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El tribunal nombrado para juzgar la tesis doctoral arriba citada,

compuesto por los doctores:

Presidente: D. JOSÉ PRADES NEBOT
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ABSTRACT

In the last two decades, we have witnessed significant changes concerning the

demand of video codecs. The diversity of services has significantly increased, high

definition (HD) and beyond-HD resolutions have become a reality, the video traffic

coming from mobile devices and tablets is increasing, the video-on-demand services

are now playing a prominent role, and so on. All of these advances have converged

to demand more powerful standard video codecs, the more recent ones being the

H.264/Advanced Video Coding (H.264/AVC) and the latest High Efficiency Video

Coding (HEVC), both generated by the Joint Collaborative Team on Video Coding

(JCT-VC), a partnership of the ITU-T Video Coding Expert Group (VCEG) and

the ISO/IED Moving Picture Expert Group (MEPG).

These two standards (and many others starting with the ITU-T H.261) rely on

a hybrid model known as Differential Pulse Code Modulation (DPCM)/Discrete Co-

sine Transform (DCT) hybrid video coder, which involves a motion estimation and

compensation phase followed by a transformation and quantization stages and an

entropy coder. Moreover, each of these main subsystems is made of a number of

interdependent and parametric modules that can be adapted to the particular video

content.

The main problem arising from this approach is how to choose as best as possible

the combination of the different parametrizations to achieve the most efficient coding

of the current content. To solve this problem, one of the solutions proposed (and

the one adopted in both the H.264/AVC and the HEVC reference encoder imple-

mentations) is the process referred to as rate-distortion optimization, which chooses

a parametrization of the encoder based on the minimization of a cost function that



considers the trade-off between rate and distortion, weighted by a Lagrange multi-

plier (λ) which has been empirically obtained for both the H.264/AVC and the HEVC

reference encoder implementations, aiming to provide a robust solution for a variety

of video contents.

In this PhD. thesis, an exhaustive study of the influence of this Lagrangian pa-

rameter on different video sequences reveals that there are some common features

that appear frequently in video sequences for which the adopted λ model (the re-

ference model) becomes ineffective. Furthermore, we have found a notable margin

of improvement in the coding efficiency of both coders when using a more adequate

model for the Lagrangian parameter.

Thus, contributions of this thesis are the following: (i) to prove that the reference

Lagrangian model becomes ineffective in certain common situations; and (ii), propose

generalized solutions to improve the robustness of the reference model, both for the

H.264/AVC and the HEVC standards, obtaining important improvements in the

coding efficiency. In both proposals, changes in the nature over the video sequence

are taken into account, proposing models that adaptively consider the video content

and minimize the increment in computational complexity.



RESUMEN

En las últimas dos décadas hemos sido testigos de importantes cambios en la

demanda de codificadores de v́ıdeo debido a múltiples factores: la diversidad de ser-

vicios se ha visto incrementada significativamente, la resolución high definition (HD)

(e incluso mayores) se ha hecho realidad, el tráfico de v́ıdeo procedente de dispo-

sitivos móviles y tabletas está aumentando y los servicios de v́ıdeo bajo demanda

son cada vez más comunes, entre otros muchos ejemplos. Todos estos avances con-

vergen en la demanda de estándares de codificación de v́ıdeo más potentes, siendo

los más importantes el H.264/Advanced Video Coding (AVC) y el más reciente High

Efficiency Video Coding (HEVC), ambos definidos por el Joint Collaborative Team

on Video Coding (JCT-VC), una colaboración entre el ITU-T Video Coding Expert

Group (VCEG) y el ISO/IED Moving Picture Expert Group (MPEG).

Estos dos estándares (y otros muchos, empezando con el ITU-T H.261) se basan en

un modelo h́ıbrido de codificador conocido como Differential Pulse Code Modulation

(DPCM)/Discrete Cosine Transform (DCT), que está formado por una estimación y

compensación de movimiento seguida de una etapa de transformación y cuantificación

y un codificador entrópico. Además, cada uno de estos subsistemas está formado por

un cierto número de módulos interdependientes y paramétricos que pueden adaptarse

al contenido espećıfico de cada secuencia de v́ıdeo.

El principal problema que surge de esta aproximación es cómo elegir de la forma

más adecuada la combinación de las distintas parametrizaciones con el objetivo de

alcanzar la codificación más eficiente posible del contenido que se está procesando.

Para resolver este problema, una de las soluciones propuestas es el proceso conocido

como optimización tasa-distorsión, que se encarga de elegir una parametrización para



el codificador basada en la minimización de una función de coste que considera el

compromiso existente entre la tasa y la distorsión, ponderado por un multiplicador

de Lagrange (λ) que ha sido obtenido de forma emṕırica para las implementaciones de

referencia del codificador tanto del estándar H.264/AVC como del estándar HEVC,

con el objetivo de proponer una solución robusta para distintos tipos de contenidos

de v́ıdeo.

En esta tesis doctoral, un estudio exhaustivo de la influencia de este parámetro

lagrangiano en distintas secuencias de v́ıdeo revela que existen algunas caracteŕısticas

comunes que aparecen frecuentemente en secuencias de v́ıdeo para las que el modelo λ

adoptado en las implementaciones de referencia resulta poco efectivo. Además, hemos

encontrado un notable margen de mejora en la eficiencia de codificación de ambos

codificadores usando un modelo más adecuado para este parámetro lagrangiano.

Por consiguiente, las contribuciones de esta tesis son las que siguen: (i) probar

que el modelo lagrangiano de referencia resulta inefectivo bajo ciertas situaciones

comunes; y (ii), proponer soluciones generalizadas para mejorar la robustez del mo-

delo de referencia, tanto en el caso de H.264/AVC como en el de HEVC, obteniendo

mejoras importantes en eficiencia de codificación. En ambas propuestas se tienen

en cuenta los cambios en la naturaleza del contenido de una secuencia de v́ıdeo pro-

poniendo modelos que se adaptan dinámicamente a dicho contenido variable y que

tienen en cuenta el incremento en la complejidad computacional del codificador.
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Fernández, Ascensión Gallardo, Alejandro Hernández, Javier López, Tomás Mart́ınez
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habŕıa quedado a mitad de camino. Gracias a mi familia elegida pamplonesa, Juan

Comas, Eduardo Dachary, Yon Luis Gastón, Javier Quel, Vı́ctor Sanz, Sarai Ca-

marzana, Jorge Mach́ın y el resto de ITTSIs y, especialmente, a Elisabeth Esandia,

porque sin sus constantes controles de productividad este documento estaŕıa muy
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Chapter 1

Introduction

1.1 Video Coding

In the recent years, video content has experienced important changes related to the

quality delivered to the users and also in the way they consume it. HD and beyond-

HD resolutions (4k x 2k, 8k x 4k, for example) have become increasingly popular.

Moreover, video-on-demand, mobile television services, stereo and multiview capture

and display are some examples of how the video content is evolving nowadays. All

these services demand efficient solutions to store huge amounts of data and to deliver

the same video content at different resolutions.

Although communication networks have also evolved to provide higher capacities,

these new requirements concerning video content still pose a major challenge that

requires to compress the video signal very efficiently, so it can be stored and streamed

reliably according to the highest quality standards.

Since the emergence of the ITU-T H.261 standard [ITU-T, 1990], the video com-

pression problem has been commonly addressed using a block-based hybrid video

codec (encoder + decoder), which uses a prediction stage to take advantage of spa-

tial and temporal redundancy in the video signal; a discrete cosine transform to

1



1.2. Motivation

represent the prediction residual in a more convenient transformed domain; a quan-

tification process that aims to maximize the zero run-lengths; and an entropy coder

to efficiently represent these runs.

Beyond the coding techniques, there is need to define video coding standards that

allow the encoders and decoders of different manufacturers to properly inter-operate.

During the last decades, multiple standards have arisen. Some of the most impor-

tant examples are the ITU-T H.261 [ITU-T, 1990] and the ITU-T H.263 [ITU-T,

1995], both defined by the ITU-T Video Coding Expert Group (VCEG); the MPEG-

1 [ISO/IEC, 1993] and MPEG-4 [ISO/IEC, 1999], defined by the ISO/IED Mov-

ing Picture Expert Group (MEPG); and the more recent ones, the H.262/MPEG-

2 [ITU-T and ISO/IEC, 1994], the H.264/AVC [JVT, 2003] and the HEVC [JVT,

2013], all of them jointly defined by the ITU-T VCEG and the ISO/IED MPEG,

through the Joint Collaborative Team on Video Coding (JCT-VC). Among all of

them, the last three standards have been the ones that have reached the largest

deployment in the market, being present in a wide variety of devices used in our

days.

1.2 Motivation

The block-based hybrid video coding standards rely on a set of flexible coding tools

that should be adapted, on a block basis, to the heterogeneous nature of the video

content. Thus, the successful selection of the proper parameters and/or coding tools

on a block basis becomes one of the key processes of a video coding standard.

Rate-distortion optimization (RDO) is a technique to tackle this parameter selec-

tion problem that has been extensively used on the latest video coding standards due

to its ability to find near optimal solutions (at the expense of a high computational
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cost). In general terms, RDO consists of minimizing a distortion measure subject to

a rate constraint. Alternatively, using Lagrangian optimization, this problem can be

formulated as that of minimizing an unconstrained cost function which considers two

terms, distortion (D) and rate (R), balanced by a Lagrangian parameter λ, whose

value needs to be determined.

Thus, modeling the λ parameter of the Lagrangian cost function adds a new

selection problem to those that have to be addressed by a video encoder. Several

studies have been conducted on this matter, being the model proposed by [Sullivan

and Wiegand, 1998] the most successful one because it works properly for a large

variety of video contents.

Nevertheless, several research works [Sangi et al., 2004, Zhang et al., 2010, Zhao

et al., 2013,Li et al., 2015] have proven this model to fail for certain types of video

contents. For example, in H.264/AVC, some inefficiencies of the reference model arise

when coding video sequences with high-motion content or, in other words, when the

motion estimation (which is the process that deals with the temporal redundancy by

looking for the best block-based matches in previously coded frames) is inaccurate. In

HEVC, some inefficiencies have been found in video sequences with high percentage

of static background.

Thus, the aim of this PhD thesis is to tackle the λ selection problem by designing

new models which adaptively modify λ to deal with those situations where the coding

efficiency could be improved. Moreover, the design of the new models have considered

with special care the associated computational cost, since RDO is at the core of every

decision of the video encoder.
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1.3 Aims and Contributions

There have been many research works aiming at improving the λmodel in H.264/AVC

[Chen and Garbacea, 2006,Li et al., 2009,Zhang et al., 2010,Liu et al., 2012,Yeo et al.,

2013,Dai et al., 2014] and a few of them (due to its shorter history) in HEVC [Lee

and Kim, 2011,Si et al., 2013,Zeng et al., 2013,Zhao et al., 2013,Li et al., 2015]. The

most relevant works will be discussed later in the corresponding sections devoted to

the related work. Nonetheless, just to put our contributions in context with respect

to the previous work, we will briefly describe the objective of our work. Specifically,

our work is based on three premises:

• Proposing standard-compliant solutions for both H.264/AVC and HEVC.

• Gaining an in-depth understanding of the type of video contents for which the

reference solutions turn out to be inefficient.

• Designing simple solutions that avoid incurring significant complexity incre-

ments.

• Providing significant performance improvements with respect to the reference

implementations of both standards.

With these objectives in mind, the main contribution of this thesis has been to

propose two λ multiplier selection models which, being compliant with either the

H.264/AVC or the HEVC video coding standards, are able to adapt to the video

content, improving the non-adaptive reference methods and, therefore, improving

the coding efficiency of both H.264/AVC and HEVC standards.

First, the main causes of inefficiency of the reference models have been studied in

detail for both video coding standards. From the analysis of the reference model of
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H.264/AVC, we concluded that inefficiencies are due to inaccurate estimations of the

D and R terms in the motion estimation (ME) process, which lead to a poor coding

performance. The conclusion of our analysis goes beyond those of previous works on

this matter [Sangi et al., 2004,Zhang et al., 2010], where only the inaccuracies of the

estimation of R were considered as the source of potential model errors. Furthermore,

our analysis also revealed that those estimation errors tended to be more frequent

when the block-matching model for ME is not effective. Consequently, we proposed

a model in which 3 different λ values are tested for each encoded macroblock (MB)

(which is the basic coding unit), making the proposed method MB-wise adaptive over

the video sequence.

From the analysis of the reference model in HEVC, we concluded that inefficiencies

are found in the mode decision (MD) process (which is the process that decides on

the size of the coding unit), which tends to make poor decisions when coding video

sequences with static background. According to this observation, we found some

features that describe the motion content of the video sequence. Then, we designed a

classifier that decides for each frame whether it has a static or a dynamic background.

Finally, we designed a regression model that allows us to estimate the λ parameter of

the MD process. Therefore, our proposal provides a frame-wise adaptive λ model for

the MD process in comparison with non-adaptive previous works [Zhao et al., 2013].

In a few words, the proposed solutions for both video coding standards improve

the reference λ models by proposing novel adaptive λ models which account for

certain content-related inefficiencies of the reference models.

The results of the proposed methods compared favorably with those of the JM15.1

reference software for H.264/AVC [JVT, 2010] and those of the HM16.0 reference soft-

ware for HEVC [McCann et al., 2014] and, additionally, with state-of-the-art λ selec-

tion methods which use a similar approach, [Zhang et al., 2010] for the H.264/AVC
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standard and [Zhao et al., 2013] for the HEVC standard.

To close this section, in the following lines we summarize the contributions of this

thesis for each of the standards considered:

• For the H.264/AVC standard:

– Analysis of the causes of inefficiency of the reference λ model used for ME.

– Proposal of an adaptive and computationally efficient method to address

these inefficiencies at a MB level.

– Experimental objective and subjective validation of the proposed model.

• For the HEVC standard:

– Analysis of the causes of inefficiency of the reference λ model used for MD.

– Search of features that describe the motion content of the video sequence.

– Design of an effective and computationally efficient static vs. dynamic

background classifier at a frame level.

– Design of an effective and computationally efficient regression model to

estimate a proper λ value for the MD process at a frame level.

– Experimental objective and subjective validation of the proposed model.

1.4 Thesis Outline

This PhD Thesis is organized as follows. In Chapter 2, a brief overview of the video

coding problem is given, focusing on the latest H.264/AVC and HEVC standards, fol-

lowed by a review of the rate-distortion optimization paradigm and the related work.

Chapter 3 and 4 describe the contributions of this PhD Thesis to the H.264/AVC and
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HEVC standards, respectively. In both cases a comprehensive experimental analysis

of the standard RDO process is carried out, revealing the specific inefficiencies in each

case. Subsequently, improved RDO methods are proposed and validated. Finally, the

conclusions of the thesis are discussed in Chapter 5, which also provides an outline

of future research lines.
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Chapter 2

Rate-Distortion Optimization in

Modern Video Coding Standards

In this chapter, an overview on hybrid video coding [Richardson, 2003] with emphasis

on the H.264/AVC and HEVC standards is provided in Section 2.1. The aim is two-

fold: i) to briefly describe the different tools available for the video encoder; and ii)

to reveal the necessity of the rate-distortion optimization (RDO) process.

Then, a survey of RDO methods is presented in Section 2.2, discussing their moti-

vation and describing the state-of-the-art solutions proposed for both the H.264/AVC

and the HEVC standards.

2.1 Hybrid video coding

Major video coding standards since the ITU-T H.261 [ITU-T, 1990] have been based

on the Discrete Pulse Code Modulation (DPCM)/Discrete Cosine Transform (DCT)

hybrid video codec, which consists of three different stages: a motion estimation (ME)

and motion compensation (MC) stage, a transform stage and an entropy encoder
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Figure 2.1: Block diagram of a DPCM/DCT hybrid video encoder. Adapted from
[Richardson, 2003].

Figure 2.2: Block diagram of a DPCM/DCT hybrid video decoder. Adapted from
[Richardson, 2003].

[Richardson, 2003].

This schema was used for both H.264/AVC and HEVC standards, being similar in

terms of basic functions, but different in what concerns to details. A block diagram

of a hybrid video encoder is shown in Figure 2.1, and that of the decoder is shown in

Figure 2.2.

In both video coding standards, the video sequence is processed on a basic coding

unit basis. Specifically, the video sequence is divided into frames, the frames into

slices and the slices into coding units, which are processed in a so-called raster order

(starting from the upper-left corner of the slice, moving in the horizontal direction,
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and finishing at the bottom-right corner).

From Figure 2.1, it can be seen that a motion estimation is performed for each

coding unit using information from a previously encoded reference frame (RF). This

reference unit is subtracted from the original coding unit in order to obtain a dif-

ference coding unit, with significantly less energy than that of the original, as lower

pixel values are present. Then, a transform is performed (in order to gather as much

information as possible into a few coefficients) followed by a quantization process.

Finally, an entropy coding stage looks for an efficient representation of the data, in-

cluding motion vectors (MVs), an index referring to the used RF (if necessary) and

the headers needed in order for the decoder to understand how the coding unit was

encoded. The decoding process, shown in Figure 2.2, performs the same processes

(except for the quantization, which is irreversible) in reverse order.

A more detailed explanation of some of these stages will be provided next, making

more emphasis on the different solutions proposed in both H.264/AVC [Wiegand

et al., 2003b,JVT, 2003] and HEVC [Sullivan et al., 2012,JVT, 2013].

2.1.1 Motion estimation and compensation

The goal of this stage is to take advantage of the temporal redundancy between

transmitted frames to compress video data. To this purpose, a predicted frame

is built from previously encoded past or future frames and this predicted frame is

subtracted from the current one. Thus, the better the prediction the lower the energy

of the residual frame.

Taking into account that the video sequence is processed on a coding unit basis,

the ME task involves finding a coding unit-sized region in a reference frame that

closely matches the current coding unit. Then, the distance in pixels between that
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region in the reference frame and the position of the current coding unit is defined

as the motion vector (MV). To avoid evaluating all the possible pixels in the RF, a

prediction of the MV is made from the neighboring coding units, obtaining a predicted

motion vector (MVp) that points out a reasonable starting position around which a

certain area is searched. As a result, the region that minimizes a given matching

criterion, known as the best match, is determined.

Then, the best match region is subtracted from the current coding unit to produce

a residue, which is encoded together with an index referring to the used RF and the

difference vector between the corresponding MV and theMVp obtained for the current

coding unit.

When considering these processes in the standards H.264/AVC and HEVC, sub-

stantial differences can be found.

2.1.1.1 Motion estimation and compensation in H.264/AVC

In H.264/AVC, the basic coding unit is called macroblock (MB), which is formed by a

16x16 pixel luma region and two 8x8 pixel chroma regions (when a 4:2:0 video format

is used). However, motion estimation (ME) and motion compensation (MC) can be

done choosing from a variety of block sizes as illustrated in Figure 2.3.

