one (denoted as GOP-
UNIFORM-1) results from applying the uniform method only to the component planners of GOP-
1108, the best portfolio automatically generated by GOP in the preceding subsection, which is shown
in Table 3.5. The second one, denoted as GOP-UNIFORM-2, was configured applying the uniform
method to all candidate planners.

Test Figure 3.8 shows the performance of both variants of GOP with the uniform method and
the GoP-1L08 portfolio for the new domains and for the entire sequential satisficing track of the
IPC 2011. The performance has been computed taking into account all participant planners in the
IPC 2011. As reference, Figure 3.8 also shows the performance of the sB5 and the VES for this
competition. These results show that GOP outperforms both variants of the uniform method for the
given selection of candidate planners.

I I.I:Ih T T T T T T T T
VES | Lo
i
i
—
_ BL4E
=0
216.33
B Cuality score (2l domains)
— B Coveage fal domai)
GOP.ILDA .24 | | = sty score inew domains)
<2113 [Cmemge (new domains)
222,08
B8
CIP-UTNIFCHM-1 T
: v}
0714
:I 50
CEOP-UTNIFORME-2 T s
=
208,81

D 0 40 GO BO 100 130 140 150 IS0 GO0 IO 40 B0 D
Performance

Figure 3.8: Assessment of GOP against the work by Seipp ef al on satisficing planning. The figure
shows the performance of SBS, VES, GOP-1L08 and both GOP-UNIFORM portfolios for the new
domains and for all planning tasks from [PC 2011 sequential satisficing track.

IPC 2014 Similarly to the planning experiments, we have generated and submitted two sequential
portfolios to the IPC 2014: MIPLAN and DPMPLAN. Both portfolios have been configured by
repeating the experiments performed for optimal planning but using different training data sets. In
the design of both portfolios, we have used all the planning tasks defined for the IPC 2011. Also,
all the participant planners in the IPC 2011 were considered to derive them. However, MIPLAN
removed the participant portfolios and added their component solvers instead whereas DPMPLAN
did not. For more detailed information, please refer to (Nifiez et al., 2014b).

Since the temporary files were not removed either in the satisficing track, our portfolios again
achieved a score equal to zero in several planning domains. Thus, we have executed the competition
for the five best planners according to the official results (among which MIPLAN is included) and
DPMPLAN. We have only executed the five best planners because to the best of our knowledge,

36 CHAPTER 3. AUTOMATIC CONSTRUCTION OF SEQUENTIAL PORTFOLIOS

this problem only affected the results of our portfolios and the IBACOP portfolios, which won the
competition. Also, we have considered the same data used to execute the original competition.

Table 3.6 describes the official competition results and the results obtained by re-running the
competition. These results indicate that MIPLAN, the fourth best planner according to the competi-
tion results, should have been the runner up. MIPLAN obtained an official score equal to zero in the
Transport domain while it solves all the planning tasks defined for that domain in our experiments.
On the other hand, DPMPLAN, the 10tk classified in the competition, obtains an overall score better
than MERCURY, JASPER and FD-UNIFORM.

Analyzing the total score on each planning domain, we observed a large difference in perfor-
mance between MIPLAN and IBACOP in the Floortile domain. Specifically, IBACOP solved 19 out
of the 20 planning tasks with a total score equal to 18.91 whereas MIPLAN obtained a score equal
to 4.23 as a result of solving five instances. We also realized that LPG-TD, a planner that was not
considered in the design of MIPLAN, was the component planner used by IBACOP to solve all the
instances which were not solved by MIPLAN. It is an example that reflects the importance of the
inputs when automatically designing portfolios.

Participant planner | IPC Official Results || IPC Re-execution Results

IBACoP 2 166.21/198 19707227
IBACoP 1 162.73/196 20527230
MERCURY 153.04/172 16030176
MIPLAN 150.00v1 68 194.40/219
JASPER 144.80/173 163.08/183
FD-UNIFORM 143.25/172 163.87/191
DPMPLAN 125.50v147 168.63/199

Table 3.6: Results of the IPC 2014 sequential satisficing track. For each competition results, the
table shows the total quality score and the number of problems solved by each participant planner.

3.3.33 Learning Track

In the learning track, planners focus on extracting domain dependent knowledge, which will be
exploited in the test phase. GOP can be applied to the learning track since that knowledge is au-
tomatically extracted by planners in a prior offiine training phase. Thus, we have generated and
submitted MIPLAN to the learning track of the IPC 2014. It is able to antomatically generate a
portfolio configuration of domain-independent planners for a specific input domain (learning phase)
and runs a specific static sequential portfolio for each input instance (test phase).

Figure 3.9 shows the results of the overall best quality award for the IPC 2014. As it can be seen,
MIPLAN is the winner. It achieves the best overall quality and also the best coverage.

3334 SAT

We generated and submitted one sequential SAT portfolio (termed MIPSAT) to the open track of
the SAT Competition 2013. Our approach derives sequential portfolios, so the resulting portfolios
are not optimized to fully exploit the multiple-core facilities of the competition as the winner did.
Nevertheless, GOP does not prevent using solvers from the input set that run subsolvers in parallel,
as it happened in fact in the porifolio configured for SAT 2013.

3.3. EMPIRICAL EVALUATION 57

T T T T T T T T T T T T T T
haclp 101y . B
badlt 11}_155: B
roflent 1181 * B
eralier 1251 " B
liama 143 " B ='1‘E:'.3;“
fbacop 1531 * B
agap - -
1504
fibarop? ™ = -
SMAC 17.45 * B
Cedaficn 19_:31 B
MIPlzn e H -
1 1 1 1 1 1 1 1 1 1

I I I I
o 2 4 & B 10 12 14 1& 138 b1 x 2 6 28 an

Figure 3.9: Results of the overall best quality award for the IPC 2014 learning track.

The input data for the MIP model was generated using the results of the SAT Competition 2011.
We considered 1200 instances (see benchmark denoted as FULL SC 2011 in Table 2.1, page 15)
and 54 participant solvers (including parallel solvers and portfolios in the set of candidate solvers)
from that competition. Given that not all the candidate solvers were executed with all the training
instances, those executions were considered as if the candidate solvers did not solve the training
instances.

The time required to derive MIPSAT running Algorithm 1 was 3104.8 seconds. The execution
sequence of portfolios generated by GOP is arbitrary. However, ties are broken in the SAT Competi-
tion 20113 in ascending order of the average wall-clock time. The resulting configuration is shown in
Figure 3.10.

The results of the awarded solvers show that MIPSAT, the second best solver, solved 231 in-
stances, only three instances less than the winner and 45 instances more than the third solver As
reference, the 0SS portfolio and the VES solved 234 and 253 instances respectively. Note that MIP-
SAT is a static sequential portfolio while the winner of this track (CSHC PARS) is an 8-core parallel
and dynamic portfolio. It always runs three different sequential dynamic portfolios on one core each
and a fixed set of solvers on the remaining cores. Moreover, most participants in the open track
were manually configured portfolios, which highlights the power of techniques that automatically
generate portfolios.

Additionally, we have also penerated and submitted sequential portfolios for several core solvers
and sequential tracks of the SAT Competition 2013. These tracks only allow participants to use
solvers that employ at most two different SAT solving engines for all runs and at any time in one
track. Therefore, we have added an extra constraint to the MIP model defined by GOP so that the
configuration of the generated portfolios is composed of at most two candidate solvers. For more

38 CHAPTER 3. AUTOMATIC CONSTRUCTION OF SEQUENTIAL PORTFOLIOS

4,000 |- _
K
E 3,000 - -
£
E 2,000 |- .
=
1,000 |- »Fo8 .
.p"*" .@N &* ,')53:‘ .@N .E-@g l_;{» Jr Wq,‘P &
> & @ 5 F aﬁ" 3F

¥ @f o8
Figure 3.10: Sequential portfolio submitted to the open track of the SAT Competition 2013.

detailed information, please refer to (Nifiez et al., 2013).

For each track in which we have participated, we submitted two versions of the same portfolio,
termed MIPSAT | and MIPSAT 2. The first version is exactly the portfolio derived by GOP using
data from the SAT Competition 2011, while MIPSAT 2 is the same portfolio but using the newest
version of the selected solvers.

Table 3.7 describes the resulis obtained by MIPSAT on all the tracks in which it participated. As
it can be seen, MIPSAT also won the silver medal in the Random SAT+UNSAT track. Moreover,
these results show the advance in the SAT solvers, since new individual solvers performed better
than portfolios configured using data from the previous competition (SAT Competition 2011).

Track | Ranking Coverage
Application SAT ¥31 105119
Application SAT+UNSAT ¥19 201231

Hard-Combinatorial SAT 2a/40 gri24
Hard-Combinatorial SAT4HUNSAT 1535 1877208
Random SAT ¥25 Te/99
Random SAT+UNSAT 14 151179

Table 3.7: Resulis of the MIPSAT portfolio on several core solvers and sequential tracks of the SAT
Competition 2013. For each track, the table shows the ranking of the best MIPSAT version and the
number of participants, and the number of instances solved by the best MIPSAT version and by the
winner of the track.

3.3.4 GOP and Other Optimal Approaches

In this Section, we compare GOP against other optimal approaches for configuring sequential port-
folios. As mentioned in the Related Work, the work by Streeter er al. does not constrain the total

3.3. EMPIRICAL EVALUATION 39

available time in the portfolio and it uses the preemptive mode to interleave the execution of the
component solvers. That work focuses on a different problem to the one addressed in this Chapter
and thus it has not been considered in this set of experiments. Moreover, according to its authors,
CPHYDRA only works with a low number of solvers (5 in their experiments). Hence, GOP is only
compared with ASPEED (Hoos et al., 2015) and the MIP formulation introduced by 38 (Kadioglu
et al., 2011).

Despite the fact that ASPEED, the MIP task proposed by 35 and GOP solve the problem of
deriving the OSS portfolio, there are some differences among these techniques which make a direct
and fair comparison not possible. On the one hand, we have assessed the generation of the optimal
portfolio by ASPEED (without the step for sorting the component solvers of the resulting portfolio)
against our MIP task using wy = 1 and ws = 0. On the other hand, we have compared the MIP
task defined by 35 with Algorithm 1, since both approaches compute the OS5 portfolio that also
minimizes the overall running time.

The experiment of MIPSAT (see Section 3.3.3.4) was repeated using the aforementioned ap-
proaches with the aim of assessing runtime. The first step of ASPEED was still running after 259,200
seconds (3 computation days) while GOP derived the portfolio configuration in 1036.15 seconds. On
the other hand, the MIP model defined by 3S is not available online.® Thus, we decided to develop
the fixed solver schedule approach defined by 35 (without column generation) using the modeling
language ZIMPL, the same language used in GOP.

35 only considers the discrete time values ¢ where each candidate solver just solves an instance
in the training data (Malitsky et al., 2012a). Thus, the formulation of the problem proposed by 35
requires to generate a different MIP model for each given input data (candidate solvers and training
instances). It allows us to minimize the number of binary variables in the resulting model. However,
the solutions found by 3§ are not optimal since it uses column generation, as opposed to the solutions
generated by GOP, which are optimal.

We have generated a MIP model using the formulation of 35 and the training data set considered
in the design of MIPSAT. scip, the MIP solver used to solve that MIP task took 205.71 seconds
while the configuration of MIPSAT computed with GOP took 3104.8 seconds. Thus, the 38 approach
is more efficient than GOP. However, the performance of the formulation proposed by 35 is strongly
dependent on the input data. It defines one binary variable =, per pair of candidate solver s and
candidate time value ¢ for the time allotted to the execution of the candidate solver s. 3S only
considers time values ¢ where solvers solve an instance. Therefore, there can be up to 5000 binary
variables for each candidate solver, since the time limit in SAT is equal to 5000 seconds and 35
considers discrete-time.

The 35 model generated to compute the configuration of MIPSAT defines (on average) 138.04
binary variables =, for each candidate solver. In total, there were 8378 binary variables in that
model while the MIP model proposed by GoP defined 62,400 binary variables and 1252 continuous
variables. Thus, the difference in performance between both models is mainly due to the number of
binary variables.

The 35 MIP task defined for configuring MIPSAT, which considers 1200 training instances
and 52 candidate solvers, was solved in 205.71 seconds. However, the authors of 35 claim that
“the main problem with the formulation is the sheer number of variables. For our most up-to-
dare benchmark with 37 solvers and more than 5000 training instances, solving the problem is
impractical” (Kadioglu et al., 2011). Hence, since the number of variables depends on the number
of solvers and the 35 MIP task generated in this experiment was solved quickly, we hypothesize
that the number of candidate time values ¢ (where solvers solve an instance) in our training data set

SWe tried to obiain their code through different ways without any success. The authors did not directly provide it either

60 CHAPTER 3. AUTOMATIC CONSTRUCTION OF SEQUENTIAL PORTFOLIOS

is too small and in general, this value is much higher. Therefore, we have performed an additional
experiment with the aim of analyzing the correlation between the number of candidate time values ¢
for each candidate solver and the time required to solve the MIP task.

This additional experiment consists of penerating models using the formulation proposed by 35
and the input data defined in the design of MIPSAT but considering more candidate time values ¢ (in
the discrete range [1, 5000]) per candidate solver. So, we can analyze the impact of the diversity of
the candidate time values per solver on the time required to solve the MIP task.

