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Abstract

The Internet depends on economic relationships between ASes (Autonomous Sys-
tems), which come in different shapes and sizes - transit, content, and access networks.
CDNs (Content delivery networks) are also a pivotal part of the Internet ecosystem and
construct their overlays for faster content delivery. With the evolving Internet topology
and traffic growth, there is a need to study the cache deployments of CDNs to optimize
cost while meeting performance requirements. The bilateral contracts enforce the rout-
ing of traffic between neighbouring ASes and are applied recursively: traffic that an AS
sends to its neighbour is then controlled by the contracts of that neighbour. The lack of
routing flexibility, little control over the quality of the end-to-end path are some of the
limitations with the existing bilateral model, and they need to be overcome for achieving
end-to-end performance guarantees. Furthermore, due to general reluctance of ASes to
disclose their interconnection agreements, inference of inter-AS economic relationships
depend on routing and forwarding data from measurements. Since the inferences are im-
perfect, this necessitates building robust algorithmic strategies to characterize ASes with
a significantly higher accuracy.

In this thesis, we first study the problem of optimizing multi-AS deployments of CDN
caches in the Internet core. Our work is of significant practical relevance since it formal-
izes the planning process that all CDN operators must follow to reduce the operational
cost of their overlay networks, while meeting the performance requirements of their end
users. Next, we focus on developing a temporal cone (TC) algorithm that detects PFS
(Provider-free ASes). By delivering a significant portion of Internet traffic, PFS is highly
relevant to the overall resilience of the Internet. We detect PFS from public datasets of
inter-AS economic relationships, utilizing topological statistics (customer cones of ASes)
and temporal diversity. Finally, we focus on a multilateral contractual arrangement and
develop algorithms for optimizing the cost of transit and access ASes. In particular, we
implement Bertsekas auction algorithm for the optimal cost assignment of access ASes
to transit ASes. Furthermore, we implement an epsilon-greedy bandit algorithm for opti-
mizing the price of transit ASes and show its learning potential.
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Chapter 1

Introduction

The Internet ecosystem consists of thousands of autonomous systems (ASes), inter-
connected with each other for providing end-to-end reachability to the end users. Border
Gateway Protocol (BGP) [1] is the routing protocol through which traffic is routed be-
tween ASes. BGP allows each AS to choose its own administrative policy in selecting
routes and propagating reachability information to others [2]. Routing policies depend
on contractual agreements or economic relationships between ASes. The most common
economic relationships are transit and settlement-free peering. Under transit, an AS pays
to its upstream transit AS for routing its traffic in both directions. On the other hand, in
a settlement-free peering relationship, there is no payment between participating ASes.
Due to the general reluctance of ASes to disclose their business agreements, researchers
infer inter-AS economic relationships [2] from BGP route advertisements or actual IP (In-
ternet Protocol) [3] forwarding routes. The inferred AS graph classifies AS relationships
into customer-provider (transit), peering, and sibling relationships. Thus, economic rela-
tionships between ASes matter for Internet routing. For example, it is financially more
attractive for an AS to route traffic through a peering link than a transit connection of the
AS to its provider.

Transit, access and content-provider ASes are different types of ASes. Access ASes
focus on providing last-mile Internet access to end users. Transit ASes in the Internet
core provide traffic-delivery services to access ASes. Content-provider ASes provide
reachability to the Internet for content providers such as Facebook and Youtube. An
ISP (Internet service provider) is the organization that owns ASes. Many organizations
often use multiple ASes, either to implement different routing policies, or as legacies
from mergers and acquisitions [4]. Despite a trend towards flattening [S] and significant
presence of remote peering at IXPs (Internet eXchange Points) [6], the Internet routing
ecosystem is essentially hierarchical [2,5,7,8]. A vast majority of ASes are relatively
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small and route traffic either as customers of transit links or by peering with local ASes
of a similar stature. There exists only a small set of provider-free ASes (PFS) that reach
the entire Internet without paying anyone for the traffic delivery.

PES clearly plays a key role as the transit core of the Internet ecosystem and it has
many applications and implications. First, economic disputes between provider-free
ASes can endanger the universal connectivity of Internet users. Second, while humans
prefer to think in discrete categories, designation of an autonomous system as provider-
free can have tangible marketplace implications. Third, some algorithms for inter-AS
relationship inference use PFS as an input [8, 9] and hence need to know PFS accurately.

There is a recent trend on Internet traffic-delivery economics. Bangera et al. demon-
strate that transit providers can derive substantial financial benefits from attracting cus-
tomer traffic via BGP-based prefix deaggregation [10] and IP prefix hijacking [11], re-
spectively. They suggest based on the observed trade-offs that increasing financial pres-
sure on IP transit business might prompt such actions.

With traffic growth, ASes participating in peering relationships get into a tussle when
mutually agreed traffic ratios are violated. For example, AS p agrees to peer with AS ¢ if
traffic T}, , that AS p sends to AS ¢ is approximately equal to traffic 7}, , that AS ¢ sends to
AS p. The peering relationship is sustained when T, ,,/T}, , < t,, where ¢, is AS p’s traffic
ratio threshold [12]. A violation of this condition can lead to de-peering where peering
ASes disconnect. Due to the de-peering, the users of the de-peered ASes cannot reach
major portions of the Internet. Such instances have necessitated regulatory intervention
and emergence of paid peering, partial transit [13], and other private economic arrange-
ments as alternatives. Under a partial-transit relationship, the access is for only a fraction
of the global Internet address space. With paid peering, there is a payment involved, with
one of the peering ASes paying the other peer AS for exchanging their customer traffic.

With bilateral contracts, an AS only directly controls the next hop in the AS-level path
and delegates handling of the rest of the path to other ASes. Therefore, the end-to-end
performance that a user perceives is the result of contracts that are applied recursively.
Though, such arrangements facilitate management of network operations, routing deci-
sions are globally suboptimal due to limited prefix visibility [14]. Furthermore, ASes do
not optimize end-to-end performance in a coordinated manner. In particular, performance
such as QoS (Quality of Service) or QoE (Quality of Experience) cannot be guaranteed
at all times. The end users of the access AS suffer from performance degradation if a
transit AS on the end-to-end path has performance bottlenecks. This calls for exploring
a multilateral contractual model, where access ASes form a contract with multiple tran-
sit providers for end-to-end performance guarantees, potentially with contracts for short



time intervals. Such contractual arrangement compliments existing bilateral ones.

The first attempts to look at the multilateral contract model from different perspectives
has been explored [15—17] in recent years. A trusted centralized entity (web service, bro-
ker, cryptographic public ledger) provides the infrastructure and economic medium for
such an arrangement between access and transit ASes. The payments from access ASes
can be paid by the centralized entity on their behalf to transit ASes. Moreover, technolo-
gies like MPLS (Multiprotocol label switching) at transit ASes along with special routers
for transport layer upgrades like Serval [18], PacketShader [19] router show the viability
of routing and forwarding of traffic under such multilateral arrangement.

The bandit algorithms have been applied for optimizing ad placement on websites
and content experiments [20] run by Google for analytics purposes. The reward metric
in those applications is the users’ click-through rate (CTR). Under a multilateral arrange-
ment, there is a problem of pricing for transit ASes under uncertainty. The bandit-based
learning is applicable to modeling such a problem. We sketch the use of exploration
and exploitation trade-offs from learning literature. For example, in order to maximize
the short-term revenue, the transit AS should exploit its current prices and choose prices
that access ASes are likely to accept. On the other hand, to maximize the long-term
revenue, the transit AS needs to explore, i.e., identify which prices have the largest se-
lection probability of access ASes. This kind of exploration necessitates choosing prices
whose current probability estimates are low, which thus leads to choosing prices with low
probabilities in the short term.

Content delivery networks (CDNs), which were originally designed to deliver web
content, video content, and file downloads, currently serve a much broader family of
applications, including social networks, e-commerce sites, CRM (customer relationship
management) portals, and web-based SaaS (software as a service). CDNs play an im-
portant role in the economic structure of the Internet ecosystem where they optimize
content delivery by enhancing routing performance. Also, they serve content faster than
the default Internet routing based on BGP. CDNs like Akamai deploy caches close to the
end users where they cache content of content providers like Facebook and news sites,
thereby offering faster delivery to end users. CDNs have their own set of client mapping,
load balancing, and caching algorithms. There is an evolving trend of optimizing cache
deployments by CDNs as the Internet traffic is growing at an exponential rate, and end
users are becoming highly sensitive to performance. Some of the reasons for this trend
are the increasing use of smartphones and consumption of video-streaming content.
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1.1 Motivation

CDN s succeed by deploying widely in a large number of ASes and creating an over-
lay network that is capable of delivering better end-to-end performance than the Internet
underlay can. While the very existence of CDNs hinges on their ability to improve upon
the direct Internet delivery, a better delivery requires a larger and more costly footprint of
the distributed caches. The question arises in which ASes the CDNs should deploy their
caches. CDNs need to deploy widely in all types of ASes. In particular, a CDN needs to
deploy in both core and access ASes to meet performance needs of all downstream end
users. Access ASes economically benefit from CDNs because delivery of the content
from a local CDN cache reduces the transit traffic and thus transit expenses of the ac-
cess AS. Consequently, access ASes eagerly host CDN caches and even incentivize their
deployment, e.g., by not charging the CDN for the cache colocation space and on-net
traffic (i.e., the CDN traffic that stays within the access AS). On the other hand, CDN
deployments in a core AS might decrease the transit revenues of the AS and make it re-
luctant to offer any kind of deployment incentives. For these reasons, planning the cache
deployment in access ASes is a simpler matter and impacts only a smaller portion of the
total deployment cost.

Cache placement has been studied in models that do not account for the economic
structure of the Internet [21-23]. Because the economic considerations are crucial for
CDN planning, we are motivated to look beyond the single-network perspective and ex-
amine cache deployment in realistic AS-level Internet topologies. There is no prior study
of multi-AS deployment optimization with realistic cost and performance constraints,
such as the ones examined in our work.

The cache deployment optimization (CaDeOp) relies on knowledge of Internet core
topology. Hence, this thesis also studies topology inference for detection of PFS. Over the
past decade, numerous research efforts have tried but failed to infer inter-AS economic
relationships precisely. We explore this failure in the specific context of provider-free
ASes. Our interest in PFS arises due to a number of reasons. First, the provider-free
ASes clearly play a key role as the transit core of the Internet ecosystem. By delivering
a significant portion of Internet traffic, PFS is highly relevant to the overall resilience of
the Internet to accidental failures and intentional disruptions.

After our studies on CDN cache optimization and PFS detection, we look at the multi-
lateral contractual model for the Internet since it offers a greater flexibility in routing, cost
and performance improvements than existing bilateral contracts. The economic aspects
of a multilateral contractual model for transit and access ASes have not been studied in
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sufficient detail. Thus, we explore them in this thesis. Moreover, the algorithmic and
learning models are fundamental to study access-transit ASes interaction, economics,
and optimization of multilateral contracts. We look at a couple of representative exam-
ples. First, we explore market-based solutions for obtaining an end-to-end Internet path
in a fair and competitive manner. Second, we also know how online machine learning
has been applied to the shortest-path problem, termed as the on-line shortest path prob-
lem [24], where a weighted directed acyclic graph is given such that edge weights can
change in an arbitrary or adversarial manner, and the decision maker has to pick in each
round a path between two vertices, so that the chosen path has a minimal weight. We can
think of access ASes utilizing a learning strategy as in the on-line shortest path problem
to pick cheaper end-to-end paths offered by transit ASes under dynamic price changes in
time-varying conditions.

1.2 Scope

In this thesis, we first formulate and solve the problem of optimizing multi-AS de-
ployments of CDN caches in the Internet core. The work formalizes the planning process
that CDN operators must follow to reduce the operational cost of their overlay networks,
while meeting the performance requirements of their end users. CDN operators can
extend our modeling efforts to assess trade-offs and make informed decisions on their
evolving deployment strategies. We do not consider the real-time aspects of the CDN
operation but rather focus on planning the CDN deployment in the longer term. We in-
vestigate the problem in AS-level Internet topologies derived from real measurements of
BGP paths and end-user traffic demands seeded with real data.

Consequently, our work focuses on optimizing CDN deployments in the core of the
Internet where the problem is both more complex and more expensive. We study cache
deployment optimization (CaDeOp) for any real-life CDN where deployment decisions
are taken on the time scale of months or quarters. The objective is to minimize the
deployment cost incurred by the CDN, subject to meeting the end-user performance re-
quirements. The primary output of the optimization is the set of cache ASes and the
amount of server, bandwidth, and energy resources that the CDN has to deploy in each
cache AS. We strive for practical relevance of our assumptions by leveraging realistic
data. Another aspect worth noting is that a CDN typically needs to optimize the cache
deployment incrementally because of already having a deployment and needing to mod-
ify it to meet new traffic, performance, and cost requirements. Hence, we consider an

incremental version of the problem as well.
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Our second work focuses on Internet AS-level topologies and goes deeper in the
domain of topology inference. We have a specific goal of detecting PFS. We develop
an algorithm that detects PFS from public datasets of inter-AS economic relationships.
Finally, we focus our attention towards a multilateral contractual model that compliments
the existing bilateral contracts model. In particular, we develop an algorithmic approach
for optimizing the cost objectives of transit and access ASes participating in a multilateral
contract for end-to-end reachability. We develop and implement an epsilon-greedy bandit
learning algorithm for optimizing the price of transit ASes, and also propose an auction
algorithm for cost-optimal assignment of access ASes to transit ASes.

1.3 Contributions

In Chapter 2, we study the trade-offs in optimizing the cache deployment of CDN
caches in the Internet core. We model the server costs as linear and realistically rep-
resent bandwidth and energy costs as non-linear functions. In particular, we consider
bandwidth-cost functions that are sensitive to the geographic location. We approximate
the non-linear energy and bandwidth costs and transform them to piecewise-linear so that
our cache deployment optimization problem (CaDeOp) is a MILP (Mixed Integer Linear
Programming) problem, for which solutions can be obtained. We evaluate our CaDeOp
solutions in realistic settings by using AS-level Internet topologies, traffic demand dis-
tributions seeded with Akamai traffic data, C-BGP routing solver to compute AS paths
from cache ASes to other ASes. We also explore the incremental cache deployment op-
timization (InCaDeOp) which is related to upgrading cache deployments. We present an
InCaDeOp formulation to be solved and evaluated in future work.

Our main conclusions are as follows. When the end-user performance requirements
become more stringent, the CDN footprint expands rapidly, requiring cache deployments
in additional ASes and geographical regions. With higher performance requirements, the
CDN cost also rises by several times. The costs of energy and bandwidth grow because
the CDN loses some of the economies of scale in procuring these resources. The traffic
distribution among the cache ASes stays relatively even, with the top 20% of the cache
ASes serving around 30% of the overall CDN traffic. It is notable that the Pareto principle
does not apply to CDN deployments, in part due to the highly distributed nature of the
Internet traffic [25]. The work in this chapter is based on the following publication.

» Syed Hasan, Sergey Gorinsky, Constantine Dovrolis, Ramesh K. Sitaraman. “Trade-
offs in Optimizing the Cache Deployments of CDNs”. The 33rd IEEE International
Conference on Computer Communications (IEEE INFOCOM 2014), 27 April 2014
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- 2 May 2014, Toronto, Canada [26].

In Chapter 3, we focus on PFS (provider-free ASes). We show that straightforward
extraction of PFS from the public datasets yields poor results. We then develop a TC
(temporal cone) algorithm that detects PFS from public datasets of inter-AS economic
relationships. Our algorithm utilizes topological statistics (customer cones of ASes) and
temporal dataset diversity to infer PFS with significantly higher accuracy.