The ME is performed in a configurable region around the position pointed out

by the MVp for different reference pictures, being the MVp obtained according to

certain criteria from the MVs of already encoded neighboring blocks (one example

is illustrated in Figure 2.4). Moreover, depending on whether a P-prediction or a

B-prediction is being carried out (which are a prediction based on previous frames or

a prediction based on previous and future frames respectively, as it will be explained

later), the encoder manages one reference picture list of previous frames, or two

reference picture lists of previous and future frames (respectively). This last option
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Figure 2.3: Partition modes available in the H.264/AVC standard. Indexes referring
to each partition are also shown.

Figure 2.4: Example of motion vector prediction candidates in H.264/AVC when
partition sizes are identical to the MB labeled as E. The MVp is obtained according
to certain criteria using the MVs of blocks A, B and C. Adapted from [Wiegand
et al., 2003b].

allows the encoder to perform a weighted prediction of the current MB from two

different reference frames (RFs). Additionally, ME can be performed with integer-

pixel precision, half-pixel precision or quarter-pixel precision, using pixel interpolation

in the corresponding region.
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2.1.1.2 Motion estimation and compensation in HEVC

In HEVC, the basic coding unit is called coding tree unit (CTU). It covers an square

region of size LxL (which can be configured to be 64x64, 32x32 or 16x16) and, as

can be seen in Figure 2.5, consists of 1 luma coding tree block (CTB) and 2 chroma

CTBs. These CTBs form a quad-tree structure of different coding blocks (CB),

whose size depend on the depth of the actual quad-tree structure (until a maximum

depth, defined in the CTU), being the maximum size the one of the CTB. Then,

1 luma CB and 2 chroma CBs form a coding unit (CU)1, which is also formed by

a prediction unit (PU) and a transform unit (TU). Both the PU and the TU have

their root in the CU, and are formed by prediction blocks (PBs) or transform blocks

(TBs), respectively, which can be either CB-sized or smaller (by further splitting).

A graphical explanation of these definitions can be seen in Figure 2.6.

Thus, each CB can be split according to the quad-tree syntax of the CTB to select

an adequate size depending on the current region, generating different CBs of smaller

sizes. Then, the PB size is obtained, choosing from 8 possible partition modes shown

in Figure 2.7. Comparing with H.264/AVC, HEVC offers new asymmetric prediction

modes. For each PB, a motion estimation is performed according to the predicted

motion vector (MVp), which is selected from a set of C potential prediction candidates

over a variety of reference frames, with integer-pixel precision, half-pixel precision or

quarter-pixel precision. Finally, for each PB, both the difference vector between the

actual motion vector and the MVp and the index for the reference frame are encoded.

1In order to distinguish between the general concept of coding unit and the specific one related to
the HEVC standard, the latter will be hereafter referred to as CU, while the former will be referred
to as coding unit.
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Figure 2.5: Graphical explanation of the CTU data structure. Note that the luma
and the two chroma CBs represented with the same symbols form a CU.

Figure 2.6: Graphical explanation of the CU data structure.

2.1.2 Predictive image coding

The same way the energy of the residual can be reduced by predicting a MB or a

CU from a previously encoded frame, a prediction can be done using the previously

encoded pixels of the same frame. This prediction takes advantage of the spatial
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Figure 2.7: PB sizes in HEVC, where M represents the size of the CB. Adapted
from [Sullivan et al., 2012].

redundancy within an image to compress data and it is the basis for the so-called

Intra modes in both H.264/AVC and HEVC.

2.1.2.1 Predictive image coding in H.264/AVC

Intra prediction uses pixels from surrounding previously coded MBs in order to pre-

dict the current MB by interpolation and extrapolation of those. For that purpose,

Intra 4x4, Intra 16x16 and I PCM modes are supported by the standard.

Intra 4x4 is used for detailed regions and it allows 9 different prediction modes,

the DC mode and 8 directional modes (see Figure 2.8), which will allow the encoder

to interpolate (or extrapolate) directional structures as edges within the image. For

the Intra 16x16 mode, 4 prediction modes are supported. Finally, the I PCM mode

allows the encoder to send in an efficient way the original MB, just for cases in which

prediction is difficult.

2.1.2.2 Predictive image coding in HEVC

Intra prediction in HEVC works according to the transform block (TB) size of the

current coding block (CB) and uses the neighboring TB samples to interpolate (or

extrapolate). In this case, for every square-sized TB, one mode out of 33 directional
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Figure 2.8: (left) Directional prediction modes in H.264/AVC. (right) Example of
interpolation using Mode 4. The pixels used for interpolation are represented in gray
and the processed coding block is represented in white. Adapted from [Sullivan et al.,
2012].

orientations can be chosen, including DC and planar interpolations (which is a surface

fitting interpolation).

2.1.3 Transform coding

The main purpose of the transform in a video codec is to convert the residual data into

another domain with the goal of obtaining decorrelated and compact data calculated

by a reversible transformation in a computationally tractable manner. In the case

of both H.264/AVC and HEVC standards, the DCT (Discrete Cosine Transform)

is applied to the residual of the motion compensated or spatially predicted coding

unit. This transformation tends to compact the energy of the residual around the DC

coefficient. Then, a quantization process is performed on the transformed coefficients,

according to the quantization parameter (QP), followed by a reordering stage that

aims to maximize the length of 0-valued coefficient runs.

In H.264/AVC, the only adjustable parameter is QP, while in HEVC a TU quad-

tree needs to be defined out of a variety of possible choices.
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Figure 2.9: Example of the division of a CTB into different CBs and different TBs
(left) and their corresponding quad-tree representation (right). Solid lines represents
CB partitions and dotted lines represent TB partitions. Adapted from [Sullivan et al.,
2012].

2.1.3.1 Transform coding in H.264

Each MB is divided into 4x4 blocks and the transform is applied to each one. Af-

ter that, a quantization process that depends on QP is performed, followed by a

reordering stage using a zigzag scanning over the transformed block.

2.1.3.2 Transform coding in HEVC

The TBs can be recursively partitioned into quadrants in order to reach an adequate

TB size using a quad-tree structure similar to that used for ME. An example on how

the transform unit can be partitioned is shown in Figure 2.9. After determining the

TB sizes, a procedure similar to the one described in H.264/AVC is performed using

the QP in order to quantize the transformed coefficients values and a zigzag scanning

to maximize the length of the zero runs.

The principal advantage of the transform stage in HEVC when compared to

H.264/AVC is that the TU operates independently from the PU, being able to obtain

more efficient representations.
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2.1.4 Slice/Frame types and temporal prediction structures

In hybrid video coding, there are generally three different types of slices/frames2

depending on how the redundancy is exploited, namely:

• I-frames: those that are encoded without referring to other previously encoded

frames, using the so-called Intra modes only.

• P-frames: those that are encoded referring only to past (already encoded)

frames. In this case, the encoder relies on the so-called Inter modes over one

list of past reference frames (RFs), in addition to the Intra modes.

• B-frames: those that are coded using two simultaneous lists of RFs, one of them

containing past references, and the other containing future RFs. Note that for

having access to future encoded frames, the encoding order should be different

from the visualization order, as will be exemplified next.

Such types of frames allow the encoder to choose from a high-fidelity high-rate en-

coding (I-frames) until a lower-fidelity lower-rate encoding (P-frames and B-frames).

Therefore, temporal prediction structures establishing a priori how the different

picture types will be used, conforming the so-called Groups of Pictures (GOP), are

defined in both H.264/AVC and HEVC standards.

2.1.4.1 Temporal prediction structures in H.264/AVC

In H.264/AVC, there is no predefined prediction structures for the standard test

conditions. However, we will describe two of the most used ones.

2For practical reasons and attending to how the encoding is configured on this PhD. thesis,
hereafter it will be considered the slice to be frame-sized, so the term frame will be used instead of
slice.
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The P-picture prediction structure (IPPP) is formed by an Intra frame which is

sent once in a while (typically once per second), followed by only P-frames which

are predicted from the previous frames. This temporal structure allows the decoder

to show the decoded frames as they are processed since the decoding order and the

visualization order are the same.

The B-frame prediction structure (IPxB, where x is the number of B-frames used)

provides a higher compression rate, and is also used in hierarchical structures. But,

on the other hand, the decoding and visualization order are not the same in or-

der for the B-frames to have access to previously coded past and future reference

frames. In this prediction structure, a prediction over two reference frames is per-

formed either looking for the best match in the past and future reference frames

through independent ME processes or looking for the best match sequentially using

the two reference frames jointly, which is more computationally expensive but allows

to account for some types of video contents like illumination changes. An example of

a IP7B prediction structure is shown in Figure 2.10, indicating the difference between

the visualization order (in parenthesis) and the encoding order.

2.1.4.2 Temporal prediction structures in HEVC

In HEVC, some prediction structures are predefined for test conditions [Bossen, 2013],

being necessary to chose between either a low-delay configuration or a random-access

configuration. There is an additional intra-only configuration, but it is out of the

scope of this PhD. thesis.

In the low-delay configuration, as in the IPPP configuration of H.264/AVC, the

decoding and visualization order are the same, with the ME referring to only past

RFs. As a novelty with respect to the H.264/AVC standard, B-frames can also be

used in this configuration, being restricted their RFs to past frames. Then, the cases
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Figure 2.10: Example of a hierarchical IP7B structure. The encoding order (in
parenthesis) and the visualization order are shown to make the differences evident.

in which only P-frames are used are denoted as low-delay-P, and the others are de-

noted as low-delay-B. For both configurations, a hierarchical QP structure is used

to every group of four frames by encoding with a higher QP (which produces less

output bits) the frames which are less likely to be referenced. This framework is

known as QP cascading, and has been proved to not adversely affect the subjective

quality [Schwarz et al., 2006]. Specifically, the quantization parameter takes the va-

lues [QP + 3,QP + 2,QP + 3,QP + 1] for every consecutive 4 frames with QP being

the quantization parameter of the I-frame.

In the random-access configuration a hierarchical B-frame structure is used, simi-

lar to the hierarchical ones in H.264/AVC but with a predefined number of 7 B-frames

and a B-frame with past references only in the lowest temporal layer (substituting the

P-frame in Figure 2.10). In this case, the QP cascading is performed considering the

hierarchical levels. For the lowest temporal layer QP + 1 is used, and QP is further
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reduced by 1 on each higher temporal layer (reaching to QP+4 in the non-referenced

B-frames level).

2.2 R−D Optimization in Hybrid Video Coding

2.2.1 Motivation

Considering all the coding tools implemented in both the H.264/AVC and HEVC

coders, some of them described in Section 2.1, some questions related to the coding

process arise:

• How the video sequence should be divided in regions (coding units) for coding

purposes?

• How does the video encoder decide between using temporal or spatial prediction

for each coding unit?

• In case of temporal prediction:

– Which reference frame should be used?

– Which motion vector should be used?

– Should the encoder just refer to the same region of the previous frame?

– Which motion vector precision should be used?

• In case of spatial prediction:

– Which interpolation mode should be used to predict the coding unit?

• Which transform size should be used?

• How fine or coarse should be the quantization?
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It should be noted that the more new tools are added to the encoding process, the

more new questions arise in order to apply one or the other, or combinations of them.

Moreover, it should be taken into account that each answer to these questions has

consequences in terms of coding efficiency, as it was explained before. For example,

some decisions imply representing the coded video content with more fidelity but,

this higher fidelity often comes in exchange for a higher rate. Thus, it becomes clear

that coding units that really require higher fidelity should be managed in a different

way than those that admit more compression.

These questions and their implications for the coding efficiency make it necessary

to design a method which, as optimally as possible, considers the trade-off between

distortion (D) and rate (R) with the goal of determining suitable configurations of

the encoder to maximize the coding efficiency.

2.2.2 R−D Optimization

The optimization task that the encoder has to face in order to answer the questions

posed above consists in determining the most efficient video representation from

a rate-distortion (R − D) point of view, that is, considering the existing trade-off

between both terms.

However, complexity of these tasks becomes even higher due to the fact that the

different coding options show different behaviors in terms of R and D depending

on the video content (e.g. in a high motion video sequence, using motion estima-

tion seems to be the most efficient option; however, if the block-matching process is

not accurate enough, it should be regarded as a better option to perform a spatial

prediction through an Intra mode, in order to achieve a better R−D result).

For each of the coding units, each possible combination of the different coding
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tools (i.e., MV, RF, block size, QP, etc.), hereafter denoted as θ, yields a pair of D

and R values. Hence, the goal is to minimize D subject to a rate restriction Rc for

the whole video sequence, which is mathematically expressed as:

min
θi

{
N∑

i=0

Di(θi)

}
subject to

N∑

i=0

Ri(θi) ≤ Rc, (2.1)

where N represents the number of coding units in the video sequence, and

(Di(θi), Ri(θi)) is the pair of associated D and R values given a particular choice

of parameters θ for the coding unit i.

However, using the Lagrangian formulation proposed by [Everett, 1963], this con-

strained problem can be posed as an unconstrained one:

min
θi

{
N∑

i=0

Di(θi) + λRi(θi)

}
, (2.2)

where λ is the Lagrange multiplier that weights the relative importance of Di(θi) and

Ri(θi).

Thus, for a given value of λ, equation (2.2) yields an optimal solution θ
∗

i for the

problem in (2.1) when:

Rc = R(λ) =
N∑

i=0

Ri(θ
∗

i ), (2.3)

Moreover, once the constraint has been removed, we have that:

min

{
N∑

i=0

Di(θi) + λRi(θi)

}
=

N∑

i=0

min
{
Di(θi) + λRi(θi)

}
. (2.4)

Therefore, the contribution of [Everett, 1963] to the problem stated in (2.1) is that

the global optimization can be solved by finding an optimal solution for each coding

unit without considering the global constraint Rc. In other words, (2.4) allows the
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Figure 2.11: Optimal solutions θ
∗

for three different λ values from a set of discrete
operating points (D(θ), R(θ)).

encoder to process each coding unit independently, supposedly without considering

the solutions obtained for previously coded ones (we will discuss later why we say

“supposedly”).

Therefore, for each coding unit, a cost function J(θ) which should be minimized

is defined:

min
θ

{
J(θ)

}
where J(θ) = D(θ) + λR(θ). (2.5)

All this formulation is illustrated in Figure 2.11, where some (D(θ), R(θ)) points

for an hypothetical coding unit are drawn, forming the so-called R−D characteristic

curve [Ortega and Ramchandran, 1998]. Any particular value of λ is represented as

a straight line with a given slope of value λ, and the optimal θ
∗

for each λ will be

the one that first hits the corresponding line.

From this example, it can be deduced that the optimal solutions will be found

in the convex-hull of the R −D characteristic curve, which is not always reachable.

Dynamic programming [Ortega and Ramchandran, 1998] can reach other solutions,
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but its complexity is notably higher, specially when there are a high number of coding

units, as its complexity grows exponentially with that number.

It also should be noted from Figure 2.11, that the selection of the λ parameter

affects the outcome of the optimization task. This means that this parameter should

be also determined, along with the optimal θ parameters. This task is quite com-

putationally intensive; consequently, in practical implementations of video coding

standards many simplifications are made in order to obtain a more efficient solution.

First, according to (2.4), the independence hypothesis is made so that each coding

unit can be optimized independently of the rest. Although this hypothesis is not true

because the θ
∗

chosen for a coding unit actually depends on those θ
∗

chosen for

previously coded coding units, it is a necessary approximation to obtain a practical

solution for the optimization process.

Second, in order to avoid testing all the available QP values, some works provided

efficient solutions to optimally choose the best QP among an arbitrary subset of can-

didates, proving that it is not necessary to evaluate all the possible values [Shoham

and Gersho, 1988,Wu and Gersho, 1991,Ramchandran and Vetterli, 1993]. Moreover,

further studies on this matter [Ding and Liu, 1996,Hang and Chen, 1997,Chiang and

Zhang, 1997,Ortega and Ramchandran, 1998,Sullivan and Wiegand, 1998] provided

models for R and D as a function of the QP value that allow the encoder to produce

estimations without performing the whole encoding process for each possible solution

and therefore saving important amounts of encoding complexity. These approxima-

tions generated two important improvements in terms of computer savings: (i) Rate

control schemes allow the encoder to derive a QP value based on R constraints in an

optimal manner and (ii) the λ parameter can be derived from those models and the

QP value through the minimization of the cost function in (2.5), assuming that the

26



Chapter 2. Rate-Distortion Optimization in Modern Video Coding Standards

R−D curve is differentiable everywhere by computing

∂J

∂R(QP )
=

∂D(QP )

∂R(QP )
+ λ(QP ) = 0, (2.6)

which leads to:

λ(QP ) = −∂D(QP )

∂R(QP )
. (2.7)

Other works such as [Le Pennec and Mallat, 2005] proposed specific models for R

and D to later derive λ but, among these proposals, the one that has been adopted

by the encoder reference models in both H.264/AVC and HEVC standards is the one

proposed by [Sullivan and Wiegand, 1998], who empirically derived a relationship

that was later theoretically supported based on the high rate assumption, which

assumes a uniform distribution of D over the quantification intervals when the R

term is dominated by the information of the non-zero residual coefficients [Gish and

Pierce, 1968]. Specifically, the expression for R as a function of D is:

R(D) = a× log2(
b

D
), (2.8)

where a and b are two constants, and

D =
(2Q)2

12
, (2.9)

where Q is half the quantization step. Then, minimizing the cost function (2.5) with

respect to the distortion (D) yields:

∂J

∂D
= 1 + λ

∂R(D)

∂D
= 0. (2.10)
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Moreover, by deriving (2.8) and substituting in (2.10):

∂R(D)

∂D
= − a

D
= −1

λ
. (2.11)

Thus, by substituting D with its corresponding model in (2.9) and solving for λ,

the relationship between Q (or subsequently QP) and the λ parameter is as follows:

λ = c×Q2, (2.12)

with c = 4/12a.

Third, concerning the motion estimation (ME)-related optimization, which ob-

tains solutions for motion vectors (MVs) and reference frames (RFs), the evaluation

of D and R in (2.2) for every potential MV would not be feasible since each evaluation

involves DCT-like transform computation, quantization, entropy coding, and inverse

processes for reconstruction. The solution to this high-complexity problem consists

on simplifying the MV search by using a low-complexity cost function that estimates

the selection of the same (MV, RF) pair that would have been selected by evaluating

J in (2.5). Thus, the ME process is usually formulated as the minimization of a

second Lagrangian cost function denoted as Jmotion:

min
MV,RF

{Jmotion}

with Jmotion = Dmotion(MV,RF ) + λmotionRmotion(MV,RF ), (2.13)

where Dmotion is the sum of absolute differences (SAD) between the original and

predicted block for a specific MV and RF; Rmotion is the number of bits needed to

encode the motion-related information; and λmotion is a Lagrange multiplier. Thus,
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as the coding unit used for calculating Dmotion is the predicted one instead of the

reconstructed one, large computational savings are achieved.

Once the set of near-optimal MVs and their corresponding RFs have been found

by the ME process, they are used to obtain the optimal block size by minimizing J

in (2.5), which is referred to as the mode decision (MD) process.

Therefore, in the two considered standards, this MD process refers to the selec-

tion of the coding unit size from all the possible choices offered by both intra- and

inter- prediction; furthermore, the inter-prediction can use one or two (bi-prediction)

reference images.