Figure 3.11 shows the time required to solve all the generated models and the original 35 model
(in the axis labeled as £(s)). As it can be seen, the diversity of the candidate time values for each
candidate solver has a strong impact on the efficiency of the model. The 35 task defined with at
least onty 400 variables =, for each solver (in total, 22,103 binary variables) was solved in 4264.77
seconds while the task proposed by GOP (whose model defines 63,652 variables) took 3104.8 sec-
onds. The number of variables defined by GOP does not depend on the diversity of the candidate
time values, since it models the time allotted to each candidate solver as continuous variables.

t{s)
35,000 5

3
30,000 4+
25,000 4
20,000 4+
15,000 4

10,000 +

5,000 +

S P H O @ § & @ @
K AR &
F&F F & & §F @ e:@
& @ P

Figure 3.11: Resulis of the experiment designed to analyze the correlation between the number of
candidate time values ¢ for each candidate solver = and the time required to solve the 35 MIP task.
The x-axis, marked as v, indicates the minimum number of variables r.; defined for each candidate
solver and in brackets, the average of the total number of variables r;.

3.3.5 Analysis of the Quality of the Solutions Achieved Over Time

This Section aims to analyze the quality of the solutions found by GOP over time. It always found
the optimal solution for a given training data. However, the MIP solver finds several solutions until
it ensures that the best solution found is the optimal one. Also, in some cases, the MIP solver can
take several computation days to solve the MIP task. Therefore, we have analyzed the quality of the
solutions found and the instant at which the optimal solution is achieved.

34. SUMMARY 61

This analysis considers the experiment performed to compute the 0SS portfolio for the sequen-
tial satisficing track of the IPC 2011 (see Section 3.3.1.2) because it is one of the hardest problems
solved in this Chapter. Specifically, the analysis focuses on the first MIP task (first step) of Algo-
rithm 1 for this experiment since the MIP solver only found the optimal solution for the second task.
Indeed, the MIP solver usually only finds the optimal solution for the second task of Algorithm 1.

Figure 3.12 shows with points the solutions found by the MIP solver for the aforementioned
task and the instant at which the solver ends. As it can be seen, the time required to solve the task
was around 5.5 hours. However, the optimal solution was found after 2042 seconds (less than 35
minutes). Also, the quality of the third solution (which took 3.7 seconds) is equal to 245.3861, while
the quality of the optimal solution is 252.75. Therefore, the MIP solver finds high quality solutions
very quickly and it takes most of the time to ensure that the best solution found is the optimal one.

q
260

W 0

0 °

240 4

230

200 +

180 +

160 4

140 +

120 gt et e e
10 100 1,000 10,000

> (4]

Figure 3.12: Anpalysis of the quality of the solutions achieved by GOP over time. The figure shows
the quality of the solutions found by the MIP solver to compute the 0SS portfolio for the sequential
satisficing track of the IPC 2011. The x-axis shows the time required to find all the solutions while
the y-axis indicates the quality score of the generated portfolios in the training benchmark.

3.4 Summary

In this Chapter we have introduced GOP, a new technique that automatically builds OS5 portfolios
for a particular training benchmark, a collection of candidate solvers and a performance criteria.
GOP defines a MIP model to compute the optimal portfolio configuration. This MIP task for optimal
planning and SAT can be seen as a variation of the Knapsack problem, where the reward for including
an object in the bag is the number of problems solved by a solver within its allotted time. This allotted
time represents the cost (weight) of including the object in the knapsack. The goal is to maximize
the reward without exceeding the maximum cost (weight) that we can carry in the bag (the total time
available for solving each planning task). On the other hand, the MIP task for satisficing planning
can be seen as the Knapsack problem where utilities change over time, since satisficing planners can
generate more than one solution.

62

CHAPTER 3. AUTOMATIC CONSTRUCTION OF SEQUENTIAL PORTFOLIOS

GOP has been used to address several issues in the automated design of portfolios such as how to
derive an upper bound on the solvers performance for a given set of problem solving tasks, among
others. The main coniributions presented in this Chapter can be summarized as follows:

1.

GOP, a theoretically-grounded method that models the automated generation of portfolios us-
ing MIP tasks was introduced. We empirically showed that these MIP tasks can be solved in
a reasonable time and the resulting portfolios generalize very well to unseen instances.

The best linear combination of participant solvers was computed for the International Planning
Competition 2011 and SAT Competition 2013.

The utility of training instances was empirically analyzed when designing portfolios for Au-
tomated Planning and SAT.

The peneralization capability of the portfolios automatically derived with GOP was assessed
in Automated Planning and SAT.

GOP, the proposed method to compute OS5 portfolios was compared and evaluated against
previous optimal approaches from the portfolio literature.

The quality of the solutions found by GOP over time was analyzed.

3.5 Publications

In this Section we show all the published works related to this Chapter:

» Sergio Nifiez, Daniel Borrajo, and Carlos Linares Lopez (2012a). “How Good is the Perfor-

mance of the Best Portfolio in IPC-20117" In: Proceedings of the ICAPS-12 Workshop on
Internarional Planning Competition

o Sergio Nihez, Daniel Borrajo, and Carlos Linares Lopez (2012b). “Performance Analysis

of Planning Portfolios”. In: Proceedings of the Fifth Annual Symposium on Combinatorial
Search, SOCS, Niagara Falls, Ontario, Canada, July 19-21, 2012. AAAI Press, pp. 65-71

» Sergio Ninez, Daniel Borrajo, and Carlos Linares Lopez (2013). “MIPSat”. In: In Proceed-

ings of SAT Competition 2013, Solver and Benchmark Descriptions, pp. 59-60

o Sergio Niifiez, Daniel Borrajo, and Carlos Linares Lopez (2014b). “MIPlan and DPMPlan™.

In: Planner description, Deterministic track, International Planning Competition 2014

» Sergio Nifiez, Daniel Borrajo, and Carlos Linares Lopez (2014a). “MIPlan”. In: Planner

description, Learning track, International Planning Competition 2014

» Sergio Nifiez, Daniel Borrajo, and Carlos Linares Lopez (2015a). “Automatic Construction of

Optimal Static Sequential Portfolios for Al Planning and Beyond”. In: Artificial Intelligence
Journal 226, pp. 75-101

Chapter 4

Ordering Component Solvers in
Sequential Portfolios

Several works in portfolios have shown their ability to outperform single-algorithm approaches in
some tasks (e. g. SAT or Automated Planning). However, the order in which the component solvers
of a sequential portfolio are executed is a relevant issue that has not been analyzed in depth yet.
Most successful portfolio approaches for Automated Planning and SAT only focus on maximizing
performance (measured as total quality score or coverage) for a fixed time limit. We hypothesize
that the order of the component solvers affects the performance of the portfolio over time. Thus, a
sequential portfolio should be sorted if its performance over time is relevant. As a consequence, in
SAT and optimal planning, the average time required to solve problems can be significantly reduced,
whereas in satisficing planning, lower-solution costs can be found more quickly, while preserving
coverage or quality score.

An example of the interest in this particular problem can be found in the real world. For instance,
during the Hurricane Sandy (2012) there were lots of blackouts in New York City. Thus, several elec-
trical failures (generators, electrical lines, etc.) had to be repaired to restore the electricity as quickly
as possible. This situation combines two problems, a logistic problem (parts that are needed to fix
the electrical components) and a scheduling problem (Power Restoration Problem) (Hentenryck et
al., 2011). The last one is very similar to the problem described in this Chapter. The electrical com-
ponents that must be repaired are problems to be solved by solvers. The reward (power restored) for
repairing each particular component is the number of problems solved (or the quality score of the
solutions found) by a solver within its allotted time. The allotted time represents the time required
{cost) to fix each component. Finally, the goal is to maximize the power flow (by repairing electrical
components) in the network as quickly as possible (coverage or quality score over time).

In this Chapter, we propose to sort the component solvers in a sequential portfolio to improve
its performance over time. We empirically show that the ordering used in the portfolio affects its
performance over time and that performance can be improved by using a good ordering strategy.

This Chapter is organized as follows. First, Section 4.1 formally defines the problem of ordering
component solvers in a sequential portfolio. Sections 4.2 and 4.3 describe the optimal and greedy
approaches proposed. Section 4.4 reports the experimental results. Finally, Section 4.5 concludes
with a summary and Section 4.6 shows the publications related to this Chapter.

63

64 CHAPTER 4. ORDERING COMPONENT SOLVERS IN SEQUENTIAL PORTFOLIOS

4.1 Formal Description

In problem solving, the performance of a solver s is measured over a set of instances I (s can be
either a solver or a portfolio). Every solver s is executed over every instance i € [to obtain the
set R, of solutions. This set contains every solution found by s within a given time bound {. We
consider time as discrete with a discretization of one second. Each element of R, stores the cost
of the corresponding solution and a timestamp with the time required to find it. In case of solving
problems optimally or SAT instances, solvers generate at most one solution per instance. However,
in satisficing planning, solvers can generate multiple solutions. Therefore, the performance of = over
time is measured by evaluating a specific metric over time. The metrics considered in this Thesis are
coverage and total quality score (see Section 2.1.5.3, page 15). In the following, P(s, I,t) denotes
generically either coverage, C|s, I, t) or total quality score, (}(s, I,t). Recall that every solver is
executed ¢ seconds on each instance to compute a specific metric.

The definition of the sequential portfolio does not consider any notion of ordering among solvers
in a portfolio (see Definition 2.1 on page 5). Indeed, the performance of the portfolio in time T =
Er’:l t; is the same for any ordering, where ¢, is the time allotted to the execution of each of the n
component solvers. Hence, the notion of ordering in a sequential portfolio should be introduced.

Definition 4.1 (Ordering of a Sequential Portfolio). An ordering T of a sequential portfolio p is a
full permutation over the solvers in p that defines the execution sequence, T = {sy,82,..., 5}

The component solvers of the sequential portfolios considered in this Thesis are not allowed to
share any information among them. Thus, they can not take advantage of their position by using
information from previous executions (e.g., a cost upper bound in satisficing planning). Since the
notion of ordering has already been presented, the sorted sequential portfolio can be formally defined
now as shown below.

Definition 4.2 (Sorted Sequential Portfolio). Ler o denote the sorted sequential partfolio of solvers
in p whose execution ordering is given by T.

In order to analyze the performance of a sorted sequential portfolio, we need to analyze sepa-
rately the contribution of each solver to the overall performance.

Definition 4.3 (Partial Ordering of a Sequential Portfolio). A partial ordering ;. is a partial per-
mutation over the first k solvers in the full permutation v : 7, = {5y, 82, ..., 51}

Let p;, denote the sorted sequential portfolio of solvers in p that considers only the first k solvers
according to the ordering in .

Therefore, the first solver, sy, completes its execution after) seconds, the second solver will
finish after (£, + ¢5) seconds and, in general, the j-th solver s; will complete its execution after
ELI t; seconds. Now, we can define how to measure the performance of the resulting portfolio
over time as shown below.

Definition 4.4 (Performance of a Sorted Sequential Portfolio over Time). The performance of a
sorted sequence of solvers pr for a given problem set I over time t, P{pr, I, t) is defined as the sum
of the best performance over all solvers in p executed in the order specified by T for every instance
in I in time less than or equal to t.

4.1. FORMAL DESCRIPTION 65

In case that ¢t < 3, ¢, not all component solvers will be considered to compute P(p,,I,t).
In this case, only the solutions found by those solvers in p that could be run before ¢ are con-
sidered. The timestamp of each considered solution is equal to the time required to find it by the
corresponding solver s;. plus E::ll t;. Next, we define the performance of a component solver, s,
that occupies the i-th position in a permutation =. It is computed as the increase in performance of
the ordered portfolio by adding s, to the portfolio.

Definition 4.5 (Performance of a Component Solver in a Sorted Sequential Porifolio). Ler
P..(pr 1) denote the performance of a component solver s, in a partial permutation =, (that con-
siders only the first i solvers in T) wrt the benchmark 1.

Folpr 1) = Plp., I.t,,) — Plpr,_, Lts,)

where T, denotes the partial permutation of all solvers in T until sy, to_ is the sum of the allotred
times of all solvers in p.,; and, s,y denotes the previous solver of =, in the partial permutation.

The performance of a solver s, is defined as a function of the ordered portfolio g since different
solvers in p or different orderings — would yield different performances —i. e., the performance of a
solver depends on the previous solvers. As an example, consider a sequential portfolio p for optimal
planning which consists of two solvers sy and ss which are allocated 4 and 7 seconds respectively.
Let us assume that the performance of these solvers with respect to a set I of 20 planning tasks is:

sy solves instances 11 to 20. Hence, P(sy, I, 4) = 10.
® so solves tasks 1 to 18, resulting in P(sq, I, 7) = 18

Assume further that both solvers solve the aforementioned instances in one second each. There-
fore, P(sy,1,1) = 10 and P{s2,1,1) = 18. Figure 4.1 shows the performance over time of the
two possible orderings for the given portfolio, 7y : (sq, s2) (red solid line) and 75 : (sa, 51) (blue
dashed line). F(sy,1,4) is equal to 10 since sy solved 10 instances within its time span. However,
the performance of s; in each portfolio is different F;, (p-,,I) is equal to 10 because s is the
first solver to be executed. However, the performance Fs, (pr,, 1) is equal to two since instances
11-18 have already been solved by the previous solver ss. As shown in Figure 4.1, the performance
of a sequential portfolio p at time T' = 37 ¢, P(p,I,T), is the same for every permutation .
However, the performance of these orderings over time differs. Figure 4.1 also exemplifies a case
where the portfolio achieving its maximum performance sooner is not the one with the best overall
performance and, indeed, the first portfolio (red solid line) inscribes a smaller area than the second
one.
The key observation is that the performance of ordered portfolios p- over time can be seen as
bivariate density functions, f,_(x,t). They are defined as the probability that the sorted portfolio p,
reaches a performance P equal to « in ¢ seconds: f,_(x,t) = Prob(P = z,T = t). Accordingly,
we define the probability function as follows:

Definition 4.6 (Probability Function of the Performance of a Sorted Sequential Portfolio). Ler
Prob(P < z,T = t) denote the probability thar a portfolio pr reaches a performance equal to
x or less in fime ¢

Prob(P<z,T =t) =Y fo (z,1t)

66 CHAPTER 4. ORDERING COMPONENT SOLVERS IN SEQUENTIAL PORTFOLIOS

(@, 0} 1 4 5 T 8 11

Figure 4.1: Performance of two different orderings of the same portfolio with respect to coverage.