The TC algorithm is useful because it enables accurate inferences of PFS in the fu-
ture even if PFS insights from the non-verifiable sources become unavailable. While the
knowledge of PFS is highly valuable, validation of PFS inference results constitutes a
major challenge because the ground truth lies outside the public domain. To tackle the
validation challenge, we utilize trustworthy but non-verifiable sources such as Wikipedia.
Whereas it seems practically impossible to obtain the complete ground truth from net-
work operators, the non-verifiable source insights form the best available baseline for
result validation in this important domain. The work in this chapter corresponds to the
following publication.

» Syed Hasan, Sergey Gorinsky. “Obscure Giants: Detecting the Provider-free ASes”.
11th International IFIP TC 6 Networking Conference, May 21-25, 2012, Prague,
Czech Republic [27].

In Chapter 4, we focus on the transit and access ASes optimization objectives under
a multilateral interdomain contract arrangement. First, we consider the access-AS cost
optimization problem by setting up a market, with access ASes submitting bids for indi-
vidual path segments to transit ASes for an end-to-end path. We formulate the problem
as an optimal linear assignment problem for a path segment, which extends to a sequence
of linear assignment problems for the end-to-end path. We propose and implement Bert-
sekas auction algorithm for the optimal cost assignment of access ASes to transit ASes.
We perform a sensitivity analysis by considering graphs of different sizes. We assess
the convergence time of access ASes and also the mapping of submitted bids by access
ASes until their final assignment. Next, we formulate the pricing of transit ASes as a
multi-armed bandit problem and utilize the most commonly used epsilon-greedy bandit
algorithm as the solution strategy. We implement the epsilon-greedy algorithm and eval-
uate it with pricing data to assess the exploration-exploitation trade-offs. The material in
this chapter is a basis for a currently prepared submission.

» Syed Hasan, Sergey Gorinsky. “Optimizing the Cost of Multilateral Interdomain
Contracts”. Under preparation for submission.
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We conclude by outlining the contributions of this thesis and ideas for future work in
Chapter 5.



Chapter 2

Trade-offs in Optimizing the Cache
Deployments of CDNs

2.1 Introduction

CDNs (Content Delivery Networks) have revolutionized Internet data dissemination
by storing content in their geographically distributed caches and thereby improving the
experience of end users [25,28]. The proximity of the CDN caches to the end users
provides low-latency low-loss paths between the caches and the users, improving the
performance. Originally designed to deliver web content, video content, and file down-
loads, CDNSs currently serve a much broader family of applications, including social net-
works, e-commerce sites, CRM (customer relationship management) portals, and web-
based SaaS (software as a service).

CDNs play an important role in the economic structure of the Internet ecosystem.
Content providers, such as the New York Times, Netflix, or Facebook, pay CDNs for
delivering their content to end users with greater reliability, performance, and scalability
than what is possible directly over the Internet. The Internet is a best-effort network and
does not provide performance guarantees or a globally differentiated delivery service.
Part of the reason is that the Internet infrastructure consists of tens of thousands of inde-
pendent ASes (Autonomous Systems) that are owned by separate business entities who
do not cooperatively optimize end-to-end performance for the users [29]. CDNs succeed
by deploying widely in a large number of ASes and creating an overlay network that is
capable of delivering better end-to-end performance than the Internet underlay can.

The CDN delivery quality is subject to trade-offs with the CDN cost. While the very
existence of CDNs hinges on their ability to improve upon the direct Internet delivery,
a better delivery requires a larger and more costly footprint of the distributed caches.
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Furthermore, the optimal trade-offs between footprint/cost and performance change over
time. Real-world commercial CDNs have caches in thousands of ASes and keep ex-
panding their AS presence to provide greater performance by being closer to the end
users [30].

There are many types of ASes. Access ASes focus on providing last-mile Internet
access to end users. Transit ASes in the Internet core provide traffic-delivery services to
access ASes. CDNs need to deploy widely in all types of ASes. In particular, a CDN
needs to deploy in both core and access ASes to meet performance needs of all down-
stream end users. Access ASes economically benefit from CDNs because delivery of the
content from a local CDN cache reduces the transit traffic and thus transit expenses of
the access AS. Consequently, access ASes eagerly host CDN caches and even incentivize
their deployment, e.g., by not charging the CDN for the cache colocation space and on-
net traffic (i.e., the CDN traffic that stays within the access AS). On the other hand, CDN
deployments in a core AS might decrease the transit revenues of the AS and make it re-
luctant to offer any kind of deployment incentives. For these reasons, planning the cache
deployment in access ASes is a simpler matter and impacts only a smaller portion of the
total deployment cost. Consequently, our work focuses on optimizing CDN deployments
in the core of Internet where the problem is both more complex and more expensive.

2.1.1 CaDeOp: cache deployment optimization

Our work is the first formal study of the cache deployment optimization (CaDeOp)
problem that is an important operational component of any real-life CDN. CaDeOp is an
offline planning problem where the CDN operator makes deployment decisions on the
time scale of months or quarters. The CaDeOp objective is to minimize the deployment
cost incurred by the CDN, subject to meeting the end-user performance requirements. We
call an AS where the CDN deploys its caches a cache AS to differentiate such an AS from
the ASes where the CDN has no cache deployments. The primary output of CaDeOp is
the set of cache ASes and the amount of server, bandwidth, and energy resources that the
CDN has to deploy in each cache AS.

To optimize the deployment of a CDN, one must consider the traffic of the end users
and examine which ASes can satisfy these end-user traffic needs with acceptable perfor-
mance. Therefore, CaDeOp also produces a tentative assignment of end users to cache
ASes. While these assignments are guidelines for which cache ASes can serve which
users, the CDN may choose to alter these assignments in real time when the Internet per-
formance [25] or cost characteristics [31,32] change. In this work, we do not consider
the real-time aspects of the CDN operation but rather focus on planning the CDN de-
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ployment in the longer term. Another aspect worth noting is that a CDN typically needs
to optimize the cache deployment incrementally because of already having a deployment
and needing to modify it to meet new traffic, performance, and cost requirements. While
CaDeOp takes the clean-slate approach of computing a full optimal deployment from
scratch, our CaDeOp problem formulation can be easily extended, without affecting the
solution methodology, to optimize the incremental update of an existing deployment. Our
subsequent work will also examine a strategy of potentially sacrificing the current opti-
mality to enable updates that optimize the deployment under expected future conditions.

In studying the CaDeOp problem, we strive for practical relevance of our assump-
tions. Unlike previous cache-deployment studies that assume a highly hypothetical net-
work topology such as a line or ring [21], we investigate CaDeOp in AS-level Internet
topologies derived from real measurements. Using C-BGP [33], we compute realistic
BGP (Border Gateway Protocol) [1] paths from cache ASes to the other ASes in these
topologies. We model the traffic demands of the end users by adopting a realistic Zipf
distribution seeded with data from Akamai Technologies. To evaluate the sensitivity of
the results to parameter settings, we consider 3 topologies from 2 different sources as
well as 2 opposing vectors of traffic demands. We model the cost of the CDN as a com-
bination of bandwidth, energy, and server costs. While the server costs are linear, we
realistically represent bandwidth and energy costs as non-linear functions. In particular,
we consider bandwidth-cost functions that are sensitive to the geographic location and
configured according to data from TeleGeography [34].

2.1.2 Our contributions

This work is the first to formulate and solve the CaDeOp problem of optimizing multi-
AS deployments of CDN caches in the Internet core. Our work is of significant practical
relevance since it formalizes the planning process that all real-life CDN operators must
follow to reduce the operational cost of their overlay networks, while meeting the perfor-
mance requirements of their end users.

We evaluate our CaDeOp solutions in realistic settings, examine the sensitivity of the
results to our parametric assumptions, and reach the following main conclusions:

1. When the end-user performance requirements become more stringent, the CDN
footprint expands rapidly, requiring cache deployments in additional ASes and ge-
ographical regions.

2. With higher performance requirements, the CDN cost also rises by several times.
While the server costs remain about the same, the costs of energy and bandwidth
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grow because the CDN loses some of the economies of scale in procuring these
resources. Consequently, the cost balance in CDNs with higher performance shifts
toward bandwidth and energy costs. As the end-user performance requirements
become more and more stringent over time, our work suggests that adoption of
schemes for energy-usage reduction [31] and bandwidth optimization [35] will be-
come even more important for CDNs of the future.

3. The traffic distribution among the cache ASes stays relatively even, with the top
20% of the cache ASes serving around 30% of the overall CDN traffic. It is notable
that the Pareto principle, which applies in many related domains, does not apply
to CDN deployments, in part due to the highly distributed nature of the Internet
traffic [25].

The rest of this chapter has the following structure. Section 2.2 formulates the CaDeOp
problem. Section 2.3 presents our solution methodology. Section 2.4 reports the results.
Section 2.5 presents the future extensions by looking into incremental CaDeOp. Sec-
tion 2.6 discusses related work. Section 2.7 sums up our chapter.

2.2 Formulating the CaDeQOp problem

We model the Internet core as a connected directed graph G where the nodes de-
note ASes and form set N. The graph edges represent inter-AS economic relationships
annotated as transit or peering.

In the given model, cache ASes refer to the ASes where the CDN deploys caches.
One of the CaDeOp goals is to identify set 1 of the cache ASes. Bit /; identifies whether
ASiisacache AS: I, = 1forASi € H,and [, =0for AS: & H.

Any AS can have end users of the CDN. Measured in Mbps, traffic demand 7; denotes
the overall rate of the content traffic from the CDN caches to the end users in AS j. To
satisfy the traffic demands, the cache ASes transmit the content traffic along the paths
computed according to the BGP protocol. Distance D; ; represents the number of hops
on the AS-level path from cache AS 7 to AS j.

Traffic split m; ; is another CaDeOp output and denotes the fraction of traffic de-
mand 7} satisfied by cache AS 7. The traffic splits are subject to the following constraints:

0<m;; <I; VieN,VjeN, 2.1

> mi=1 Vj € N. (2.2)

i€H
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Inequalities 2.1 imply that only the cache ASes serve the content, i.e., m;; = 0 if
AS ¢ ¢ H. Equalities 2.2 ensure that the cache ASes fully satisfy the traffic demand of
each AS j.

With the traffic splits determined, we establish the overall rate V; of the content traffic
transmitted by each cache AS 1:

Vi= (mi;-T). (2.3)
jeN
Some of this traffic might be on-net, i.e., sent to local end users. The rate of the on-net
traffic for cache AS 7 can be determined as F; = m,; - T;. Then, the rate of the off-net
traffic (i.e., the overall traffic from AS i to the other ASes) is J; = V; — F;.
To characterize the delivery quality provided by the CDN to the end users, the CaDeOp
model incorporates the following performance constraint d:
> (Dij-mi; - Tj)

JEN

<d VieH (2.4)

Vi

where the hop distance from cache AS 7 to AS j is weighed with the fraction of the V;
traffic that the cache AS sends along the delivery path. This metric reflects the delay in
AS hops acceptable for the end users. For example, d = 0 requires delivery from a cache
in the same AS. Meeting the d = 1 constraint corresponds, on average, to delivery from
an adjacent cache AS.

To operate each cache AS i, the CDN incurs server cost S5;, energy cost F;, and
bandwidth cost B;. These costs are computed as

Si=a-V;, B;=e¢-V and B; = b; - V’ (2.5)

where a, e, and b; are positive constant factors, and i and g are constant exponents with
values between 0 and 1. The non-linear £; and B; functions capture the economies
of scale in energy and bandwidth consumption [36-38]. While pricing may vary with
geography, we model such variations for bandwidth pricing only, by allowing different
cache ASes 7 to differ in their factors b; (factors e and a are fixed for all ASes).
We use C' to denote the CDN cost that combines the individual costs of the CDN in
all cache ASes:
C=> (Si+E+B). (2.6)
icH

The objective in CaDeOp is to minimize C'. With all the notation summarized in table 2.1,
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Notation H Semantics

G AS-level topology of the Internet core
N set of ASes in G
T} traffic demand of the end users in AS j
H set of cache ASes
I; bit indicating whether AS 7 € H
D;; AS-hop distance from cache AS i to AS j
My fraction of T} satisfied by cache AS ¢
Vi overall traffic of cache AS
F; on-net traffic of cache AS 7
Ji off-net traffic of cache AS ¢
d performance constraint
S; server cost of cache AS i
E; energy cost of cache AS i
B; bandwidth cost of cache AS
a,e,b; cost-function factors
h, g cost-function exponents
C CDN cost

Table 2.1: Notation in the CaDeOp problem formulation.

we formulate the CaDeOp problem as follows:

* Inputs: topology GG, AS-level paths in G, traffic-demand vector 7', cost-function
parameters a, e, b;, h, g, and performance constraint d;

* Objective: minimize CDN cost C';
» Constraints: equalities 2.2 and inequalities 2.1 and 2.4;

* Outputs: set H of cache ASes, traffic-split matrix m, overall-traffic vector 1/, on-net
traffic vector I, off-net traffic vector J, server-cost vector .S, energy-cost vector F,
bandwidth-cost vector B, and CDN cost C.

2.3 Solution methodology

2.3.1 Approximation of non-linear costs

While the energy and bandwidth costs in the formulated CaDeOp problem are non-
linear, we apply the classical convex combination method [39], which uses special or-
dered sets of type 2 (SOS2), to approximate these costs with piecewise-linear functions.
The approximating functions employ between 6 and 8 linear segments.
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2.3.2 Solving the CaDeOp problem

With the energy and bandwidth costs transformed to piecewise-linear, CaDeOp be-
comes a MIP (Mixed Integer Programming) problem. We express the MIP problem in
AMPL [40] and solve it in Gurobi Optimizer 5.0, a commercial optimization solver [41],
with the maximum optimality gap of 5%. Table 2.2 reports the Gurobi parameter values
in our solutions.

| Gurobi parameter | Setting | Description |

Ipmethod 3 concurrent algorithm (dual simplex + barrier) is
used to solve for the root node of the MIP model
presparsify 1 setting this option for significant reduction
in the problem size
threads 2 number of threads used for solving the MIP model
mipstart 0 setting mipstart to 0, we do not employ

initial guesses to solve the MIP problem
with integer variables

mipgap 0.05 maximum relative MIP optimality gap is set
to 5%

Table 2.2: Gurobi parameter settings for solving our MIP model instances

2.3.3 Parameter settings

Topology: We solve the CaDeOp problem for the Internet core. Our iterative algorithm,
which detects and resolves customer-provider cycles, extracts an Internet core topology
from an Internet-wide AS-level topology by peeling off the current edge ASes, i.e., ASes
that do not provide transit for another AS in the current topology. We apply the extraction
algorithm to the Internet-wide topologies from UCLA [42] and CAIDA [43] to derive 3
Internet core topologies, to which we refer as UCLA, CAIDA1, and CAIDA2 through
the rest of this chapter. Table 2.3 reports statistical properties of these Internet core
topologies.

To understand the structure of the Internet core topologies, we classify the ASes ac-
cording to their centrality defined with respect to their customer cone. The customer
cone of an AS consists of ASes that are either direct or indirect transit customers of that
AS in the core topology, i.e., those ASes reachable from the AS through a sequence
of provider-to-customer transit links [44]. We consider 4 centrality classes: large cone,
medium cone, small cone, and tiny cone. The customer cone of a tiny-cone AS contains
at most 5 ASes. Note that the centrality classification is for the Internet core topology
only and that even a tiny-cone AS without a customer AS in the core topology can have
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| Topology [[ ASes | Transit [ Peering | node degree(max) [ Diameter | Avg AS-hop dist |

UCLA 320 1308 3535 167 16 2.69
CAIDALI 302 1074 3345 167 9 2.54
CAIDA2 490 1726 5335 253 10 2.69

Table 2.3: Statistical properties of the considered Internet core topologies.

many customer ASes in the original Internet-wide AS-level topology. The customer cone
of a small-cone AS includes between 6 and 50 ASes. Medium-cone ASes have at least
51 ASes in their customer cones. We create the large-cone category by extracting from
the medium-cone categories those ASes that are tier-1 according to Wikipedia [27,45] (3
of such ASes are not in the large-cone or medium-cone categories for the CAIDA1 topol-
ogy). Table 2.4 shows the split of the ASes according to their centrality in the Internet
core topologies.