Finally, considering that the distortion term (D) in J is calculated as a sum of

squared differences (SSD) while Dmotion in Jmotion is computed as a SAD, an exper-

imental relationship between λmotion and λ was established [Sullivan and Wiegand,

1998]:

λmotion =
√
λ. (2.14)

At this point, given a QP value set by a rate control (RC) algorithm in order to

meet a certain target rate (Rc in 2.1) [de Frutos-López et al., 2015], the Lagrange

multipliers can be estimated using previous equations (2.12) and (2.14), and the

optimal parametrization θ
∗

i can be obtained by minimizing Jmotion (2.13) in the ME

stage first and J (2.5) in the MD stage.

These considerations allow the system to obtain a near-optimal set of coding tools

θ
∗

for the coding unit, with a very significant reduction of the computational cost in

comparison to the optimal solution.

Once all the basics regarding RDO have been set up, in the next subsections

we present some particularizations of the model for both H.264/AVC and HEVC

standards. Moreover, we also present a bibliographic review concerning the methods
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proposed to improve the RDO process in each one of the considered standards.

2.2.2.1 R−D Optimization in H.264/AVC

Regarding the H.264/AVC standard, the relationship between the Lagrange multi-

plier λ and the QP that is implemented in the JM15.1 reference software [JVT, 2010]

was established using an empirical method proposed in [Wiegand and Girod, 2001],

which led to the following relationship [Lim et al., 2005,Wiegand et al., 2003a]:

λ = 0.85× 2(QP−12)/3. (2.15)

Nonetheless, other related works have attempted to establish alternative relation-

ships between the Lagrangian λ and the QP. Some of them have attempted to im-

prove the model of λ by making it dependent of the actual video content. One of

the most implemented strategies is to make the R and D models dependent of the

non-zero quantized coefficients of the residue, which are usually modeled using para-

metric distributions such as: the Laplace distribution [Lam and Goodman, 2000], the

Generalized Gaussian Distribution (GGDs) [Yovanof and Liu, 1996] or the Cauchy

Distribution [Altunbasak and Kamaci, 2004,Kamaci and Altunbasak, 2005]. That is

the case of [Li et al., 2009], where an algorithm was proposed to accurately select the

value of λ by considering a Laplace distribution of the quantized residual and adapt-

ing the λ value to the actual video sequence, so that the overall coding efficiency

is improved. They model R and D as function of QP, some features of the input

sequence, and the frame type. Then, λ is obtained by following the corresponding

analytical model. Although the model is elegant, they fail to fully describe the en-

coder, and some of the assumptions they make in order to simplify calculations lead

to specific solutions for specific types of content.
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A method described in [Chen and Garbacea, 2006] uses a similar approach, but

they proposed a R − D model in the so-called ρ domain, where ρ is a parameter

derived from the number of zero-quantized transformed residual coefficients. This

proposal has the advantage of leading to linear models of D and R, which notably

simplify calculations. Then, λ is dynamically derived from ρ and the estimations of

D and R. However, this model decouples λ and QP, making the rate control process

more difficult.

Another approach proposed to improve the performance of the reference imple-

mentation is to consider perceptual distortion metrics in the RDO model. Specif-

ically, some works proposed using SSIM3-derived metrics [Channappayya et al.,

2008]. [Wang et al., 2011] proposed a model using the distortion metric 1 − SSIM4

to derive a λ multiplier. The same did [Yeo et al., 2013] and [Dai et al., 2014]

using a SSIM -based distortion measure called dSSIM5 for establishing a relation-

ship between the usual distortion term based on the Mean Squared Error (MSE)

and their proposed perceptual-aware distortion, further designing a new perceptual

feature-dependent λ model.

Concerning the cost function related to the ME process (Jmotion), the lack of

accuracy of the high rate model on low-rate situations, where the number of bits

needed for sending the side information (MV, indexes, headers, etc.) is comparable

to the rate needed for sending the non-zero transformed coefficients of the residual,

motivated some works concerning the λmotion parameter. In [Sangi et al., 2004] a

linear model was established for both Rmotion and Dmotion to obtain analytically the

3The structural similarity (SSIM) index is a perceptual measure used to evaluate the similarity
between two signal vectors based on the luminance, contrast and structural correlation [Wang et al.,
2004].

4SSIM is defined to be SSIM ≤ 1 and the measure 1− SSIM is defined to be used as a proper
distortion measure in the cost function.

5This dSSIM measure is another distortion measure which comes from the relationship
dSSIM = 1/SSIM . Note that, in this case, it can take values higher than 1.
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optimal λmotion value, but the method does not provide a significant improvement in

performance with respect to the reference model. The Context Adaptive Lagrange

Multiplier (CALM) method presented in [Zhang et al., 2010] adjusted λmotion for each

block based on its context, that is, based on the Lagrangian cost of its neighboring

blocks. This approach has been implemented in the JM reference software [JVT,

2010] since the 10.2 version.

2.2.2.2 R−D Optimization in HEVC

In HEVC, the relationship between the Lagrange multiplier λ and the QP that is

implemented in the HM16.0 reference software [McCann et al., 2014] was established

using the same empirical method that was used in H.264/AVC [Wiegand and Girod,

2001], leading to the following relationship [Kim et al., 2012]:

λ = α×Wk × 2(QP−12)/3, (2.16)

where α depends on the frame coding type and the reference level and Wk depends on

the encoding configuration (random-access or low-delay conditions) and the hierarchy

level of the frame within a group of pictures (GOP).

As an alternative to this λ(QP ) model, other R−D models have been proposed

in the literature which yielded different relationships between λ and the QP. Some

proposals are based on extending H.264/AVC approaches to the HEVC standard,

e.g. [Ma et al., 2012], where the quadratic model for the R and D in (2.8) and (2.9)

was adapted to account for the Sample Adaptive Offset (SAO) filter which is a non-

linear amplitude mapping to better reconstruct the original signal amplitudes that

was introduced in the new standard. Others adapt the model to different distortion

measures, as the Sum of Absolute Transformed Differences (SATD) [Deng et al.,
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2013].

Another approach to improve the performance of the reference adopted model is

to introduce video content adaptation by using parametric distributions (mainly the

Laplacian distribution), as in H.264/AVC, but with a main difference. Considering

the quad-tree model for the coding unit (CU) and the transform unit (TU), they

model the transformed coefficients as a mixture of Laplacian distributions, being

independently modeled for each depth of the quad-tree structure. This is the case

of [Lee and Kim, 2011], where although such models were proposed, they did not

propose a model for the λ parameter. This work was expanded by [Si et al., 2013],

who used the same approach for modeling λ as a function of the Laplacian parameter

and the QP.

Perceptual-oriented RDO has also been proposed for HEVC. [Rehman and Wang,

2012] proposed a model in which the cost function is evaluated with a perceptual-

oriented distortion term by using a modification on the SSIM measure to account for

the different TU sizes proposed by the standard, but they used the λ parameter in

(2.16) to evaluate the cost function. On the other hand, [Zeng et al., 2013] proposed

a multiplying factor for the reference λ that depends on the perceptual sensitivity of

a coding tree unit (CTU), based on spatial and temporal features.

Other approaches attempted to consider dependencies between CTUs in an effi-

cient way in order to improve coding performance. For example, [Liu et al., 2012]

used correlation between CTU residues to model both R and D, and later derive

the λ parameter. However, although they claimed that their method is applicable to

HEVC, it was not tested. [Li et al., 2015] eliminated the CTU independence hypothe-

sis in order to account for the impact of coding one CTU on the coding of subsequent

CTUs, using an approach similar to dynamic programming. To this purpose, they

performed a forward motion estimation and evaluated the influence of a certain CTU

33



2.2. R−D Optimization in Hybrid Video Coding

in the following ones.

Approaches based on the ρ-domain described in [He and Mitra, 2002] were also

proposed since the resulting models are simple due to the linear relationship between

R and ρ. For instance, [Biatek et al., 2014] modeled ρ as a mixture of Laplacian

distributions and derived a model for R and D, but they did not include the λ

modeling. Also in this direction [Wang et al., 2013] proposed a model operating on

the ρ-domain in which ρ is modeled as a mixture of Laplacian distributions and which

is related with R and, ultimately, the quantization parameter (QP).

A R-λ model was also proposed for HEVC [Li et al., 2014], which was in fact

included in the HM16.0 reference software as a part of the rate control subsystem.

In this work, they claimed that the R-λ relationship is more robust in the HEVC

framework than the typically used R-Q relationship. Thus, they proposed a model

in which the rate control acts directly on the cost function through the λ parameter.

However, this approach did not take into consideration the QP cascading applied to

the hierarchical structure of the GOP.

Finally, other proposals designed ad-hoc solutions to particular weaknesses of the

reference model. Specifically, it has been observed that the reference model tends to

be less effective in video sequences that show a static background. Hence, for surveil-

lance video coding, some proposals adapted the HEVC encoder to account for these

potential weaknesses. That is the case of [Zhao et al., 2013], who proposed a λ mod-

ification based on the percentage of static background in the image for surveillance

video sequences. Specifically, classify each CTU into static background percentage

bins and then, they find a relationship between the percentage of static background

and the optimal λ parameter, which is parametrized specifically for each video se-

quence in a training stage carried out at the beginning of the encoding process. This

proposal yielded interesting results; however, although this performed well for static
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and continuous video contents as those coming from video surveillance sequences,

it did not work well for general varying-content video sequences, as the parameter

training stage for the λ model is performed only once at the beginning of the encoding

process. Additionally, [Zhang et al., 2014] proposed a different approach to improve

the coding performance of video sequences with static background. They proposed

the use of a so-called G-reference frame that intends to model the background and

that is used as a long-term reference. However, again, this method is specifically

designed for video-conference and surveillance videos.
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Chapter 3

Lagrange Multiplier Selection for

Motion Estimation in H.264/AVC

In this chapter, we describe the contributions of this thesis to the rate-distortion

optimization (RDO) process in H.264/AVC.

First, we analyzed the performance of both λ(QP ) and λmotion(λ) relationships,

pointing at the latter as the one to have a greater impact in terms of average coding

performance. Therefore, our research work focused on improving the λmotion model.

Specifically, our study proved this λmotion(λ) relationship to be ineffective for those

video contents that compromise the block-matching based motion estimation (ME)

process. Typically, these types of contents include fast and random movements and

video transitions such as fades, zooms, etc. According to our research, in those cases

the (motion vector (MV), reference frame (RF)) pair selected by the ME minimizing

Jmotion by applying (2.13) was found to be different from the one that would have

been chosen by an exhaustive evaluation using J in (2.5).

Thus, contributions of this Chapter are: (i) an exhaustive study of the cases

for which the λmotion(λ) reference model is not accurate enough; (ii) a new λmotion(λ)
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relationship proposal for these cases; and (iii) an adaptive implementation that allows

us to apply the new model only when necessary, leaving the reference model unaltered

for the rest of the cases. All this work has been described in [Molinero et al., 2011]

and [González-de Suso et al., 2014].

The remainder of this chapter is organized as follows: In Section 3.1, the motiva-

tion for this chapter is described. Section 3.2 describes the proposed method and all

the aspects considered for its design. In Section 3.3, we explain the experiments car-

ried out and the results achieved, which prove the efficacy of our proposed method.

Finally, Section 3.4 summarizes our conclusions.

3.1 Motivation

3.1.1 Evaluation of the Lagrangian parameter model for

H.264/AVC

As a first step, the Lagrangian model adopted in H.264/AVC [Lim et al., 2005] has

been tested to assess its robustness. Both λ(QP ) and λmotion(λ) relationships have

been parametrized by means of a control parameter which is set for the whole video

sequence encoding, choosing from a large range of values and leading to different

encoding processes for 6 Common Intermediate Format (CIF) video sequences (352

wide x 288 height size). The goal of this procedure is to find improved versions of

these relationships, which produce a better performance in terms of coding efficiency.

Furthermore, those video sequences exhibiting significant performance improvements

will be studied to look for any common visual feature (motion type, texture, back-

ground, etc.) that can account for these improvements.

The coding conditions for these tests are summarized on Table 3.1, where fps is
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Table 3.1: Summary of the main coding parameters.

Parameter Value
GOP IPPP
fps 30

QP values [20, 24, 28, 32]
RDO ON
# RFs 3

# Frames 100
c [0.5 : 0.4 : 2.1]
F [0.5 : 0.4 : 2.1]

the frames per second and RDO (on/off) is an encoding mode in the JM15.1 reference

software which, when activated, performs coding decisions evaluating only the Jmotion

cost function, substantially reducing the encoder complexity at the expense of coding

efficiency1.

Regarding the λ(QP ) relationship, recalling from Section 2.2.2.1, λ is obtained

from the QP using the following expression:

λ = c× 2(QP−12)/3, (3.1)

where c is a multiplying factor whose value in the reference JM15.1 software is 0.85.

The value of this multiplier has been varied within the range 0.5 to 2.1, in steps of

0.4, comparing the achieved results with those of the reference procedure (c = 0.85).

To assess the encoding performance, we have computed ∆R(%) to measure the incre-

ment in output bit-rate for a given output quality regarding the reference procedure

and ∆Y (dB) to measure the increment in objective visual quality considering the

luma component Peak Signal to Noise Ratio (PSNR) for a given output rate, us-

ing the procedure of curve interpolation based on 4 rate-distortion (R − D) points

described in [Bjontegaard, 2001]. The obtained results are shown in Table 3.2.

1Further parametrization choices involving entropy coding, search range, etc. are later provided
in Table 3.8.
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Table 3.2: Coding performance results for a wide range of c.

Video Sequence
c = 0.5 c = 0.9 c = 1.3 c = 1.7 c = 2.1

∆R(%) ∆Y (dB) ∆R(%) ∆Y (dB) ∆R(%) ∆Y (dB) ∆R(%) ∆Y (dB) ∆R(%) ∆Y (dB)

Akiyo 1.73 -0.07 0.05 0.00 0.45 -0.02 1.82 -0.08 2.95 -0.13
Coastguard -0.07 0.01 -0.08 0.01 4.02 -0.24 10.52 -0.60 18.77 -1.02
Foreman 0.89 -0.04 0.23 -0.01 3.74 -0.16 8.92 -0.37 15.30 -0.61
Highway -2.81 0.05 0.32 -0.01 6.08 -0.12 14.55 -0.27 25.83 -0.46
Ice Age 3.54 -0.22 -0.41 0.02 -2.30 0.14 -4.33 0.27 -5.93 0.36
Nature 6.85 -0.34 -1.02 0.05 -2.55 0.12 -3.27 0.15 -1.38 0.05
News 0.51 -0.03 0.02 0.00 1.58 -0.09 3.35 -0.18 5.41 -0.29

Average 1.52 -0.09 -0.13 0.01 1.57 -0.05 4.51 -0.15 8.71 -0.30

It can be seen there that the reference c value is in average robust enough con-

sidering different video sequences. The coding performance improvement (∆R < 0%

or ∆Y > 0dBs) achieved by c = 0.9 is not significant enough.

Although Ice Age, Nature and Highway video sequences show notable improve-

ments over the reference c value, reaching −5.93% bit-rate savings (0.36 dB of quality

gain) for Ice Age when c = 2.1, −3.27% bit-rate savings (0.15 dB in quality gain) for

Nature when c = 1.7 and −2.81% bit-rate savings (0.05 dB in quality gain) for High-

way when c = 0.5, in the rest of the video sequences, no improvement was achieved

by evaluating λ different from the reference one. Moreover, in terms of average coding

performance, results show that the best option is to apply the reference model. This

behavior is to be expected, as the λ(QP ) model was designed to perform robustly

in average over all kinds of video sequences. Therefore, we did not expect to achieve

better performance by acting upon the reference λ(QP ) model.

The same procedure was applied to the λmotion(λ) relationship in order to assess

its robustness. In this case, the relationship is altered with respect to the reference

(2.14) by means of a multiplying factor F :

λmotion = F ·
√
λ, (3.2)
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Table 3.3: Coding performance results for several values of F , relative to that of
F = 1.

Video Sequence
F = 0.5 F = 0.9 F = 1.3 F = 1.7 F = 2.1

∆R(%) ∆Y (dB) ∆R(%) ∆Y (dB) ∆R(%) ∆Y (dB) ∆R(%) ∆Y (dB) ∆R(%) ∆Y (dB)

Akiyo 0.27 -0.01 0.12 -0.01 -0.02 0.00 -0.01 0.01 -0.17 -0.01
Coastguard 0.26 -0.01 -0.48 0.03 -0.10 0.01 -0.29 0.02 -0.29 0.02
Foreman 0.67 -0.03 0.02 0.00 -0.17 0.01 -0.12 0.00 -0.16 0.01
Highway 0.43 -0.01 -0.16 0.00 0.39 -0.01 1.44 -0.03 2.40 -0.05
Ice Age 1.06 -0.07 0.28 -0.02 -0.65 0.04 -1.74 0.11 -2.61 0.17
Nature 1.18 -0.06 0.06 0.00 -0.29 0.02 -0.32 0.02 -0.80 0.04
News 0.15 -0.01 0.07 0.00 0.07 0.00 0.06 0.00 0.07 0.00

Average 0.57 -0.03 -0.01 0.00 -0.11 0.01 -0.14 0.02 -0.22 0.03

which allows to parametrize changes in the relationship. Note that when F = 1, the

reference relationship is used.

This F factor was varied following a similar procedure as the c value before (see

Table 3.1). Table 3.3 shows the results of using different values of F with respect to

that of F = 1.

In this case, the average coding performance tends to improve with F , reaching a

maximum at F = 2.1, where −0.22% of bit-rate savings is achieved (or, alternatively,

a 0.03 dBs increment in terms of luma PSNR). This behavior is different from the one

found by acting upon the λ(QP ) relationship, which proved to be robust in average.

Thus, although the increment in coding performance is low, this preliminary re-

sult points out that the average performance could be improved by acting upon the

λmotion(λ) relationship. Therefore, a further analysis was done on the λmotion(λ)

model in order to find the reasons why it could be not accurate enough and improve

it accordingly.

3.1.2 Accuracy of λmotion estimation

Our analysis started by investigating the cases in which the estimation of λmotion

given in (2.14) could be improved. To that end, instead of modifying the λmotion(λ)
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relationship with an specific value for encoding the whole video sequence as before,

the encoder was modified to test several values of λmotion for a given value of λ on

a macroblock (MB) basis. Specifically, for each MB, each value of λmotion produces

a candidate pair (MV, RF) resulting from the optimization of Jmotion and each can-

didate pair (MV, RF) is tested on J . In this manner, the decision on the best pair

(MV, RF) is made using the actual R and D values, instead of estimates. As a result,

an optimal pair (MV, RF) and, consequently, an optimal value of λmotion are selected.

Thus, in those cases in which λmotion =
√
λ is the best solution, this approximation

is proven to be accurate, and vice versa.