This observation leads to propose the area inscribed by this probability function as the opti-
mization criteria to compare different permutations + of the same portfolio p. Thus, we define the
optimization task as follows.

Definition 4.7 (Portfolio Ordering Task). Given a collection of n component solvers of a sequential
portfolio p, the portfolio ordering task consists of finding the permutation T* of solvers s € p fora
given benchmark I such that it maximizes Fp_(z,t):

F,.(z,t)=Prob(P < z,T <t)=Y, Prob(P < z,T =t)

As a result, this task will sort the component solvers of the input portfolio p with the aim of
maximizing the area inscribed by the probability function shown in Definition 4.6 of the resulting
ordering (see Definition 4.1).

4.2 Optimal Approach

We first use heuristic search with an admissible heuristic function to find the optimal ordering with
respect to a given benchmark. Specifically, we propose Depth First Branch and Bound (DFBnB). It
requires two paramelers: a sequential portfolio p and the set H;;, which will be used to compute the
area inscribed by the probability function of every combination of the component solvers.

To find the optimal ordering +*, DFBnB starts with the empty permutation . Each node m
contains the current partial permutation 7, and the set A of solvers that are not yet in p-_, (initially,
A = {5 | 5, € p} i e, all solvers in g). The successors of each node are generated by adding a
solver s £ A to the current permutation (and thus removing it from A). Each node defines a partial
permutation of the component solvers in p, while each leaf node defines a full permutation of all
solvers in p.

DFBnB uses f(m) = g(m) + h(m). The g-value is the area inscribed by F, _ after T}, _
seconds, where T, is equal to the sum of the time spans of every solver in p_:

4.3. GREEDY APPROACH 67

g(m) = Fp_ (P(pr,, . 1.Tp,), Tp,.)

Suppose that DFBnB is initially given the portfolio o = {{sy, 540}, (=2, 630}, {s3,630)}. As-
sume also that the DFBnB search is in a state m, where only the solver s3 has been selected, so
that p- : {{s3,630)} and T;; = 630. Figure 4.2 shows the area inscribed by the probability
function F,_ in the interval [0, 630] (blue line patterned area), where points denoted with upper-
case letters demarcate the areas inscribed by the probability function. Thus, the area inscribed by
Fy _ is computed as the sum of the rectangular areas area(TpAgA1Ty), area(T1A2A3Ts) and
area(Ta Ay AgTy).

In relation to h(m), we have defined an admissible heuristic termed SQUARE that optimistically
estimates the area inscribed by the probability function 4. It just assumes that the order of the
solvers contained in A is not relevant so that the portfolio will reach the performance P(p, I,T)
with a 100% probability, one second after the first solver in A starts its execution. h{m) is computed
as follows:

h(m)=Prob(P < P(p,I,T),T =T,)+ Fa(P(p,1,T),T4)
—Prob(P < P(p,I,T),T =T, _)+Ta—1

where T4 is equal to the sum of the time spans of every solver in A. The area inscribed by F4 is
composed of two rectangular areas. The first one is defined in the interval [T,,__, T, _ + 1], the first
second of the execution of the first solver in A. This area is represented by the first term in h(m). It
is computed as the probability of reaching a performance equal to = or less in time T, multiplied
by the time interval (one second). The second area is defined by the probability function F4 in the
interval [T,,, +1,T, +Tal.

Following the example in Figure 4.2, A = {sy,s2} and Ty = 540 + 630 = 1170. Since
these solvers have not yet been included in p._, the area inscribed by F4 (yellow solid area) is
computed using the SQUARE heuristic. The estimated yellow solid area is equal to the sum of the
rectangular areas area(l3As BgTy) (first term of the heuristic function), area(TyBCT:) (solver
s1) and area(TzC' DTy (solver sa). The rectangular areas area(Ty BCT:) and area(TC DTg) are
equal to Ty — 1 = 1169. Hence:

fim) = area(TpApA1T1) + area(T) As AsTs)
+area(TaAgA:Ts) + area(T3As BpTy) + 1169

This technique yields optimal orderings for a specific set of instances. However, it can suffer
from overfitting when evaluating its performance over a different benchmark.

4.3 Greedy Approach

The time required to find the optimal solution increases dramatically with the number of component
solvers, since there are n! different orderings. Thus, we propose an alternative approach based on
greedy search to quickly find a suboptimal solution with good quality.

We assume that the performance F;, (g, 1) can be approximated with a straight line in the inter-
val [ts; ,.ts; , + ti, where £,,_, is the sum of the allotted times of all solvers in p,_, and ¢, is the
execution time of s,. The slope of this line is computed as the performance Fs_(pr, I') divided by ¢,.
The slope has been selected as a heuristic (to be denoted as SLOPE) because it is a conservative ap-
proximation of the growth in performance of a component solver in the portfolio. Also, it considers

68 CHAPTER 4. ORDERING COMPONENT SOLVERS IN SEQUENTIAL PORTFOLIOS

fim}
e
: B c i}
Ay Ag
- By
A .
‘A
Ao o
PA
T i T T i T im Ty
' i st
0,0 1 &30 &3l 1,170 1,800

Figure 4.2: Example of the computation of f(m) for computing the optimal ordering of a given
portfolic. The blue area is the g-value while the area coloured in yellow represents the heuristic
value.

the performance of each component solver with respect to the performance achieved by the previous
solvers in the term P, (p;, I) —see Definition 4.5.

We propose to use hill-climbing in the space of partial permutations of the input portfolio p. It
takes the same parameters as DFBnB described previously. The search is initialized with the empty
permutation Ty, and the set A = {s; | 5; £ p}. Ateach siep, it selects the solver s; £ A which
has the largest ratio Py, (pr,T)/t;. Then, the selected solver is added to the current permutation and
removed from A. Finally, the algorithm returns the ordered portfolio p..

Figure 4.3 shows the performance over time of a sequential portfolio sorted by the greedy ap-
proach. Specifically, the portfolio used in this example is the 0SS portfolio for the sequential op-
timization track of the IPC 2011 (for details see Section 3.3.1.1, page 43). The green and red lines
show the slope of each component solver. As it can be seen, the slope of each solver is lower than
the slope of the previous solvers in the portfolio. Also, the slope of CPT-4 is almost a vertical line
since its allotted time is equal to 1 second and its performance on the training benchmark (according
to its allotted time) is equal to 31 (instances solved).

4.4 Empirical Evaluation

This Section compares the proposed algorithms (SLOPE and DFBnB) with other ordering strategies
and reports their performance on Automated Planning and SAT. Inspired by the ordering criteria
used by state-of-the-art portfolios in Automated Planning, the following algorithms were defined to
compare with our solutions'. All the ordering algorithms resolved tie-breaking by using the order in
which solvers were initially specified.

Shorter Time Spans (5TS): inspired by PBP, this algorithm sorts the component solvers of a given
portfolio in increasing order of the allotted time to run each solver.

I'We also tried to use the ordering criteria defined by Bus against our approach, but the source code is not available.

44. EMPIRICAL EVALUATION 69

P
A
1 ﬁ—ﬂp‘.—-
I
I
A I I
I I I
150 - t-————— - - ——=——
I I I
I I I
I I I I
: : : [Imcut
100 Sll=======~ Fooooo=od = === [iforkinit
1 1 1
I I I] mas2
: : :] masl
I I I
0 ¥ R S - [gamer
I I I
1 1 1
1 1 1
1 1 1
I I I
- - - > t(a)
i} 500 1,000 1,500

Figure 4.3: Example of a sequential portfolio soried by the greedy approach.

Memory Failures (MF): inspired by FDSS, it uses the number of times that each component solver
exceeds the available memory limit (and does not solve the task) to sort the given portfolio in
decreasing order.

Decreasing Coverage (DC): inspired by FDSS, it uses the number of problems solved by each
component solver to sort the input portfolio in decreasing order.

Random: sorts the solvers of the input portfolio randomly. This algorithm generates five random
orderings and reports the average score of all generated orderings.

Confidence: uses the confidence provided by the learned models to sort the input portfolio in
decreasing order. It is defined by IBACOP 2. Therefore, it only will be applied in the
comparisons with dynamic input portfolios.

4.4.1 Static Input Portfolios

We used equation (4. 1) to measure the score of the resulting orderings. This equation compares the
area inscribed by the probability function of each sorted portfolio with the optimal sorting computed
by DFBnB over the evaluation set. Thus, higher scores stand for better anytime behaviors.

Fﬂr{P{PTaI:T}aT}
F,cl,.- (P(pr~,1,T),T)

The performance of all the considered sortings has been evaluated with different evaluation test
sets: Either the training data set or an entirely new one (test set). The second type of experiments
examines the peneralization capabilities of all ordering approaches. Also, to avoid introducing any
bias in the experimentation, different techniques for generating static sequential portfolios are con-
sidered:

(4.1)

ordering_score(pr) =

70 CHAPTER 4. ORDERING COMPONENT SOLVERS IN SEQUENTIAL PORTFOLIOS

GOP portfolios. This approach focused on deriving the optimal static sequential portfolio for a
particular metric and a given training set (see Chapter 3 for more details).

Random portfolios. They consist of a random selection of solvers from a pool of candidate solvers
{at most half the number of candidate solvers) so that at least one problem is solved in each
training planning domain or SAT category. The time allotted to each component solver is also
randomly chosen, such that the total time does not exceed T

Random-uniform portfolios. They are random portfolios where the total available time is uniformly
distributed among all the component solvers.

44.1.1 Automated Planning

We have performed two sets of experiments. The first one considers all the planning tasks from
the IPC 2008 to configure and sort the input portfolio (training set). The new domains defined in
the IPC 2011 are then used to assess the performance of the resulting portfolio (test set). In this
experiment, we have used the set of candidate planners considered in the design of FDSS (FDSS-
1 or FD§5-2, depending on the experiment) to configure the input portfolios. The second set of
experiments takes the whole collection of planning tasks from the IPC 2011 as training set and the
domains of the IPC 2014 (which were not included in IPC 2011) as test set. The input portfolios
have been configured considering all the participants of the IPC 2011 but LPRPGP.” For more details
about the composition of the benchmarks and candidate planners used in this empirical evaluation,
see Table 2.1 and Annex A on pages 15 and 93 respectively.

The size of the candidate and component planners sets are defined in the ranges [8, 38 and
[3, 14] respectively. The smaller planner sets were used in optimal planning, since there were few
participants in the last [PCs. As a reference, IBACOP 2, the state-of-the-art portfolio, considers 12
candidate planners and five component planners.

The ordering generated by DFBnB for the training sets (IPC 2008 and IPC 2011) will be denoted
as DFBnB 2008 and DFBnB 2011 respectively. Also, the ordering computed with DFBnB over the
test sets will be used only to compute the test score of the orderings generated using the training set.

Table 4.1 shows the score of the resulting ordered portfolios using GOP portfolios. The training
results show that the anytime behavior of the portfolio sorted with our greedy approach (SLOPE) is
usually extremely close to the optimal performance. As it can be seen, the test results show that the
orderings obtained by SLOPE and STS (using data from the IPC 2008) are the optimal orderings for
the test set. Also, the permutation computed with the technique that penerates the best ordering for
the training data (DFBnB 2008) shows over-fitting as expected; it is worse than the random ordering,
and it does not generalize well to unknown domains. Moreover, the orderings generated with MF and
DC usually perform worse than the RANDOM ordering. Finally, our greedy approach outperforms
the other approaches with a remarkable score (IPC 2011) and generalizes well on the IPC 2014.

Table 4.2 presents the training and test results for the random portfolios. Since we are using
random portfolios, we have executed 50 times the training and test phases, each one with a different
random portfolio. As it can be seen, the SLOPE random portfolio achieves again a training score
extremely close to the score of the best permutation (DFBnB solution) of the input portfolio. The
test results for random portfolios show that the SLOPE portfolio outperforms others under the same
conditions. Also, all the generated orderings usually perform better than RANDOM in the test set. The
differences in test scores between SLOPE and STS are larger in satisficing planning than in optimal

*We experienced problems with the CPlex license.