Centrality type | UCLA | CAIDA1 | CAIDA2
large-cone ASes 15 12 15
medium-cone ASes 30 5 11
small-cone ASes 167 74 99
tiny-cone ASes 108 211 365

Table 2.4: Split of the ASes according to their centrality in the UCLA, CAIDA1, and CAIDA2
topologies.

AS-level paths: AS-level paths in the Internet core topology constitute another input for
the CaDeOp problem. We use the C-BGP tool [33] to compute realistic AS-level paths
in the UCLA, CAIDAI, and CAIDA?2 topologies.

Traffic demands: To set the traffic demands of ASes, we utilize data from Akamai caches
in Indiana, California, Sweden, and Switzerland. The datasets report average monthly
rates of content traffic served by the caches. We present the data in Table 2.5. We scale
up the actual traffic rates of these Akamai caches to estimate the overall monthly traffic
demand for all ASes in the Internet core topology. It is worth noting that, with our focus
on optimizing CDN deployments in the Internet core, we do not consider access ASes and
their traffic demands. We distribute the overall core demand between the individual core
ASes by assigning traffic-demand rates to the ASes according to the Zipf distribution [46,
47] where the maximum traffic demand of an AS and skew parameter are set to 5 Gbps
and 0.8 respectively.

While we do not have access to data for the content consumption by specific ASes, we
consider 2 opposing assignments of the traffic-demand shares to individual core ASes:
(T1) Traffic-demand vector T1 sets the traffic-demand shares of ASes in the order of the
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Akamai cache Akamai response traffic (Mbps) | Akamai request traffic (Mbps)
location average traffic max traffic average traffic max traffic
month | year | month | year | month | year | month | year

Indiana GigaPoP, US [48] 315 530 1220 | 2902 127 188 445 557
SUNET, EU [49] 285 390 1070 | 1950 80 108 383 1240
CERN, EU [50] 41 60 165 154 20 25 110 56

Santa clara NOC, US [51] 9 15 455 477 4 6 192 192

Table 2.5: CDN cache traffic data: average and maximum for a month between 10th June to 10th
July of 2013, and a year from 10th July, 2012 to 10th July, 2013, obtained at four Akamai cache
locations in the US and Europe.

node degrees of the ASes; this traffic allocation roughly corresponds to the centrality
classification of the ASes in the Internet core topology and places larger traffic demands
toward the topological center; (T2) Traffic-demand vector T2 assigns the traffic-demand
shares to the ASes in the reverse order and allocates larger traffic demands at the edges
of the Internet core topology. While the Zipf profile of the traffic-share distribution is
realistic [46,47], extremes T1 and T2 of the broad traffic-demand vector range enable us
to evaluate the sensitivity of the results to traffic demands. Figure 2.1 plots the T1 and
T2 traffic assignments as functions of the node-degree of the ASes.
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Figure 2.1: T1 and T2 traffic assignments for the ASes in the UCLA topology

Cost functions: Based on data from public sources and TeleGeography [34], our default
parameter settings for the server, energy, and bandwidth cost functions are as follows:
a = 088, e =20,b =70, h =g = 0.75 (all measurement units are such that ex-
pressions 2.5 compute monthly costs in U.S. dollars). We also evaluate location-aware
bandwidth pricing where the value of b; depends on the geographical region of AS 1.
Again guided by the TeleGeography data, we set the location-aware b; value to 51, 71,
215, 264, and 270 for Europe, North America, Asia-Pacific, South America, and Oceania
respectively.
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2.4 [Evaluation results

2.4.1 Accuracy of approximating the non-linear costs

While our method for solving the CaDeOp problem approximates the non-linear en-
ergy and bandwidth costs with piecewise-linear functions, we quantify how accurately
the piecewise-linear functions represent the non-linear costs for each cache AS. Keep-
ing the approximation accuracy high is important in order to avoid error cascades and
preserve the high precision in the problem solutions [52].
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Figure 2.2: Approximation error for the energy and bandwidth costs with traffic-demand vector
T1 and location-oblivious bandwidth pricing.

Figure 2.2 plots the approximation error for the energy and bandwidth costs of every
cache AS with traffic-demand vector T1 and location-oblivious pricing. For the UCLA
topology, Figure 2.2a shows that the error is less than 4% for all but one cache AS when
performance constraint d is at most 0.8. The error stays at 0.6% when d = 1.2. With
d = 1.6 or d = 2, the approximation does not introduce any error into the energy and
bandwidth costs of cache ASes.
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For the CAIDA topologies, the approximation method provides the exact costs with
d > 1.2. With d < 0.8, Figure 2.2c shows that the error consistently stays under 3%
for the CAIDA?2 topology. For the CAIDA1 topology with d = 0.8 or d = 0.4, Fig-
ure 2.2b shows the error values that are always significantly below 1%. On the other
hand, with d = 0.1, the error stays under 3% for only 94% of the cache ASes and grows
to almost 15% over the remaining 6% of the cache ASes. While the cost-approximation
accuracy deteriorates for some cache ASes in CAIDAI, we use UCLA as the baseline

topology in our evaluation.

2.4.2 Deployment footprint

We start evaluating our CaDeOp solutions by examining how performance constraint
d affects the footprint of the optimal CDN deployment. Figure 2.3a plots the number
of cache ASes in the optimal deployment for both traffic-demand vectors in the UCLA
topology with location-oblivious and location-aware bandwidth pricing. When the re-
quired delivery quality is low, the optimal deployment involves only a few cache ASes.
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Figure 2.3: Trade-offs between the CDN footprint and performance in the UCLA, CAIDA1, and
CAIDAZ? topologies.
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For d = 2, a single-AS deployment provides the required delivery quality and mini-
mizes the CDN cost in 3 out of the 4 plotted settings (and 2 cache ASes are needed in the
4th setting). When the performance constraint becomes more stringent, the footprint of
the optimal CDN deployment consistently expands by employing more cache ASes. For
each of the 4 traffic/pricing settings, the footprint expansion is roughly exponential in the
number of cache ASes.

Assessing the sensitivity of the performance-footprint trade-offs to the topology and
traffic demands, Figures 2.3a, 2.3b, and 2.3c report similar trade-off profiles in the UCLA,
CAIDALI, and CAIDA?2 topologies with traffic-demand vector T1. However, the trade-
off profiles with traffic-demand vector T2, which shifts large traffic demands towards the
edges of the topology, are quite different: the optimal CDN deployment tends to involve
a larger number of cache ASes than with vector T1, which places large traffic demands
toward the topological center. Hence, CaDeOp solutions are more sensitive to traffic
demands than topology.
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Figure 2.4: Split of the cache ASes according to their centrality when the bandwidth pricing is
location-oblivious.

To understand which ASes are chosen for the cache deployment, we classify the cache

ASes according to their centrality types. Figure 2.4a plots the distribution of the cache
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ASes as per their centrality with traffic-demand vector T1 and location-oblivious band-
width pricing.

For d = 2 or d = 1.6, the only cache AS of the optimal deployment belongs to
the large-cone type, i.e., the center of the topology. When the performance constraint
tightens, the fraction of large-cone ASes in the CDN footprint steadily declines, and the
CDN spreads its cache ASes through the topology. For d = 0.1, the fractions of the
large-cone, medium-cone, small-cone, tiny-cone ASes in the optimal CDN deployment
are respectively 9%, 10%, 52%, 29% which closely approach the corresponding 5%, 9%,
52%, 34% shares of these AS types in the overall AS population of the UCLA topology.

Figure 2.4b depicts counterpart results for traffic-demand vector T2 and shows simi-
lar footprint-performance trade-offs: while the optimal deployment with d = 2 consists
of one large-cone AS, the cache ASes spread through the topology away from its center
when the delivery quality requirements become more stringent. With traffic-demand vec-
tor T2, the fraction of large-cone ASes has a steeper decline, and the optimal deployment
shifts the cache ASes towards the edges of the topology more aggressively, because this
vector places large traffic demands away from the topological center.

Switching the topology from UCLA to CAIDA?2, Figure 2.4c shows the split of the
cache ASes according to their centrality type with traffic-demand vector T'1 and location-
oblivious bandwidth pricing. When the performance constraint tightens from 0.8 to 0.1,
the footprint expansion is qualitatively the same as in the UCLA topology: the CDN
spreads its cache ASes away from the topological center. On the other hand, when the
performance constraint is loose, the qualitative picture differs from the UCLA case: the
CDN locates its consolidated footprint in tiny-cone or small-cone ASes of CAIDA?2.
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Figure 2.53: Geographic distribution of cache ASes in the optimal deployment for the UCLA
topology, traffic-demand vector T1, and location-oblivious bandwidth pricing.

Turning our attention to the geography of the optimal CDN deployment, Figure 2.5
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depicts the geographic profile of the cache ASes for the UCLA topology, traffic-demand
vector T1, and location-oblivious pricing. For d = 2 or d = 1.6, the only cache AS of
the optimal footprint is based in North America. When the delivery quality requirements
become stricter, the optimal footprint expands first to Europe, then to Asia-Pacific, and
eventually to South America. This geographic perspective confirms the more general
observation that content delivery at a high quality necessitates an extensive CDN footprint
throughout the topology.

The above evaluation can be summed up as follows: When the delivery-quality needs
become more stringent, the CDN footprint expands rapidly, requiring cache deployments
in additional ASes and geographical regions.

2.4.3 Traffic patterns
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Figure 2.6: Distribution of the overall traffic among cache ASes with the UCLA topology, traffic-
demand vector T1, and location-oblivious pricing.

We now examine how the optimal footprint satisfies the traffic demands of end users.
Figure 2.6 depicts overall-traffic vector V/, in the decreasing order of the V; values, for
different delivery-quality needs with the UCLA topology, traffic-demand vector T1, and
location-oblivious pricing. For d = 0.8 when the optimal footprint involves 22 cache
ASes, the overall traffic is spread among the cache ASes quite uniformly, with the ex-
ception of a few cache ASes that have the lowest load. In the 3 plotted distributions for
the performance constraints between 0.8 and 0.1, the top 20% of the cache ASes serve
around 30% of the overall traffic, and the top 50% of the cache ASes serve around 65%
of the overall traffic. Hence, the distribution of the overall traffic among cache ASes stays
relatively even.
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Figure 2.7 maps served ASes to cache ASes. With d = 0.8, Figure 2.7a shows that the
individual cache ASes serve between 31 and 8 ASes each. With d = 0.4 and d = 0.1, the
maximum number of ASes served by the same cache AS reduces to 11 and 6 respectively,
while the minimum number is 2 ASes which include the cache AS itself. Figure 2.7b
shows that most of ASes receive content from only one cache AS. With d = 0.1, only
29% of all ASes are served by multiple cache ASes, and the maximum number of cache
ASes serving the same AS is 8. For the looser performance constraints, the fraction of
ASes served by multiple cache ASes shrinks even further.
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Figure 2.7: Mapping of served ASes to cache ASes for the UCLA topology, traffic-demand vector
T1, and location-oblivious pricing.

Focusing on the ASes served by multiple cache ASes, Figure 2.7c plots the cumula-
tive distribution of positive traffic splits 1m;; and reveals that the traffic splits are spread
relatively smoothly between 1 and 0. Thus, tightening the performance constraint de-

creases the fraction of ASes served by multiple cache ASes but the traffic of such served
ASes remains distributed smoothly among their multiple cache ASes.
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To expose the traffic patterns in more detail, Figure 2.8 presents scatter plots of the
on-net vs. off-net traffic of the cache ASes. When the performance constraint becomes
more stringent and increases the number of cache ASes, the off-net traffic of individual
cache ASes expectedly decreases. Figure 2.8 also reveals that the off-net traffic of a
cache AS is bounded from above by a linear function of the on-net traffic with a slope
of d/(1 — d). The bound is a consequence of inequalities 2.4 because serving the off-net
traffic of a cache AS at a rate that is larger than d/(1 — d) times the on-net traffic rate
would violate the performance constraint.
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Figure 2.8: Scatter plots of the on-net vs. off-net traffic of the cache ASes for the UCLA topology,
traffic-demand vector T1, and location-oblivious bandwidth pricing.

Perhaps more surprising is that a large number of points coincide with the linear
bound. This happens when the performance constraint is dominant, and inequalities 2.4
are satisfied with equalities for many cache ASes in the optimal deployment. Each of
these cache ASes serves the off-net traffic at the maximum rate that does not violate
the performance constraint. In the above examination of CDN traffic patterns, we can
highlight the following observations: The traffic distribution among the cache ASes stays
relatively even, with the top 20% of the cache ASes serving around 30% of the overall
traffic. For a large fraction of the cache ASes, the off-net traffic is proportional to the
on-net traffic of the AS.

For the UCLA topology, traffic-demand vector T1, and location-oblivious bandwidth
pricing, Figures 2.4a and 2.9 compare the cache ASes and their overall traffic. The com-
parison shows that the cache ASes and overall traffic have qualitatively similar distribu-
tions when split according to the centrality type of the cache ASes.
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Figure 2.9: Split of the overall traffic according to the centrality of the cache ASes with the UCLA
topology, traffic-demand vector T1, and location-oblivious bandwidth pricing.

2.4.4 CDN cost

While the above evaluation focuses on the CDN footprint and traffic patterns, we now

examine the cost of the optimal deployment. Figure 2.10 plots the normalized CDN cost
in the UCLA, CAIDAI, and CAIDA?2 topologies.
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Figure 2.10: Trade-offs between the CDN cost and performance in the UCLA, CAIDAI, and
CAIDA? topologies.
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The normalization is done with respect to the CDN cost with no constraint on the
performance, i.e., when the optimal deployment involves only one cache AS. The plot
shows that tightening the performance constraint increases not only footprint but also
cost. For d = 0.1, the CDN cost is several times larger than in the baseline single-AS
deployment.

We now examine how the CDN cost depends on the awareness of location-specific
bandwidth prices. For the UCLA topology and traffic-demand vector T1, Figures 2.11a
and 2.11b depict the geographic distributions of the CDN cost with location-oblivious
and location-aware bandwidth prices respectively. When the performance constraint is
loose, the awareness shifts the entire deployment from North America to Europe due to
the lower prices in the latter.
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Figure 2.11: The CDN cost for the UCLA topology with location-oblivious vs. location-aware
bandwidth pricing.

When d tightens, the geographic distribution of the CDN cost involves additional
regions and converges to similar regional splits for both pricing models because the
caches in the expanding footprint are deployed closer to the end users. Nevertheless, the

location-specific pricing affects the CDN cost even with tight performance constraints.
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For traffic-demand vectors T1 and T2, Figure 2.11c shows that the ratio of the CDN
costs with location-oblivious and location-aware prices varies from 1.2 (with d = 2 and
T1) to 0.7 (with d = 0.1 and T2). For tighter d values, the oblivious/aware ratio of the
CDN costs consistently diminishes because the CDN deploys caches in new geographical
regions that have higher prices. Hence, the awareness of location-specific prices has
profound effects.
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Figure 2.12: Split of the CDN cost among the bandwidth, energy, and server categories for the
UCLA topology, traffic-demand vector T1, and location-oblivious pricing.

Figure 2.12 tracks the split of the CDN cost among the bandwidth, energy, and server
categories. When the delivery-quality requirements become more stringent and expand
the footprint with new cache ASes, the CDN ability to benefit from the economies of scale
in energy and bandwidth costs diminishes, and the fractions of these costs in the CDN
cost increase. On the other hand, while the server costs do not change, the relative share
of the server costs in the increasing CDN cost declines. Thus, when the performance
constraint tightens, the cost balance shifts toward the bandwidth and energy costs.