Specifically, 21 different values of the previously defined F factor in (3.2) were

tested:

Fi = i×∆F, with i ∈ [0, 1, ..., 20] ,∆F = 0.2. (3.3)

Hereafter, λmotion will be referred as the value obtained by applying (2.14), λi as

the product Fi × λmotion, and λ∗

i as the optimal λi value (the one associated with

the optimal (MV, RF) pair selected in J). Note that as the F factor is altered, this

ultimately leads to change the balance between Rmotion and Dmotion in the Jmotion

cost evaluation:

Ĵmotion = Dmotion + (Fi × λmotion)×Rmotion. (3.4)

On the one hand, Fi = 0 produces a MV that minimizes Dmotion without any

rate considerations. On the other, the higher Fi, the more the decision depends on

Rmotion, in detriment of distortion considerations.

The algorithm that selects the optimal value of λ∗

i in a MB basis as described

before will be used as an ideal reference (benchmark algorithm), as it explores a

wide range of values for Fi and selects the best. It is summarized in Algorithm 1.

It should be noted that Fi is evaluated only in the 16x16 mode. This strategy is
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Algorithm 1 Benchmark algorithm

1: if mode = 16x16 then
2: Perform ME using λi.
3: Store MV i

16x16.
4: else
5: Perform ME using λmotion.
6: end if
7: Perform MD using λi∀i.
8: return Best mode.
9: return λ∗

i .

Table 3.4: Summary of coding conditions.

Parameter Value
GOP IPPP
fps 30

QP values [20, 24, 28, 32]
RDO ON
# RFs 1

# Frames 100
Modes 16x16 only

applied in order to obtain results in a reasonable amount of time by circumventing

the evaluation of all possible combinations (λi, mode), but taking into account that

the 16x16 mode is the most likely to be selected [Mart́ınez-Enŕıquez et al., 2010].

Following this procedure, λ∗

i values resulting from encoding each MB of several

standard video sequences using the coding conditions described in Table 3.4 were

gathered. In this case, the number of RFs was set to 1, in order to focus the analysis

only on the MV selection.

Since the main interest is to determine in which cases the relationship λmotion(λ)

is not accurate enough, the resulting λ∗

i values have been grouped into three classes:

lower, equal, or higher than λmotion. The resulting probabilities along with results in

terms of coding performance when comparing to the reference encoding are shown in

Table 3.5, where:
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Table 3.5: Probabilities (%) of selecting a λ∗

i lower, equal, or higher than λmotion =
√
λ

for a set of standard sequences and coding performance in terms of ∆R(%) and
∆Y (dB).

P (λ∗

i < λmotion) P (λ∗

i = λmotion) P (λ∗

i > λmotion) ∆R(%) ∆Y (dB)

Akiyo 1.31 92.59 6.10 -1.72 0.07
Coastguard 6.89 59.90 33.21 -1.19 0.07
Foreman 6.31 64.64 29.05 -3.37 0.15
Highway 11.17 69.78 19.05 -4.21 0.08
Ice Age 0.36 93.73 5.91 -4.75 0.31
Nature 2.62 86.02 11.36 -2.94 0.14
News 2.08 88.55 9.37 -1.92 0.10

• P (λ∗

i = λmotion) represents the probability of selecting λmotion as the best coding

option.

• P (λ∗

i < λmotion) represents the probability of selecting λ∗

i < λmotion, therefore

giving more weight to the Dmotion term.

• P (λ∗

i > λmotion) represents the probability of selecting λ∗

i > λmotion, thus

putting more emphasis on the Rmotion term.

Finally, the last two columns represent the gain in terms of coding performance.

According to the obtained results, choosing λmotion as the optimal one is undoubt-

edly the most likely. Nevertheless, there is a significant probability of selecting a λ∗

i

different from λmotion.

After carrying out a further analysis on the obtained results aiming to find com-

mon visual features that explain these results, it has been noted that video sequences

presenting size-changing objects (e.g., zoom, approaching objects), such as Highway,

lead to obtain a higher P (λ∗

i < λmotion); in sequences exhibiting high translational

movements, such as Foreman or Coastguard, a higher P (λ∗

i > λmotion) is obtained;

and finally, in sequences showing low-motion content, such as Akiyo or Ice Age, λmotion

becomes optimal with high probability.
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Figure 3.1: Conditional pdf of λ∗

i given λ = 5.397 (P (λ∗

i /λ = 5.397)). λ = 5.397
corresponds to QP = 20, which is used for high quality encodings.

From the encoding performance results, two conclusions arise. First, it does not

appear to be a strong correlation between P (λ∗

i 6= λmotion) and the improvement in

coding performance, as Ice Age is the most likely to have an optimal λ∗

i = λmotion

and, on the other hand, is the one that shows a higher improvement (this specific

example will be further explained later). Second, improvements increase with respect

to the ones shown in Table 3.3, where F remained constant along the video sequence,

so the adaptation ability seems to have a positive impact on the results.

With the aim of illustrating these ideas with specific examples, Figure 3.1 shows

the conditional probability density function (pdf) of λ∗

i given λ, P (λ∗

i /λ), for Akiyo

and Foreman. As long as the relation λ∗

i = λmotion is accurate, the mean of P (λ∗

i /λ)

would tend to λmotion and its variance would tend to zero. As can be observed, the

variance is higher in Foreman than in Akiyo, and P (λ∗

i = λmotion) is significantly

lower.

These results show some correlation between λ∗

i and motion content and, accord-
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ing to Table 3.5, this correlation can be observed for the rest of the video sequences.

In particular, λmotion is not an accurate estimation for sequences such as Foreman,

which exhibits random motion due to the hand-holding camera and the large head

movements. In contrast, λmotion turns out to be quite an accurate estimation for

sequences such as Akiyo, which was captured with a static camera and shows small

head movements.

In accordance with these results, which suggest that there seem to be certain

correlation between the motion content and the accuracy of the λmotion(λ) relation,

[Zhang et al., 2010] identified content-related events for which λmotion needs to be

adjusted to improve R−D performance. In particular, motion content described by

high module and random-pointing MVs will be better coded by means of a modified

version of the λmotion(λ) relationship.

This malfunction has been related in the literature with the high rate model

implemented in the JM15.1 for the R, as only the transformed coefficients are con-

sidered in the model. Therefore, whenever the side information (MVs, headers) is

comparatively similar to the transformed coefficients information, which is whenever

the block-matching model fails to produce small differential MVs, the model tends

to be inaccurate, and this can be compensated by means of increasing λmotion. Some

video transitions that compromise the block-matching model are described in [Boyce,

2004], [Budagavi, 2005] and [Kamikura et al., 1998], naming the complex translational

movements, rotations, fades or blurring.

To prove this hypothesis, the previous analysis is repeated focusing on selected

video segments for which it is known a priori that ME does not work correctly, such

as non-translational events (fade transitions, rotation, blurring, etc.) or complex

movements.

To this purpose, λ∗

i values resulting from encoding each MB of a set of selected
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Table 3.6: Probabilities (%) of selecting a λ∗

i lower, equal, or higher than λmotion =
√
λ

for a selected set of ME-compromising video segments.

# Frames P (λ∗

i < λmotion) P (λ∗

i = λmotion) P (λ∗

i > λmotion) ∆R(%) ∆Y (dB)

Airshow (rotation) 150 3.76 70.52 25.72 -6.01 0.34
Corvette (fade in) 8 5.74 36.05 58.21 -14.19 0.77
Ice age (cross-fade) 42 4.36 55.58 40.06 -8.89 0.60
Sintel (rapid mov.) 73 3.40 73.98 22.62 -5.61 0.37

video segments (using the same encoder configuration as in Table 3.4) are gathered.

Results are shown in Table 3.6. When comparing these results to those of Table

3.5, which referred to standard sequences, it becomes obvious that the probability

of λ∗

i = λmotion is significantly lower for these selected ME-compromising segments.

Furthermore, for the particular case of fade transitions, P (λ∗

i > λmotion) is compara-

tively as high as P (λ∗

i = λmotion) or even higher for the case of Corvette. This result

is due to that ME is not properly managing the illumination changes and this fact

affects the whole frame in such a manner that every MB in the frame is affected by

this inaccurate ME.

This also explains the results shown for Ice Age in Table 3.5. As Ice Age is a

video sequence which shows fade transitions between near-static video fragments,

most of the time is showing static video content similar to Akiyo and using the

reference λmotion value. However, on frames in which those transitions occur λ∗ 6=

λmotion is selected, affecting the whole frame and subsequently, obtaining important

improvements in terms of coding performance.

Another aspect to take into account is that, apart from the weaknesses of the

high rate model mentioned in [Zhang et al., 2010], there are also situations in which

the λmotion multiplier needs to be diminished to increase the weight of the Dmotion

term. Therefore, an additional conclusion can be extracted from Table 3.6. The

improvement in coding performance is significantly higher than the one obtained
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with the previous set of video sequences, and part of this improvement may be due

to the use of λ∗ < λmotion in some frames.

In summary, it is hypothesized that the estimation of the Lagrangian parameter

in Jmotion can be improved for ME-compromising events. In other words, although

every sequence shows a certain percentage of λ∗

i 6= λmotion, it is specially in these

cases where the estimation of the Lagrangian parameter in Jmotion should be adapted

to produce a MV more similar to the one that would be obtained by evaluating J .

3.1.3 Jmotion as a low-complexity alternative to J

In this section the differences between Jmotion and J are discussed in order to gain

insight into the causes that may lead to poor performance of Jmotion.

To find the optimal MV, the ME process should ideally evaluate J for all the

points in the search area. Given that this process is not computationally feasible, the

ME process optimizes Jmotion instead (2.13), which can be viewed as a low-complexity

estimation of J and can be rewritten (from (2.13)) as follows:

Jmotion =
∑

(x,y)∈MB

∣∣∣I (x, y)− Î (x, y)
∣∣∣+ λmotionRmotion, (3.5)

where x and y are the horizontal and vertical coordinates within the MB; I (x, y) is

the luminance of the pixel (x, y) in the original MB; Î (x, y) is the luminance of the

pixel (x, y) in the predicted MB; and Rmotion is an estimation of the amount of bits

needed to encode the residual transformed coefficients. In other words, the goal of

the ME process is to obtain, by minimizing Jmotion, the same (MV, RF) pair that
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would have been obtained by optimizing J , which can be rewritten as follows:

J =
∑

(x,y)∈MB

(
I (x, y)− Ĩ (x, y)

)2

+ λ (Rcoeffs +Rside) , (3.6)

where Ĩ (x, y) is the luminance of the pixel (x, y) of the reconstructed MB; Rcoeff is

the amount of bits allocated to the transformed coefficients information; and Rside

represents the side information needed to represent the MV, RF, mode, headers, etc.

The difference between the distortion terms in (3.5) and (3.6) comes from the

SAD calculation and the use of the predicted reference Î (x, y) in Jmotion instead of

the SSD calculation and the reconstructed MB Ĩ (x, y) in J . The difference between

the rate terms is also clear: Jmotion uses an estimation of the bits allocated to the

reconstructed coefficients, while J considers the actual rate including also the side

information.

Thus, Jmotion relies on low-complexity estimations of the R and D terms in J .

When these estimations produce significantly different errors, the balance between

Rmotion and Dmotion moves from that of D and R, making the minimization of Jmotion

to, very likely, fail to produce the same MV than that of J . In these cases, one option

could be to adapt λmotion to compensate for this unbalance.

3.1.4 When Jmotion does not work properly: an illustrative exam-

ple

To illustrate the correlation between the ME-compromising situations and the lack

of accuracy of the λmotion(λ) relation, in this section an example that deals with

a cross-fade transition is developed. Fade transitions are characterized by general

illumination changes that severely affect the performance of the block-matching model
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Figure 3.2: Frames #253 (left) and #254 (right) of Ice Age. MVs are superimposed
on the #254 frame.

implemented in the reference software JM15.1, which was specifically designed for

translational movements and is not able to cope with illumination changes2.

The selected example consists of a cross-fade happening between two consecutive

frames (#253 and #254) of Ice Age. Figure 3.2 shows the two considered frames,

where it can be seen that frame #254 is comparatively lighter than frame #253, due

to the transition. In this example, first, the reference software implementation is

used and the MV is selected by optimizing Jmotion. This approach will be referred as

Reference Decision (RFD). The MVs obtained following the RFD approach (using

the frame #253 as reference) are superimposed on frame #254. As can be observed,

some large MVs appear on regions where there is no actual movement. These MVs

appear due to illumination changes that make the ME find in the search area positions

with similar mean luminance comparing with the original MB, minimizing the SAD

sufficiently to be worth sending a MV. However, intuitively, the co-located MB seems

to be the best option, as it would not need to send a MV and only the DCT coefficients

2It should be noted that there are specific methods to deal with illumination changes, such as
weighted prediction [Boyce, 2004], but such solutions are out of the scope of this work since they
are not centered around the RDO process.
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(a) ME process

(b) MD process

Figure 3.3: Comparative illustration of RFD (top row) and MRD (bottom row) in
both the ME (a) and MD (b) processes.

would be needed to encode the residue.

In order to explain this hypothesis in more detail, a different ME process which

uses a modified cost function Ĵmotion (3.4) was employed, allowing us to deliberately

alter the balance between Dmotion and Rmotion. An arbitrarily large Fi value is em-

ployed in order to select the MV that minimizes Rmotion, allowing to evaluate the
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co-located MB as a coding option. This approach will be called Minimum Rate

Decision (MRD).

Figure 3.3 shows a parallel analysis of the two processes considered, RFD (top)

and MRD (bottom) in order to prove our hypothesis. Figure 3.3(a) focuses on the

ME process (Jmotion optimization) showing the predicted MBs, the residues, and their

histograms. Figure 3.3(b) focuses on the MD process (J optimization) depicting

the DCT coefficients (before and after the quantization process), the reconstructed

residues, along with their histograms and the reconstructed MBs.

As can be observed in Figure 3.3(a), the RFD residue presents a lower mean value

than that of MRD, which ultimately leads to a lower SAD. Moreover, the difference

in SAD values is high enough to be worth sending MV information, as the Rmotion

for RFD is higher. However, it should be noted that the variance of the residual is

higher for the RFD residue than for that of MRD. Considering that MRD points

to the co-located MB and the transition is just an illumination change, this higher

variance makes us think that more AC coefficients will be needed to encode the RFD

proposal, compared with the MRD one.

Nonetheless, at the end of the ME process in Figure 3.3(a), the JM15.1 reference

software would select RFD as best.

Moving forward to Figure 3.3(b), when the DCT coefficients are obtained, it

becomes clear that the RFD transformed residual presents higher AC coefficients

and, on the contrary, the MRD transformed residual mainly presents DC coefficients

(changes in mean illumination), as it was hypothesized. Therefore, when reconstruct-

ing the MBs, the illumination change is being properly modeled by sending the DC

coefficients only, and the SSD value is significantly lower in comparison with that of

RFD, which had more information in the quantized AC coefficients.

Furthermore, the cost in terms of R for RFD is higher because of the MV that
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needs to be sent besides the AC coefficients, which are less efficiently coded than the

DC ones because they do not provide long runs to the entropy coding phase. However,

the Rmotion estimation seems to have been more accurate than the Dmotion one, as

it was stated in the ME process that the RFD solution would be more expensive in

terms of allocated bits.

As a result, MRD provides a more efficient solution to the optimization problem

than RFD, and this has been caused by an overestimated Dmotion value in MRD,

making the balance between Dmotion and Rmotion to be dominated by the estimation

error in Dmotion: although Rmotion for RFD is significantly higher than that of MRD,

the MV chosen is not the co-located because of the SAD term.

Figure 3.4 provides a graphical explanation from the Lagrange optimization theory

point of view [Ortega and Ramchandran, 1998], using real R − D data taken from

the previous example.

The ME process is illustrated in the left part of the figure, where the two com-

pared solutions are depicted in the Rmotion −Dmotion space labeled as MVRFD (MV

associated with RFD) and MVMRD (MV associated with MRD). The optimal solu-

tion for a given λi is the operating point in the Rmotion −Dmotion space that first hits

a plane wave of slope λi (dashed lines in Figure 3.4). Therefore, as shown, MVRFD

becomes the best solution for λi = λmotion while MVMRD provides the lowest-rate

solution (λi arbitrarily large).

The MD process is shown in the right part of the figure. The two compared

operating points, MVRFD and MVMRD, are depicted in the R − D space and the

optimal solution for a given λ is the one that is first overlapped by a plane wave of

slope λ. In this case, where the terms R and D are not estimations, MVMRD becomes

the optimal solution for this particular example.

It can also be seen from the MVRFD and MVMRD positions in both cases that
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(a) Coding option selection in the ME process. (b) Coding option selection in the MD process.

Figure 3.4: Graphical illustration of the optimal coding option selection.

an important error in the estimation of the D term has been made, as their relative

positions in terms of R are similar, but in terms of D, their positions significantly

change from ME to MD.

In the same manner as has been explained so far, it is natural to think of the

inverse situation for the cases in which λ∗

i < λmotion: sometimes λmotion would pro-

duce a solution for which the Rmotion term is overestimated (Rmotion-biased solution)

that could be corrected by giving more weight to the Dmotion term (Dmotion-driven

solution), which can be implemented just by using Fi = 0. This alternative approach

will be referred to as Minimum Distortion Decision (MDD).

In summary, ME-compromising situations can lead to Rmotion or Dmotion-biased

solutions, which will require the encoder to be able to select a different λmotion value

in order to make a more accurate decision in Jmotion. From this study, the inefficient

high rate approximation considered in [Zhang et al., 2010] has been generalized, by

also characterizing situations in which the Dmotion term needs to be strengthened.

It is also important to note that these biased solutions can occur in every MB of
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every video sequence. However, as it has been studied, the likelihood of occurrence

is significantly higher in these ME-compromising situations.

3.2 Proposed Method

This Section describes a computationally efficient method to find a more suitable

value of λmotion. In previous experiments, 21 different Fi values were evaluated for

each MB, which is computationally unfeasible. Therefore, an statistical analysis on

which Fi values are more likely to be selected will be carried out first. Then, a new

method will be proposed that applies extra Fi evaluations only in the cases in which

a change in the reference λmotion(λ) relationship likely improves the coding efficiency.

3.2.1 Reduced set of λi values

The modified cost function Ĵmotion involving 21 different factors Fi has been useful to

set the motivation for this work, but becomes computationally impractical for coding

purposes. Therefore, it is necessary to propose an alternative that allows us to take

advantage of using a more suitable Lagrangian parameter in Jmotion without incurring

a significant increase of the computational cost.

To this end, we decided to select a reduced set of three λi values: one higher than

λmotion, which would allow for compensating Dmotion-biased solutions, one lower than

λmotion, which would allow for compensating Rmotion-biased solutions, and λmotion.

In so doing, it seems reasonable to select the extremes, λi = 0 and λi arbitrarily

large (hereafter called λi → ∞), since they would allow for avoiding the potentially

largest errors. Interestingly, λi = 0 corresponds to the MDD discussed previously,

and λi → ∞ to the MRD.
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Table 3.7: Probability (%) of selecting each λi value.

i P (λ∗

i = λi) i P (λ∗

i = λi)
0 1.94 11 1.01
1 0.51 12 0.82
2 0.60 13 0.68
3 0.45 14 0.64
4 0.37 15 0.50
5 82.58 16 0.47
6 2.27 17 0.39
7 1.96 18 0.39
8 1.67 19 0.33
9 1.27 20 0.33
10 1.16

To study the suggested solution more in depth, λi values from encoding each MB

of a set of video segments were gathered.