44. EMPIRICAL EVALUATION 71

Training Score Test Score
IPC 2008 IPC 2011 IPC 2011 IPC 2014
Ordering Algorithm | Optimal ~ Satisficing | Optimal ~ Satisficing || Optimal Safisficing | Optimal Satisficing
DFBnB 2008 1,004 1.0 - - 0.9421 0.9381 - -
DFBnB 2011 - - 100040 1.0 - - 0.9830 0.9479
SLOPE PORTFOLIO 0.9944 0.9862 0.9993 0.9977 100440 0.9735 0.9764 0.9656
5TS PORTFOLIO 0.9944 0.9642 0.9980 0.9756 100440 0.9576 0.9824 09786
RANDOM 0.9869 0.9604 08716 0.9545 0.9433 0.95N1 0.8601 0.8450
DC PORTFOLIO 0.9985 0.9818 0.8579 0.9439 0.B435 0.9516 0.9031 0.7072
MF PORTFOLIO 0.9733 0.9334 0.6457 0.9472 0.9253 0.9437 0.6227 0.8267

Table 4.1: Training and test results of the sorted portfolios using GOP portfolios on Automated
Planning. The best ordering scores are highlighted in bold.

planning, mostly because in satisficing planning the ordering task is harder and there is much more
variability in the areas of the portfolios.

Training Score and Std. Deviation (average) Test Score and Std. Deviation (average)

IRPC 2008 IPC 2011
Ordering Algorithm | Optimal Satisficing || Optimal Satisficing
DFEnB 2008 100 = 0,00 10D - LMY || D.9559 - 00448 0.9445 - 0.0330
SLOPE PORTFOLIO 0.9923 - 0.0095 0.9965 - 0.0038 | L9800 - 0.0245 0.9617 - 0.0478
5TS PORTFOLIO 0.9850 - 0.0181 0.9900 - 0.0095 0.9797 - 0.0293 0.9595 - 0.0381
RANDOM 0.9661 - 0.0209 0.9571 - 00160 || 0.9255 - 0.0467 0.8792 - 0.0599
DC PORTFOLIO 0.9897 - 0.0113 09623 - 00284 || 0.9437 - 0.0606 0.8713 - 0.1082
MF PORTFOLIO 0.9426 - 0.0375 09332 -0.0434 ([09438 - 0.0486 0.8671 - 0.1095

IPC 2011 IPC 2014
DFBnB 2011 100 = 0,00 1000 - LMy || DL9BDG - 0.0170 L9613 - 0.0450
SLOPE PORTFOLIO 0.9932 - 0.0109 0.9984 - 0.0030 | L9829 - 0.0115 0.9607 - 0.0409
5TS PORTFOLIO 0.9794 - 0.0203 09752 - 00264 ([09774 -0.0193 0.9304 - 0.0541
RANDOM 0.9143 - 0.0654 08394 - 0.0900 ([0.9485 - 0.0490 0.7895 - 0.1107
DC PORTFOLIO 0.9866 - 0.0154 0.9720 - 0.0246 | 0.9707 - 0.0180 0.8996 - 0.0858
MF PORTFOLIO 0.9393 - 00243 0.7977 - L1587 0.9773 -0.0253 0.6877 - 0.2051

Table 4.2: Training and test results of the sorted portfolios using random portfolios on Automated
Planning. The best ordering scores are highlighted in bold.

The training and test results for the random-uniform portfolio are described in Table 4.3. Strik-
ingly, these results show that the SLOPE portfolio achieves a training score extremely close to the
score obtained by the optimal sorting despite the fact that the uniform method penalizes the SLOPE
heuristic. This method also penalizes the ST5 algorithm. However, the TS portfolio performs worse
than the RANDOM portfolio. As it can be seen, the difference in test score between SLOPE and STS
(the two algorithms that are penalized by using the uniform time assignment) is quite large. The
scores of SLOPE, DFBnB 2008 and 2011 are very close. However, the time required by our gree dy
approach is exponentially shorter than the time required by DFBnB. Overall, all ordering algorithms
(but DFBnB) sort a given portfolio in less than one second, while DFBnB can take several days to
sort a given portfolio (depending on the number of component planners).

72 CHAPTER 4. ORDERING COMPONENT SOLVERS IN SEQUENTIAL PORTFOLIOS

Training Score and Std. Deviation (average) Test Scor and Std. Deviation (average)

IPC 2008 IPC 2011
Ordering Algorithm | Optimal Satisficing || Optimal Satisficing
DFBnR 2008 100D - 0. 0000 L0000 - 0.0000 || 0.9370 - 0.0302 0.9086 - 0.0550
SLOPE PORTFOLIO | (.9096 - 0.0010 0.9996 - 0000 || 0.9353 - 0.0306 0.9123 - L0567
5TS PORTFOLIO 0.9560 - 0.0228 0.9494 - 00180 ([08588 - 0.0497 08254 - 0.0704
RANDOM 09648 - 0.0216 0.9664 - 0.0098 || 09311 - 0.0271 0.8525 - 0.0433
DC PORTFOLIOD 09013 - 0.0104 0.9623 -0.0142 || 0.9413 - 0.0329 08183 - 0.0782
MF PORTFOLIO 09442 - 0.0304 0.9442 - 00208 || 0.9566 - 0.0292 0.8371 - 0.0BD0

IPC 2011 IPC 2014
DFBnB 2011 100D - 0. 0000 L0000 - 0.0000 || 0.9776 - 0.0139 08878 - 0.0486
SLOPE PORTFOLIO | (.9092 - 0.0013 0.9995 - 0.0015 || 0.9791 - L0143 0.8919 - (L0453
5TS PORTFOLIO 0.8941 - 0.0535 0.8429 - 0.0644 || 09251 - 0.0331 0.7897 - 0.0B23
RANDOM 09411 - 0.0255 0.8745 - 0.0431 || 0.9487 - 0.0149 0.7982 - 0.0529
DC PORTFOLIOD 09636 - 0.0131 0.9871-0.0112 || 0.9530 - 0.0144 0.8694 - 0.0437
MF PORTFOLIO 09412 - 0.0314 0.9086 - 0.0558 || 0.9605 - 0.0330 07711 - 0.0981

Table 4.3: Training and test results of the sorted portfolios using random-uniform portfolios on
Automated Planning. The best ordering scores are highlighted in bold.

4.4.1.2 SAT

The ordering algorithms have also been assessed on SAT. In this experiment, all the instances defined
for the SAT Competition 2011 are used to configure and sort the input portfolios (training set). The
resulting sorted portfolios are then evaluated on the whole collection of instances from the SAT
Competition 2013 (test set). On the other hand, MIPSAT has been used as the input portfolio for
ordering GOP portfolios and its component solvers have been considered to generate the random
and random-uniform input porifolios (see Figure 3.10 on page 58 for details about the MIPSAT
configuration).

Similarly to the planning experiments, the ordering generated by DFBnB for the training set has
been denoted as DFBnB 2011. Also, the ordering computed with DFBnB over the test set will be
used only to compute the test score of the orderings generated using the training set.

Table 4.4 shows the results of the orderings generated using MIPSAT as the input portfolio. As
it can be seen, the orderings computed by SLOPE and DC achieve the best training score (without
considering DFBnB 2011). Strikingly, the test results show a larpe difference in score between both
orderings, despite the fact that they achieved the same training score. In general, the test results show
low scores except for the DC portfolio. Indeed, the orderings computed by MF and 5T5 perform worse
than the RANDOM ordering in the test set. On the other hand, the ordering computed by DFBnB for
the training set seems to not suffer from over-fitting in the test set, since it achieves the second best
score and performs better than the random ordering.

The training and test results for the random portfolios are described in Table 4.5. As in the
planning experiments, we have executed 50 times the training and test phases, each one with a
different random portfolio. The training results indicate that the ordering generated with SLOPE
achieves a quite remarkable training score. As it can be seen, the test results show that the input
portfolio ordered with DFBnB for the training set achieves the best test score, which together with
the previous results tends to empirically confirm that DFBnB does not suffer from over-fitting in the
SAT experiments. Also, the difference in test score between SLOPE and DFBnB 2011 is not large,

44. EMPIRICAL EVALUATION 73

Ordering algorithm | Training score Test scom

DFBnB 2011 1N 0.8970
SLOPE PORTFOLIO 0.9747 0.8302
5TS PORTFOLIO 0.9699 0.8200
RANDOM 0.9635 0.8265
DC PORTFOLIO 0.9747 0.9952
MF PORTFOLIO 0.9492 0.7994

Table 4.4: Training and test results of the sorted portfolios using GOP portfolios on SAT. The best
ordering scores are highlighted in bold.

unlike the difference in computation time, which is exponentially large. In the SAT experiments, the
greedy approach always sorts the input portfolio in less than one second whereas the DFBnB based
approach can take more than one hour, depending on the size of the input portfolio. On the other
hand, in this experiment, the DC portfolio does not perform well in the test set. Indeed, it performs
worse than the 5T5 portfolio, which performed worse than the random ordering for the GOP input
portfolio (see Table 4.4).

Training Score and Test Score and
Ordering algorithm | Std. Deviation (average) Std. Deviation (average)
DFBnB 2011 1WA - 0000 09778 - 0.0363
SLOPE PORTFOLIO 0.9924 - 0.0105 0.96534 - 0.0432
5T5 PORTFOLIO 0.9742 - 0.0283 0.9301 - 0.0665
RANDOM 0.3803 - 0.0651 0.8544 - 0.0978
DC PORTFOLIO 0.9401 - 0.0702 0.9157 - 0.1295
MF PORTFOLIO 0.8582 -0.1131 07802 - 0.1620

Table 4.5: Training and test results of the sorted portfolios using random portfolios on SAT. The best
ordering scores are highlighted in bold.

Table 4.6 presents the results for the random-uniform portfolios. Similarly to the planning re-
sults, the training results show that the SL.OPE portfolio achieves a score extremely close to the score
of the optimal ordering despite the fact that the uniform method penalizes the SLOPE heuristic. The
test results show that DFBnB 2011 performs again very well in the test set. Also, 5TS, the technique
which is also penalized by the uniform method, does not perform well in the test set as expected;
the difference in test score among 575 and SLOPE (or DFBnB 2011) is quite large. Finally, SLOPE
achieves again a near-optimal solution in the training set and generalizes very well on the SAT Com-
petition 2013,

4.4.2 Dynamic Input Portfolios

In this experiment, we only focus on Automated Planning because most of the dynamic SAT port-
folios only run one solver for most of the available time. Thus, we now apply all the ordering
algorithms defined above to IBACOP 2, the winner of the IPC-2014 (satisficing planning). Instead
of configuring the same portfolio for all test instances (as the approaches used in the previous ex-
periments), IBACOP 2 generates a different sequential portfolio for each input instance. Therefore,

74 CHAPTER 4. ORDERING COMPONENT SOLVERS IN SEQUENTIAL PORTFOLIOS

Training Score and Test Scone and
Ordering algorithm | Std. Deviation (average) Std. Deviation (average)
DFBoB 2011 1D - (0, (NN 0.9821 - 0.0208
SLOPE PORTFOLIO 0.9999 - 0.0001 0.9830 - 00200
5TS PORTEOLID 0.9318 - 0.0513 0.8904 - 0.0839
RANDOM 0.8938 - 0.0354 0.8447 - 0.0489
DC PORTFOLIO 0.9823 - 0.0181 09778 - 0.0458
MF PORTFOLIO 08912 - 0.0554 0.28064 - 0.0B04

Table 4.6: Training and test results of the sorted portfolios using random-uniform portfolios on SAT.
The best ordering scores are highlighted in bold.

the score of each sorted ordering is computed as 3 |, _; score(py;), where p,; is the ordered portfolio
computed for each input instance i. The generation of each portfolio is based on learned data using
a fraining set

All the instances defined in the IPC 2011 have been considered to sort the input portfolios and the
domains of the IPC 2014 (which were not included in IPC 2011) to evaluate the resulting orderings
(see Table 2.1 on page 15 for details).

As it can be seen in Table 4.7, the SLOPE portfolio achieves again near-optimal solutions in
the training set. The training score obtained by the DC portfolio is remarkable while the training
score of the STS portfolio is worse than the score achieved by the random ordering (similarly to the
random-uniform portfolios). It is mainly due to the uniform method, which is applied by IBACoP 2
to distribute the available time among the component solvers. The CONFIDENCE portfolio does not
show training score because it was ordered by its learned models. On the other hand, the test score
of the resulting orderings show that SLOPE again outperforms others. However, the test score of all
the permutations are close among them.

Ordering algorithm | Training score Test score

DFBoB 2011 160.00 105,93
SLOPE 159.04 108.95
5TS 14464 107.32
RANDOM 149.30 107.89
jilsl 158.31 105,92
MF 15287 107.10
CONFIDENCE - 108.37

Table 4.7: Training and test score of the sorted portfolios using IBACOP 2 on Automated Planning.
The best ordering scores are highlighted in bold.

4.5 Summary

In this Chapter, we have presented a formal definition for the problem of sorting the component
solvers in a sequential portfolio. It focuses on maximizing the area inscribed by the probability
function of the sorted portfolio. This open problem has been addressed with the aim of improving

4.6. PUBLICATIONS 75

the performance of the portfolios over time. The contributions of this Chapter can be summarized as
follows:

1. The problem of ordering component solvers in a sequential (static or dynamic) portfolio was
formally defined.

2. Two different algorithms to solve the problem were proposed and compared. We empirically
showed that our greedy approach produces near-optimal solutions very quickly and that it
generalizes much betier than an optimal solution with respect to a specific training set which
has been observed to suffer from overfitting in the planning experiments.