The following are the main insights from this last portion of our evaluation: When the
delivery-quality requirements become more stringent, the CDN cost rises several times,
and the cost balance shifts toward bandwidth and energy costs.

2.5 Future Extensions

2.5.1 InCaDeOp: Incremental Cache Deployment Optimization

To address emerging traffic, performance, and cost challenges, a CDN needs to adjust
its cache deployment over time. Furthermore, beyond the time horizon of the next de-

ployment upgrade, the new requirements become, to a large extent, unpredictable. This
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unpredictability is costly in the long term, e.g., because relocation of caches to accom-
modate the new requirements has a cost. Hence, after a series of incremental upgrades,
a realistic CDN cache deployment is likely to be less optimal than in the hypothetical
scenario of accommodating the current requirements from scratch. Thus, we explore the
problem of upgrading the CDN cache deployment to satisfy the performance require-
ments of end users, while minimizing the cache deployment cost. We refer this problem
as Incremental Cache Deployment Optimization (InCaDeOp) and present its formulation
below. The robust evaluation of the InCaDeOp model has been left for future work.

2.5.2 Formulating InCaDeOp

We consider a time instance when the CDN plans to upgrade its current cache de-
ployment. A connected directed graph G represents ASes and their interconnections at
the upgrade time. ASes are the nodes of the graph and form set N. The edges denote
inter-AS economic relationships classified as transit or peering. End users of the CDN
are potentially located in any of the N ASes. Traffic demand 7’ is measured in Mbps and
refers to the overall rate of the content traffic that the CDN needs to deliver to the end
users in AS j.

To satisfy the performance requirements of the end users, the CDN upgrades its cur-
rent cache deployment. The current deployment is hosted by set X of ASes, which might
differ from set A of the cache ASes in the upgraded deployment. Pj refers to the max-
imum rate at which the CDN can serve content from its current caches in AS &k, with
k € X. Because the current cache deployment might be suboptimal, the current service
might underutilize the available capacity at AS k£ and transmit content at a smaller rate
than P,.

The upgrade might be accomplished by purchasing additional servers or by relocating
those servers that are no longer needed in their current location. Let 1y, ; refer to the traffic
rate of the servers relocated from AS £ to AS i:

R,; >0 VkeXVieH. 2.7

Servers are not relocated within the same AS because this would not change the traffic
capability of the AS:
R, =0 VieH. (2.8)

Also, the ability to relocate servers from AS £ is limited by their availability:

> Rii<P VkeX. (2.9)

i€H
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With A; denoting the traffic rate supported by the additionally purchased servers, the fol-

lowing inequality assures that each AS in the upgraded deployment has sufficient traffic

capability to satisfy the performance requirements of the end users:

Vi<P - Rij+Y Rii+A  VieN.
jeH keX
’ Notation H Semantics

G AS-level topology of the Internet core
N set of ASes in G

T} traffic demand of the end users in AS j
H set of cache ASes
l; bit indicating whether AS ¢ € H

D;; AS-hop distance from cache AS i to AS j

My fraction of T satisfied by cache AS 4
Vi overall traffic of cache AS 7

O; on-net traffic of cache AS ¢
F; off-net traffic of cache AS i
q performance constraint
X set of ASes in the current cache deployment
Py current traffic capability in AS k

Ry ; traffic capability relocated from AS £ to AS ¢
A; traffic capability purchased for AS ¢
Y, relocation cost for AS ¢
Z; purchase cost for AS ¢
S; server cost for cache AS i
E; energy cost for cache AS 7
B; bandwidth cost for cache AS i

Y, 2, S, ¢, b; || cost-function factors

U, W cost-function exponents

C CDN cost

Table 2.6: Notation in the InCaDeOp problem formulation.

(2.10)

The relocation of servers to AS 7 and purchase of additional servers for AS 7 have the

following costs respectively:

Yi=vy-

ZRk,iandZi:z-A,- Vie N

keX

where y and z are positive constant factors.

2.11)

When upgrading the deployment, the CDN strives to minimize its costs. These in-
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clude the costs of the upgrade itself and of operating the upgraded deployment:

C=> (Yi+Zi+Si+E+B). (2.12)
icH
The objective in InCaDeOp is to minimize C'. With all the notation summarized in Ta-
ble 2.6, we formulate the InCaDeOp problem as follows:

* Inputs: topology G, AS-level paths in GG, vector 1" of traffic demands, set X of
ASes in the current cache deployment, vector P of current traffic capabilities, cost-

function parameters vy, z, s, e, b;, u, w, and performance constraint ¢;

* QOutputs: set H of cache ASes, traffic-split matrix m, overall-traffic vector 1/, on-net
traffic vector F', off-net traffic vector .J, capability-relocation matrix R, capability-
purchase vector A, relocation-cost vector Y, purchase-cost vector Z, server-cost
vector S, energy-cost vector F, bandwidth-cost vector B, and CDN cost ('

* Constraints: equalities 2.2 and 2.8 and inequalities 2.1, 2.4, 2.7, 2.9, and 2.10;

* Objective: minimize CDN cost C.

2.6 Related work

Cache placement has been studied in models that do not account for the economic
structure of the Internet [21-23]. Because the economic considerations are crucial for
CDN planning, we go beyond the single-network perspective and examines cache de-
ployment in realistic AS-level Internet topologies.

Complementary to the planning problem of CaDeOp that we study, there is much
prior work on the real-time operations of the CDN in areas such as dynamic content
management and load balancing [22,23,31,53-55].

There exists recent work on data-center placement and upgrade [56,57]. The data-
center optimizations are based on physical resources, e.g., water, energy, and land. While
CDN caches are deployed in data centers, the performance and cost considerations for
deploying CDNss are drastically different from those relevant for data-center operators.

The problem of optimizing the set of upstream ASes for a multihomed network [58]
has similarities with the CaDeOp subproblem of choosing the set of cache ASes. How-

ever, CDN specifics necessitate a different formulation and solution methodology for
CaDeOp.
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Optimization techniques have been used to study telco CDNs and IXP-colocated
CDNs [59, 60]. However, there is no prior study of multi-AS deployment optimization
with realistic cost and performance constraints, such as the ones we examined.

Reducing the energy cost of a CDN has been a focus in earlier work [32,61]. Our
investigation takes a more comprehensive view by considering all major sources of the
CDN cost, including energy, bandwidth, and server costs, in the joint CaDeOp problem.

2.7 Conclusion

Our work is the first to formulate and solve the CaDeOp (Cache Deployment Opti-
mization) problem of determining an optimal set of cache ASes in the Internet core and
provisioning server, energy, and bandwidth resources in each cache AS. CaDeOp strives
to minimize the CDN cost while satisfying the end-user performance requirements. Our
evaluation of the CaDeOp solutions exposed trade-offs in CDN deployment for realistic
AS-level topologies, Internet routing, traffic demands, and non-linear costs for energy
and bandwidth. We also evaluated the sensitivity of the conclusions to our parametric as-
sumptions. When the delivery-quality needs become more stringent, the CDN footprint
expands rapidly, requiring cache deployments in additional ASes and geographical re-
gions. Also, the CDN cost increases several times, with the cost balance shifting toward
bandwidth and energy costs. On the other hand, the traffic distribution among the cache
ASes stays relatively even, with the top 20% of the cache ASes serving around 30% of
the overall traffic.






Chapter 3

Obscure Giants: Detecting the
Provider-Free ASes

The previous chapter showed the trade-offs in optimizing cache deployments of CDNs
in the Internet core composed of transit ASes. While Chapter 2 relied on knowledge of
the Internet core topology, we now shift the focus onto Internet topology inference and its
economics implications. This chapter proposes an algorithm to detect the set of provider-
free ASes (PFS). PES is learnt by the application of topology inference and valuable for
understanding Internet resilience and economics of the Internet core.

Economic relationships between ASes (Autonomous Systems) matter for Internet
routing. For example, it is financially more attractive for an AS to route traffic through
a peering link than a transit connection of the AS to its provider. Despite a trend to-
wards flattening [5], the Internet routing ecosystem is essentially hierarchical [2,5,7, 8].
A vast majority of ASes are relatively small and route traffic either as customers of tran-
sit links or by peering with local ASes of a similar stature. There exists only a handful
of provider-free ASes that reach the entire Internet without paying anyone for the traffic
delivery. While a tier-1 network is a more common name for a provider-free AS, we
use the latter term because prior attempts to redefine AS tiers make network tiering an
ambiguous notion. The set of the provider-free ASes, to which we refer as PF'S, contains
only large networks. Nevertheless, the real difference between them and another large
network can be subtle. For example, if a network is not a provider-free AS because it
pays for less than 1% of its inter-domain traffic, the lack of the provider-free status can
be obscure to outsiders, especially if the disqualifying payments are for a paid peering
relationship which is subject to a non-disclosure agreement.

Due to the general reluctance of ASes to disclose their business agreements, re-
searchers infer the inter-AS economic relationships from BGP (Border Gateway Proto-

33
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col) [1] route advertisements or actual IP (Internet Protocol) [3] forwarding routes. Such
inferences are imperfect, e.g., a router misconfiguration can trigger an inference of an
invalid relationship. Also, the inference algorithms are heuristic and can cause additional
deviations from the reality. Finally, the economic relationships are dynamic: while it
takes time to collect a comprehensive set of measurements, changes in the relationships
can decrease the inference accuracy. Over the past decade, numerous research efforts
have tried but failed to infer inter-AS economic relationships precisely. We explore this
failure in the specific context of provider-free ASes.

Our interest in PFS arises due to a number of reasons. First, the provider-free ASes
clearly play a key role as the transit core of the Internet ecosystem. By delivering a
significant portion of Internet traffic, PFS is highly relevant to the overall resilience of
the Internet to accidental failures and intentional disruptions. In particular, economic
disputes between provider-free ASes can endanger the universal connectivity of Internet
users. Second, while humans prefer to think in discrete categories, designation of an
autonomous system as provider-free can have tangible marketplace implications. Third,
some algorithms for inter-AS relationship inference use PFS as an input [8, 9] and hence
need to know PES accurately.

In this chapter, we contribute by developing an algorithm that detects PFS from public
datasets of inter-AS economic relationships. We show that straightforward extraction
of PFS from the public datasets yields poor results. Our alternative algorithm utilizes
topological statistics (customer cones of ASes) and temporal dataset diversity. The more
sophisticated algorithm infers PFS with a significantly higher accuracy. Although a lot of
related studies deal with the more general problem of inter-AS relationship inference, our
algorithm succeeds by focusing on the more specific problem of PFS detection. Another
group of related work redefines tier-1 networks as per a new classification of Internet
ASes, e.g., based on their graph-theoretic topological properties. In contrast, our study
detects provider-free ASes in accordance to the traditional tier-1 definition. The two main
contributions are in deriving:

* PFS insights from mostly trustworthy but non-verifiable sources; we carefully filter
out occasional spurious answers;

» TC (Temporal Cone) algorithm that detects PFS based on public datasets of inter-
AS economic relationships; the derived TC algorithm is useful because it enables
accurate inferences of PFS in the future even if PES insights from the non-verifiable
sources become unavailable.

While the knowledge of PES is highly valuable, validation of PFS inference results
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constitutes a major challenge because the ground truth lies outside the public domain. To
tackle the validation challenge, we utilize trustworthy but non-verifiable sources such as
Wikipedia [45]. These sources do not disclose their data and methods. Thus, their con-
clusions are not purely scientific. Nevertheless, our conversations with network operators
indicate that the non-verifiable sources reflect the reality accurately. Whereas it seems
practically impossible to obtain the complete ground truth from network operators, the
non-verifiable source insights form the best available baseline for result validation in this
important domain. As a midpoint between traditional science and citizen science [62,63],
our PFS detection method expands the scope of knowledge but softens the benchmark for
validation.

We structure the rest of the chapter as follows. Section 3.1 reports PFS insights from
the non-verifiable sources. Section 3.2 describes the public datasets in our study. Sec-
tion 3.3 considers a straightforward PFS detection method. After analyzing the failures
of this straightforward method, Section 3.4 develops the more sophisticated TC algo-
rithm. Section 3.5 evaluates the TC algorithm. Section 3.6 comments on related work.
Section 3.7 concludes the chapter by summing up its contributions.

3.1 Non-verifiable sources

While the obscure inter-AS economic relationships do not reveal the ground truth
about PFS, a number of non-verifiable sources offer insights into this set. We consider
three such non-verifiable sources: Wikipedia, Renesys, and Hurricane Electric.

Wikipedia maintains an article about provider-free ASes [45]. Our primary interest
is in the Wikipedia perspectives throughout 2009 because the development of our TC
algorithm relies on public datasets collected during that year. According to Wikipedia,
PFS consisted of 8 members on 1/1/2009: AT&T, Global Crossing, Level 3, NTT, Qwest,
Sprint, Verizon, and Savvis [64]. The article has seen frequent revisions and expanded
its PFS with Telia on 28/1/2009 [65]. The addition of Tata on 25/3/2009 resulted in the
following PES [66]:

Wi = {AT&T, Global Crossing, Level 3, NTT, Qwest, Sprint, Verizon, Savvis, Telia,
Tata}.

Except for few incidents in June and October when spurious modifications disap-
peared shortly after being made, PFS preserved this 10-member composition until the
end of 2009. In 2010 and 2011, Wikipedia continued the trend of the PFS expansion and
typically recognized Tinet as the 11th member of the PFS, e.g., in the 10/2/2011 revi-
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sion [67]:

Wy = {AT&T, Global Crossing, Level 3, NTT, Qwest, Sprint, Verizon, Savvis, Telia,
Tata, Tinet}.

Whereas Wikipedia is an online encyclopedia that anyone may edit, some short-lived re-
visions of this particular article certainly distorted the reality [68]. Nevertheless, experts
think that on the whole the Wikipedia perspective reflects PFS accurately [8].

Renesys is a private company that sells Internet business information. In 1/2009, Re-
nesys announced a 12-member set of commercial default-free ASes [69], i.e., ASes that
can route traffic to any Internet destination without relying on a default route. Default-
free ASes are either provider-free or reaching the entire Internet by paying for peering
but not for transit. The Renesys set subsumes ¥, and includes two more ASes: XO
and AboveNet. Interestingly, the Wikipedia article explicitly stated in all its revisions
that XO and AboveNet were not provider-free due to paid peering [64—68]. Thus, the
Renesys perspective is consistent with limiting PFS to ;.

Hurricane Electric 1s an Internet service provider that offers an online tool for ranking
the peers of an autonomous system [70]. The specific criteria for the ranking are not clear
but seem to rely on the number of active BGP connections for the AS or the percentage
of BGP paths transiting the AS. For each AS in 11/, all the other ASes in ¥/} are among
highly ranked peers of this AS according to the Hurricane Electric tool. Thus, the ASes
of W, do form a close-knit peering community as expected for provider-free ASes.

Based on the above considerations, we subsequently treats W/, as the primary PFS
answer from the non-verifiable sources for 2009.

3.2 Public datasets

PFS insights in Section 3.1 came from the non-verifiable sources that did not disclose
their data and methods. The rest of our study explores datasets from two public sources:
UCLA (University of California, Los Angeles) [42] and CAIDA (Cooperative Associa-
tion for Internet Data Analysis) [43]. The datasets from both public sources characterize
the economic relationships between Internet ASes. UCLA classifies inter-AS links as
transit or peering. CAIDA uses an additional category for sibling relationships: a sibling
link connects two ASes belonging to the same Internet service provider.

Both UCLA and CAIDA leverage BGP measurements but employ different meth-
ods to infer the economic relationships from the BGP data. The UCLA method uti-
lizes the Route Views [71] and RIPE RIS (Réseaux IP Européens Routing Information
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Service) [72] measurement infrastructures where route collectors engage via BGP with
routers in strategic Internet locations to collect AS-level path announcements. The routers
that supply the announcements are called BGP monitors. UCLA collects the announce-
ments from BGP monitors located in provider-free autonomous systems (as identified
by Wikipedia). The UCLA method categorizes the collected inter-AS relationships into
peering and transit based on the valley-free routing conditions [73] and depending on
how consistent the views from different monitors are.