For these experiments, we used an IPPP GOP pattern at 30 fps, four QP values

(20, 24, 28, 32) and RDO enabled (both video segments and encoder configuration are

further described in Section 3.3). The obtained results are shown in Table 3.7, where

the reference value, λmotion, is labeled as i = 5, which corresponds to F5 = 0.2×5 = 1.

Regarding the λi < λmotion values, it seems reasonable to select λi = 0 since

it clearly exhibits the highest probability among the λi values which increase the

influence of the Dmotion in the cost function.

Regarding the λi > λmotion values, the probabilities are dispersed and they de-

crease with the increment of i, which suggests that taking a unique λi > λmotion value

is unsuitable. However, it has been observed that whenever a certain λi reaches the

global minimum of Rmotion by selecting the predicted motion vector (MVp), any λj

(with j > i) will obtain the same pair of (MV, RF), as more emphasis is applied on

the Rmotion term, which has already reached the global minimum, and the cost func-

tion will provide the same result (Jmotion(λi) = Jmotion(λj)). Moreover, this behavior
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will lead to choose λi as best in our study3.

Thus, taking this behavior into consideration, it was studied the probability of

selecting as optimal the λi that first yields the MVp as a solution for the cost function

minimization, obtaining a 69% of selection among all the other cases. Then, it is

proposed to compensate the Dmotion-biased solutions with the λi value that leads to

the MVp as optimal, which ultimately can be represented as λi → ∞.

As a conclusion, λi = 0 and λi → ∞ (MDD and MRD, respectively) are proposed

as statistical good candidates to be evaluated in the ME process of each MB, also

fulfilling the goal of avoiding large errors.

In terms of computational efficiency, it must be highlighted that during the ME

process, the Dmotion and Rmotion terms are computed for each position in the search

area. Therefore, only one ME pass is required to obtain the three MVs sought.

Subsequently, these MVs should be tested on J to obtain the optimal coding option.

To reduce the computational cost associated with the two additional J evalua-

tions, it is proposed to assess MDD and MRD only for the 16x16 pixel block size,

which is the most likely one [Mart́ınez-Enŕıquez et al., 2010] and assess the rest of

coding modes only with the λmotion value. Furthermore, to achieve higher compu-

tational savings, when the reference pair (MV, RF) turns out to be the same than

that obtained by either MDD or MRD, only this reference pair (MV, RF) is tested

in the MD process since the third option becomes very unlikely (MDD and MRD

actually represent “opposite” solutions). As a result, as empirically shown in the

next section, the proposed coding process does not incur a significant increment of

the computational cost with respect to the reference coding process.

3The implementation has been done in a way that whenever two different λi produce an equal
J in the MD stage, the lower λi is selected as best.
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3.2.2 Summary of the Algorithm

The complete algorithm is summarized in Algorithm 2.

Algorithm 2 Proposed coding process of an MB.

1: {ME process (Jmotion)}
2: Obtain (MVRFD, RFRFD), (MVMRD, RFMRD), and (MVMDD, RFMDD) for 16x16

block size.
3: Obtain (MVRFD, RFRFD) for the remaining available modes.
4: {MD process (J)}
5: if (MVRFD, RFRFD) 6= (MVMRD, RFMRD) and (MVRFD, RFRFD) 6=

(MVMDD, RFMDD). then
6: Test (MVRFD, RFMRD), (MVMRD, RDMRD), and (MVMDD, RFMDD) for 16x16

on J .
7: Test (MVRFD, RFRFD) for the remaining available modes on J .
8: else
9: Test (MVRFD, RFRFD) for all the available modes on J .

10: end if
11: Select optimal mode: min J .
12: return Best mode.
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3.3 Experimentation

The proposed algorithm was implemented in the H.264/AVC JM15.1 reference soft-

ware [JVT, 2010]. The test conditions were selected according to the recommen-

dations of the JVT [Sullivan, 2001], namely: main profile, ±32 pixel search range,

Context-Adaptive Binary Arithmetic Coding (CABAC), and RDO enabled. More-

over, an IPPP GOP pattern and four QP values (20, 24, 28 and 32) were used. Table

3.8 summarizes the encoder configuration.

To assess the proposed algorithm in terms of R−D performance, the average bit-

rate differences (∆R(%)) and the average PSNR differences (∆Y (dB)) of the luma

component were used, as in Section 3.1.1. Moreover, to evaluate the computational

complexity of the proposed algorithm, the time increment (∆T (%)) was calculated

as follows:

∆T =
Tmethod − TJM15.1

TJM15.1

× 100(%), (3.7)

where Tmethod is the encoding time of the proposed method and TJM15.1 is the encoding

time of the reference JM15.1 software.

The proposed algorithm was tested with respect to the H.264/AVC reference

software and with respect to an state-of-the-art algorithm called Context-Adaptive

Lagrange Multiplier (CALM) [Zhang et al., 2010], which suggests a context adap-

tive adjustment of λmotion based on thresholds to improve coding efficiency. The

comparative assessment was performed on a varied set of video segments exhibiting

ME-compromising events to show the improved performance of the proposed algo-

rithm in these cases. This video segments are of three different resolutions: CIF

352x288, Standard Definition (SD) 720x576 and High Definition (HD) 1280x720.

Since the proposed algorithm aims to improve the ME process, it was first tested

avoiding potential interference from spatial prediction tools (Intra modes in Inter
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Table 3.8: Encoder configuration.

Parameter Value
Profile IDC Main

QP 20, 24, 28, 32
GOP IPPP @ 30 fps.

ME algorithm Fast Full Search
Search Range ±32

# RFs 3
Symbol Mode CABAC

RDO ON

frames were disabled). Then, the coding performance was tested adding the spatial

prediction tools (this will be referred to as overall coding performance). Additionally,

an upper performance bound was computed resulting from assessing a large set of λi

values.

Subsequently, the contribution of each part of the proposed algorithm (MDD and

MRD) was analyzed in detail. Finally, two illustrative examples of the improved

subjective quality achieved by the proposed algorithm are also provided.

3.3.1 Evaluation of the ME performance

The proposed method aims to improve the performance of the ME process by avoiding

suboptimal choices of MVs. Therefore, the first experimental evaluation was directed

to assess the actual improvement of the ME performance. To this end, the use of

Intra modes in Inter Frames was disabled since this coding tool can mask failures

of the block-matching model. Table 3.9 shows the obtained results. For each of the

considered sequences, the mean values of ∆T (%), ∆R(%), and ∆Y (dB) across the

four QP values are shown. Additionally, the last row of the table shows the mean

values for all the sequences.

These results reveal that the proposed algorithm clearly improves the JM15.1
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coding performance under the same experimental setup. Specifically, the proposed

algorithm obtains an average ∆R reduction of −9.27% for the same coding quality

with respect to the reference software. Alternatively, these improvements can be seen

in terms of ∆Y , where the proposed algorithm achieves an average gain of 0.52 dB.

It is important to highlight that a higher gain is obtained on video segments where

fade transitions take place, such as Mobisode or Corvette, where ∆R reductions of

−21.18% and −32.60% are obtained, respectively (0.82 dB and 1.95 dB in terms

of ∆Y ). This is due to the fact that the optimal value of λmotion in these cases is

different from the reference one with high probability, as it was shown in Section

3.1.2 for Corvette in Table 3.6.

Comparing with CALM algorithm, the proposed method produces better coding

quality with a slightly higher complexity increment. It should be noted, however,

that CALM works better in the low-complexity RDO scenario (RDO off).

Regarding the computational complexity, a good compromise has been achieved

as ∆T reaches an average value of 3.07% comparing with the reference software

and 1.74% comparing with CALM, while providing very significant improvements in

terms of R − D performance. Moreover, looking at the individual video segments,

the highest value of ∆T incurred by the proposed method is close to 4%, while the

worst case for CALM is close to 14%.

3.3.2 Evaluation of the overall coding performance

To evaluate the overall coding performance, the Intra modes in Inter Frames coding

option was enabled in the JM15.1 reference software. It is expected that the use of

the Intra mode coding tool compensates for some ME failures and, consequently, the

performance improvement achieved by the proposed algorithm is lower than the one
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Table 3.9: Performance evaluation of the proposed algorithm relative to JM15.1 with
Intra coding in Inter frames disabled. Comparative results of CALM [Zhang et al.,
2010] are also provided.

Proposed method CALM
Sequence Effect # Frames ∆T (%) ∆R(%) ∆Y (dB) ∆T (%) ∆R(%) ∆Y (dB)

Ice Age (CIF) cross-fade 42 1.87 −9.34 0.64 0.16 0.40 0.02
Ice Age (CIF) cross-fade 13 2.89 −11.24 0.76 0.19 0.50 0.02
Nature (CIF) blurring 100 2.08 −1.67 0.08 0.00 0.01 0.00
Airshow (SD) rotation 150 3.33 −6.64 0.40 0.20 0.56 0.00
Corvette (SD) fade in 8 2.96 −32.60 1.95 0.63 −0.75 0.06
Corvette (SD) zoom in 50 4.03 −0.40 0.01 1.68 −0.01 0.00
Corvette (SD) zoom out 5 2.73 −0.58 0.03 14.06 −0.10 0.01
Mobisode (SD) cross-fade 20 2.34 −21.18 0.82 −1.15 0.84 0.01

Controlled Burn (HD) cross-fade 10 3.16 −15.86 0.82 −0.38 −1.77 0.10
Dinner (HD) blurring 62 3.98 −4.22 0.22 0.11 −0.73 0.02
Dinner (HD) zoom out 100 4.10 −1.05 0.05 −0.19 −0.24 0.01
Sintel (HD) rapid mov. 73 3.37 −6.43 0.41 0.64 −0.21 0.01

Average 3.07 −9.27 0.52 1.33 −0.13 0.02

obtained in section 3.3.1.

The obtained results are shown in Table 3.10, where an average −2.20% of ∆R

reduction is achieved in comparison with the reference software. Alternatively, in

∆Y terms, an improvement of 0.12 dB is obtained. On the one hand, the best

results continue to appear in sequences exhibiting fade transitions such as Ice Age

and Corvette for the same reasons (now softened by the use of the Intra modes).

On the other, the performance improvements becomes less relevant in zoom-type

transitions, where the results tend to be similar to those of the reference.

In summary, it can be concluded that despite the use of the Intra mode coding

tool overcomes some of the problems associated with ME-compromised events, the

proposed algorithm still provides significant R −D improvements in exchange for a

low increment of computational complexity. Moreover, the evaluation of the reference

λmotion prevents the proposal from incurring significant losses when the alternative

value does not apply.

As can be seen for the experimental protocol used in this paper, CALM does
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Table 3.10: Performance evaluation of the proposed algorithm relative to JM15.1
with Intra coding in Inter frames enabled. Comparative results of CALM [Zhang
et al., 2010] are also provided.

Proposed method CALM
Sequence Effect # Frames ∆T (%) ∆R(%) ∆Y (dB) ∆T (%) ∆R(%) ∆Y (dB)

Ice Age (CIF) cross-fade 42 −0.55 −7.57 0.50 −0.65 −0.47 0.02
Ice Age (CIF) cross-fade 13 1.21 −4.98 0.32 −1.25 −0.24 0.02
Nature (CIF) blurring 100 1.84 −1.81 0.09 0.51 0.26 −0.01
Airshow (SD) rotation 150 3.22 −0.85 0.04 0.47 −0.03 0.01
Corvette (SD) fade in 8 5.17 −6.21 0.28 1.24 −0.15 0.01
Corvette (SD) zoom in 50 3.79 −0.14 0.00 −0.30 0.00 −0.01
Corvette (SD) zoom out 5 5.12 −0.56 0.03 2.21 −0.04 0.00
Mobisode (SD) cross-fade 20 3.53 −2.70 0.06 −0.54 0.76 −0.03

Controlled Burn (HD) cross-fade 10 2.29 −1.18 0.04 −0.88 0.03 0.00
Dinner (HD) blurring 62 3.33 0.19 0.00 0.07 0.04 0.00
Dinner (HD) zoom out 100 3.55 −0.30 0.01 0.75 0.00 0.00
Sintel (HD) rapid mov. 73 3.32 −0.31 0.02 1.23 −0.13 0.00

Average 2.99 −2.20 0.12 0.24 0.00 0.00

not provide any average improvement with respect to the reference software, likely

because it was conceived for RDO-disabled operation.

Finally, note that the computational cost is just slightly higher in the proposed

algorithm than in the reference software. Specifically, using the proposed algorithm

implies a 2.99% increment of ∆T with respect to the reference.

3.3.3 An upper performance bound

An extended version of the algorithm that assesses 40 different λmotionvalues was

also tested with the aim of providing an upper performance bound. The procedure

described in Section 3.1.2 was used for i ∈ [0, 1, · · · , 40] in (3.3). Table 3.11 shows

comparative results between the proposed method and this upper performance bound.

As can be observed, although the upper performance bound clearly improves the

results of the proposed method, the room for improvement is quite moderate in aver-

age. However, when considering some specific video sequences as Ice Age or Corvette

(fade in), the upper performance bound is not better in terms of coding efficiency,
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Table 3.11: Performance evaluation of the proposed algorithm with respect to an
empirical upper bound. Results in both cases are relative to JM15.1 with Intra
coding in Inter frames enabled.

Proposed method Upper Bound
Sequence Effect # Frames ∆T (%) ∆R(%) ∆Y (dB) ∆T (%) ∆R(%) ∆Y (dB)

Ice Age (CIF) cross-fade 42 −0.55 −7.57 0.50 1924 −6.79 0.48
Ice Age (CIF) cross-fade 13 1.21 −4.98 0.32 2022 −4.42 0.29
Nature (CIF) blurring 100 1.84 −1.81 0.09 1748 −2.58 0.12
Airshow (SD) rotation 150 3.22 −0.85 0.04 1927 −2.34 0.11
Corvette (SD) fade in 8 5.17 −6.21 0.28 2130 −5.70 0.24
Corvette (SD) zoom in 50 3.79 −0.14 0.00 1977 −2.11 0.09
Corvette (SD) zoom out 5 5.12 −0.56 0.03 1908 −2.26 0.13
Mobisode (SD) cross-fade 20 3.53 −2.70 0.06 2106 −4.61 0.14

Controlled Burn (HD) cross-fade 10 2.29 −1.18 0.04 2089 −1.81 0.06
Dinner (HD) blurring 62 3.33 0.19 0.00 1984 −1.41 0.06
Dinner (HD) zoom out 100 3.55 −0.30 0.01 2064 −3.49 0.15
Sintel (HD) rapid mov. 73 3.32 −0.31 0.02 2036 −0.97 0.05

Average 2.99 −2.20 0.12 1993 −3.21 0.16

compared with the proposal (as can be expected). The reason is that decisions made

are locally optimal, following the independence consideration between MBs (seen on

Section 2.2.2), but since they actually affect the encoding of the neighboring MBs,

sometimes they can be globally sub-optimal. This is an empirical example of the

actual inter-dependency existing between decisions in different MBs.

Nonetheless, these results allow us to conclude that, although there is some room

for improvement, the proposed solution provides an excellent balance between per-

formance and computational cost: it achieves −2.20% bit-rate reduction (0.12 dB)

vs. −3.21% of the upper bound (0.16 dB) without incurring a significant increment

of the computational cost.

3.3.4 Evaluation of the MRD and MDD contributions

An analysis of the individual contributions of both MRD and MDD was performed to

assess their relative influence on the global performance. Table 3.12 shows the overall

coding performance of both MRD and MDD with respect to the reference software.
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Table 3.12: Independent performance evaluation of MRD and MDD.

MRD MDD
Sequence Effect # Frames ∆T (%) ∆R(%) ∆Y (dB) ∆T (%) ∆R(%) ∆Y (dB)

Ice Age (CIF) cross-fade 42 −0.46 −6.97 0.48 3.00 −7.14 0.49
Ice Age (CIF) cross-fade 13 −0.04 −4.00 0.26 2.88 −4.12 0.27
Nature (CIF) blurring 100 0.81 −1.86 0.09 4.28 −2.16 0.09
Airshow (SD) rotation 150 2.07 −0.23 0.01 3.92 −0.28 0.01
Corvette (SD) fade in 8 3.04 −6.61 0.29 4.15 −6.49 0.29
Corvette (SD) zoom in 50 3.36 0.52 −0.03 3.85 0.46 −0.02
Corvette (SD) zoom out 5 1.75 0.15 0.00 3.50 0.17 0.00
Mobisode (SD) cross-fade 20 −1.42 −2.89 0.07 1.18 −2.96 0.08

Controlled Burn (HD) cross-fade 10 −0.97 −1.15 0.04 0.39 −1.28 0.04
Dinner (HD) blurring 62 0.66 0.17 0.00 0.32 −0.02 0.01
Dinner (HD) zoom out 100 2.00 0.50 −0.03 1.44 0.48 −0.02
Sintel (HD) rapid mov. 73 3.01 −0.24 0.01 6.33 −0.16 0.01

Average 1.15 −1.88 0.10 2.74 −1.96 0.10

In the first case only MVMRD is considered together with MVRFD. In the second, it

is MVMDD the only additional MV considered. Interestingly, it is worth mentioning

that the ∆T (%) generated by MRD is low in comparison to that of MDD, due to the

fact that the probability of MVRFD being the same than MVMRD is higher than for

MVMDD.

It is also interesting to notice that, in some particular cases, working just with

MRD or MDD outperforms the complete algorithm. The reason is that decisions

made are locally optimal (for the current MB), but since they affect the encoding

of neighboring MBs sometimes they can be globally sub-optimal (as in the case of

the upper-bound). Under general considerations, it can be seen that the use of both

decisions, added to the RFD, contribute in a similar manner to obtain better coding

performance results when compared with the reference model.

3.3.5 Subjective quality evaluation

Additionally to the objective R−D results shown in previous subsections, a subjective

quality analysis of our proposal performance is carried out. To this purpose, two
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examples of reconstructed frames from two different video segments, obtained with

the reference software JM15.1 and the proposed method, are shown in Figures 3.5

and 3.6.

In the first example, one selected frame of the Ice Age video segment (specifically,

frame # 20) is encoded using both the reference software and our proposal, and the

corresponding reconstructions of that frame are comparatively shown. To make this

comparison as fair as possible, the QP value was adjusted so that the number of bits

produced by this frame would be almost the same in both cases; in particular, it takes

up to 8.3 Kb when encoded by the reference software and 8.2 Kb by the proposed

method. Figure 3.5 shows three versions of a selected area of the mentioned frame in

the Ice Age video segment: (a) original; (b) reconstructed by the reference software;

and (c) reconstructed by the proposed method. As can be inferred when comparing

Figures 3.5(b) and 3.5(c), a higher subjective quality is achieved by the proposed

method in comparison with the reference software. Specifically, when looking care-

fully at the region showing the snowy peak of the mountain, a lot of details are lost in

the frame reconstructed by the reference software, while several of them are preserved

in the version reconstructed by the proposed method. Another example can be found

in the low part of the figures, where two characters (at small size) can be observed:

in the reconstructed frame by the reference software one of this characters is missing,

while it still appears in the frame reconstructed by the proposed method.