3. An extensive evaluation was performed with the algorithms introduced here, a random order-
ing algorithm and others from the literature with data from the last three IPCs (2008, 2011 and
2014) and the SAT Competitions 2011 and 2013.

4.6 Publications
Next we show the published work related to this Chapter:
» Sergio Nifiez, Daniel Borrajo, and Carlos Linares Lopez (2015b). “Sorting Sequential Port-
folios in Automated Planning™. In: Proceedings of the Twenty-Fourth Internarional Join

Conference on Artificial Intelligence, INCAI 2015, Buenos Aires, Argentina, July 25-31, 2015,
pp. 16381644

Chapter 5

Conclusions and Future Work

In this Chapler, we summarize the main contributions of this Thesis, discuss the conclusions and
describe possible future work.

5.1 Contributions

The main contributions of this Thesis can be split into two parts, as we describe in detail next.

5.1.1 The Automated Generation of Static Sequential Portfolios

The notion of portfolio applied to problem solving has shown to be a promising avenue of research.
We analyzed the state-of-the-art portfolio techniques and introduced GOP, a Mixed-Integer Program-
ming approach in order to theoretically address the automated generation of sequential portfolios.
Besides, we showed that GOP is able to compute an upper bound on the performance that is feasible
with a linear combination of candidate solvers for a particular training data set. In our view, reaching
an overall performance larger than the upper bound automatically defined by GOP in the same pool
of instances, under the same conditions, would be a emarkable achievement.

We also performed an empirical analysis to determine the composition of the best training bench-
mark to configure high-performance portfolios. Our results suggest that not all problems provide the
same information, termed wrility here, and that portfolios configured with small training data sets
can perform very well. Hence, we conjecture that the best training benchmark should contain only a
small number of instances that a few solvers are able to solve.

In addition, we assessed the performance of GOP against the most successful approaches to auto-
matically configure portfolios in planning. Our results indicated that GOP, a theoretically-grounded
method frequently dominates all others under the same conditions. Indeed, we submitted a par-
ticipant planner termed MIPLAN to the learning track of the IPC 2014. The competition results
indicated that MIPLAN, the planning system which uses GOP to generate a sequential portfolio for
each given planning domain, outperforms others. It achieved the best overall quality and also the
best coverage in the competition. Therefore, MIPLAN won the overall best quality award.

Finally, GOP was evaluated on the SAT Competition 2013. We submitted one sequential portfolio
{called MIPSAT) to the open track, which was specifically defined for portfolio approaches. The
competition results of this track reported that MIPSAT was the second best solver. It only solved
three instances less than the winner. Also, we showed that the best performance achievable with

71

78 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

a linear combination of the participant solvers was the same than the performance achieved by the
winner. Thus, MIPSAT only solved three instances less than the best portfolio configuration for the
open track.

5.1.2 The Automated Process of Ordering the Component Solvers in a Se-
quential Portfolio

Most state-of-the-art approaches in the automated design of portfolios did not focus on the order
in which the component solvers should be executed. Thus, we presented a formal definition of the
problem of sorting the component solvers in a sequential portfolio as a function defined over time.
In addition, we introduced two algorithms to solve the aforementioned problem. The first one solved
the problem optimally for a given data set using DFBnB and an admissible heuristic. The second
one was a greedy approach that used the ratio between performance of each solver and execution
time.

The results of the extensive empirical evaluation performed on Automated Planning and SAT
indicated that the performance of the portfolio over time can significantly vary by using different
ordering algorithms. Besides, the DFBnB based approach computed an optimal ordering for the
training set but it did not generalize well to unseen instances in Automated Planning. It suffered
from over-fitting when evaluated its performance over a test set. Also, the time required to compute
the optimal ordering can grow exponentially with the number of solvers of the input portfolio. On the
other hand, SLOPE, the greedy approach, computed orderings very fast, and obtained near-optimal
solutions when compared against the optimal technique in training. Moreover, it generalized much
better than the state-of-the-art ordering techniques. It is important to remark that the good behavior
of SLOPE did not depend on the algorithm used for generating the input portfolio, as shown by using
randomly generated portfolios (with uniform and non-uniform times).

In view of these results, we conjecture that it is going to be difficult to find a better algorithm in
terms of the balance between computation time, generalization power and quality of results.

5.1.3 Publications
List of publications related to this Thesis:

» Sergio Nifiez, Daniel Borrajo, and Carlos Linares Lopez (2012a). “How Good is the Perfor-
mance of the Best Portfolio in IPC-20117" In: Proceedings of the ICAPS-12 Workshop on
Internarional Planning Competition

o Sergio Nihez, Daniel Borrajo, and Carlos Linares Lopez (2012b). “Performance Analysis
of Planning Portfolios”. In: Proceedings of the Fifth Annual Symposium on Combinatorial
Search, SOCS, Niagara Falls, Ontario, Canada, July 19-21, 2012. AAAI Press, pp. 65-71

» Sergio Ninez, Daniel Borrajo, and Carlos Linares Lopez (2013). “MIPSat”. In: In Proceed-
ings of SAT Competition 2013, Solver and Benchmark Descriptions, pp. 59-60

o Sergio Niifiez, Daniel Borrajo, and Carlos Linares Lopez (2014b). “MIPlan and DPMPlan™.
In: Planner description, Deterministic track, International Planning Competition 2014

» Sergio Nihez, Daniel Borrajo, and Carlos Linares Lopez (2014a). “MIPlan”. In: Planner
description, Learning track, International Planning Competition 2014

3.2. FUTURE WORK 79

= Sergio Niifiez, Daniel Borrajo, and Carlos Linares Lopez (2015a). “Automatic Construction of
Optimal Static Sequential Portfolios for Al Planning and Beyond”. In: Arrificial Intelligence
Journal 226, pp. 75-101

= Sergio Niifiez, Daniel Borrajo, and Carlos Linares Lopez (2015b). “Sorting Sequential Port-
folios in Automated Planning™. In: Proceedings of the Twenty-Fourth Internarional Join
Conference on Artificial Intelligence, INCAI 2015, Buenos Aires, Argentina, July 25-31, 2015,
pp. 16381644

5.2 Future Work

In this Thesis, we addressed relevant issues about the automated design of sequential portfolios.
As future work, we propose to generalize the MIP model to the parallel case. Also, we would
like to study different behaviors in the sequential portfolio once the first solution has been found.
We believe that developing techniques based on dynamic portfolios, which could generate several
configurations while solving the given input instance, might improve the performance of the static
portfolios considered here. Moreover, we propose to analyze the influence of the ordering algorithms
on these dynamic portfolios. Additionally, we suggest to extend the MIP formulation proposed by
GOP with the aim of solving the portfolio generation task and the ordering task together. Finally, it
would be very interesting to continue working on the utility analysis of the training instances. It is a
promising avenue of research related to the automated design of portfolios and other tasks.

Bibliography

Carlos Ansotegui, Yuri Malitsky, and Meinolf Sellmann (2014). “MaxSAT by Improved Instance-
Specific Algorithm Configuration”. In: Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada. Ed. by Carla E. Brodley
and Peter Stone. AAAT Press, pp. 2594-2600 (page 30).

Carlos Ansdtegui, Meinolf Sellmann, and Kevin Tierney (2009). “A Gender-Based Genetic Algo-
rithm for the Automatic Configuration of Algorithms”. In: Principles and Practice of Constraint
Pragramming - CP 2009, 15th International Conference, CP 2009, Lisbon, Portugal, September
20-24, 2009, Proceedings. Ed. by Ian P. Gent. Vol. 5732. Lecture Notes in Computer Science.
Springer, pp. 142-157 (page 30).

Peter Auver, Nicold Cesa-Bianchi, and Paul Fischer (2002). “Finite-time Analysis of the Multiarmed
Bandit Problem™. In: Machine Learning 47.2-3, pp. 235-256 (page 22).

Christer Bickstrtm and Bernhard Nebel (1993). “Complexity Results for SAS+ Planning™. In: Com-
putational Intelligence 11, pp. 625-656 (page 22).

Adrian Balint, Daniel Diepold, Daniel Gall, Simon Gerber, Gregor Kapler, and Robert Retz (2011).
“EDACC - An Advanced Platform for the Experiment Design, Administration and Analysis of
Empirical Algorithms”. In: Learning and Intelligent Optimizarion - Sth International Confer-
ence, LION 5, Rome, Iraly, January 17-21, 201 1. Selected Papers, pp. 586-599 (page 14).

Debasish Basak, Srimanta Pal, Dipak Ch, and Ra Patranabis (2007). “Support vector regression”. In:
Neural Information Processing Letters and Reviews, pp. 203-224 (page 35).

Anton Belov, Daniel Diepold, Marijn Heule, and Matti Jirvisalo, eds. (2014). Proceedings of
SAT Competition 2014: Solver and Benchmark Descriprions. Vol. B-2014-2. Department of
Computer Science Series of Publications B. ISBN 978-951-51-0043-6. University of Helsinki

(page 6).

Armin Biere (2011). “Lingeling and Friends the SAT Competition 2011". In: Technical Report
(page 32).

Armin Biere, Marijn Heule, Hans van Maaren, and Tory Walsh (2000). Handbook of Satisfiability:

Volume 185 Frontiers in Artificial Intelligence and Applications. Amsterdam, The Netherlands,
The Netherlands: 105 Press (page 12).

81

82 BIBLIOGRAPHY

Bernd Bischl et al. (2015). “ASlib: A Benchmark Library for Algorithm Selection”. In: CoRR
abs/1506.02465 (page 33).

Avrim Blum and Merrick L. Furst (1997). “Fast Planning Through Planning Graph Analysis”. In:
Artif. Intell. 90.1-2, pp. 281-300 (page 17).

Blai Bonet and Hector Geffner (2001). “Planning as Heuristic Search™. In: Arrificial Intelligence
129.1-2, pp. 5-33 (page 51).

Adi Botea, Markus Enzenberger, Martin Miiller, and Jonathan Schaeffer (2005). “Macro-FF: Im-
proving Al Planning with Automatically Learned Macro-Operators™. In: [Ardif Infell Res
(JAIR) 24, pp. 581-621 (page 19).

Leo Breiman (2001). “Random Forests™. In: Machine Learning 45.1, pp. 5-32 (page 25).

G. Briscoe and T. Caelli (1996). A Compendium of Machine Learning: Symbolic Machine Learning.
Ablex Series in Artificial Intelligence v. 1. Ablex Pub. (page 23).

Christina N. Burt, Nir Lipovetzky, Adrian R. Pearce, and Peter J. Stuckey (2015). “Scheduling with
Fixed Maintenance, Shared Resources and Nonlinear Feedrate Constraints: A Mine Planning
Case Study”. In: Integration of AI and OR Techniques in Constraint Programming - 12¢h Inter-
national Conference, CPAIOR 2015, Barcelona, Spain, May 18-22, 2015, Proceedings, pp. 91—

107 (page 10).

Shaowei Cai and Kaile Su (2012). “Configuration Checking with Aspiration in Local Search for
SAT". In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July
22-26, 2012, Toronto, Ontario, Canada. Ed. by Jorg Hoffmann and Bart Selman. AAAT Press

(page 32).

Isabel Cenamor, Tomds de la Rosa, and Fernando Ferndndez (2012). “Mining IPC-2011 Results™.
In: In ICAPS 2012 Workshop on International Planning Competition (page 22).

Isabel Cenamor, Tomsds de 1a Rosa, and Fernando Fernandez (2013). “Learning Predictive Mod-
els to Configure Planning Portfolios™. In: In ICAPS 2013 Workshop on Planning and Learning

(pages 9, 23).

Isabel Cenamor, Tomés de 1a Rosa, and Fernando Ferndndez (2014). “IBaCoP and IBaCoP2 Plan-
ner”. In: Planner description, IPC 2014 (pages 2, 8, 25).

Yair Censor (1977). “Pareto optimality in multiobjective problems”. In: Applied Mathemarics and
Optimizarion 4.1, pp. 41-59 (page 25).

Pete Chapman, Julian Clinton, Randy Kerber, Thomas Khabaza, Thomas Reinartz, Colin Shearer,
and Rildiger Wirth (2010). “Step-by-step data mining guide™. In: (page 22).

Yixin Chen, Benjamin W. Wah, and Chih-Wei Hsu (2006). “Temporal Planning using Subgoal Par-
titioning and Resolution in SGPlan”. In: J. Arrif Intell Res. (JAIR) 26, pp. 323-369 (pages 19,
24).

BIBLIOGRAPHY 83

Lukds Chrpa (2010). “Generation of macro-operators via investigation of action dependencies in
plans”. In: Knowledge Eng. Review 25.3, pp. 281-297 (page 23).

Lukds Chrpa and Thomas Leo McCluskey (2012). “On Exploiting Structures of Classical Plan-
ning Problems: Generalizing Entanglements”. In: ECAI 2012 - 20¢h European Conference on
Artificial Intelligence. Including Prestigious Applications of Artificial Intelligence (PAIS-2012)
System Demonstrations Track, Montpellier, France, August 27-31, 2012, pp. 240-245 (page 23).

Lukis Chrpa and Mauro Vallati (2014). “AGAP: As Good as Possible™. In: Planner description, IPC
2014 (page 24).