CAIDA looks up the IRR (Internet Routing Registry) database [74] to detect sibling
links: if two linked ASes belong to the same organization as per the database, the CAIDA
method classifies the relationship between the autonomous systems as a sibling link. To
infer peering and transit links, CAIDA relies on BGP measurements from Route Views.
The CAIDA heuristic for identifying and directing the transit links strikes a balance be-
tween maximizing the following two metrics: (1) number of BGP paths that are valid
according to the valley-free routing rules and (2) number of links where the provider
node of the link has a higher degree than the customer node of the link (the degree of a
node refers to the number of links between this node and other ASes). With the CAIDA
method, peering relationships are links between nodes with similar degrees.

While the UCLA datasets are available starting from 10/2008, CAIDA reports its
datasets infrequently for 2009 and only twice after 2009. During the development of our
PES detection algorithm, it would be desirable to have similar time series for the two
sources. Hence, our Sections 3.3 and 3.4 focus on the 12 months of 2009. Guided by the
CAIDA dataset availability and picking one day per month, we select the following days
for both sources: 22/1, 20/2, 11/3, 29/4, 20/5, 15/6, 20/7, 30/8, 20/9, 20/10, 20/11, and
15/12. June is the only exception: because the number of links in the UCLA 15/6 dataset
is extremely low, we use 16/6 instead for UCLA.

Figure 3.1 depicts the inter-AS economic relationships in the UCLA and CAIDA
datasets during 2009. For either source, the total number of links tends to grow with
time, and the few down-and-up swings are most likely due to imperfect measurements
rather than actual fluctuations in the number of economic relationships. The sibling rela-
tionships in the CAIDA datasets constitute a negligible fraction of the overall link pop-
ulation. While the number of peering links is much higher for UCLA than for CAIDA,
the number of transit links is rather similar for the two sources. The transit-link profiles
are mostly consistent but do have some aberrations such as the dip for CAIDA in 4/20009.
The numbers of transit links for the two sources remain most stable and close to each
other between 5/2009 and 7/2009.

When evaluating our TC algorithm in Section 3.5, we utilize the UCLA datasets for
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Figure 3.1: Inter-AS economic relationships in the UCLA and CAIDA datasets during 2009.

all 32 months of their availability from 10/2008 to 5/2011. We select the 20th day for all
20 additional months except 5/2011, for which we use 10/5/2011 as the last day of our
data gathering.

3.3 Straightforward inference

Given a dataset of inter-AS economic relationships, one might hope to infer PFS using
the following straightforward method: compose PFS from all such ASes in the dataset
that have no transit provider. We apply this straightforward method to the UCLA and
CAIDA datasets of Section 3.2. Table 3.1 sums up the generally disappointing results for
all 12 months of 2009. Throughout the year, the straightforward method includes into
its PFS up to 23 non-W; ASes and excludes up to all 10 ASes of W;. For the UCLA
and CAIDA datasets from 6/2009 (when the numbers of transit links for the two sources
remain most stable and close to each other), PFS contains respectively 17 and 27 ASes,
with respectively 9 and 7 of these ASes belonging to W;.

For the UCLA 6/2009 dataset, the straightforward method excludes Tata from PFS
because NTT and GIT Telecom (a Cypriot AS) are transit providers for this missing
member of W; according to the dataset. Among the 8 non-W; members of PFS, Sunkist
Growers (a not-for-profit cooperative of citrus growers in California and Arizona), Open
Peering Initiative (a public peering IXP in Amsterdam), and Siemens seem highly un-
likely to be genuine provider-free ASes. These 3 ASes do have providers in the CAIDA
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Table 3.1: PFS size according to the straightforward method for the datasets of UCLA (row 2)
and CAIDA (row 3) and (in parentheses) number of ASes from W in this PFS monthly for year
2009.

dataset from the same month.

For the CAIDA 6/2009 dataset, the straightforward method omits NTT, Savvis, and
Tata from PFS because these 3 members of W, have transit providers. Specifically, NTT
has 3 providers: Verizon, Telia, and Easynet. Savvis has 5 providers: Telia, Tata, Tinet,
X0, and Deutsche Telekom. Although Tata is a transit provider for Savvis, the straight-
forward method does not recognize Tata as a provider-free AS either: Tata appears as
a customer of NTT, Telia, and Tinet. On the other hand, PFS of the straightforward
method includes 20 non-; ASes such as the University of Texas System, NASA, and
New Zealand Research Network, which do have providers in the UCLA 6/2009 dataset.

Link misclassification in the datasets is the most common source of errors for the
straightforward method. The UCLA and CAIDA datasets are typical in this regard. We
applied the straightforward method to another dataset inferred with Gao’s algorithm, and
the respective results suffer from the link misclassification as well.

3.4 TC algorithm

Section 3.3 demonstrates that the straightforward inference yields disappointing PFS
results with respect to both false positives and false negatives. Two factors undermine the
straightforward method. First, while the UCLA and CAIDA datasets do not classify the
inter-AS links fully and correctly, even a single error in the input dataset can mislead the
straightforward method. The method can exclude a genuine provider-free AS (e.g., Tata
in the UCLA 6/2009 dataset) from PFS because the dataset mistakenly reports a provider
for this AS. Also, the method can wrongly include an AS (e.g., Sunkist Growers) into
PFS because the dataset misses the transit link between this AS and its provider. Second,
the straightforward method implicitly assumes that having no provider implies the ability
to reach the entire Internet. In reality, some ASes in the Internet ecosystem do not strive
for the universal reachability. For example, the main goal of an IXP (Internet eXchange
Point) [5,75] is to serve as a peering infrastructure that enables other ASes to exchange
their local traffic. The straightforward method can incorrectly classify an IXP (e.g., Open
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Peering Initiative) as a provider-free AS.

Thus, we develop a more sophisticated TC (Temporal Cone) algorithm for detecting
PFS. Sections 3.4.1, 3.4.2, and 3.4.3 discuss the three important components of our al-
gorithm: its use of topological statistics to deal with the noisy data, setting the PES size,
and exploiting the temporal diversity of the datasets to improve the accuracy of the PFS
detection further.

3.4.1 Customer-cone ranking

Topological statistics represent a promising basis for accurate PFS detection because
of their potential resilience to individual errors caused by the link misclassification.
While the datasets of inferred inter-AS relationships clearly contain numerous errors,
our approach relies on the premise that the datasets are also rich in correct information
and that looking at the datasets from a right perspective can reveal PFS accurately.

After examining a number of options, we choose the customer cone as the topological
parameter for the TC algorithm: the customer cone of an AS includes the AS itself as
well as all direct and indirect customers of the AS, i.e., every customer reachable from
the AS through a sequence of provider-to-customer transit links [44]. We expect the
customer cones of the provider-free ASes to be among the largest because the customer
cone of an AS is strictly larger than the customer cone of any of its customers. This
expectation is certainly a heuristic (in principle, a provider-free AS can have a smaller
customer cone than a network that lies outside this customer cone and has a provider)
but our results confirm its effectiveness. Due to multihoming [76] which is common
throughout the Internet ecosystem, the customer cones of two ASes can overlap. We
compute the customer cone of each AS using a recursive algorithm that takes the overlaps
of the customer cones into account.

To illustrate the potential of the customer cone for PFS detection, let us revisit the
false negatives and false positives of the straightforward method for the 6/2009 datasets
in Section 3.3. For the UCLA 6/2009 dataset, the straightforward method computes the
PFS that incorrectly excludes Tata and wrongly includes Sunkist Growers, Open Peering
Initiative, and Siemens. The customer cones of Tata, Sunkist Growers, Open Peering Ini-
tiative, and Siemens are 26014, 69, 75, and 8 ASes respectively. While the customer cone
of 26014 ASes is the 13th largest among all networks in the dataset, the customer-cone
perspective leaves Tata as a plausible candidate for PFS. On the other hand, the small
customer cones of Sunkist Growers, Open Peering Initiative, and Siemens clearly sug-
gest that these 3 networks are not provider-free ASes. Similarly, for the CAIDA 6/2009
dataset, the 3 false negatives of the straightforward method are NTT, Savvis, and Tata
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which have very large customer cones of 24473, 23769, and 23788 ASes respectively.
The University of Texas System, NASA, and New Zealand Research Network are false
positives of the straightforward method, and their small corresponding customer cones
of 19, 11, and 232 ASes strongly indicate that these 3 networks are not provider-free.
The above examples confirm that the customer-cone metric is more robust to the link
misclassification than the simple inspection of the link types as with the straightforward
method.

Among alternative topological parameters that we considered as a basis for the TC
algorithm, the customer count of an AS is easier to compute than the customer cone and
refers to the number of direct customers of the AS. A very large value of the customer
count has some correlation with the provider-free status. However, the correlation is
weaker than for the customer cone: even if a network does not belong to PFS due to
being a direct customer of a provider-free AS, this network can have a very large number
of own direct customers.

While the PFS members peer with each other, another potential approach to detecting
PFS is to search for close-knit peering communities, e.g., to examine the number of
peering links of each AS. However, our preliminary analyses for peering-based and other
alternative parameters did not yield encouraging results. Consequently, the customer

cone serves as the topological basis for our PES detection algorithm.
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Figure 3.2: 6/2009 distributions of the AS customer cones.

Figure 3.2 plots the distributions of the AS customer cones in the UCLA and CAIDA
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datasets for 6/2009 and shows that only a tiny fraction of all ASes have a really large
customer cone. Table 3.2 zooms in on the tail of the UCLA 6/2009 distribution. The
tail covers set W, quite tightly: all 10 members of W; appear among the top 13 ASes
ranked by the customer cone; this is an improvement over the straightforward method
which includes only 9 members of W into its 17-member PFS for 6/2009.

Rank | AS name (AS number) Customer cone, | In W;?
ASes

1 Sprint (1239) 28478 | V(1)
2 Level3 (3356) 28168 | v(2)
3 NTT (2914) 27650 | v (3)
4 AT&T (7018) 27613 | v(4)
5 Global Crossing (3549) 27236 v (5)
6 Verizon (701) 27121 v'(6)
7 Telia (1299) 26833 | v(7)
8 Qwest (209) 26764 | V(8)
9 Deutsche Telekom (3320) 26263 —
10 Ipercast (34763) 26127 -

11 Savvis (3561) 26082 | v (9)
12 GIT Telecom (38925) 26015 —
13 Tata (6453) 26014 | v (10)

Table 3.2: UCLA customer-cone ranks of ASes for 6/2009,

Customer-cone rank

1 2 3 4 5 6 7 8 9 10 11 12
Month of 2009

Figure 3.3: UCLA customer-cone ranks of the ASes in Wj.
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Figure 3.3 tracks the UCLA customer-cone ranks of all ASes in W; throughout 2009.
The ranks remain close to the top 10 with few exceptions such as three dramatic dips for
Tata. While Figure 3.3 corroborates the promising potential of the customer-cone statis-
tics for PFS detection, the results also suggest that our algorithm needs additional features
for overcoming the noise in the datasets. Figure 3.4 depicts the CAIDA customer-cone
ranks of all ASes in W, during 2009. In agreement with Table 3.1, the customer-cone
results in Figures 3.3 and 3.4 imply that the UCLA datasets are less noisy and thus more
suitable for PES detection than the CAIDA datasets.
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Figure 3.4: CAIDA customer-cone ranks of the ASes in Wj.

Figure 3.5 presents the 2009 customer-count ranks of all ASes in W; for the UCLA
datasets. Compared to Figure 3.3 for the customer-cone ranks, Figure 3.5 shows that the

customer-count ranks are less effective in capturing W.

3.4.2 PFS size

To detect PFS, the TC algorithm has to size this set. Whereas the Internet is growing,
our hypothesis is that the set of provider-free ASes scales up proportionally with the
overall population of Internet ASes. More specifically, we set size S, of PES at time m

to:
8= Ug . PmJ (3.1)

where P, represents the total number of Internet ASes at time m, and k is a fixed factor.
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Figure 3.5: UCLA customer-count ranks of the ASes in 7.
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Figure 3.6: PES size according to Wikipedia and TC algorithm for the UCLA datasets.

To validate the hypothesis and select the value of k, we explore how PFS evolved
from 10/2008 to 5/2011 according to the Wikipedia perspective. During this time in-
terval, the article has been revised on 113 days, and multiple revisions on a single day
were common. Figure 3.6 depicts the PFS size according to Wikipedia, with short-lived
spikes representing spurious revisions. For every day throughout the 32-month interval,
Figure 3.6 also plots the PFS size as per Equation 3.1 with the value of k set to 0.00032,
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which corresponds to 1 in about 3000 Internet ASes being provider-free.

This equation-based prediction is aligned well with the PFS growth trend in the de-
picted Wikipedia data. Whereas the amount of the available data is too limited to recom-
mend strongly the specific value of k or even to defend confidently the proportionality of
PFS to the overall population of Internet ASes, the available data do suggest that Equa-
tion 3.1 offers a reasonable approximation for the PFS size.

3.4.3 Temporal dimension

With the PFS size selected, the algorithm still needs to identify the ASes of the set.
We utilize the temporal dimension of the datasets to tackle the noise remaining in the
customer-cone statistics. Our intuition is that the membership of an AS in PFS is rela-
tively stable. While a new AS can join PFS and subsequently lose the provider-free status
again, such transitions are infrequent, caused by rare mergers/acquisitions and guarded
against by long-term business contracts. Therefore, to decide whether an AS is provider-
free for month m, our algorithm looks w months back and ahead from month m and
includes the AS into PFS for month m only if the AS belongs to the set according to the
customer-cone ranks for at least n out of these 2w + 1 months.

For an input with M months in the time series, our algorithm outputs PFS for each
month except for the first w and last w months, i.e., the algorithm computes PES for
the M — 2w middle months. While one-year contracts between ASes are common, we
recommend w = 6 months and n = 5 months as default values for the w and n parameters
of the algorithm, i.e., inclusion of an AS into PFS requires from the customer-cone ranks
to endorse the AS for at least 5 out of 13 months. These settings enable our algorithm to
recognize a genuine one-year PFS membership in spite of multiple months of erroneous
disqualifications by the customer-cone ranks.

These settings also allow the algorithm to exclude a non-provider-free AS from PFS
despite multiple months of mistaken customer-cone endorsements. In Section 3.5, we
study sensitivity of the TC algorithm to the w and n parameters and show that w =
6 months and n = 5 months are reasonable settings.

We refer to the developed PFS detection algorithm as TC (Temporal Cone). Table 3.3
explains the notation used in the TC algorithm 1 in detail.

3.5 Evaluation

According to Sections 3.2 through 3.4, the datasets from UCLA are available for more
months and less noisy than the CAIDA datasets. To evaluate the developed TC algorithm,
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’ Notation H Semantics

™m or i month
M number of months in the time series
Cm list of the Internet ASes ordered by their
customer-cone ranks for month m
L., ordered list of PFS candidates for month m
Sim size of PFS for month m
w lookback/lookahead window
F,, PES for month m
a AS
ba, counter of months when AS a belongs to
PFS as per the customer-cone rankings
Ta,m rank of @ in L,
n PFS membership threshold

Table 3.3: Notation for our Temporal Cone (TC) algorithm as shown in Algorithm 1 (below)

Algorithm 1: TC (Temporal Cone) algorithm for PFS detection

1 form=1,...,M do

2 compute C,;

3 L, < Ch;

4 calculate S,, according to Equation 3.1;

sform=M-—w,...,w+1do
6 F,, « 0;

7 a < first AS in L,,;

8 while ‘Fm‘ < Sy and a # null do
9

by + O;
10 fori=m—w,...,m+wdo
11 if Tay < SZ then
12 L by < by +1;
13 if b, > n then
14 | Fp « FU{a}
15 else remove a from L;,; 74, < 00;
16 | @< next ASin L,,

Section 3.5.1 relies on the UCLA datasets for the 32 months from 10/2008 to 5/2011
and — following the recommendations from the previous section — sets the PFS sizing
factor, lookback/lookahead window, and PFS membership threshold to £ = 0.00032,
w = 6 months, and n = 5 months respectively. Then, Section 3.5.2 examines the
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sensitivity of the TC algorithm performance to the w and n parameters.