In the second example, one selected frame of the Mobisode video segment (specif-

ically, frame # 17) is used. Again, the QP value was adjusted to obtain almost the

same number of bits with the reference software and with the described proposal;

specifically, 52.5 and 51.1 Kb, respectively. In Figure 3.6 three versions of a selected

area are shown (original (a), reconstructed by the reference software (b), and recon-
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(a)

(b) (c)

Figure 3.5: Illustrative example of the achieved subjective quality. (a) Selected part
of the original frame #20 of Ice Age; (b) reconstructed frame with the reference
software; and (c) reconstructed frame with the proposed method.

structed by the proposed method (c)). As it can be observed in Figures 3.6(b) and

3.6(c), in the region showing the bars of the stairs the proposed method achieves

better defined edges than the reference software. Moreover, this improvement can be

also observed in the shaded peak of the suit in the right part of each figure.

This higher subjective quality can be explained by the fact that the proposed

method improves the ME process, encoding some MBs in a more suitable manner.

In particular, the ME process produces MVs that follow better the actual motion, so

that for the same amount of bits than in the reference coding process, the encoder is
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(a)

(b) (c)

Figure 3.6: Illustrative example of the achieved subjective quality. (a) Selected part
of the original frame #17 of Mobisode; (b) reconstructed frame with the reference
software; and (c) reconstructed frame with the proposed method.

able to perform a better compression.
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3.4 Conclusions

In this Chapter an intensive study on when the λmotion(λ) model becomes ineffective

has been carried out, and an algorithm to improve the λmotion(λ) model and, con-

sequently, the ME process in the RDO-based H.264/AVC video codec is proposed.

Specifically, our proposal allows the encoder to choose between three different va-

lues of λmotion. Actually, this choice is limited to the Inter 16x16 partition size to

avoid incurring in a significant increase of the computational cost. For this partition

size, the proposed algorithm allows the encoder to additionally test λmotion = 0 and

λmotion → ∞, which corresponds to minimum distortion and minimum rate solutions,

respectively. By testing these two extreme values, the algorithm avoids to make large

ME errors in ME-compromising events, which refer to a wide set of content-related

events that make the block-matching model in the ME process to perform poorly; for

example: complex or non translational movement, edited transitions such as fades,

blurring, etc.

The proposed algorithm has been extensively tested with respect to the

H.264/AVC reference software and a state-of-the-art algorithm called CALM [Zhang

et al., 2010], which suggests a context adaptive adjustment of λmotion to improve

coding efficiency. Furthermore, the comparative assessment has been performed on

a varied set of video segments exhibiting ME-compromising events to show the per-

formance of the proposed algorithm in these cases.

The experimental results allow us to conclude that the proposed algorithm sub-

stantially improves the performance of the ME process (when Intra modes in In-

ter Frames are disabled), achieving average bit-rate reductions of −9.27% (0.52 dB

in quality gain) with respect to the reference software, while the CALM algorithm

achieves a bit-rate reduction of 0.13% (0.02 dB in quality gain). When considering
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the overall coding efficiency, the performance improvement is lower because the Intra

modes in Inter Frames actually compensate for some of the ME errors; nevertheless,

the performance improvement is still significant: an average bit-rate reduction of

−2.20% with respect to the reference software (0.12 dB in terms of quality gain);

while CALM does not achieve any improvement.

Furthermore, it has been experimentally tested the effectiveness of each of the

two additional λmotion values, concluding that both are equally important.

Finally, two illustrative examples of the improved subjective quality achieved by

the proposed algorithm have also been provided.
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Chapter 4

Lagrange Multiplier Selection for

Mode Decision in HEVC

In this chapter, all the contributions made to the rate-distortion optimization (RDO)

problem under the HEVC standard are described.

After a preliminary analysis on both the λ(QP ) and the λmotion(λ) relationships,

higher room for improvement in terms of coding performance was found in the revision

of the λ(QP ) relationship, which was found to be inaccurate when the video content

shows static backgrounds.

Then, we propose a method based on some coding-derived features concerning

the sum of absolute differences (SAD) between the current and the previous frame,

which adaptively decides whether a frame has static background or not and computes

a proper λ value, with a minimal amount of computing time increment.

This proposal has been tested over several video sequences and compared with two

versions of the HEVC reference software, HM12.0 [Bossen et al., 2013] and HM16.0

[McCann et al., 2014], and a state-of-the-art Lagrange multiplier selection algorithm

[Zhao et al., 2013]. This work has been submitted for publication [González-de Suso
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et al., 2016] and is currently under review.

This chapter is organized as follows: in Section 4.1, the motivation of the work

is described relying on a preliminary analysis of the λ(QP ) and the λmotion(λ) re-

lationships. Once the λ(QP ) relationship is pointed out as the most promising for

further work, the correlation between static background and the inaccuracy of the

λ(QP ) model is revealed. In Section 4.2, the proposed method is described, pro-

viding some insight into the design and parametrization of each module. In Section

4.3, we describe the experimental setup and the experiments conducted to assess the

performance of the proposed method in comparison with two different versions of the

HEVC reference software (HM12.0 and HM16.0) and a state-of-the-art algorithm.

Finally, in Section 4.4, some conclusions are drawn.

4.1 Motivation

4.1.1 Evaluation of the Lagrangian parameter model of HEVC

In this section, the Lagrangian parameter model of HEVC is tested in a variety of

situations in order to find leads for improvement. To that end, we have proposed

parametrized versions of both λ(QP ) and λmotion(λ) relationships. Specifically, a

parameter F is used to obtain different versions of the original λ(QP ) relationship;

and, similarly, a parameter Fmotion is used for λmotion(λ). These parametrized models

are tested for a wide range of parameters over 6 CIF video sequences using the coding

conditions summarized in Table 4.1.

Following the same strategy used in Chapter 3, we aim to find either an average

coding performance improvement by means of a modified version of the reference

relationship under study, or an improved coding performance for a subset of video
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Table 4.1: Summary of coding conditions

Parameter Value
GOP structure low-delay-P

fps 30
QP values [22, 27, 32, 37]

F [0.5 : 0.4 : 2.1]
Fmotion [0.5 : 0.4 : 2.1]

sequences that share common visual features (i.e. motion type, texture, background,

etc.).

Let us start by analyzing the λ(QP ) relationship, which is parametrized as follows

from its original form in (2.16):

λ = F · α ·Wt · 2(QP−12)/3, (4.1)

where F is the multiplying factor used to modify the relationship between λ and

the quantization parameter (QP) factor, α is a parameter whose value depends on

the frame coding type and the reference level, and Wt depends on the encoding

configuration (random-access or low-delay conditions) and the hierarchy level of the

frame within a group of pictures (GOP).

The coding performance achieved for each value of the F parameter in a wide

range is compared with the reference encoding using the HM16.0 reference software,

which corresponds to F = 1. To this purpose, both ∆R(%) to measure the incre-

ment in output bit-rate and ∆Y (dB) to measure the increment in objective visual

quality considering the luma component are computed using the procedure described

in [Bjontegaard, 2001] and [Bossen, 2013]. Obtained results are shown in Table 4.2.

It can be seen from the average performance values that increasing the F value

may lead to improvements in terms of coding performance, reaching a maximum
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Table 4.2: Coding performance results for several CIF video sequences and several
values of F .

Video Sequence
F = 0.5 F = 0.9 F = 1.3 F = 1.7 F = 2.1

∆R(%) ∆Y (dB) ∆R(%) ∆Y (dB) ∆R(%) ∆Y (dB) ∆R(%) ∆Y (dB) ∆R(%) ∆Y (dB)

Akiyo 12.45 -0.46 1.83 -0.07 -4.34 0.18 -7.79 0.33 -9.53 0.41
Coastguard -0.45 0.02 -0.17 0.01 1.42 -0.04 2.83 -0.09 3.66 -0.11
Foreman 2.32 -0.09 0.26 -0.01 -0.95 0.04 -1.58 0.06 -1.85 0.08
Ice Age 0.57 -0.03 0.00 0.00 0.71 -0.04 2.56 -0.14 3.62 -0.20
Nature 2.33 -0.10 -0.38 0.02 0.81 -0.04 2.75 -0.13 5.61 -0.25
News 7.81 -0.38 1.21 -0.06 -2.58 0.13 -4.94 0.25 -6.50 0.33

Average 4.17 -0.17 0.46 -0.02 -0.82 0.04 -1.03 0.05 -0.83 0.04

of −1.03% of bit-rate savings (0.05 dB in quality gain) for F = 1.7. Moreover, a

more detailed look allows us to notice that this improvement comes from a particular

subset of video sequences such as Akiyo, Foreman and News. The rest of the video

sequences actually show a decrement in coding performance when using a λ value

different from the reference one.

After further analyzing these 3 video sequences by considering their visual fea-

tures, it is clear that they all show a static background at some extent. This is

specially remarkable in Akiyo and News, where a news broadcast is shown, corre-

lating well with the higher improvement in coding performance for these sequences

comparing with the rest of them. In the case of Foreman, although there are parts

of the video sequence that show movement, there are also some parts where a static

background is present. Ice Age and Nature also show a static background, but since

there are fade transitions in the first and a deblurring effect which affects the entire

frame in the second, it can be concluded that they cannot be characterized as having

a static background in a narrow sense.

The same procedure is followed with the λmotion(λ) relationship in order to assess

its robustness. As in the previous case, the relationship is varied with respect to the

74



Chapter 4. Lagrange Multiplier Selection for Mode Decision in HEVC

Table 4.3: Coding performance results for several CIF video sequences and several
values of Fmotion.

Video Sequence
Fmotion = 0.5 Fmotion = 0.9 Fmotion = 1.3 Fmotion = 1.7 Fmotion = 2.1

∆R(%) ∆Y (dB) ∆R(%) ∆Y (dB) ∆R(%) ∆Y (dB) ∆R(%) ∆Y (dB) ∆R(%) ∆Y (dB)

Akiyo 0.37 -0.01 -0.04 0.01 0.10 0.00 0.37 -0.01 -0.03 0.00
Coastguard 0.29 -0.01 0.08 0.00 0.18 0.00 0.26 -0.01 0.48 -0.02
Foreman 0.61 -0.02 -0.23 0.01 0.40 -0.02 0.78 -0.03 1.97 -0.08
Ice Age 0.38 -0.02 0.21 -0.01 0.43 -0.02 0.56 -0.03 0.88 -0.05
Nature 0.19 -0.01 0.02 0.00 0.06 0.00 -0.22 0.01 -0.11 0.00
News 0.71 -0.04 -0.21 0.01 0.57 -0.03 0.41 -0.02 1.47 -0.07

Average 0.42 -0.02 -0.03 0.00 0.29 -0.01 0.36 -0.01 0.78 -0.04

reference version (2.14) by means of a multiplying factor:

λmotion = Fmotion ·
√
λ, (4.2)

where Fmotion is the multiplying factor that allows us to parametrize changes in the

relationship. Note that when Fmotion = 1, the reference relationship is used.

This Fmotion factor is varied in the same manner as F before (see Table 4.1),

comparing the coding performance achieved for each Fmotion value with that obtained

for the reference one. The results are shown in Table 4.3.

In this case, the average performance values show that the reference relationship

is actually robust among different video sequences, showing a negligible improvement

in coding performance for Fmotion = 0.9, with −0.03% bit-rate savings (no gain or

losses in terms of objective quality).

Thus, the robustness on the λmotion(λ) relationship and the room for improve-

ment found when varying the λ(QP ) relationship for video sequences such as Akiyo,

Foreman and News led us to perform a further analysis on the latter. Since the static

background video sequences were the ones for which the improvements were observed,

we suggest to further explore on previously tagged static and dynamic background

video sequences to find leads for improving the λ(QP ) relationship.
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Figure 4.1: Group of pictures structure for prediction under a low-delay-P profile.
References for frames 14 and 16 are shown.

4.1.2 A deeper analysis of the λ(QP ) relationship

In this section, to establish the motivation of our work, we first analyzed experimen-

tally the robustness of the relationship between λ and QP proposed for HEVC over

a set of video sequences with either a static or a dynamic background.

For that purpose, experiments were carried out over a set of 5 CIF and 5 HD video

sequences for a low-delay-P profile using several values of F . A low-delay-P profile

is suitable for static background sequences, as motion estimation is performed based

on previous reference frames (as shown in Figure 4.1) [Zhang et al., 2014]. In order

to draw reliable conclusions we have created toy-examples of short video segments of

only 20 frames, so that they can be considered stationary (i.e., 20 frames of purely

static or dynamic background). Moreover, a balanced number of static and dynamic

background sequences has been chosen1.

The encoder configuration used for these experiments is shown in Table 4.4. The

QP cascading parameter refers to the frame-to-frame QP adaptation illustrated in

1Hereafter, the terms static and dynamic will be used referring to static background video se-
quences and dynamic background sequences, respectively.
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Table 4.4: Encoder configuration

Parameter Value
#Frames 20

QP 22, 27, 32, 37
Profile Low-delay-P

QP cascading Off
IP -1

F Range [0.2, 9.0]
F Step 0.4

Figure 4.1 (see frames #1 to #4); IP stands for Intra Period, which is the number

of frames between Intra frames. To facilitate the study of the λ(QP ) relation, the

QP cascading scheme was switched off, i.e., all the experiments were conducted at

constant QP, and the IP was set to −1, which means that only the first frame is coded

as Intra. The bit-rate increment (∆R(%)) and objective visual quality increment

(∆Y (dB)) (as defined in [Bjontegaard, 2001] and calculated following the procedure

in [Bossen, 2013]) were used for assessing the coding performance in terms of bit-rate

savings (∆R < 0) and quality improvement on the luma component (∆Y > 0), while

the time increment ∆T (%) was used to evaluate the computational cost:

∆T =
Tmethod − THM16.0

THM16.0

· 100, (4.3)

where Tmethod is the encoding time associated with the method under evaluation and

THM16.0 is the encoding time of the reference encoder.
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Table 4.5: Coding performance for several F values in terms of ∆R(%) and ∆Y (dBs)
with respect to the reference HM16.0 software.

F = 0.2 F = 1.8 F = 3.4 F = 5.0
Tag ∆R(%) ∆Y (dB) ∆R(%) ∆Y (dB) ∆R(%) ∆Y (dB) ∆R(%) ∆Y (dB)

Akiyo (CIF) static 42.06 -1.56 -8.93 0.45 -13.38 0.72 -13.94 0.77
Foreman (CIF) static 21.15 -0.76 -3.36 0.14 -4.40 0.19 -3.13 0.13
Ice Age (CIF) static 48.83 -2.52 -1.42 0.09 -1.67 0.10 -1.54 0.09
News (CIF) static 25.39 -1.26 -5.01 0.28 -7.97 0.47 -8.51 0.50

Controlled Burn (HD) static 41.20 -1.44 -8.97 0.40 -14.21 0.67 -15.14 0.74
Snow Mountain (HD) static 36.05 -1.25 -9.65 0.38 -15.71 0.67 -17.21 0.77

Average static 35.68 -1.46 -6.22 0.29 -9.56 0.47 -9.91 0.50

Coastguard (CIF) dynamic 12.18 -0.56 2.22 -0.09 4.42 -0.16 7.79 -0.24
Pedestrian (HD) dynamic 11.16 -0.43 0.29 -0.01 3.49 -0.16 5.92 -0.27
Park Run (HD) dynamic 12.34 -0.60 0.92 -0.05 3.31 -0.15 9.19 -0.36
Speed Bag (HD) dynamic 6.02 -0.15 1.67 -0.07 6.71 -0.29 11.06 -0.47

Average dynamic 10.42 -0.29 1.27 -0.05 4.48 -0.19 8.49 -0.33

4.1.2.1 Influence of the Lagrange multiplier on coding performance

Results in terms of bit-rate savings and visual quality improvement, obtained for a

representative subset of the evaluated F multipliers, are shown in Table 4.5 (in fact,

a wider range of F values were tested, but for brevity reasons only the most relevant

subset is analyzed in this section). As can be observed, for some video sequences the

coding performance improves with larger values of F , achieving bit-rate savings of up

to −17.21% (or ∆Y (dB) increments of 0.77 dBs) for Snow Mountain. Specifically, we

observe that the coding performance improvement happens for those video sequences

with static background. For instance, Akiyo and News show a news broadcast where

the anchors move slightly while the background remains static.

From an optimization point of view, this improvement is due to the fact that the

notable reductions in the R term for high F values exceed the corresponding small

increments in the D term. Figure 4.2 illustrates the explanation of it. Let A and B

be two operating points of the R−D space. Given a λ value, the best coding option

is that of the R − D space which hits the straight line with slope λ. Consequently,

when incrementing λ (λ > λref ) a different coding option is selected (B instead of A).

In particular, since increasing λ emphasizes the weight of R in (2.5), the operating
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Figure 4.2: Selection of different R−D points by using different λ values.

point B accounts for a lower R and a higher D.

In the particular case of static video sequences, these notable reductions in the

R terms happen because the temporal prediction is more accurate, and coding with

larger CB sizes saves lots of bits in terms of headers, indexes, etc. On the contrary,

when considering dynamic video sequences, higher F values produce losses in video

coding performance (11.06% bit-rate loss for Speed Bag is the worst case). Further-

more, also lower F values produce worse results than the reference value (all the F

values produce positive bit-rate increments with respect to F = 1). As a result, we

decided to code dynamic sequences using the baseline model. Hence, there is a need

to determine in advance the type of background we are dealing with in order to either

using large F values in case of static backgrounds or keep the baseline λ(QP ) relation

(F = 1) in case of dynamic backgrounds.

Turning to static video sequences again, it should be noted that the optimum value

of F is different from one sequence to another. Furthermore, we have considered

stationary sequences (20-frame duration) in our experiments, but these conditions
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Table 4.6: Coding performance for several F values in terms of ∆T (%) with respect
to the reference HM16.0 software.

F = 0.2 F = 1.8 F = 3.4 F = 5.0
Tag ∆T (%) ∆T (%) ∆T (%) ∆T (%)

Akiyo (CIF) static 13.03 -1.58 -3.42 -2.32
Foreman (CIF) static 4.50 -1.56 -1.65 -1.60
Ice Age (CIF) static 1.60 -0.61 0.11 0.10
News (CIF) static 3.02 -0.26 -1.90 -2.63

Controlled Burn (HD) static 17.37 -3.44 -6.06 -7.19
Snow Mountain (HD) static 15.43 -3.82 -5.42 -5.35

Average static 10.99 -1.88 -3.06 -3.16

Coastguard (CIF) dynamic 5.40 -1.30 1.53 -3.73
Pedestrian (HD) dynamic 1.70 -0.33 -0.24 0.13
Park Run (HD) dynamic 5.56 1.98 4.59 5.96
Speed Bag (HD) dynamic 4.27 -0.91 -2.19 -2.88

Average dynamic 4.23 -0.14 0.92 -0.13

do not hold in real videos where scene changes, camera motions, or changes in the

background/foreground proportion happen. Hence, an algorithm able to estimate

dynamically a proper F value would be desirable.