Lukds Chrpa, Mauro Vallati, and Thomas Leo McCluskey (2014). “MUM: A Technique for Max-
imising the Utility of Macro-operators by Constrained Generation and Use”. In: Proceedings
af the Twenry-Fourth International Conference on Automated Planning and Scheduling, ICAPS
2014, Portsmouth, New Hampshire, USA, June 21-26, 2014 (page 24).

Lukds Chrpa, Mauro Vallati, Thomas Leo McCluskey, and Diane E. Kitchin (2013). “Generating
Macro-Operators by Exploiting Inner Entanglements”. In: Proceedings of the Tenth Symposium
on Abstraction, Reformulation, and Approximation, SARA 2013, 11-12 July 2013, Leavenworth,
Washingron, USA. (Page 24).

Andrew Coles and Amanda Smith (2007). “Marvin: A Heuristic Search Planner with Online Macro-
Action Learning”. In: [Arrif Intell Res. (JAIR) 28, pp. 119-156 (page 19).

Stephen A. Cook (1971). “The Complexity of Theorem-Proving Procedures™. In: STOC. Ed. by
Michael A. Harrison, Ranan B. Banerji, and Jeffrey D. Ullman. ACM, pp. 151-158 (page 12).

Alexander Czutro, Sudhakar M. Reddy, [lia Polian, and Bernd Becker (2014). “SAT-Based Test Pat-
tern Generation with Improved Dynamic Compaction™. In: 2014 27th International Conference
on VLSI Design and 2014 13th International Conference on Embedded Systems, Mumbai, India,
January 5-9, 2014, pp. 56-61 (page 12).

Carmel Domshlak, Malte Helmert, Erez Karpas, Emil Keyder, Silvia Richter, Gabriele Rtger, Jen-
drik Seipp, and Matthias Westphal (2011). “BIOLP: The big joint optimal landmarks planner”.
In: In Seventh International Planning Competition (IPC 2011), Deterministic Part, pp. 91-95
(page 49).

Richard O. Duda, Peter E. Hart, and David G. Stork (2000). Patrern Classification (2Nd Edition).
Wiley-Interscience (page 30).

Niklas Eén and Niklas Strensson (2003). “An Extensible SAT-solver”. In: SAT. Ed. by Enrico
Giunchiglia and Armando Tacchella. Vol. 2919. Lecture Notes in Computer Science. Springer,
pp. 502-518 (page 13).

Chris Fawcett, Malte Helmert, Holger Hoos, Erez Karpas, Gabriele Riger, and Jendrik Seipp (2011).
“FD-Autotune: Domain-Specific Configuration using Fast Downward™. In: pp. 13-20 (pages 21,
26).

84 BIBLIOGRAPHY

Chris Fawcett, Mauro Vallati, Frank Hutter, Jérg Hoffmann, Holger Hoos, and Kevin Leyton-Brown
(2014). “Improved Features for Runtime Prediction of Domain-Independent Planners”. In: Pro-
ceedings of the Twenty- Fourth International Conference on Automared Planning and Scheduling,
ICAPS 2014, Portsmouth, New Hampshire, USA, June 21-26, 2014 (page 26).

Alan Fern, Sung Wook Yoon, and Robert Givan (2004). “Learning Domain-Specific Control Knowl-
edge from Random Walks". In: Proceedings of the Fourteenth International Conference on Au-
tomated Planning and Scheduling (ICAPS 2004), June 3-7 2004, Whistler, British Columbia,
Canada, pp. 191-199 (page 8).

Maria Fox and Derek Long (1998). “The Automatic Inference of State Invariants in TIM™. In: J
Artif Intell. Res. (JAIR) 9, pp. 367421 (page 17).

Santiago Franco, Mike Barley, and Pat Riddle (2014). “RIDA: In Situ Selection of Heuristic Sub-
sets”. In: Planner description, Deterministic frack, International Planning Competition 2014
(page 51).

Raquel Fuentetaja and Daniel Borrajo (2006). “Improving Control-Knowledge Acquisition for Plan-
ning by Active Leaming”. In: Machine Learning: ECML 2006, I7th European Conference
on Machine Learning, Berlin, Germany, Sepitember 18-22, 2006, Proceedings, pp. 138-149
(page 8).

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Torsten Schaub, Marius Thomas Schneider,
and Stefan Ziller (2011). “A Portfolio Solver for Answer Set Programming: Preliminary Report™.
In: Logic Programming and Nonmonotonic Reasoning - 11th International Conference, LPNMR
2011, Vancouver, Canada, May 16-19, 2011. Proceedings. Ed. by James P. Delgrande and Wolf-
gang Faber. Vol. 6645. Lecture Notes in Computer Science. Springer, pp. 352-357 (pages 9,
35).

Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub (2007). “Conflict-Driven
Answer Set Solving”. In: IJCAT 2007, Proceedings of the 20th Internarional Joint Conference on
Artificial Intellipence, Hvderabad, India, January 6-12, 2007. Ed. by Manuela M. Veloso, p. 386
(page 33).

Alfonso Gerevini, Alessandro Saetti, and Ivan Serina (2003). “Planning Through Stochastic Local
Search and Temporal Action Graphs in LPG". In: I Arrif Intell Res. (JAIR) 20, pp. 239-290

{pages 19, 24).

Alfonso Gerevini, Alessandro Saetti, and Ivan Serina (2006). “An Approach to Temporal Planning
and Scheduling in Domains with Predictable Exogenous Events™. In: J Artif Intell Res. (JAIR)
25, pp. 187-231 (page 19).

Alfonso Gerevini, Alessandro Saetti, and Mauro Vallati (2014). “Planning through Automatic Port-
folio Configuration: The PbP Approach”. In: J. Artif Intell. Res. (JAIR) 50, pp. 639-696 (pages 7,
19).

Malik Ghallab, Dana Nau, and Paolo Traverso (2004). Automared planning - theory and practice.
Elsevier (page 10).

BIBLIOGRAPHY 85

Carla P. Gomes and Bart Selman (2001). “Algorithm Portfolios”. In: Artificial Intelligence 126.1-2,
pp. 43-62 (page 34).

Aarti Gupta, Malay K. Ganai, and Chao Wang (2006). “SAT-Based Verification Methods and Ap-
plications in Hardware Verification”. In: Formal Methods for Hardware Verificarion, 6th Inter-
national School on Formal Methods for the Design of Computer, Communication, and Soft-
ware Systems, SFM 2006, Bertinoro, Iraly, May 22-27, 2006, Advanced Lectures, pp. 108-143

(page 12).

Greg Hamerly and Charles Elkan (2003). “Learning the K in K-Means™. In: In Newral Information
Processing Systems. MIT Press, p. 2003 (page 30).

Frank Van Harmelen, Viadimir Lifschitz, and Bruce Porter (2008). Handbook of Knowledge Repre-
sentation (1st edition). Elsevier (page 12).

Pearl E. Hart, Nils 1. Nilsson, and Bertram Raphael (1968). “A Formal Basis for the Heuristic De-
termination of Minimum Cost Paths”. In: JEEE Transactional System Science and Cyvbernetics
4.2, pp. 100-107 (page 43).

Maite Helmert (2004). “A Planning Heuristic Based on Causal Graph Analysis™. In: Proceedings of
the Fourteenth International Conference on Automated Planning and Scheduling (ICAPS 2004).
AAATI Press, pp. 161-170 (page 51).

Malte Helmert (2006). “The Fast Downward Planning System”. In: Journal of Artificial Intelligence
Research (JAIR) 26, pp. 191-246 (pages 20, 51).

Malte Helmert (2009). “Concise finite-domain representations for PDDL planning tasks™. In: Ardif
Intell. 173.5-6, pp. 503-535 (page 22).

Malte Helmert and Carmel Domshlak (2011). “LM-Cut: Optimal Planning with the Landmark-Cut
Heuristic”. In: In Seventh International Planning Competition (IPC 2011), Deterministic Part

(page 49).

Malte Helmert and Hector Geffner (2008). “Unifying the Causal Graph and Additive Heuristics™. In:
Proceedings of the Eighteenth International Conference on Automated Planning and Scheduling
(ICAPS 2008), pp. 140-147 (page 51).

Malte Helmert, Gabriele Roger, and Erez Karpas (2011). “Fast Downward Stone Soup: A Base-
line for Building Planner Portfolios™. In: In ICAPS 2011 Workshop on Planning and Learning,
pp. 28-35 (pages 2, 20).

Pascal Van Hentenryck, Carleton Coffrin, and Russell Bent (2011). “Vehicle Routing for the Last
Mile of Power System Restoration”. In: Proceedings af the 17th Power Systems Computation
Conference (PSCCO11), Stockholm, Sweden (page 63).

Jorg Hoffmann (2003). “The Metric-FF Planning System: Translating "Ignoring Delete Lists™ to
Numeric State Variables™. In: Journal of Artificial Intelligence Research (JAIR) 20, pp. 291-341
(pages 19, 24).

86 BIBLIOGRAPHY

Jorg Hoffmann and Bernhard Nebel (2001). “The FF Planning System: Fast Plan Generation
Through Heuristic Search”. In: Journal of Artificial Intelligence Research (JAIR) 14, pp. 253

302 (pages 22, 51).

Holger Hoos, Roland Kaminski, Marius Thomas Lindaver, and Torsten Schaub (2015). “aspeed:
Solver scheduling via answer set programming”. In: TPLP 15.1, pp. 117-142 (pages 34, 59).

Holger Hoos, Roland Kaminski, Torsten Schaub, and Marius Thomas Schneider (2012). “Aspeed:
ASP-based Solver Scheduling”. In: ICLP (Technical Communications). Ed. by Agostino Dovier
and V'itor Santos Costa. Vol. 17. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

pp. 176-187 (page 8).

Holger Hoos, Marius Thomas Lindaver, and Torsten Schaub (2014). “claspfolio 2: Advances in
Algorithm Selection for Answer Set Programming”™. In: TPLP 14.4-5, pp. 569585 (page 33).

Andrei Horbach, Thomas Bartsch, and Dirk Briskorn (2012). “Using a SAT-solver to schedule sports
leagues”. In: J. Scheduling 15.1, pp. 117-125 (page 12).

Adele Howe and Eric Dahlman (2002). “A Critical Assessment of Benchmark Comparison in Plan-
ning”. In: Jowrnal of Artificial Intellipence Research (JAIR) 17, pp. 1-33 (page 1).

Adele Howe, Eric Dahlman, Christoper Hansen, Michael Scheetz, and Anneliese Von Mayrhauser
(2000). “Exploiting competitive planner performance”. In: Recent Advances in Al Planning,
pp. 62-72 (page 16).

Richard Howey, Derek Long, and Maria Fox (2004). “VAL: Automatic Plan Validation, Continuous
Effects and Mixed Initiative Planning Using PDDL". In: 76th IEEE International Conference on
Tools with Artificial Intellipence (ICTAI 2004), 15-17 November 2004, Boca Raton, FL, USA,
pp. 294-301 (page 14).

Frank Hutter, Holger Hoos, and Kevin Leyton-Brown (2011). “Sequential Model-Based Optimiza-
tion for General Algorithm Configuration™. In: Learning and Intelligent Optimization - 5th Inter-
national Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected Papers, pp. 507-523

{pages 26, 33).

Frank Hutter, Holger Hoos, Kevin Leyton-Brown, and Thomas Stiltzle (2009). “ParamIL5: An Au-
tomatic Algorithm Configuration Framework”. In: J. Artif Intell. Res. (JAIR) 36, pp. 267-306
(pages 21, 29).

Frank Hutter, Lin Xu, Holger Hoos, and Kevin Leyton-Brown (2014). “Algorithm runtime predic-
tion: Methods & evaluation™. In: Arrif Inrell. 206, pp. 79-111 (page 31).

Serdar Kadioglu, Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann
{2011). “Algorithm Selection and Scheduling™. In: CP. Ed. by Jimmy Ho-Man Lee. Vol. 6876.
Lecture Notes in Computer Science. Springer, pp. 454469 (pages 9, 31, 59).

Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney (2010). “ISAC - Instance-
Specific Algorithm Configuration™ In: ECAI 2010 - 19th European Conference on Artificial

BIBLIOGRAPHY 87

Intelligence, Lishon, Portugal August 16-20, 2010, Proceedings. Ed. by Helder Coelho, Rudi
Studer, and Michael Wooldridge. Vol. 215. Frontiers in Artificial Intelligence and Applications.
I0S Press, pp. 751-756 (pages 28, 30).

Henry Kautz and Bart Selman (1998). “Blackbox: A new approach to the application of theorem
proving to problem solving”. In: Working notes of the AIPS98 Workshop on Planning and Com-
binatorial Search, Pittsburgh, PA (page 17).

Henry Kautz, Bart Selman, and Joerg Hoffmann (2006). “SatPlan: Planning as Satisfiability”. In:
Abstracts of the 5th International Planning Competition (pages 17, 24).

Emil Keyder and Hector Geffner (2008). “Heuristics for Planning with Action Costs Revisited”. In:
Proceedings of the 18th European Conference on Artificial Intellipence (ECAI 2008), pp. 588
592 (page 51).

Ashiqur R. KhudaBukhsh, Lin Xu, Holger Hoos, and Kevin Leyton-Brown (2009). “SATenstein:
Automatically Building Local Search SAT Solvers from Components™. In: IJCAI. Ed. by Craig
Boutilier, pp. 517-524 (page 29).