3.5.1 TC results

During its first iterative stage, the TC algorithm determines the AS customer-cone
ranks and PFS sizes for all M = 32 months. Figure 3.7 plots the customer-cone ranks
of the ASes in set W5, i.e., all W; members and Tinet which became the 11th member
of PFS according to Wikipedia after 2009. All 11 members of W5 consistently appear
among the top 11 ASes ranked by the customer cone in 2010 and 2011, indicating a
higher accuracy of the more recent UCLA datasets.
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Figure 3.7: UCLA customer-cone ranks of the ASes in W3 (i.e., the W; members and Tinet) from
10/2008 to 5/2011.

As shown in Figure 3.6, the TC algorithm sizes PFS to 9 ASes between 10/2008 and
1/2009, 10 ASes between 2/2009 and 12/2009, and 11 ASes from 1/2010 to 5/2011. This
expansion is consistent with the PFS insights from the trustworthy but non-verifiable
sources. With w = 6 months to look back and ahead, the TC algorithm executes its
second stage to compute PES for the M — 2w = 20 middle months from 4/2009 to
11/2010. Among the 9 months of 2009 (when the PFES size is 10 ASes), PES perfectly
matches W, for one month, omits only Qwest for another month, and excludes only Tata
for the other 7 months. For all 11 months of 2010 (when the PFS size is equal to 11 ASes),
PFS matches W, exactly.

Table 3.4 sums up the performance of the TC algorithm. A quick comparison of
these results with Table 3.1 reveals that the TC algorithm detects PFS significantly better
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Year 2009 2010
Month 4-8,10-12\ 9 1-11

ucta | 109 [1000) | 11aD) |

Table 3.4: Size of PFS according to the TC algorithm for the UCLA datasets and (in parentheses)
number of ASes in this PFS that match the Wikipedia insights (W7 for 2009 and W5 for 2010).

than the straightforward method. While the TC algorithm agrees with the Wikipedia
perspective on the PES size, the false positives of the algorithm are equal in number to
its false negatives. Hence, we further quantify the performance of the TC algorithm with
the following 2 metrics:

» Accuracy A,, of the PFS detection for month m is the fraction of ASes in the
computed PFS that are provider-free during month m according to Wikipedia;

» Average accuracy of the PFS detection is the average of monthly accuracies A,,
over all the M — 2w middle months in the input time series.

For the TC results in Table 3.4, the accuracy of the PFS detection is 90% for 8 months
and perfect 100% for the other 12 months. Thus, the corresponding average accuracy of
the PES detection is 96%.

3.5.2 Parameter sensitivity

Whereas our TC algorithm relies on parameters w and n, this section studies the
sensitivity of the algorithm performance to these 2 parameters. We conduct such study
for not only UCLA but also CAIDA. Throughout the study, we use £ = 0.00032 as
discussed in Section 3.4.2.

For the UCLA datasets, Figure 3.8a depicts the sensitivity of the TC algorithm accu-
racy to PFS membership threshold n with w = 6 lookback/lookahead months. Any of the
examined n values delivers 100% accuracy for the last few months. For earlier months,
the accuracy is lower and varies from one value of n to another. With n = 5 months, the
accuracy is most stable and remains at least 90%. With n = 13 months, the accuracy is
only 40% for 9/2009. In general, the results indicate that values of n in the lower portion
of its range are more attractive than values in the upper portion.

By averaging the accuracy over the individual months, Figure 3.8b exposes more
clearly the trend revealed in Figure 3.8a. With w = 6 months, the average accuracy
of the TC algorithm declines steadily and dramatically as PFS membership threshold
n grows beyond 5 months. When n decreases from 5 months to 1 month, the average
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Figure 3.8: Sensitivity of the TC algorithm accuracy to PFS membership threshold n for the
UCLA datasets.

accuracy declines slightly. Hence, for w = 6 months, the average accuracy attains its
peak of 96% when n is set to 5 months.

Figure 3.8b also plots the average accuracy for w = 2 months and w = 8 months, with
the profile of the accuracy sensitivity to n remaining qualitatively the same. The average
accuracy is stable for smaller values of the PFS membership threshold but decreases

consistently and significantly after n grows beyond a tipping point.
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Figure 3.9: Sensitivity of the TC algorithm accuracy to lookback/lookahead window w for the
UCLA datasets.

Figure 3.9 shows the sensitivity of the TC algorithm accuracy to lookback/looka-
head window w for the UCLA datasets. For n = 5 months, Figure 3.9a presents the
accuracy for individual months and suggests that larger values of w are generally ben-
eficial. Figure 3.9b reveals this dependence more clearly. As w grows, the average
accuracy increases first but then tends to flatten out. With n = 5 months, the average
accuracy reaches the maximum of 96% when w is set to 6 months. w = 7 months and
w = 8 months yield similarly high values of the average accuracy. Based on the above
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observations, we conclude that w = 6 months and n = 5 months constitute reasonable
settings of the two parameters for the UCLA datasets.

For the CAIDA datasets, we conduct a similar sensitivity study and report the results
in Figure 3.10. The study relies on data for the 16 months from 10/2008 to 1/2010. The
shorter duration of the CAIDA time series reduces the meaningful value range for w to

be up to 7 months. Figure 3.10a plots the average accuracy of the PFS detection as a
function of n.

100 T T T T T T T T T
90 g
w PO W=2 ——
= W=3 -
g 70t s 1
= w=5 - o
3
2 \ 1
5 . .
> ..
< g H B, B, sy
* % TR
T
30 .
20 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 M
PFS membership threshold in months, n
(a) Sensitivity to PFS membership threshold »
100 T T T
90 :
n=1 ——
S 80 N=3 —ag-s ]
= n=5 e
:Eé" 70 - n=9 g |
% E 3
9 60 | e e
+ — —eemmam=n =TT —-'—--—-u—_-—,,
é’n 50 LT i e 1
g o EaT
=" - -
< 4l i
o
30 g
20 1 1 1
1 2 3 4 5

lookback/lookahead window in months, w

(b) Sensitivity to lookback/lookahead window w

Figure 3.10: Sensitivity of the TC algorithm accuracy to PFS membership threshold n and look-
back/lookahead window w for the CAIDA datasets.
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The dependence is qualitatively the same as with the UCLA datasets. When the the
PFS membership threshold increases, the average accuracy remains rather stable first but
then declines steadily and substantially after a tipping point. The average accuracy peaks
at 62% with w = 5 months and n = 5 months. The qualitative profile for the sensitivity of
the TC algorithm accuracy to lookback/lookahead window w is also similar to the pattern
observed for UCLA. As w increases, the average accuracy improves first but then stays
mostly stable. Note that the best CAIDA settings of w = 5 months and n = 5 months
are close to the settings recommended above for the UCLA data source.

Although the sensitivity of the PFS detection accuracy to the w and n parameters
has a qualitatively similar profile for the UCLA and CAIDA datasets, quantitatively the
TC algorithm performs very differently with the 2 sources. In particular, the average
accuracy peaks at 96% and 62% for UCLA and CAIDA respectively. The performance
differences could be partly attributed to the differences in the UCLA and CAIDA infer-
ence methodologies. For example, UCLA might be yielding the more accurate results
because of considering the RIPE RIS BGP measurements in addition to the Route Views
BGP measurements. Whereas the CAIDA method accounts for node degrees, the UCLA
methods disregards them to focus on valley-free routing. Our results suggest that PFS de-
tection might benefit from disregarding the node degrees. Finally, while UCLA collects
its data from BGP monitors located in provider-free autonomous systems as identified
by Wikipedia, CAIDA gathers its data from a more diverse group of BGP monitors. The
higher precision of the UCLA datasets might be due to utilizing, at least indirectly, the
provider-free AS knowledge taken from the non-verifiable source.

3.6 Related work

The TC algorithm derives PFS from inter-AS economic relationships. Since the pi-
oneering work by Gao [2], the problem of inter-AS relationship inference has attracted
a variety of other heuristic solutions (8,9, 44,77-82]. While our work is the first to fo-
cus on detecting PFS, previous works used PFS as an input to their inter-AS relationship
inference algorithms [8,9]. PES also served as a basis for studies of backbone networks
and resilience of routing to failures [83—85].

Derivation of PFS from public inter-AS relationship datasets is challenging because
missing or misclassified links make the datasets noisy. Addressing the problem of hidden
links [86-90] has a potential for making the results of our TC algorithm even better.

While the TC algorithm exploits the temporal diversity of the inter-AS relationship
datasets, prior works explored the temporal dimension for studying other problems such
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as network graph evolution [91,92].

In general, Internet AS-level graphs have been studied from numerous perspectives.
For example, [93, 94] studied the structure of the AS-level graphs using the k-dense and
k-clique community detection algorithms. The work by Subramanian et al. [78] is the
closest in spirit to ours. Among its other contributions, that paper proposed a new hier-
archical taxonomy for Internet ASes and developed an algorithm that uses AS customer
counts to detect the top-tier ASes of the newly proposed hierarchy. While similar in
spirit, our work is very different in its specific goals and methods. In particular, we strive
to detect PES in accordance to the traditional definition of provider-free ASes.

3.7 Conclusion

PFS, or the set of provider-free ASes, is important for the Internet resilience and eco-
nomics. Albeit the ground truth about PFS is not publicly available, there is a significant
interest in knowing PFS. For example, the Wikipedia article on provider-free ASes has
been viewed about half a million times during the previous three years. In this work,
we sought to supplement the non-verifiable sources, such as the Wikipedia article, with
scientific insights from public datasets of inferred inter-AS economic relationships. In
particular, we developed the TC algorithm that sized PFS to a fraction of the overall AS
population and determined the PFS members by means of AS customer-cone ranking
and temporal dataset diversity. In comparison to the straightforward method for extract-
ing PFES, our TC algorithm detected PFS with a substantially higher precision. We also
assessed the sensitivity of the TC algorithm to its parameters. The derived TC algorithm
is useful because it enables accurate inferences of PFS in the future even if PFS insights
from the non-verifiable sources become unavailable.

Whereas the current insights from the non-verifiable sources appeared trustworthy
and were corroborated through conversations with network operators, we used the Wikipedia
insights to validate the accuracy of our TC algorithm. Although clearly imperfect, this
validation method seemed the best option available currently for scientific studies of PFS.
One could see our work as a middle point between traditional science and citizen science:
our PFS detection method expanded the scope of knowledge but softened the benchmark
for validation. Choosing such trade-off is not a novel feature of our methodology: even
the discussed UCLA relationship inference method exhibits this property because of its
reliance on the insights from Wikipedia. In spite of utilizing the non-verifiable informa-
tion, this trade-off is useful for networking practice due to the scientific component that
rises the knowledge above the state-of-the-art level of pure beliefs.






Chapter 4

Optimizing the Cost of Multilateral
Interdomain Contracts

The previous chapters look at solutions for optimizing CDN cache deployments and
algorithmic approach for detecting the provider-free ASes, respectively. Both works deal
with AS-level Internet topologies derived from BGP routing based on bilateral contrac-
tual model for interconnections. In this chapter, we consider a multilateral contractual
model for Internet interconnections that offers a potential to overcome limitations of the
existing bilateral model.

The problem of trust originates from end-to-end traffic delivery that requires coordi-
nation among multiple ASes. By offering bilateral contracts between neighbouring ASes,
the trust concern is resolved, however, at the cost of routing flexibility [15]. Access net-
works purchase upstream transit connectivity but have little control over the quality of
the overall end-to-end path. For example, the access ASes and end users do not get end-
to-end QoS or QoE guarantees since a transit AS in the path might not support the needed
performance. Congested links, route instability and BGP oscillations also negatively af-
fect end-to-end performance. For the same reason, many users and content providers
utilize CDN services for efficient content delivery with performance guarantees. CDNs
like Akamai use their intelligent overlay routing and load-balancing algorithms to deliver
content from their servers to end users.

With BGP routing, ASes do not have any mechanism to either publicize or exchange
performance information about unused capacity, thereby creating inefficiencies for the
network that may have both excess supply and unrealised demand [95]. To overcome is-
sues with bilateral contracts and BGP routing, multilateral contract models have been
proposed where end users (or access ASes) can obtain end-to-end (or edge-to-edge)
paths by forming contracts with multiple transit providers providing reachability to des-
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tinations. Access networks can purchase end-to-end paths that satisfy performance and
cost considerations, and get more direct control over their end-to-end routing. A path is
formed by composing path fragments (pathlets) leading from a source to a destination.
Pathlets were first proposed in pathlet routing [96], a clean-slate routing architecture de-
signed for flexibility.

Bilateral contracts might be negotiated for days or weeks, including discussions at
network operators meetups, and are applied recursively: traffic that an AS sends to its
neighbor is then controlled by the contracts of that neighbour. However, under a mul-
tilateral arrangement, there is a single contract between access and transit ASes for an
end-to-end path. One such example is MINT, a connectivity market for exchange of
end-to-end paths between independent networks [95].

The first attempts to consider such multilateral contract model have been reported re-
cently [15-17]. A trusted centralized entity (web service, broker, cryptographic public
ledger) provides an infrastructure and economic medium for the connectivity market be-
tween access and transit ASes. The payments from access ASes to transit ASes can be
paid by this entity on behalf of the access ASes. Moreover, technologies like MPLS in
transit ASes along with special routers for transport-layer upgrades, such as Serval [18]
and PacketShader [19], show the possibility and viability of realizing the routing and
forwarding of traffic under such multilateral arrangement.

In this work, we study economic aspects of access ASes and transit ASes operating
in the multilateral arrangement. We leverage the background of auctions and machine
learning for help in modeling. We sketch the use of exploration/exploitation trade-offs
from learning literature in our work. For example, in order to maximize the short-term
revenue, the transit AS should exploit its current prices and choose prices that access
ASes are likely to accept. On the other hand, to maximize the long-term revenue, the
transit AS needs to explore, i.e., identify which prices have the largest probability of
being selected by access ASes. This kind of exploration necessitates choosing prices that
currently have a low probability to be selected, which leads to opting for a low revenue
in the short term.

First, we set out to find the optimal-cost assignment of access ASes to transit ASes
for path segments in the end-to-end path. This models the access AS’s objective of max-
imizing revenue for the preferred path. We investigate the following questions: How to
simulate a realistic market model with access ASes and transit ASes? How much time
does it would take for the algorithm to perform an optimal assignment with a considerable
input size? Also, we look at pricing under uncertainty for transit ASes for their revenue
maximization objective. We model it as an inter-temporal bandit decision problem and
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leverage learning tools such as exploration/exploitation trade-offs.

Main contributions of our work are as follows: First, we propose Bertsekas auction
algorithm as the solution strategy for the optimal cost assignment of access ASes to transit
ASes for path segments in the end-to-end Internet path. We implement the algorithm on
bipartite graphs of different sizes to simulate the bidding and assignment phases. In
particular, we observe the convergence time (in seconds) for the final assignment grows
at an approximately exponential rate, with 0.46 seconds and 9.8 seconds for graphs with
200 x 200 and 1000 x 1000 ASes, respectively. We also observe that having a larger
positive increment (¢) value results in a smaller number of bids submitted by access
ASes until their final assignment, thereby requiring a smaller number of reassignments.
Besides, we develop and implement an epsilon-greedy bandit algorithm as the solution
strategy for pricing of transit ASes under uncertainty and observe the learning ability of
the algorithm.