4.1.2.2 Influence of the Lagrange multiplier on complexity

Regarding complexity, considered in Table 4.6 through the encoding time increment

∆T (%) defined above, it can be seen that increasing F results in computational cost

reductions for all static background video sequences. The reason can be found in

Figure 4.3, where the probabilities of choosing an specific coding block size when

encoding Controlled Burn (a static background sequence) at QP27 for F = 1 and

F = 3.4 are shown. Specifically, each graph shows the probability of each CB size

for a depth value (from 0 to 3, this value represents the depth reached by performing

quad-tree divisions following the coding tree block (CTB) structure described in

Section 2.1.1.2), where nextDepth refers to the probability of selecting a size of a

deeper depth. As can be seen, the reference software (F = 1) selects higher depths,
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close to zero. Additionally, note that this behavior in terms of selecting as best lower

depths using F > 1 correlates with the R−D oriented explanation done in the coding

performance analysis.

4.2 Proposed Method

4.2.1 Overview

The proposed method can be described through the following steps: (i) to obtain

features that describe the background of the video sequence, (ii) to classify, using

these features, between static and dynamic sequences; and (iii) to find a relation

between the features and the optimal F value in order to maximize gains in coding

performance. Furthermore, the design of the features, the classifier, and the F esti-

mation method should be done so that the method operates in an adaptive way and

does not incur increments in computational complexity.

The flowchart of the proposed method is summarized in Figure 4.4. In the Initial-

ization stage, F in (4.1) is set to 1. Then, for each frame, the corresponding features

are extracted. Next, a Classification stage determines whether the frame is static

or dynamic. If it is classified as dynamic, the F multiplier is set to 1; otherwise,

a Regression stage, which also relies on the previously extracted features, is run to

estimate a suitable F multiplier. Then, this F is used to encode the next frame and

the process is re-run for each new frame until the end of the video sequence. Two

points should be noted: (i) the proposed algorithm makes decisions on a frame basis,

starting from the second encoded frame, which makes it adaptive to changes in the

video sequence from the very beginning; and (ii) no training is required during the

encoding process because the Classification and Regression stages are defined off-line.
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Figure 4.4: Flowchart of the proposed algorithm.

4.2.2 Feature selection

In order to find features that allow classifying each frame as either static or dynamic

frame, all the video sequences used in Section 4.1 were tagged according to the

motion properties of their background as static or dynamic. Then, a set of motion-

related features such as the number of non-zero residual transformed coefficients,

the motion vectors, or the absolute difference between pixels of different frames were

tested to check if any allowed us to accurately differentiate between static or dynamic

backgrounds.

Among all the analyzed features, the absolute difference between one frame and

the previous one was found to be the most useful, as it is sensitive to any relative
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(a) Akiyo (static background). (b) Coastguard (dynamic background).

Figure 4.5: Absolute difference images between frames #2 and #3.

movement. It should be noticed that we aim to detect static backgrounds; therefore,

our feature should be sensitive to any type of movement. An illustration of this

idea is shown in Figure 4.5, where binarized absolute difference images from Akiyo

(tagged as static) and Coastguard (dynamic) are shown (white pixels represent high

feature values and black ones represent low values). As can be seen, the static

background of Akiyo produces nearly-zero absolute difference values, while higher

values are obtained for the anchor. In Coastguard, almost the whole frame produces

high absolute difference values, as expected from a non-static background.

To be more precise, for practical reasons, we rely on the sum of absolute differences

(SAD) between the current 64x64 CB and the co-located one in the previous frame,

which has been optimized to be efficiently calculated in the reference encoder and is

obtained as follows:

SAD =

SCB∑

x=1

SCB∑

y=1

|In(x, y)− In−1(x, y)|, (4.4)

where In(x, y) denotes the pixel value at the location (x, y) in the current frame,

In−1(x, y) denotes the same pixel in the previous frame, and SCB is the maximum
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CB size (which was set to 64). Another important advantage of using the SAD is

that it only depends on the maximum CB size and it is independent of the encoder

configuration parameters (QP, GOP structure, etc.).

As our classifier works on a frame-by-frame basis, we define the mean, SADm,

and the standard deviation, SADd, of the SADs:

SADm =
1

J

J∑

j=1

SADj, (4.5)

SADd =

√√√√ 1

J − 1

J∑

j=1

(SADj − SADm)2, (4.6)

where J is the number of CTUs in a frame. Additionally, SADm and SADd are

normalized by their mean and standard deviation values µSADm
and σSADm

(resp.

µSADd
and σSADd

) using:

SADm =
SADm − µSADm

σSADm

, (4.7)

SADd =
SADd − µSADd

σSADd

, (4.8)

where SADm and SADd are the normalized versions of SADm and SADd, respec-

tively.

In order to prove that the previous features are suitable to make a correct clas-

sification, we represent in Figure 4.6 SADd versus SADm for every frame k of the

considered video sequences. From data in Figure 4.6, two conclusions can be drawn.

First, it is feasible to design a classifier that distinguishes between static and dynamic

video sequences on this feature space. Second, both SADm and SADd features are

needed to solve the problem properly since relying only on SADm some of the frames
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to this expression:

C(SAD
(k)

m , SAD
(k)

d ) =





static if SAD
(k)

m < Tm and SAD
(k)

d < Td

dynamic otherwise

(4.9)

where C(SAD
(k)

m , SAD
(k)

d ) represents the classifying function, Tm is the threshold on

SADm and Td is the threshold on SADd.

These thresholds were obtained by evaluating the likelihood over the estimated

probability distributions of both SADm and SADd, given the tags static and dynamic.

Specifically, for the case of the parameter SADm, the threshold Tm was selected as

the value of SADm which satisfies the following equation:

P (SADm/static)

P (SADm/dynamic)
=

P (dynamic)

P (static)
, (4.10)

where P (SADm/static) and P (SADm/dynamic) are the likelihoods of obtain-

ing SADm given that the frame is either static or dynamic, respectively; and

P (static) and P (dynamic) are the a priori probabilities of static and dynamic.

P (SADm/static) and P (SADm/dynamic) were estimated through normalized his-

tograms [Bishop et al., 2006]; and P (static) and P (dynamic) were fixed to 0.6 and

0.4, respectively, considering the number of video sequences belonging to each cate-

gory. The same procedure was used to obtain Td, finally obtaining Tm = 0.009 and

Td = 0.463. Figure 4.6 shows the classification performance in the training set when

selected Tm and Td are used.
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Figure 4.8: Graphical relationship between Fopt, SADm and SADd.

in Figure 4.8, the relation between Fopt and SADm and SADd can be approximately

modeled by means of an exponential function. Thus, the proposed frame basis esti-

mation F̂ (k) of Fopt follows the next expression:

F̂ (k) = e(αSAD
(k)
m +βSAD

(k)
d

+δ), (4.11)

where α, β and δ are regression parameters that are found by converting the

previous expression into linear:

ln(F̂ (k)) = αSAD
(k)

m + βSAD
(k)

d + δ, (4.12)

and minimizing the mean squared error (MSE) between F̂ (k) and Fopt [Bishop et al.,

2006] as follows:
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w∗ =
(
XTX

)−1
Xs∗, (4.13)

where w∗ = [α, β, δ] is the optimal solution; X =
[
1 SAD

(1)

m SAD
(1)

d ; 1 SAD
(2)

m SAD
(2)

d ; · · · ; 1 SAD
(K)

m SAD
(K)

d

]
the extended matrix

gathering training data; and s∗ =
[
ln(F

(1)
opt ); ln(F

(2)
opt ); · · · ; ln(F

(K)
opt )

]
is the vector

collecting all the ln(F
(k)
opt ) values corresponding to each pair

[
SAD

(k)

m , SAD
(k)

d

]
for

k = [1, 2, · · · , K], being K the number of all frames used for the parameter training

process.

Finally, to adjust those estimations producing F̂ (k) < 1, which yields bad coding

performance results, the final relationship was modified to:

F̂ (k) = max
{
1.0, e(αSAD

(k)
m +βSAD

(k)
d

+δ)
}
. (4.14)

4.2.5 Additional processing

Some additional processing over F̂ (k) was done to avoid sudden changes of its value

from frame to frame, which was experimentally checked to negatively affect the coding

performance.

First, SAD
(k)

m and SAD
(k)

d features, used in the Classification and Regression

stages, were computed considering N frames instead of just the current one. In

particular, each feature was computed as the average value over the N − 1 previous

frames and the current one. This procedure makes the variation of F̂ (k) over k

smoother, reducing the likelihood of sudden changes. Regarding the parameter N ,

a trade-off should be considered: on the one hand, a high N is desirable because it

implies a smooth variation of the F̂ (k) multiplier. On the other, using a low N allows

the algorithm to quickly adapt to changes in the video content.
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Second, although the features from which F is estimated have been smoothed, a

clipping of the frame to frame variation of F̂ (k) has been also added. In particular,

F̂ (k) is updated as follows:

F̂ (k) =





max
{
F̂ (k), F̂ (k−1) − Th

}
if F̂ (k) ≤ F̂ (k−1)

min
{
F̂ (k), F̂ (k−1) + Th

}
if F̂ (k) > F̂ (k−1),

(4.15)

where F̂ (k−1) denotes the estimation for the previous frame and Th is the clipping

threshold, which enables a better control of F̂ (k) on a frame basis.

Proper values of N and Th (N = 10 and Th = 1.5) were selected using a set of

Train sequences (the ones in Table 4.7), achieving −1.08% bit-rate reduction (0.04

dBs of ∆Y ) evaluating on the Test video sequences in Table 4.7 with respect to a

version without this additional processing.
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4.2.6 Algorithm

The complete algorithm is summarized in Algorithm 3, where the specific values for

the parameters Tm, Td, Th, N, α, β and δ are given.

Algorithm 3 Proposed coding process.

Require: K number of frames.
Require: J number of CTUs.
Require: N = 10.
Require: Normalizing parameters µSADm

, σSADm
, µSADd

, σSADd
.

Require: Tm = 0.009, Td = 0.463.
Require: α = 0.62, β = 0.01, δ = 1.01.
Require: Th = 1.5.
Require: F̂ (0) = 1.
1: for ∀ k ∈ K do
2: for ∀ j ∈ J do
3: Compute SADj.

4: Use F̂ (k−1) in (4.1) to perform coding.
5: end for
6: Compute SAD

(k)
m and SAD

(k)
d .

7: Compute SAD
(k)

m and SAD
(k)

d using (4.7) and (4.8).

8: if ( 1
N
SAD

(k)

m + 1
N

∑N−1
n=1 SAD

(n)

m < Tm)

and ( 1
N
SAD

(k)

d + 1
N

∑N−1
n=1 SAD

(n)

d < Td) then

9: Compute F̂ (k) by using (4.14) and (4.15).
10: else
11: F̂ (k) = 1.
12: end if
13: end for

4.3 Experimentation

In this section, we first assess the two main subsystems of the proposed method,

i.e., the classifier and the regressor. Then, we evaluate the coding performance of our

proposal in comparison with the HEVC standard and a state of the art method [Zhao

et al., 2013]. Then, we test the capability of the proposed method to adapt to varying
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video content. Finally, we provide an illustration of the subjective quality.

4.3.1 Classifier and regressor assessment

Before assessing the coding performance of the proposed method, we have checked the

efficacy of its two main subsystems separately. To this purpose, we have used as Train

set the same set of sequences used in Section 4.1 and Subsection 4.2.4 and we have

added a Test set composed of 12 different sequences (see Table 4.7 for a complete list

of sequences). The type of background for all these sequences was manually labeled

and the same procedure of Subsection 4.2.4 was carried out to obtain Fopt.

To assess the classifier, the following accuracy measure was used:

A(%) = 100− 100

K
·

K∑

n=1

|TC − TGT |, (4.16)

where TC is the tag provided by the classifier (being 1 for static videos, and 0 for

dynamic videos), TGT is the ground-truth tag listed in the third column of Table 4.7,

and K the number of coded frames, which was set to 20.

The obtained results are shown in Table 4.7. An average accuracy of 93.33% was

obtained on the Test set, being almost perfect in 11 of the 12 video sequences.

To properly assess the regressor, the proposed method was compared with an “op-

timal” encoder using Fopt (fourth column of Table 4.7) for each static video sequence

(e.g., Akiyo was encoded with F = 5.4 and Foreman with F = 2.6).

Results in terms of visual quality and bit-rate increments, ∆Y (dB) and ∆R (%),

respectively, are shown in Table 4.8 with respect to the “optimal” encoder. As can

be seen, the proposed method incurs a bit-rate loss of 0.75% (or a visual quality loss

of −0.02 dB) for the Test set when compared to the “optimal” encoder. Since this

performance is quite close to that of the “optimal” encoder, we consider that the
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Table 4.7: Classification accuracy A(%) of the proposed method for both train and
test video sequences.

Sample type Sequence Tag Fopt A(%)

Train

Akiyo (CIF) static 5.4 100
Foreman (CIF) static 2.6 25
Ice Age (CIF) static 3.4 100
News (CIF) static 4.2 100

Controlled Burn (HD) static 5.8 100
Snow Mountain (HD) static 6.2 100
Coastguard (CIF) dynamic 1.0 100
Pedestrian (HD) dynamic 1.0 100
Park Run (HD) dynamic 1.0 100
Speed Bag (HD) dynamic 1.0 100

Average - - 92.50

Test

Bridge Close (CIF) static 4.6 100
Bridge Far (CIF) static 2.2 100
Container (CIF) static 3.8 100

Hall (CIF) static 5.4 100
Highway (CIF) static 2.6 100
Sequence 3 (SD) static 2.6 25

Tiger & Dragon (SD) static 3.4 100
Last Samurai (SD) static 3.0 100
In To Tree (HD) static 3.4 95
Sequence 10 (SD) dynamic 1.0 100

Soccer (CIF) dynamic 1.0 100
Riverbed (HD) dynamic 1.0 100

Average - - 93.33

regressor is performing well.

Finally, it is worth noticing that although there is little room for improving the

regressor, the classifier seems to be more critical: in the sequence exhibiting the

highest losses in terms of ∆R(%) (Foreman), the classification result is quite poor

(see Table 4.7).

In summary, these results prove that: (i) the proposed classifier allows us to

suitably detect static backgrounds for which to modify the F̂ (k) multiplier; and (ii)

the proposed regressor can obtain a proper F̂ (k) estimation.
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Table 4.8: Coding performance of the proposed method relative to that of an “opti-
mal” encoder using Fopt.

Proposed
Sample type Sequence Fopt ∆R (%) ∆Y (dB)

Train

Akiyo (CIF) 5.4 0.35 -0.02
Foreman (CIF) 2.6 3.66 -0.15
Ice Age (CIF) 3.4 0.07 0.00
News (CIF) 4.2 0.44 -0.02

Controlled Burn (HD) 5.8 0.70 -0.04
Snow Mountain (HD) 6.2 0.93 -0.05

Average - 1.02 -0.05

Test

Bridge Close (CIF) 4.6 2.02 -0.06
Bridge Far (CIF) 2.2 1.26 -0.02
Container (CIF) 3.8 0.00 0.00

Hall (CIF) 5.4 1.95 -0.09
Highway (CIF) 2.6 1.22 -0.03
Sequence 3 (SD) 2.6 0.36 -0.01

Tiger & Dragon (SD) 3.4 0.05 0.00
Last Samurai (SD) 3.0 -0.15 0.01
In To Tree (HD) 3.4 0.07 0.01

Average - 0.75 -0.02

4.3.2 Coding performance evaluation

The proposed method was implemented in the versions HM12.0 [Bossen et al., 2013]

and HM16.0 [McCann et al., 2014] of the reference software and the encoder con-

figuration was the one shown in Table 4.9. For the coding performance evaluation,

the set of video sequences has been extended with the E Sequences from the HEVC

evaluation corpus in [Bossen, 2013] (Four People, Kristen and Sara and Johnny).

Furthermore, 100 frames of every video sequence were encoded (instead of the 20

frames of previous analyses). It should be noticed that, as long as more frames have

been included for these experiments, it would have been more precise to rename the

types of sequences as mainly static or mainly dynamic to account for potential varia-

tions over the 100 frames. However, we have preferred to keep the original static vs.

dynamic division to study the behavior of the algorithm separately when applicable.
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Table 4.9: Encoder configuration for the HM12.0 and HM16.0 experiments.

Parameter Value
#Frames 100

QP 22, 27, 32, 37
Profile Low-delay-P

QP cascading On
IP (in HM12.0) -1
IP (in HM16.0) 32

4.3.2.1 Comparison with State of the Art

A first set of experiments was devoted to perform a comparison between the proposed

method and a state-of-the-art method [Zhao et al., 2013], which computes a λ value

for each CTU based on the proportion of static background. To that end, we used

HM12.0 because the authors of [Zhao et al., 2013] kindly provided us with an exe-

cutable file of their method implemented in HM12.0 and an encoding configuration

file with their coding conditions, which we used. The obtained results are shown in

Table 4.10.

For static video sequences, the proposed method achieves an average gain of

−13.80% in terms of bit-rate savings (or 0.46 dBs in terms of ∆Y ) with respect to

the reference software; while the method described in [Zhao et al., 2013] achieves

an average gain of −2.46% in ∆R (0.03 dBs in ∆Y ). Moreover, for dynamic video

sequences, our proposal applied the reference λ, limiting losses to 1.15% in terms of

bit-rate, while the method described in [Zhao et al., 2013] (not prepared to deal with

dynamic video sequences) incurred a bit-rate loss of 5.86%.

This notable performance difference can be explained by two main reasons: (i) the

proposal in [Zhao et al., 2013] trained the model “on the fly” at the beginning of the

encoding process, using M frames of the original video sequence. Thus, during these
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Table 4.10: Coding performance of the proposed algorithm and [Zhao et al., 2013]
relative to the HM12.0 reference software.