Jana Koehler, Bernhard Nebel, Jorg Hoffmann, and Yannis Dimopoulos (1997). “Extending Plan-
ning Graphs to an ADL Subset”. In: Recent Advances in Al Planning, 4th European Confer-
ence on Planning, ECP’97, Toulouse, France, September 24-26, 1997, Proceedings, pp. 273
285 (page 17).

Ron Kohavi (1995). “The Power of Decision Tables”. In: Machine Learning: ECML-95, 8th Euro-
pean Conference on Machine Learning, Heraclion, Crete, Greece, April 25-27, 1995, Proceed-
ings, pp. 174-189 (page 25).

Lars Kotthoff (2014). “Algorithm Selection for Combinatorial Search Problems: A Survey”. In: Af
Magazine 35.3, pp. 4860 (page 28).

Akshat Kumar, Sudhanshu Shekhar Singh, Pranav Gupta, and Gyana R. Parija (2014). “Near-
Optimal Nonmyopic Contact Center Planning Using Dual Decomposition”. In: Proceedings of
the Twenty-Fourth International Conference on Automated Planning and Scheduling, ICAPS
2014, Portsmouth, New Hampshire, USA, June 21-26, 2014 (page 10).

Carlos Linares Lopez, Sergio Jiménez Celorrio, and Angel Garcia Olaya (2015). “The deterministic
part of the seventh International Planning Competition™. In: Artificial Intelligence 223, pp. 82—
119 (page 11).

Marius Thomas Lindaver, Holger Hoos, Frank Hutter, and Torsten Schaub (2015). “AutoFolio: An
Automatically Configured Algorithm Selector”™. In: J. Arrif Intell Res. (JAIR) 53, pp. 7T45-T78
(page 33).

Nir Lipovetzky and Hector Geffner (2011). “Searching for Plans with Carefully Designed Probes™.
In: Proceedings of the 215t International Conference on Auwtomated Planning and Scheduling,
ICAPS 2011, Freiburg, Germany June 11-16, 2011 (page 24).

88 BIBLIOGRAPHY

Derek Long and Maria Fox (2003). “The 3rd International Planning Competition: Results and Anal-
ysis™. In: J Artif Intell Res. (JAIR) 20, pp. 1-59 (page 19).

David I. C. MacKay (2003). Information theory, inference, and learning algorithms. Cambridge
University Press (page 21).

Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann (2012a). “Parallel SAT
Solver Selection and Scheduling™. In: CP. Ed. by Michela Milano. Vol. 7514. Lecture Notes in
Computer Science. Springer, pp. 512-526 (pages 31, 539).

Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann (2012b). “Satisfiability
Solver Selector”. In: In Proceedings of SAT Challenge 2012, Solver and Benchmark Descrip-
tions, pp. 50-51 (page 31).

Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann (2013a). “Algorithm
Portfolios Based on Cost-Sensitive Hierarchical Clustering”. In: LJCAT 201 3, Proceedings of the
23rd International Joint Conference on Artificial Intellipence, Beijing, China, August 3-9, 201 3.
Ed. by Francesca Rossi. IICAVAAAT (page 32).

Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann (2013b). “Boosting
Sequential Solver Portfolios: Knowledge Sharing and Accuracy Prediction”. In: Learning and
Intelligent Optimization - 7th International Conference, LION 7, Catania, Italy, January 7-11,
2013, Revised Selected Papers. Ed. by Giuseppe Nicosia and Panos M. Pardalos. Vol. 7997,
Lecture Notes in Computer Science. Springer, pp. 153-167 (page 32).

Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann (2013c). “Parallel Lin-
geling, CCASat, and CS5CH-based Portfolios™. In: In Proceedings of SAT Competition 201 3,
Solver and Benchmark Descriptions, pp. 26-27 (pages 1, 32, 45).

Yuri Malitsky and Meinolf Sellmann (2009). “Stochastic Offline Programming™. In: ICTAT 2004,
215t IEEE International Conference on Tools with Ardificial Intelligence, Newark, New Jersey,
USA, 2-4 November 2009. IEEE Computer Society, pp. 784-791 (page 30).

Yuri Malitsky, David Wang, and Erez Karpas (2014). “The AIIPACA Planner: All Planners Auto-
matic Choice Algorithm™. In: Planner description, IPC 2014 (pages 7, 24).

Harry Markowitz (1932). “Portfolio Selection™. In: The Journal of Finance 7.1, pp. 77-91 (page 1).

Hootan Nakhost, Martin Miiller, Richard Valenzano, and Fan Xie (2011). “Arvand: The art of Ran-
dom Walks". In: IPC2011 Deterministic Track Planner Reports (page 22).

Muhammad Abdul Hakim Newton, John Levine, Maria Fox, and Derek Long (2007). “Leaming
Macro-Actions for Arbitrary Planners and Domains”. In: Proceedings of the Seventeenth Inter-
national Conference on Awromared Planning and Scheduling, ICAPS 2007, Providence, Rhode
Island, USA, September 22-26, 2007, pp. 256-263 (page 19).

Mladen Nikolic, Filip Maric, and Predrag Janicic (2009). “Instance-Based Selection of Policies for
SAT Solvers”. In: Theary and Applications of Satisfiability Testing - SAT 2009, 12th Interna-

BIBLIOGRAPHY 89

tional Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings. Ed. by Oliver
Kullmann. Vol. 5584. Lecture Notes in Computer Science. Springer, pp. 326-340 (page 31).

Miaden Nikolic, Filip Maric, and Predrag Janicic (2013). “Simple algorithm portfolio for SAT”. In:
Artif Intell. Rev. 40.4, pp. 457465 (pages 28, 30).

Raz Nissim, Jorg Hoffmann, and Malte Helmert (2011). “Computing Perfect Heuristics in Polyno-
mial Time: On Bisimulation and Merge-and-Shrink Abstraction in Optimal Planning”. In: IJCAI,
Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona,
Catalonia, Spain, July 16-22, 2011, pp. 1983-1990 (pages 43, 49).

Sergio Niifiez, Daniel Borrajo, and Carlos Linares Lopez (2012a). “How Good is the Performance
of the Best Portfolio in IPC-20117" In: Proceedings of the ICAPS-12 Workshop on International
Planning Competition (pages 62, 78).

Sergio Niifiez, Daniel Borrajo, and Carlos Linares Lopez (2012b). “Performance Analysis of Plan-
ning Portfolios”. In: Proceedings of the Fifth Annual Symposium on Combinatorial Search,
SOCS, Niagara Falls, Ontario, Canada, July 19-21, 2012. AAAI Press, pp. 65-71 (pages 62,
T8).

Sergio Nifiez, Daniel Borrajo, and Carlos Linares Lipez (2013). “MIPSat”. In: In Proceedings of
SAT Competition 201 3, Solver and Benchmark Descriptions, pp. 5960 (pages 7, 28, 58, 62, 78).

Sergio Niifiez, Daniel Borrajo, and Carlos Linares Lopez (2014a). “MIPlan”. In: Planner descrip-
tion, Learning frack, International Planning Competition 2014 (pages 42, 62, T8).

Sergio Niifiez, Daniel Borrajo, and Carlos Linares Lopez (2014b). “MIPlan and DPMPlan”. In:
Planner description, Deterministic track, International Planning Competition 2014 (pages 50,
55, 62, 78).

Sergio Nidfiez, Daniel Borrajo, and Carlos Linares Lopez (2015a). “Automatic Construction of Opti-
mal Static Sequential Portfolios for Al Planning and Beyond”™. In: Artificial Intelligence Journal
226, pp. 75-101 (pages 8, 62, 79).

Sergio Nifiez, Daniel Borrajo, and Carlos Linares Lopez (2015b). “Sorting Sequential Portfolios in
Automated Planning”. In: Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, ITCAI 2015, Buenos Aires, Argenting, July 25-31, 2015, pp. 16381644
(pages 8, 75, 79).

Eoin O'Mahony, Emmanuel Hebrard, Alan Holland, Conor Nugent, and Barry O'Sullivan (2008).
“Using Case-based Reasoning in an Algorithm Portfolio for Constraint Solving”. In: Proceed-
ings of the 19th Irish Conference on Artificial Inrelligence and Cognitive Science, pp. 210-216
(pages 8, 34).

J. Scott Penberthy and Daniel S. Weld (1992). “UCPOP: A Sound, Complete, Partial Order Planner
for ADL". In: Proceedings of the 3rd Internarional Conference on Principles of Knowledge
Representation and Reasoning (KR'92). Cambridge, MA, October 25-29, 1992, Pp. 103-114

(page 17).

90 BIBLIOGRAPHY

1. Pohl (1970). “Heuristic search viewed as path finding in a graph™. In: Arrificial Intelligence 1.3-4,
pp. 193-204 (page 20).

Julie Porteous, Laura Sebastia, and Jrg Hoffmann (2001). “On the Extraction, Ordering, and Usage
of Landmarks in Planning”. In: pp. 3748 (page 22).

1. Ross Quinlan (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann (page 23).

John R. Rice (1976). “The Algorithm Selection Problem”. In: Advances in Computers 15, pp. 65—
118 (page 27).

Silvia Richter, Malte Helmert, and Matthias Westphal (2008). “Landmarks Revisited”. In: Proceed-
ings of the Twenty-Third AAAI Conference on Artificial Intellipence, AAAT 2008, Chicago, Tl
nois, USA, July 13-17, 2008, pp. 975982 (page 22).

Silvia Richter, Jordan Tyler Thayer, and Wheeler Ruml (2010). “The Joy of Forgetting: Faster Amny-
time Search via Restarting”. In: JCAPS. Ed. by Ronen 1. Brafman, Hector Geffner, Jorg Hoff-
mann, and Henry A. Kautz. AAAL pp. 137-144 (page 20).

Silvia Richter and Matthias Westphal (2008). “The LAMA planner. Using Landmark Counting in
Heuristic Search”. In: Planner description, Deterministic track, International Planning Compe-
tition 2008 (pages 22, 53).

Silvia Richter and Matthias Westphal (2010). “The LAMA Planner: Guiding Cost-Based Anytime
Planning with Landmarks”. In: Jowrnal of Artificial Intelligence Research (JAIR) 39, pp. 127-
177 (pages 19, 24, 44).

Jussi Rintanen (2012). “Engineering Efficient Planners with SAT”. In: ECAT 2012 - 20th European
Conference on Artificial Intelligence. Including Prestigious A pplications of Artificial Intelligence
{PAIS-2012) System Demonserations Track, Montpellier, France, August 27-31 , 2012, pp. 684—
689 (page 24).

Jussi Rintanen (2014). “Madagascar: Scalable Planning with SAT". In: Planner description, Deter-
ministic track, International Planning Comperition 2014 (page 17).

Mattia Rizzini, Chris Fawcett, Mauro Vallati, Alfonso Emilio Gerevini, and Holger Hoos (2015).
“Portfolio Methods for Optimal Planning: An Empirical Analysis”. In: 27th IEEE International
Conference on Tools with Artificial Intellipence, ICTAI 20135, Vietri sul Mare, Iraly, November
0-11, 2015, pp. 494-501 (pages 8, 9, 26).

Mark Roberts and Adele Howe (2006). “Directing a Portfolio with Learning™. In: Proceedings of the
AAAT 2000 Workshop on Learning for Search, pp. 126135 (page 17).

Mark Roberts and Adele Howe (2007). “Learned models of performance for many planners”. In:
Proceedings of the ICAPS-07 Workshop of AI Planning and Learning (pages 18, 19).

Mark Roberts and Adele Howe (2009). “Learning from Planner Performance”. In: Arrificial Intelli-
gence 173.5-6, pp. 536-561 (page 18).

BIBLIOGRAPHY a1

Mario Rodriguez-Molins, Miguel A. Salido, and Federico Barber (2010). “Domain-Dependent Plan-
ning Heuristics for Locating Containers in Maritime Terminals”. English. In: Lecture Notes in
Computer Science 6096, pp. 742-751 (page 6).

Stuart J. Russell and Peter Norvig (2010). Artificial Intelligence - A Modern Approach (3. internat.
ed) Pearson Education (page 9).

Horst Samulowitz, Chandra Reddy, Ashish Sabharwal, and Meinolf Sellmann (2013). “Snappy:
A Simple Algorithm Portfolio”. In: Theory and Applications of Satisfiability Testing - SAT
2013 - 16th International Conference, Helsinki, Finland, July 8-12, 2013. Proceedings. Ed. by
Matti Jirvisalo and Allen Van Gelder. Vol. 7962. Lecture Notes in Computer Science. Springer,
pp. 4224728 (page 2).

Jendrik Seipp, Manuel Braun, Johannes Garimort, and Malte Helmert (2012). “Learning Portfolios
of Automatically Tuned Planners”. In: Proceedings of the Twenty-Second International Con-
ference on Automated Planning and Scheduling, [CAPS 2012, Atibaia, Sao Paulo, Brazil, June
25-19, 2012, pp. 368-372 (pages 7, 20, 26, 54).

Jendrik Seipp and Manuel Braun Johannes Garimort (2014). “Fast Downward Uniform Portfolio™.
In: Planner description, IPC 2014 (page 21).

Jendrik Seipp, Silvan Sievers, Malte Helmert, and Frank Hutter (2015). “Automatic Configuration
of Sequential Planning Portfolios”. In: Proceedings of the Twenty-Ninth AAATI Conference on
Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA. Pp. 3364-3370 (pages 7, 25).