4.1 Background

4.1.1 Auction algorithms

Consider a problem where n persons and n objects have to match on a one-to-one
basis through a market mechanism. There is benefit a,; for matching person ¢ with object
J, and the assignment of persons to objects is performed so as to maximize the total
benefit of persons [97]. We want to find a one-to-one assignment, a set of person-object
pairs (1, 1), ..., (n, j,), such that objects ji, ..., j, are all distinct, and the total benefit
Yoy a;j; is maximized.

From Bertsekas et al. [97], we adopt an auction algorithm described below. Each
person as an economic agent acts in his own best interest. Suppose that object j has price
p; and that the person who receives the object must pay price p;. Then, the net value of
object j for person ¢ is a;; — p;, and each person ¢ would logically want to be assigned to
object j; with the maximal value, i.e., with

Qij, — Dj; = jf:nl%?gb{aij -5} 4.1)

We say that person ¢ is happy if this condition holds and that the assignment and set
of prices are at an equilibrium when all persons are happy. The naive auction algorithm
proceeds in rounds starting with any assignment and any set of prices. There is an as-
signment and a set of prices at the beginning of each round, and if all persons are happy
with these, the process terminates. Otherwise some person who is not happy is selected.
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This person ¢ finds an object j; which offers the maximal value, i.e.,
Ji € arg max {aij — pj} 4.2)
j=1l...n
Then, person ¢:

* Exchanges objects with the person assigned to j; at the start of the round,

* Sets the price of the best object j; to the value at which he is indifferent between j;
and the second best object, i.e., sets p;, to p;, +;

The bidding increment is v; = v; — w;, where v; is the best object value, and w; is the
second best object value, respectively.

Vij = m]ax{aij —p;} 4.3)
wi; = max{a; — p;} (4.4)
J#Ji

7; 1s the largest increment by which the best object price p;, can be increased, with
J: still being the best object for person 7. As in other auctions, bidding increments and
price increases encourage competition by making the bidder’s own preferred object less
attractive to other potential bidders. At each round in the auction process, bidder ¢ raises
the price of his preferred object by bidding increment ;. Each bid for an object must raise
its price by a minimum positive increment. Person ¢ is almost happy with an assignment
and set of prices if the value of its assigned object j; is within ¢ ! of the maximal one,

1.e.,
agj, = pj 2 max {ai; —pj} — ¢ (4.5)
By reformulation of the naive auction process so that the bidding increment is always
at least equal to (. Thus, bidding increment -y; is expressed as

Vij = Vij — Wij + ¢ (4.6)

With this choice, the bidder of a round is almost happy at the end of the round. The
auction process terminates in a finite number of rounds, necessarily with an assignment
and set of prices that are almost at an equilibrium. Once an object receives a bid for the

"'We employ ¢ to represent the minimum positive increment instead of e as in Bertsekas auction literature since we
use € to represent the probability in the bandit algorithm discussed in next subsection of this chapter
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first time, the person assigned to the object at every subsequent round is almost happy.
This is because a person is almost happy just after acquiring an object through a bid.
Thus, the people who are not almost happy must be assigned to objects that have never
received a bid. Specifically, once each object receives at least one bid, the algorithm must
terminate. If an object receives a bid in m rounds, its price must exceed its initial price by
at least m( [98]. Thus, for sufficiently large m, the object will become expensive enough
to be judged inferior to some object that has not received a bid so far.

4.1.2 Bandit-based learning

A multi-armed bandit problem is a sequential decision making problem under uncer-
tainty defined by a set of actions. At each time step, a unit resource is allocated to an
action and some payoff is obtained. The goal is to maximize the total payoff obtained
in a sequence of allocations [99]. In many real-world scenarios, decisions are taken to
maximize some expected numerical reward. However, decisions or actions not only bring
more reward but also can help to discover new knowledge or information that can be used
to enhance future decisions [100]. In a casino, a sequential allocation problem is obtained
when the gambler faces many slot machines at once (multi-armed bandit), and he must
repeatedly choose where to insert the next coin. Each machine provides a random re-
ward from a distribution specific to it. Initially, the gambler has no knowledge about the
machines, but through repeated trials, he can focus on the most rewarding ones. The
gambler plays iteratively one machine at each round and observes the associated reward.
The gambler’s objective is to maximize the sum of the rewards earned through a sequence
of machine pulls over the considered time period.

Multi-armed bandit problems are considered an abstraction for decision problems
incorporating an exploration-versus-exploitation trade-off. This trade-off can be seen
clearly in the gambling scenario described above. Once the gambler has discovered a
slot machine that has a fairly good average payoff, there is a pressure to choose between
continuing to play this slot machine (exploitation) versus trying other alternatives that
have never been tested or that have only been tested infrequently (exploration). Such
a trade-off is ubiquitous in on-line decision problems, thus many applications of multi-
armed bandit algorithms are found. Some of those [101] are:

* Internet ad placement on websites and search engines:
A website owner buys advertising space, and each time a user visits the owner must
choose to display one of n possible ads. The payoff of displaying an ad to a user is
1 if the user clicks on the advertisement, O otherwise. This is a multi-armed bandit
problem where the levers are the set of ads which the site can display. For search
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engines, a high revenue is achieved by displaying ads that have high bids along with
high likelihood of being chosen by users. The objective of the search engines is to
select ads that maximizes their total daily revenue [102].

The click-through rate (CTR) ¢; ; of ads a; ; for the target query phrase (); denotes
the probability of a user to click on ad a; ; given that the ad was displayed to the user.
The expected revenue (c; ; - b; ;) is also a factor in the selection of ads. To maximize
the short-term revenue, the search engine should exploit its current CTR estimates
by displaying ads whose estimated CTRs are large. On the other front, in order to
maximize the long-term revenue, the search engine needs to explore, i.e., identify
which ads have the largest CTRs. This kind of exploration necessitates displaying
ads that have current CTR estimated with a low confidence, which unavoidably
leads to displaying some low-CTR ads in the short term.

* Server selection in networks:

The process by which clients choose one server from a set of servers supplying a
specified service. For example, a DNS resolver looks up a hostname in a given
domain by selecting one DNS server from the list of authoritative name servers for
the queried domain. The objective is to minimize the server’s response time. There
will be some servers located closer to the client and will have consistent faster
response time. This is a multi-armed bandit problem where the set of authoritative
name servers constitutes the levers, and the response time of each name server at
time ¢ constitutes the reward.

4.2 Problem overview

4.2.1 Optimal cost assignment of access ASes to transit ASes for path segments

We consider a multilateral contract environment where the access ASes obtain end-
to-end paths by contracting with multiple independent transit providers that offer Internet
path segments. The access ASes buy path segments from transit providers for the paths
they are interested in. There is a market environment with the access ASes as buyers and
transit ASes as sellers. There are individual path segments offered by transit providers
for various destinations. For each path segment that is a part of those end-to-end paths,
there exists competition among access ASes. Let A denote the set of access ASes and
H denote the set of transit ASes. The individual path segments py, ..., p, provided by
transit ASes constitute end-to-end path m, and there are many such paths indexed by m,
where m € | M| for a set of destinations /. Path segment p; for a path m is offered by
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a set of transit ASes N, where N C H. The objective is to maximize the net benefit of
access ASes.

A total of |g| linear assignment problems need to be solved either sequentially or in
parallel to find a preferred end-to-end path among those offered by the transit ASes. For
our problem, we restrict the attention to the key subproblem of finding an optimal cost
matching of access ASes for a path segment and not for the entire path. We also assume
the symmetric case and do not consider the asymmetric problem where the number of
transit ASes offering path segments are larger than the number of access ASes. Moreover,
market mechanisms exist for tackling the asymmetric case, one such example is reverse
auctions [103].

4.2.2 Dynamic pricing under uncertainty for transit ASes

The transit ASes offering path segments can learn what the most profitable prices
are by price experimentations. They have to make a tradeoff between charging the most
profitable price according to their current information, i.e., to exploit their information
and inquiring on the profitability of the other prices that is to explore the profitability of
the other prices. The pricing strategy under uncertainty is thus an inter-temporal decision
problem and is modeled as a multi-armed bandit problem for transit ASes. Our bandit-
based price optimization of a transit AS is modeled similar to a webstore pricing its
objects [104]. The bandit design components of a machine such as levers, total rounds
(T), horizon (H), exploration-exploitation trade-offs, and rewards are generic and relate
to many optimization problems. Horizon H denotes the rounds remaining to be played.
The levers represent the set of prices or cost functions. The product of the unit percentile-
based, or volume-based, bandwidth price and routed user traffic constitute the revenue,
or the reward function, of the provider.

4.3 Auction algorithm for optimal cost assignment of access to tran-
sit ASes

We evaluate Bertsekas auction algorithm [98] as a solution strategy for the assignment
of access ASes to transit ASes offering individual path segments. The algorithm proceeds
in iterations, and in each iteration there are two phases: bidding phase and assignment
phase.

Bertsekas Auction algorithm:
Input: benefit matrix a;; for bipartite graph G(AUN, E) captures preferences and budget
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set by access AS i for transit AS j, initial price p;, minimum positive increment (.
Repeat the following phases, until a complete assignment with a perfect match is
found.

* Bidding Phase: Each unassigned access AS i € A finds transit AS j* € N that
has the highest net profit v;;- as in equation 4.3, and the second best transit AS J
with its net profit w, as in equation 4.4. AS ¢ raises the price of preferred transit
AS j* by bidding increment ;;« as in equation 4.6 and sends its bid b;;« to j*:

bij« = pj + Yij*
= pj* + Vi — w; +C

* Assignment Phase: Transit AS j that receives the highest bid from the AS *
assigns itself to AS 7*, i.e., the connection (¢*, j) is added to the current assignment.
Transit AS j also updates its own price to the received bid from access AS 7, i.e.,

pj = bij=

Output: Assignment of transit to access ASes A, p;. final prices of each transit AS j.

4.3.1 Experiment methodology and details on the input

We implement the auction algorithm in MATLAB (R2009a, 32-bit) on an Intel ma-
chine with the CPU of 2.00GHz Core2 Duo, RAM of 1GB, and Ubuntu OS. We run the
algorithm on bipartite graphs of different sizes with associated benefit matrix inputs. As
the first step, we consider a toy example with a small bipartite graph connecting 4 ASes.
Afterwards, we apply the algorithm on graph instances with 100, 200, 400, 600, 800 and
1000 ASes for a sensitivity analysis.

We generate benefit matrix a;; based on uniformly distributed random values for each
of the graphs. We consider p; = 1 as the initial price of a transit AS j and set minimum
positive increment ¢ using (-scaling [105]. Both ¢ and maximum absolute benefit C, i.e.,
max(abs(a;;(:))), decide how much work is needed before the auction algorithm gets to
terminate. By means of (-scaling, the algorithm is applied several times, starting with a
large value of ¢ and successively reducing ¢ up to an ultimate value. Typical {-reduction
factors after each scaling phase are of the order of 4 to 10 [105].

Based on these observations, we set the ( initial value as C/20 and ( decrease factor as
0.2. We run the auction algorithm iteratively for the top 4 values of  (in their decreasing
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Bipartite graph: access & transit ASes Benefit matrix value | Minimum positive increment, ¢

AS size maximum | minimum G [ & [ G ] &
100 26613 206 1330 | 266 | 53 10
200 47792 346 2389 | 477 | 95 19
400 103382 238 5169 | 1033 | 206 41
600 159890 251 7994 | 1598 | 319 63
800 222191 305 11109 | 2221 | 444 88
1000 276559 92 13827 | 2765 | 553 110

Table 4.1: Details on the benefit matrix and ¢ values used in the experiment with varying graph
size.

order). We provide details in Table 4.1 on the maximum and minimum value (rounded to
nearest integer) of the benefit matrix for each graph size and also on the ¢ values.

4.3.2 Experiment results

A. Toy example

By running the auction algorithm with the given inputs: a;; of size (4 x 4), ( =
110, we simulate the bidding and assignment processes and present the final assignment
results in Table 4.2.

1000 1150 1800 2250
1400 1450 1250 2550

[r—
Y 11050 1700 1850 2400
1550 1700 2150 2750
Bidding Phase Assignment Phase
Access AS 4 | Transit AS j | Bid value b;j | Assignments (i,j) pair; Prices p;
1 4 561
2 4 1211
3 4 661 2,4); 1211
4 4 711
1 3 761
3 3 261 (1,3); 761
4 3 561
3 2 621
4 2 261 (3,2); 621
| g 1 I [ 121 | @1); 121 |

Table 4.2: Bertsekas auction for the assignment of access AS ¢ to transit AS j, with given a;;,
¢ = 110, initial price p; = 1, completed in four phases (bidding and assignment)

We observe that the assignment with auctions was completed in four iterations. In
the first iteration, all the four access ASes bid for transit AS 4’s path segment, and the
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access AS 2 obtains its assignment by winning the bidding competition. In subsequent
iterations, assignments continue to be based on the winning bidder, and there are no

reassignments.

B. Convergence time with varying graph sizes

Convergence time for assignment

1 1 1 1 1
0 200 400 600 800 1000
Access ASes

Figure 4.1: Average convergence time (in seconds) for the auction assignment with varying graph
sizes.

We obtain the convergence time (in seconds) for the final assignment with the auc-
tion algorithm. We run the algorithm iteratively for the four values of ( and repeat the
experiment 10 times. The convergence time is measured as the average over the ( values
in all experimental runs. Figure 4.1 depicts that the convergence time grows at a nearly
exponential rate with the increase in the AS size. For instance, for a graph of size 200 x
200 ASes, the convergence time is 0.46 seconds; however, its value grows to 9.8 seconds
for a graph of size 1000 x 1000 ASes.

C. Difference in total benefit between auction and random assignments

We have the final assignment for the auction algorithm that maps access ASes to
their optimal transit ASes. We compute the total assignment benefit by summing up
the assignment benefit values of individual mapped pairs. We compute this value for
different graph sizes. Next, we apply a random assignment method on the same input
benefit matrix to compute the random assignment and then obtain its associated total
benefit.

We employ MATLAB'’s randperm function to first obtain a random permutation of
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Figure 4.2: Total assignment benefit difference with Bertsekas auction and random assignment.

the entire benefit matrix and then perform a random assignment to map the access ASes
to transit ASes. We compute the difference in the total assignment benefits with respect
to the auction algorithm and the random method. Figure 4.2 plots the total assignment
difference to the access ASes, for three decreasing values of (: (1, (o, (3. We observe
the benefit difference to grow exponentially with increase in AS graph size and it stays

relatively similar with ¢ values.

D. Access ASes and total bids for final assignment

We compute the number of bids submitted by each access AS until a final assignment
by the auction algorithm, where each AS is said to be finally happy. We plot the distri-
bution of access ASes versus total bids submitted until their assignment. The results are
for bipartite graphs of two different sizes, 200 x 200 and 1000 x 1000 ASes respectively,
and with varying ¢ values that depend on the AS size.

For (3, the smallest increment, with the graph of size 200 x 200, Figure 4.3(a) shows
that the individual access ASes submit between 140 and 23 bids each until the final
assignment is done. With the higher values (> and (y, the maximum number of bids
submitted by the same access AS reduces to 57 and 22 respectively, while the minimum
number of bids equals 13 and 5 respectively.

Figure 4.3(b) represents the distribution results for a graph of size 1000 x 1000 ASes.
With (s, the plot reveals that the individual access ASes submit between 187 and 36 bids
each. Following the same pattern as before, with (5 and (7, the maximum number of bids
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Figure 4.3: Mapping of submitted bids by access ASes in Bertsekas auction with varying ¢ values.

submitted by the same access AS reduces to 83 and 48 respectively, and the minimum
number of bids equals 13 and 5 respectively. Thus, having a larger increment results in a
smaller number of bids and reassignments.