Reference [Zhao et al., 2013] Proposed Method
Tag ∆T (%) ∆R(%) ∆Y (dB) ∆T (%) ∆R(%) ∆Y (dB)

Akiyo (CIF) -3.73 -3.40 0.14 -11.88 -14.32 0.64
Bridge Close (CIF) -22.83 -1.15 0.03 -33.36 -22.50 0.59
Bridge Far (CIF) -22.38 -17.93 -0.12 -28.96 -22.55 0.08
Container (CIF) -10.35 -4.05 0.13 -17.54 -11.03 0.37

Hall (CIF) -22.40 -5.42 0.17 -28.62 -19.36 0.66
Highway (CIF) -19.81 1.58 -0.04 -22.23 -2.98 0.07
Ice Age (CIF) 0.44 2.81 -0.15 -7.25 -13.89 0.83

static News (CIF) -0.78 1.32 -0.07 -13.46 -9.45 0.47
Last Samurai (SD) -3.83 0.84 -0.03 -4.91 -25.88 1.01

Tiger & Dragon (SD) -5.19 2.00 -0.07 -8.15 1.97 -0.07
Controlled Burn (HD) -11.23 -5.13 0.17 -19.98 -21.45 0.83
Four People (HD) -3.80 0.89 -0.04 -7.57 -11.54 0.47
In To Tree (HD) -16.40 2.23 -0.05 -22.04 -4.60 0.08

Kristen and Sara (HD) -6.58 0.00 0.00 -9.51 -8.60 0.31
Johnny (HD) -7.28 1.13 -0.02 -8.98 -7.96 0.23

Snow Mountain (HD) -15.68 -15.03 0.40 -23.57 -26.64 0.87

Average (static) -10.74 -2.46 0.03 -16.75 -13.80 0.46

Foreman (CIF) -6.38 4.27 -0.17 -2.45 0.91 -0.04
Coastguard (CIF) -6.26 7.66 -0.27 -2.88 0.00 0.00

Soccer (CIF) -5.87 6.70 -0.28 -3.22 0.00 0.00
Sequence 3 (SD) -7.19 6.52 -0.24 0.20 0.12 0.00
Sequence 10 (SD) -3.37 5.14 -0.18 2.26 0.00 0.00

dynamic Park Run (HD) -7.20 4.77 -0.20 -0.88 0.00 0.00
Pedestrian (HD) -4.46 7.41 -0.31 -4.11 0.00 0.00
Riverbed (HD) -4.01 4.62 -0.23 -3.51 0.00 0.00
Speed Bag (HD) -6.39 5.64 -0.21 -6.29 9.43 -0.33

Average (dynamic) -5.68 5.86 -0.24 -2.32 1.15 -0.04

Average (all) -8.92 0.53 -0.07 -11.55 -8.42 0.28

M frames, [Zhao et al., 2013] did not change the λ value and thus did not achieve

improvements comparing with the reference software. This approach works well for

video surveillance sequences, but it does not work well for typical video sequences,

where the video content changes and thus, the model becomes inefficient (because it

was trained for other type of video content). To solve this problem, the model should

be re-trained after such changes in the video content, using other M frames in which

the algorithm is not enabled. (ii) [Zhao et al., 2013] uses a uni-dimensional space of
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background percentage bins. Therefore, in some video sequences, one or more of the

bins may not have enough data for the training process (as not enough CTUs with

a certain percentage of background may be available). Thus, the parametrization of

the relationship between background percentage and λ can be inaccurate, leading to

poor results in terms of coding performance efficiency. To solve this, the algorithm

would need a larger number of frames for training.

We perform both Classification and Regression parametrizations “off-line” using

a bi-dimensional feature space of normalized SAD mean and standard deviations

which work properly for any video content, as we have shown in Subsection 4.2.2.

Therefore, our approach solves the problems previously described for [Zhao et al.,

2013], significantly outperforming its performance.

In terms of the computational efficiency, the proposed method, due to reasons

explained in Section 4.1.2.2, provides on average a time saving of −11.55% compared

with the reference software, while the method presented in [Zhao et al., 2013] gener-

ates a time saving of −8.92%. However, it should be noted that the computational

time required for the training process in [Zhao et al., 2013], which is very complex,

is not taken into account in the results. Also, note that the proposed method is fully

compatible with many complexity reduction and complexity control approaches in

the state of the art (e.g., [Shen et al., 2013,Xiong et al., 2014,Jiménez-Moreno et al.,

2016]).

Finally, considering the reference model, it is worth noticing that although the

QP cascading, which also acts on QP on a frame basis, causes a similar effect to

that of increasing the λ multiplier, the improvement in coding performance obtained

by our proposal is still significantly larger. This improvement comes from the fact

that QP cascading does not take the video content into account; while the proposed

method produces a content-aware λ adaptation and, furthermore, it adapts λ in a
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wider dynamic range than that of the QP cascading.

4.3.2.2 Comparison with HM16.0 reference software

A second set of experiments was performed to compare the proposed method with

a more recent version of the reference software, namely HM16.0, and using a more

common encoder configuration (the IP parameter was set to 32 for 30 frames-per-

second video sequences, as recommended in [Bossen, 2013]) for general purpose video

coding.

The improvements of the proposed algorithm over HM16.0 reference software are

still quite significant. In particular, an average bit-rate saving of −11.07% (0.42 dBs

in terms of ∆Y ) was achieved for static sequences and quite similar results than

those of the reference (a bit-rate increment of 1.00%) were achieved for dynamic

sequences. Moreover, taking into account all the sequences, an average bit-rate re-

duction of −6.72% (or an increment in visual quality of 0.25 dBs) was achieved. The

improvements are a little bit lower when compared with those achieved with respect

to HM12.0 simply because we have changed the encoder configuration to include an

Intra frame every 32 frames, and Intra frames do not benefit as much as Inter frames

from adapting the λ parameter.

4.3.3 Adaptive performance

In this subsection, the adaptation capability of the proposed method is assessed. To

that purpose, a simple variation of the proposed method was implemented in the

HM16.0 reference software. In particular, the Classification and Regression stages

were only activated in the first frame, keeping the obtained F̂ (1) multiplier constant

for the rest of the video sequence. The results obtained by this variation of the
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Table 4.11: Coding performance of the proposed algorithm relative to the HM16.0
reference software.

Proposed Method
Tag ∆T (%) ∆R(%) ∆Y (dB)

Akiyo (CIF) -7.59 -10.49 0.51
Bridge Close (CIF) -17.57 -18.06 0.50
Bridge Far (CIF) -13.43 -25.25 0.32
Container (CIF) -9.82 -7.23 0.28

Hall (CIF) -17.02 -13.90 0.53
Highway (CIF) -15.18 0.60 -0.01
Ice Age (CIF) -4.75 -22.44 1.38

static News (CIF) -8.12 -5.27 0.27
Last Samurai (SD) -3.19 -22.50 0.87

Tiger & Dragon (SD) -6.17 1.75 -0.07
Controlled Burn (HD) -13.08 -13.52 0.55
Four People (HD) -6.22 -10.13 0.44
In To Tree (HD) -11.91 -3.27 0.07

Kristen and Sara (HD) -8.30 -7.95 0.30
Johnny (HD) -6.81 -5.75 0.17

Snow Mountain (HD) -13.57 -13.75 0.54

Average (static) -10.17 -11.07 0.42

Foreman (CIF) -2.40 2.04 -0.08
Coastguard (CIF) 0.55 0.00 0.00

Soccer (CIF) -1.88 0.00 0.00
Sequence3 (SD) 0.25 0.14 -0.01
Sequence10 (SD) 0.37 0.00 0.00

dynamic Riverbed (HD) 0.10 0.00 0.00
Pedestrian (HD) 0.10 0.00 0.00
Park Run (HD) 0.48 0.00 0.00
Speed Bag (HD) -3.83 6.84 -0.24

Average (dynamic) -0.70 1.00 -0.04

Average (all) -6.76 -6.72 0.25

proposed method (hereafter referred to as fixed-F ) are compared with those of the

complete proposal in Table 4.12.

For static video sequences, an improvement of −4.14% in terms of bit-rate savings

(0.17 dBs in terms of ∆Y ) was achieved by adapting the λ parameter to the video

content. For dynamic video sequences, the method incurred reduced losses of 1.00%

(−0.04 dBs) due to some misclassifications. Taking into account the whole set of

sequences, a global improvement of −2.29% (0.09 dBs) was obtained.
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Table 4.12: Coding performance comparison of the proposed algorithm and the fixed-
F version relative to the HM16.0 reference software.

Tag Fixed-F Method Proposed Method
∆R(%) ∆Y (dB) ∆R(%) ∆Y (dB)

Akiyo (CIF) -6.94 0.33 -10.49 0.51
Bridge Close (CIF) -10.82 0.30 -18.06 0.50
Bridge Far (CIF) -19.86 0.19 -25.25 0.32
Container (CIF) -5.41 0.22 -7.23 0.28

Hall (CIF) -10.43 0.39 -13.90 0.53
Highway (CIF) -0.69 0.02 0.60 -0.01
Ice Age (CIF) -13.19 0.77 -22.44 1.38

static News (CIF) -4.01 0.21 -8.12 0.27
Last Samurai (SD) -5.28 0.19 -22.50 0.87

Tiger & Dragon (SD) -0.57 0.02 1.75 -0.07
Controlled Burn (HD) -8.13 0.35 -13.52 0.55
Four People (HD) -6.79 0.28 -10.13 0.44
In To Tree (HD) 0.00 0.00 -3.27 0.07

Kristen and Sara (HD) -5.76 0.21 -7.95 0.30
Johnny (HD) -3.95 0.11 -5.75 0.17

Snow Mountain (HD) -9.13 0.37 -13.75 0.54

Average (static) -6.93 0.25 -11.07 0.42

Foreman (CIF) 0.00 0.00 2.04 -0.08
Coastguard (CIF) 0.00 0.00 0.00 0.00

Soccer (CIF) 0.00 0.00 0.00 0.00
Sequence 3 (SD) 0.00 0.00 0.14 -0.01
Sequence 10 (SD) 0.00 0.00 0.00 0.00

dynamic Park Run (HD) 0.00 0.00 0.00 0.00
Pedestrian (HD) 0.00 0.00 0.00 0.00
Riverbed (HD) 0.00 0.00 0.00 0.00
Speed Bag (HD) 0.00 0.00 6.84 -0.24

Average (dynamic) 0.00 0.00 1.00 -0.04

Average (all) -4.43 0.16 -6.72 0.25

Some of the more appealing results happen for the Last Samurai sequence, in

which the background changes over time. In particular, along the first 100 frames

three different scenarios are shown, separated by scene cuts, each exhibiting a dif-

ferent amount of static background. In this case, the fixed-F method achieves a

∆R improvement of −5.28% because the first scene exhibits a static background.

Nevertheless, by allowing the algorithm to adapt to the content, the proposed algo-

rithm reaches a bit-rate saving of −22.50%, which is significantly higher than that
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achieved by the fixed-F method. The same behavior can be observed for Ice Age,

where a cross-fade between two scenes happens at frame #85. There, the proposed

method is able to properly adapt the λ parameter yielding a significant improve-

ment in coding performance (−22.44% bit-rate saving vs. −13.19% of the fixed-F

method). Furthermore, it is worth mentioning the performance improvement for In

To Tree, which shows a movement towards a tree in a static scene. In this case, the

proposed method is able to adapt to those fragments of the video sequence in which

the movement is not important, achieving −3.27% coding improvements relative to

both the reference HM16.0 and the fixed-F method.

Finally, it is also worth discussing the case of Speed Bag, where the fixed-F method

achieves a notably better result than that of the proposed method. This happens

because one important segment of this sequence shows illumination changes that are

not properly managed by the classifier, yielding significant coding losses.

In summary, it can be concluded that the adaptation capability of the proposed

method makes it to manage properly realistic situations in which background char-

acteristics change over time.
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(a)

(b) (c)

Figure 4.9: Controlled Burn decoded video fragments belonging to frame #8. (up)
Original sequence. (bottom left) Decoded frame using the reference HM16.0 software.
(bottom right) Decoded frame using the proposed method.

4.3.4 Subjective quality assessment

In addition to the objective evaluation relying on ∆R(%) and ∆Y (dB), we provide

an illustration of the subjective quality achieved. Specifically, two fragments of one

frame of Controlled Burn and Snow Mountain were evaluated.

In order to properly evaluate them, the HM16.0 reference software was used to

encode 20 frames belonging to both sequences at QP32, obtaining a target bit-rate

for the proposed method. Then, the QP was adjusted for the proposed method to
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(a)

(b) (c)

Figure 4.10: Snow Mountain decoded video fragments belonging to frame #16. (up)
Original sequence. (bottom left) Decoded frame using the reference HM16.0 software.
(bottom right) Decoded frame using the proposed method.

produce a similar bit-rate and a subjective visual analysis was performed.

In Figure 4.9, the original frame #8 is shown on top, and this same frame is shown

at the bottom when decoded having previously used the HM16.0 reference software

in Figure 4.9(b) (coded at 35.7 Kbits) and the proposed method in Figure 4.9(c)

(coded at 35.2 Kbits). As can be seen, the frame obtained by the proposed method

shows more detail in the image than that of the reference software. It is specially

noticeable in the right wall of the hut, where the horizontal lines are blurred to the

point of almost disappear in the left image.

In Figure 4.10, a similar behavior is noticed in Snow Mountain video sequence.
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In this case, frame #16 is shown, which has been coded at 37.1 Kbits in the reference

software and at 37.2 Kbits in the proposed method. As can be observed, the same

differences in terms of detail are noticeable in the examples. Specifically, it is worth

noticing detail differences in the trees shown at the center part of the fragment.

Thus, as shown by the previous objective evaluations and illustrated through

two subjective examples, the proposed method saves bits by adapting the λ(QP )

relationship, allowing the encoder to obtain a better visual quality for the same

target bit-rate when compared with the reference HM16.0 software.

4.4 Conclusions

In this chapter a method has been proposed to adaptively select the Lagrangian

parameter λ of the cost function associated with the RDO process in the HEVC

reference software. This approach has been motivated by means of an experiment

that proves that video sequences with static background are more efficiently encoded

using higher values of the parameter λ than that of the reference software.

In order to determine whether the background of a sequence is static on a frame

basis, some coding-derived features that describe the static or dynamic nature of the

background have been found and a classifier has been designed. Furthermore, an

exponential regression function has also been proposed to estimate a proper value

of the λ parameter. In so doing, the proposed method becomes content-aware, be-

ing able to dynamically increase the λ parameter when encoding static background

video sequences and keeping it as in the reference software when encoding dynamic

background sequences.

The efficacy of both the classifier and the regressor has been experimentally

proved. Subsequently, the proposed method has been compared with a state-of-
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the-art method [Zhao et al., 2013] yielding a significantly better average perfor-

mance. Moreover, the proposed method has also been assessed in comparison with

the HM16.0 version of the reference software, achieving average bit-rate savings of

−11.07% (or ∆Y gains of 0.42 dBs) for static video sequences and incurring quite

limited losses for dynamic sequences. All these conclusions have been supported by

a comprehensive set of experiments over a large set of video sequences. Furthermore,

an illustrative example of subjective improvement has been provided.

Finally, the computational efficiency of the proposed method has also been as-

sessed, proving that in average the proposed method turns out to be less demanding

than the reference software.
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Chapter 5

Conclusions and further work

5.1 Conclusions

In this PhD. thesis, some contributions have been made to the rate-distortion opti-

mization (RDO) problem in video coding. In particular, we have focused on the two

most recent video coding standards, i.e., H.264/AVC and HEVC, with the aim of im-

proving the reference versions of the Lagrangian-based RDO processes implemented

in both reference encoder softwares by means of generalized models. In both cases,

taking the JM15.1 (H.264/AVC) and the HM16.0 (HEVC) versions of the reference

software as references, we have studied first the potential sources of inaccuracies of

the respective rate-distortion models and, relying on our findings, we have proposed

specific algorithms that have proved to improve the original models.

Thus, in the case of H.264/AVC, a preliminary study of its rate-distortion opti-

mization model led us to carry out a deeper analysis of the λmotion(λ) relationship,

concluding that unbalanced errors in the estimation of distortion and rate made

in the motion estimation module produce non-optimal decisions, affecting the pair

(motion vector, reference frame). This conclusion provides a more accurate interpre-

tation of the limitations of the λmotion(λ) relationship than previous explanations in
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the literature. Furthermore, these unbalanced estimation errors have been studied

to happen more often when video content compromises the block-matching model of

the encoder.

As a result of these findings, a method has been proposed that, on a macroblock

basis, evaluates 2 additional modes, the minimal rate decision (representing an arbi-

trarily large λmotion) and the minimal distortion decision (λmotion = 0) which minimize

either Rmotion or Dmotion respectively in the Jmotion cost function evaluation, achieving

significant improvements in terms of coding efficiency by selectively using them when

necessary. This method has been extensively tested in different encoding conditions

and both the minimal rate decision and the minimal distortion decision proposals

have been validated separately, obtaining an average improvement over an state-of-

the-art method of −9.27% in terms of ∆R (0.52 dB in ∆Y ) when considering only

the motion estimation process, and −2.20% bit-rate savings when activating the In-

tra modes (0.12 dB in objective quality increment). Additionally, subjective quality

improvements have also been shown.

In the case of HEVC, the same preliminary study was performed leading us to

carry out a further study on the λ(QP ) relationship, which pointed out the static

background video sequences as the main source of inaccuracy of the rate-distortion

optimization model implemented in the HEVC reference software.

Taking these results into consideration, some coding-derived features were pro-

posed in order to describe the background of the video sequence and a classifier for

tagging video frames according to their static or dynamic background was designed.

Moreover, a reasonable estimation of the Lagrangian parameter λ was proposed based

on an exponential regressor, which has been proved to provide a notable improvement

of the encoder performance on those videos exhibiting a static background.

Thus, a method that includes the classifier, the regressor and some additional
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post-processing has been proposed and tested over a large set of video sequences,

showing that the proposed method improves the coding performance of the reference

implementation of the HEVC standard and that of a state-of-the-art method [Zhao

et al., 2013] that suggests a method for adapting λ in a coding tree unit basis.

Specifically, the proposed method is more general than that of [Zhao et al., 2013]

and, besides producing a −13.80% bit-rate improvements (0.46 dBs of visual quality

improvements) over static background sequences, it does not incur significant coding

losses when processing dynamic sequences by virtue of the proposed background

classifier. Moreover, the proposed method have been tested with respect to the

HM16.0 version of the HEVC reference software producing average bit-rate savings

of −11.07% (0.42 dBs of visual quality increment) over static background sequences.

Furthermore, the adaptive performance of the proposed method has been validated

with respect to a non-adaptive version of the proposed method. Finally, besides

providing a conclusive set of objective results, we have shown a couple of examples

where the improvement is subjectively evident.

It is important to highlight that the proposed methods are standard-compliant,

as they only affect the rate-distortion optimization process, and they are easy to

implement in the reference software, so they are susceptible to being incorporated on

future encoder implementations.

5.2 Further work

As future lines of research, the study on the Lagrangian models proposed in this

thesis has been limited to P-frame-based temporal structures; thus, additional stud-

ies considering B-frames would be interesting. In the H.264/AVC standard, on the

one hand, IPxB structures that perform bi-prediction independently on the past and
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future reference frames are expected to behave in a similar manner than IPPP struc-

tures. On the other hand, sequential prediction using both past and future references

jointly may arise new limitations of the reference model. For HEVC, the low-delay-B

configuration is also expected to behave as low-delay-P, but random-access config-

uration will surely behave different, as future references are used. Thus, further

analysis of the Lagrangian models on these temporal structures might also reveal

new limitations of the model.

Next, we propose specific future lines of research for each proposed method. In

H.264/AVC, a promising approach would be to further investigate the relationship

between the modification factor F and any coding-derived feature that allowed a bet-

ter modeling of ME-compromising situations by generating a more precise estimation

of the optimal λ∗

i .

In HEVC, a more precise modeling of Fopt by evaluating the best choice on a

frame-basis F
(k)
opt (instead of sequence-basis) would allow us to better understand the

reasons why the reference λ(QP ) relationship fails and to find better features for

the classification stage, which has been determined to be critical. Also, other more

sophisticated classification tools could be evaluated.
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