Herbert A. Simon and Joseph B. Kadane (1975). “Optimal Problem-Solving Search: All-Oor-None
Solutions”. In: Arrif: Intell. 6.3, pp. 235-247 (page 18).

Matthew J. Streeter, Daniel Golovin, and Stephen E Smith (2007). “Combining Multiple Heuristics
Online”. In: AAAL AAAT Press, pp. 1197-1203 (page 28).

Eric D. Taillard (1993). “Benchmarks for basic scheduling problems”. In: European Journal of Op-
erational Research 64.2, pp. 278-285 (page 19).

Paolo Traverso and Marco Pistore (2004). “Automated Composition of Semantic Web Services into
Executable Processes”. In: The Semantic Web - ISWC 2004 Third International Semantic Web
Conference, Hiroshima, Japan, November 7-11, 2004. Proceedings, pp. 380-394 (page 10).

Richard Anthony Valenzano, Hootan Nakhost, Martin Miiller, Jonathan Schaeffer, and Nathan R.
Sturtevant (2012). “ArvandHerd: Parallel Planning with a Portfolio™. In: ECAI 2012 - 20th Eu-
ropean Conference on Artificial Intellipence. Including Prestigious Applications of Artificial In-
telligence (PAIS-2012) System Demonstrations Track, Montpellier, France, August 27-31 , 2012,
pp. 786791 (pages 7, 22).

Mauro Vallati, Lukds Chrpa, Marek Grzes, Thomas Leo McCluskey, Mark Roberts, and Scott Sanner
(2015). “The 2014 International Planning Competition: Progress and Trends”. In: Al Magazine
36.3, pp. 90-98 (page 12).

02 BIBLIOGRAPHY

Mauro Vallati, Lukds Chrpa, and Diane E. Kitchin (2014). “ASAP: An Automatic Algorithm Se-
lection Approach for Planning”. In: Infernational Jowrnal on Artificial Intelligence Tools 23.6

(pages 9, 23).

Mauro Vallati, Chris Fawcett, Alfonso Gerevini, Holger Hoos, and Alessandro Saetti (2013). “Au-
tomatic Generation of Efficient Domain-Optimized Planners from Generic Parameirized Plan-
ners”. In: Proceedings of the Sixth Annual Symposium on Combinatorial Search, SOCS 201 3,
Leavenworth, Washingron, USA, July 11-13, 2013. (Page 19).

Manuela M. Veloso, Jaime G. Carbonell, M. Alicia Pérez, Daniel Borrajo, Eugene Fink, and Jim
Blythe (1995). “Integrating planning and learning: the PRODIGY architecture”. In: J. Exp. Theor.
Artif. Intell. 7.1, pp. 81-120 (page 17).

Vincent Vidal (2004). “A Lookahead Strategy for Heuristic Search Planning”. In: Proceedings of
the Fourteenth International Conference on Automated Planning and Scheduling (ICAPS 2004),
June 3-7 2004, Whistler, British Columbia, Canada, pp. 150-160 (page 19).

Daniel S. Weld, Corin R. Anderson, and David E. Smith (1998). “Extending Graphplan to Handle
Uncertainty & Sensing Actions”. In: Proceedings of the Fifieenth National Conference on Arti-
ficial Intelligence and Tenth Innovarive Applications aof Artificial Intelligence Conference, AAAI
08, TAAT 98, July 26-30, 1998, Madison, Wisconsin, USA. Pp. 897-904 (page 17).

Lin Xu, Holger Hoos, and Kevin Leyton-Brown (2010). “Hydra: Automatically Configuring Algo-
rithms for Portfolio-Based Selection™. In: Proceedings of the Twenty-Fourth AAI Conference on
Artificial Inteligence. AAAL pp. 210-216 (pages 7, 29).

Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown (2008). “SATzilla: Portfolio-based
Algorithm Selection for SAT™. In: Journal af Artificial Intelligence Research (JAIR) 32, pp. 565
606 (pages 2, 29).

Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown (2009). “Satzilla?(09: An Automatic
Algorithm Portfolio for SAT”. In: Solver description, SAT competition 2009 (page 29).

Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown (2012a). “Evaluating Component
Solver Contributions to Portfolio-Based Algorithm Selectors”. In: Theory and Applications of
Satisfiability Testing - SAT 2012 - 1 5th International Conference, Trento, Italy, June 17-20, 2012,
Proceedings, pp. 228-241 (pages 16, 29).

Lin Xu, Frank Hutter, Jonathan Shen, Holger Hoos, and Kevin Leyton-Brown (2012b).
“SATzilla2(12: Improved Algorithm Selection Based on Cost-sensitive Classification Models™.
In: Solver description, SAT Challenge 201 2 (page 29).

Appendix A

Candidate Solvers

In this Annex we show the candidate solvers used in all experiments. Table A.1 shows the planners
considered to compute the OSS portfolio for the sequential optimization track of the IPC 2011 in
Section 3.3.1.1, page 43. The set of candidate planners used in Section 3.3.3.1 (see page 48) to
assess the performance of the GOP portfolios in optimal planning is shown in Table A 2.

Planner | Authors Source

Blind Silvia Richter et al. FDS5-2 planner
BIOLP Emez Karpas e al IPC 2011

CPT4 Vincent Vidal IPC 2011

FD Autotune | Chris Fawcett et al IPC 2011

Fork Init Michae] Katz et al IPC 2011
Gamer Peter Kissmann et al 1PC 2011

IFork Init Michae] Katz et al IPC 2011
LM-cut Malie Helmert et al IPC 2011
LMFurk Michae] Katz et al IPC 2011
ME&S-bisim 1 | Raz Nissim & al. FDS5-1 planner
ME&S-bisim 2 | Raz Nissim & al. FDS5-1 planner
Salective Max | Erez Karpas o al IPC 2011

Table A.1: Optimal planners considered from the IPC 2011.

The OSS portfolio for the IPC 2011 sequential satisficing track has been derived in Sec-
tion 3.3.1.2 (see page 44) with the set of candidate planners shown in Table A.3. The assessment of
GOP to configure sequential portfolios in satisficing planning has been described in Section 3.3.3.2,
which starts on page 51. The performance of the portfolios automatically derived with GOP has been
compared against FDSS using the sets of candidate planners shown in Tables A.4 and A5, where
each planner is defined by a search algorithm, an evaluation method and a set of heuristics.

Finally, Table A.6 shows the set of candidate solvers used to compute the OS5 portfolio for the
open track of the SAT Competition 2013 in Section 3.3.1.3, page 44.

93

APPENDIX A. CANDIDATE SOLVERS

Planner | Authors Source

Blind Silvia Richter er al FID55-2 planner
BIOLP Emz Karpas er al IPC 2011

h! landmarks Emz Karpas ef al FDS5-1 planner
h™eF landmarks Malte Helmert ef al. ~ FDS5-1 planner
LM-cut Malte Helmert er al. ~ [PC 2011
M&S-bisim 1 Rar Nissim er al FD55-1 planner
M&S-bisim 2 Rar Nissim er al FD55-1 planner
M&S-LFPA 10000 Malte Helmert er al. ~ FDS5-1 planner
M&S-LFPA 50000 Malte Helmert er al. ~ FDS5-1 planner
M&S-LFPA 100000 | Malte Helmert ef al. ~ FDS5-1 planner
RHW landmarks Emz Karpas ef al FDS5-1 planner

Table A.2: Optimal planners considered by Fast-Downward Stone Soup.

Planner | Authors Source

ACOPlan Marco Baioletti er al. IPC 2011
ACOPan2 Marco Baioletti er al. IPC 2011
Arvand Hootan Makhost er ol 1PC 2011
BET Vidal Alcirar et al IPC 2011
CBP Raquel Fuentetaja IPC 2011
CBP2 Raquel Fuentetaja IPC 2011
Roamer Qiang Lu et al IPC 2011
CPT4 Vincent Vidal IPC 2011
DAE-YAHSP Johann Diréo e al IPC 2011
FD Autotune 1 Chris Fawcett et al IPC 2011
FD Autotune 2 Chris Fawcett ef al IPC 2011
FDSS 1 Malte Helmert ef al. IPC 2011
FDSS 2 Malte Helmert ef al. IPC 2011
Fork Uniform Michasl Katz o al. IPC 2011
LAMA 2008 Silvia Richter et al IPC 2011
LAMA 2011 Silvia Richter et al IPC 2011
Lamar Alan Olsen et al IPC 2011
LPRPG-P Amanda Coles et al IPC 2011
Madagascar Jussi Rintanen IPC 2011
Madagascar-p Jussi Rintanen IPC 2011
POPE2 Amanda Coles ef al IPC 2011
Probe Nir Lipovetzky et al IPC 2011
Randward Alan Olsen et al IPC 2011
SATPLANLM-C | Dunbo Cai et al IPC 2011
Sharaabi Bharat Ranjan IPC 2011
YAHSP2 Vincent Vidal IPC 2011
YAHSP2-MT Vincent Vidal IPC 2011

Table A.3: Satisficing planners considered from the IPC 2011.

Planner

Saarch Evaluation Heuristics | Spurce

Greedy best-first Eager FF FD IPC 2011
Weighted-A* w=3 Lary FF FD IPC 2011
Gready best-first Eager FF, OO FD IPC 2011
Gready best-first Eager ADD, FF, CG FD IPC 2011
Gready best-first Eager FF, O, CEA FD IPC 2011
Gready best-first Eager FF, CEA FD IPC 2011
Gready best-first Eager ADD, FF, CG, CEA | FD IPC 2011
Gready best-first Eager ADD, FF FD IPC 2011
Gready best-first Eager ADD, CG, CEA FD IPC 2011
Gready best-first Eager ADD, FF, CEA FD IPC 2011
Gready best-first Eager Ca, CEA FD IPC 2011
Gready best-first Eager ADD, CG FD IPC 2011
Greedy best-first Lary FF FD IPC 2011
Gready best-first Eager CEA FD IPC 2011
Gready best-first Eager ADD, CEA FD IPC 2011
Gready best-first Lary FF, O, CEA FD IPC 2011
Weighted-A* w=3 Eager FF FD IPC 2011
Gready best-first Eager ADD FD IPC 2011
Gready best-first Lazy FF, CEA FD IPC 2011
Gready best-first Lazy FF, OO FD IPC 2011
Gready best-first Lazy ADD, FF, Ca, CEA | FDIPC 2011
Gready best-first Lazy ADD, FF, CEA FD IPC 2011
Gready best-first Lazy ADD, FF, CG FD IPC 2011
Gready best-first Lazy ADD, FF FD IPC 2011
Weighted-A* w=3 Lary CEA FD IPC 2011
Weighted-A* w=3 Eager CEA FD IPC 2011
Gready best-first Lary Ca, CEA FD IPC 2011
Gready best-first Lazy ADD, CEA FD IPC 2011
Gready best-first Lazy ADD, CG, CEA FD IPC 2011
Gready best-first Lazy ADD, CG FD IPC 2011
Weighted-A* w=3 Lary ADD FD IPC 2011
Weighted-A* w=3 Eager ADD FD IPC 2011
Gready best-first Lary CEA FD IPC 2011
Weighted-A* w=3 Eager G FD IPC 2011
Gready best-first Lary ADD FD IPC 2011
Gready best-first Eager ca FD IPC 2011
Weighted-A* w=3 Lary G FD IPC 2011
Gready best-first Lazy ca FD IPC 2011

Table A.4: Satisficing planners considered by FDS5-1.

Planner

Search Evaluation —Heuristics | Source

Greedy best-first Eager FF FD IPC 2011
Greedy best-fist Lazy F FD IPC 2011
Greedy best-first Eager CEA FD IPC 2011
Greedy best-first Eager ADD FD IPC 2011
Gready best-first CEA FIy IPC 2011
Greedy besi-first Lazy ADD FD) IPC 2011
Greedy best-first Eager fals FD IPC 2011
Greedy best-fist Lazy ca FD IPC 2011

Table A.5: Satisficing planners considered by FDS5-2.

APPENDIX A. CANDIDATE SOLVERS

Planrer | Authors Source

CSHC pard Yuri Malitsky ef al. SAT 2013
MIPSat Sergio Nifez ef al SAT 2013
GlucoRed + March 1331 | Siert Wieringa SAT 2013
interact_open 1.0 Jingchao Chen SAT 2013
Glucans strict Xiaojuwan Xu ef al. SAT 213
Solverd3 a Valeriy Balabanov SAT 2013
Solverd3 b Valeriy Balabanov SAT 2013
forl nodrup Mate Soos SAT 2013
GlueMiniSat 2.2.7j Hidetomo Nabeshima ef al. SAT 2013
MINIPURE 1.0.1 Hsiao-Lun Wang SAT 2013

Table A.6: SAT solvers considered from the SAT Competition 2013.

	Agradecimientos
	Resumen
	Abstract
	Introduction
	The Portfolio Approach
	Objectives
	Thesis Outline

	State of the Art
	Background
	Related Work

	Automatic Construction of Sequential Portfolios
	gop: Automatically Generating Optimal Portfolios
	Analysis of the Utility of Training Instances
	Empirical Evaluation
	Summary
	Publications

	Ordering Component Solvers in Sequential Portfolios
	Formal Description
	Optimal Approach
	Greedy Approach
	Empirical Evaluation
	Summary
	Publications

	Conclusions and Future Work
	Contributions
	Future Work

	Bibliography
	Candidate Solvers
	Portfolio