4.4 Bandit-based approach for dynamic pricing of transit ASes

We apply the multi-armed bandit algorithm [100] as a solution strategy for the indi-
vidual transit ASes to maximize their revenue. The iterative epsilon-greedy algorithm is
the commonly used bandit algorithm. Its goal is to minimize the regret for the revenue.
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This is possible by finding optimal prices more often during the successive iterations.
The number of total rounds 7' represents the period during which the transit AS as a
seller has offered its services to an access AS for a particular price.

We consider m prices. Price a is the chosen one with 7, being its associated mean
price reward. We present the epsilon-greedy algorithm in Algorithm 2 below. The goal
is to maximize the sum of the price rewards of the chosen prices over all the rounds.

Algorithm 2: Epsilon-greedy algorithm at a transit AS for revenue maximization

Input :m; e T rm; pu
Output: a; ry; ng; @
1 for every iteration t do
2 Exploration: With probability e, select price a uniformly at random over the space of
m different prices
3 Exploitation: Else, with probability (1-¢€), select price a that has the highest average
price reward estimate R/, among other prices over previous iterations. Then, map the
chosen price a to its mean reward value 7,

4 Regret after T rounds o =T -p* - ZtT:lra [Difference between optimal average price and
the sum of mean reward values over all rounds]

The exploitation phase based on the knowledge already acquired is the greedy choice.
The exploration phase chooses a new price with a uniform probability over the set of
prices. The probability € is a tuning parameter. € = 0.1, means that for 10% of the
rounds, a random price is to be chosen. The optimal average price reward is given by
p* = max,{r,}, and we denote the number of times each price a is chosen by 7.
Horizon H is an exploration control parameter, e.g., for 4 = 1, the optimal strategy is
reduced to pure exploitation, that is to choosing the price with the highest revenue.

It is to be noted that in the epsilon-greedy algorithm and its variants, the amount of
exploration is fixed a priori. Though, it is possible to have pure exploration first for € - T'
rounds, followed by exploitation phase for (1 — €) - T' rounds, which happens in the e-first
strategy.

4.4.1 Evaluating the potential of the bandit algorithm

We evaluate and implement the epsilon-greedy bandit algorithm described in Algo-
rithm 2. The experiment settings are: m=500; 7'=1000 (total rounds); S=1000 (experi-
ment repetitions); € = 0.1 and 0.4; uniformly distributed random values r,,, from interval
(0,1). We derive reward payoffs uniquely for price a selected at different iteration ¢. If
price a is selected for a total of n,, times, we generate expected reward values r, each time
by drawing from the normal distribution as suggested in [106], with the mean equal to



68 Chapter 4. Optimizing the Cost of Multilateral Interdomain Contracts

r, and standard deviation (o) parameter. This leads to improving the bandit algorithm’s
performance with hundreds of prices.

e =04

Mean regret
o
F -

0.2

1 200 400 600 800 1000
Time, rounds

Figure 4.4: Mean regret over time with experiment settings: M=500, T=1000, and 5=1000, and
uniformly distributed random prices.

We kept o = 0.3 in order to generate values close to the input mean reward (7). Then,
the expected average price reward R, of choosing price a is equal to the fraction of the
sum of the payoffs r to the number of times n,, it has been chosen. We present the results
of our experiment in Figure 4.4 above, where we observe the mean regret at each round
by averaging over experimental run 5. It is evident that the mean regret stays close for all
epsilon values from rounds 250 to 650. The explorative behavior intensifies with € = 0.4,
yielding higher regret from rounds 700 to 1000, in comparison to the lowest value of 0.1.
The key insight is with the lower epsilon value and higher 7" and S values, we can achieve
lower regrets even with random pricing data. For instance with € = 0.1, the overall mean
regret is 0.292. The mean regret signifies how far the chosen prices are from the optimal
average price and exhibits exploration/exploitation trade-off. By devising an appropriate

price reward estimate mechanism, there is a possibility of decreasing the regret further.
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4.5 Related work

Path Brokering, Multilateral Contract Negotiation, novel Source Routing:
Currently, there are bilateral economic contracts between ASes for end-to-end Internet
routing and connectivity. To provide better performance and economic benefits, multi-
lateral contract formation where access ASes contract multiple transit providers for end-
to-end routing has been researched. Path brokering provides interconnection facilities
for such a multilateral contract. MINT [95] shows how path brokers can stitch paths
by means of end-to-end bandwidth transit markets. Lane et al. [17] propose the use of
MPLS to support end-host path selection via path brokering as a novel path-query and
billing method, where paths are the unit of commerce instead of connectivity. Castro et
al. [15] leverage path brokering with pathlet routing [96] to develop a multilateral con-
tract negotiation. They utilize a public cryptographic legder, a trustful entity to serve as
an authenticated path broker between access networks and transit providers.

BGP Path-vector Contract Routing:

In this work, the end-to-end contract paths are computed in an on-demand manner. Each
ISP advertises its contract links with fields embedding prices and performance levels to its
neighbors. They expect contracts on the timescale of minutes. Yuksel et al. [107] propose
a Contract-switched Inter-network with dynamic contracting over multiple providers for
enabling flexible and economically efficient management of value flows and risks. Their
architecture provides end-to-end capacity contracts for ASes over long time-scales in a
fully decentralized manner and switches to BGP path-vector contract routing for shorter
time-scales.

Our research differs from the above two research lines by proposing cost optimization
of access and transit ASes participating in a multilateral contract arrangement. It is an in-
teresting problem given the possibility of access networks contracting multiple providers,
and thereby complimenting BGP routing. Such a setting with selfish entities offers many
opportunities for exploring various trade-offs, interaction and optimization objectives.
Therefore, our work focuses on developing algorithmic models in an environment that is
dynamic since cost optimization is continuously re-evaluated. In previous works, there
was not much focus on dynamic settings. We leverage bandit learning algorithms as a
solution strategy for pricing transit ASes. [16] also uses a bandit algorithm for transit
pricing, but with learning theory as their motivation and obtain the cumulative regret by
considering edges of random and Erdos-Renyi graphs as levers for a capacity or price
distribution. On the other hand, we study and use the most common bandit algorithm
after finding its various practical applications, from online ad placement optimization to
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online shortest path problem [24].

4.6 Conclusions and future work

In this chapter, we put a focus on the interaction between transit and access ASes,
and optimization under the multilateral interdomain contract formation setting. First, we
considered the problem of access ASes buying path segments from transit ASes for an
end-to-end path they are interested in. We modeled it as a linear assignment problem
where there are access ASes as buyers, transit ASes as sellers, and our objective was
to maximize the net benefit of access ASes. We employed Bertsekas auction [98] as
the solution strategy for solving a sequence of linear assignment problems to obtain a
preferred end-to-end path offered by transit ASes. We implemented the auction algorithm
and simulated the bidding and assignment phases for a path segment with a bipartite
graph composed of two sets of ASes, namely, transit and access ASes. We considered
graphs of different sizes and performed a sensitivity analysis on the auction algorithm
results. We observed the convergence time (in seconds) for the final assignment to grow
at a nearly exponential rate, with 0.46 seconds and 9.8 seconds for the graphs with 200
x 200 and 1000 x 1000 ASes respectively. We computed the number of bids submitted
by each access AS until their final assignment. We found that having a larger increment
value (¢) results in a smaller number of bids and reassignments.

Next, we modeled the pricing of transit ASes under uncertainty as a multi-armed ban-
dit problem after finding motivating examples of bandit formulation for various practical
applications: online ad placement optimization and online webstore pricing. We utilized
the most commonly used epsilon-greedy bandit algorithm as the solution strategy and
implemented it for evaluation with numerical pricing data. In particular, we showed the
algorithm’s ability to learn via exploration-exploitation trade-offs by plotting the vari-
ability of the mean regret over time for different values of e.

Looking forward, we are interested in evaluating existing multi-armed bandit algo-
rithms for end-to-end path selection, such as for on-line shortest paths [24] in the context
of multilateral contract arrangements. Additionally, we plan to simulate the bandit al-
gorithm at each transit AS of an end-to-end path for price optimization, since in this
work we presented the working of the epsilon-greedy algorithm for only a single tran-
sit AS. However, such a simulation with multiple transit ASes as agents is challenging
and requires developing an appropriate reward function. Adaptive learning with multiple
agents has been successfully studied for efficient multi-robot motion towards a destina-
tion [108], and we find it as a motivating example. Finally, application of multilateral
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transport games [109] and multilateral negotiations [110] for studying economic aspects
of the multilateral contractual framework constitutes an interesting direction for future
work.






Chapter 5

Summary and Future Work

The AS-level Internet ecosystem consists of thousands of ASes interconnected on
the interdomain level and belonging to different types such as transit, access, content-
provider ASes. BGP routing implements the business relationships between ASes for
global end-to-end reachability, and thus the interconnected network of ASes forms the
underlay. The Internet ecosystem also involves CDNs that provide faster content delivery
to end users in access networks by constructing an overlay network. The routing paths in
the Internet underlay and overlay are very different, and CDNs identify and use shorter
routes for improved performance. CDNs utilize hundreds of ASes for deploying caches
in order to meet their content delivery objectives. Furthermore, CDN operators learn
from topology, routing, and performance data to continuously optimize their design and
deployments.

In this thesis, we first looked into the CDN cache deployment optimization (CaDeOp)
problem that determines the optimal set of cache ASes and how much energy, bandwidth,
and server resources to provision in each cache AS while satisfying the performance con-
straints. By leveraging realistic Internet topologies, traffic demands distribution, AS path
lengths, we modeled and evaluated the deployment for various settings. For example, we
assessed the trade-offs for performance vs. cost, deployment footprint vs. cost, cache
ASes to served ASes mapping, and also observed the geographical footprint of cache
ASes.

While, we utilized knowledge of the Internet core topology for CDN cache deploy-
ment, Chapter 3 shifted the focus on topology inference, and in particular on detection
of provider-free ASes (PFS). We used public inter-AS relationship data and proposed the
customer-cone topological metric. We developed a temporal cone (TC) algorithm and
used Wikipedia as a validation source. Moreover, the very existence of provider-free
ASes is because of current bilateral contractual model that is recursively applied in the
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Internet hierarchy for end-to-end reachability. The novel customer cone topological met-
ric which we have proposed for our TC algorithm has found application in a later work
recently [111]. Due to performance limitations with BGP routing from bilateral con-
tracts, there is a need to think on high-performance and economically viable contractual
models.

Finally, we emphasized on multilateral contractual modeling that compliments exist-
ing bilateral contracts for BGP routing, by looking into the key aspects of economics. In
particular, we proposed algorithms to optimize cost objectives for transit and access ASes
under multilateral arrangement. First, we implemented and evaluated Bertsekas auction
algorithm for optimal cost assignment of access ASes to transit ASes for path segments
of an end-to-end path. Next, we implemented the epsilon-greedy bandit algorithm for
optimizing the price of transit ASes and evaluated it with numerical pricing to show its
learning potential through exploration-exploitation trade-offs.

The work in this thesis has explored research questions which are of interest to re-
searchers, network operators and architects working in the area of Internet economics,
Internet AS-level topology inference and evolution. The cache deployment optimiza-
tion (CaDeOp) work has shown interesting results that are useful to CDN operators and
architects to develop new models and templates for their evolving CDN deployments.
With our work on PFS and the results from its evaluation highlighted the importance of
characterizing Internet ASes with respect to economics, topological centrality, and their
critical role for the future. The results from our multilateral contract work exhibited the
potential of bandit and auction algorithms for price optimization of transit and access
ASes respectively. We present the summary of the main contributions from each part of
this thesis below:

* Trade-offs in Optimizing the Cache Deployments of CDNs: We studied the
trade-offs in optimizing the cache deployment of CDN caches in the Internet core
ASes [26]. We found that when the end-user performance requirements become
more stringent, the CDN footprint expands rapidly, requiring cache deployments in
additional ASes and geographical regions. With higher performance requirements,
the CDN cost also rises by several times. While the server costs remain about the
same, the costs of energy and bandwidth grow because the CDN loses some of
the economies of scale in procuring these resources. We also found that the traffic
distribution among the cache ASes stays relatively even, with the top 20% of the
cache ASes serving around 30% of the overall CDN traffic. It is notable that the
Pareto principle, which applies in many related domains, does not apply to CDN
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deployments, in part due to the highly distributed nature of the Internet traffic. We
also explored the incremental cache deployment optimization (InCaDeOp) problem
since it is related to upgrading cache deployments.

The results of our study can be applied in various contexts. First, it is of sig-
nificant practical relevance since it formalizes the planning process that all real-life
CDN operators must follow to reduce the operational cost of their overlay networks,
while meeting the performance requirements of their end users. Second, our mod-
eling efforts can help studies that look into CDN economics and CDN deployments
evolution.

Obscure Giants: Detecting the Provider-Free ASes: We explored PFS (provider-
free ASes) and developed a algorithm to detect them from public AS-relationship
datasets [27]. The developed TC (temporal cone) algorithm employs the customer-
cone topological metric and exploits the temporal diversity of the datasets to infer
PFS with a significantly higher accuracy. While the knowledge of PFS is highly
valuable, validation of PFS inference results constitutes a major challenge because
the ground truth lies outside the public domain. To tackle the validation challenge,
we utilized trustworthy but non-verifiable sources such as Wikipedia. Whereas
it seems practically impossible to obtain the complete ground truth from network
operators, the non-verifiable source insights form the best available baseline for
result validation in this important domain.

Optimizing Cost of Multilateral Interdomain Contracts: We proposed algo-
rithms for solving the multilateral-contract problem for transit and access ASes.
The solution approach is two-fold. First, we adopted an auction algorithm with the
objective to find optimal cost assignment of access ASes to transit ASes for path
segments of an end-to-end Internet path. Our evaluation results with the auction
algorithm showed the convergence time for assignments (in seconds) and how it
grows exponentially with increase in the AS size. We also observed that the larger
value of increment ¢ results in a smaller number of bids and reassignments by
access ASes. Second, we proposed an epsilon-greedy bandit algorithm as the so-
lution strategy to optimize the pricing of transit ASes. Our evaluation results with
the bandit algorithm and numerical pricing showed how the algorithm adapts in
choosing high-rewarding prices in comparison to the optimal one by means of the
regret metric. In particular, we presented the mean regret variability with time to
show the potential of bandit learning for transit AS price optimization. The results
from this study is useful to economists and optimization experts working with net-
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work operators. Moreover, it is also helpful to studies that attempt to propose novel
interconnections and contractual frameworks among ASes in the evolving Internet.

5.0.1 Future work

This thesis presented few steps towards understanding the important role of topology
and contracts in Internet content delivery. We identified a couple of directions for future
work as natural extensions of the work in this thesis.

The natural extension is to study the incremental CaDeOp (InCaDeOp) that examines
upgrading cache deployments given an initial deployment. We have already developed
the InCaDeOp model and strive to evaluate it in future with realistic inputs. Exploring
energy cost optimization for Internet-scale CDNs is of much significance for the future.
Evaluation of CaDeOp with Internet topologies from the last 10 years and making appro-
priate changes to other inputs show promise in unraveling interesting patterns of cache
deployments across time. These studies will shed more light on the significance of topol-
ogy in CDN economics and deployment evolution.

With vast amounts of topology and routing data available, future work will strive to
develop novel topological metrics and algorithms to study Internet evolution by identify-
ing tangible economic implications of PFS. Furthermore, the issue of how the changing
landscape of the flattening Internet topology affects overall Internet resilience is also in-
teresting. We will utilize the bandit algorithm for online learning of shortest paths [24] to
our problem of optimal cost assignment of access ASes to transit ASes for preferred end-
to-end Internet paths under dynamic conditions of price and performance. Applications
of multilateral transport games [ 109] and multilateral negotiations [110] for studying eco-
nomic aspects of the multilateral contractual framework will be an interesting work for
the future.
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