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Abstract

Lately, Support Vector Machine (SVM) methods have become a very popular technique in the

machine learning field for classification problems. It was originally proposed for classifications

of two classes. The e↵ectiveness of this method has not only been shown in hundreds of exper-

iments, but also been proved in theory. In our real life, we usually have more than two classes.

Various multi-class models with a single objective have been proposed mostly based on two

families of methods: an all-together approach and a combination of binary classifiers. However,

most of these single-objective models consider neither the di↵erent costs of di↵erent misclassi-

fications nor the users’ preferences. To overcome these drawbacks, we have two approaches. A

direct way is to give di↵erent weights to the penalties in the objective functions. The di�culty

for this way is how to choose proper values for the weights. Alternatively, multi-objective ap-

proaches have been proposed. However, these multi-objective approaches need to solve a set of

large Second-Order-Cone Programs (SOCPs) and gives us weakly Pareto-optimal solutions.

This thesis is comprised of two working papers on multi-class SVMs. We summarize the con-

tributions of these two working papers as follows.

In the first article, we propose a multi-objective technique that we denominate Projected Multi-

objective SVM (PM), which works in a higher dimensional space than the object space. For

PM, we can characterize its Pareto-optimal solutions. And for classifications with large numbers

of classes, PM significantly alleviates the computational bottlenecks. From our experimental

results, and compared with the single-objective multi-class SVMs (based on an all-together

method, one-against-all method and one-against-one method), PM obtains comparable values

for the training classification accuracies, testing classification accuracies and training time, with

the advantage of providing a wider set of options, each of them designed for di↵erent misclas-

sification costs. Compared to other multi-objective methods, PM outperforms them in terms

of the out-of-sample quality of the approximation of the Pareto frontier, with a considerable

reduction of the computational burden.

In the second article, we focus on finding the appropriate values of the weight parameters for

the single-objective multi-class SVM which considers all classes in one quadratic program (QP).

We propose a partial parametric path algorithm (PPPA) taking advantage of the piecewise

linearity of the optimal solutions of the weighted single-objective SVMs with respect to the

trade-o↵ parameter C. Compared to the traditional grid search method which needs repeatedly

solving the QPs, using PPPA we need to solve only one QP and several linear equations. Thus

we can save a lot of computation using PPPA. To systematically explore the di↵erent weights



for the misclassification costs, we combine the PPPA with a variable neighborhood search

method. Our numerical experiments shows the e�ciency and reliability of PPPA.
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Chapter 1

Introduction

Data mining has become a crucial application area in modern science and industry due to the

growing size of available databases. One of the main applications in this area is supervised

classification: to obtain a model that predicts the value of one variable (class) based on the

information from other variables. Several approaches have been proposed to solve this problem,

such as K-NN, Decision trees, Naive-Bayes classification, Neural networks, SVM and so on, see

for example [Corne et al., 2012]. In this thesis we focus on the SVM approach, which is well

known to have high generalization ability compared to other classification algorithms.

The development of new e�cient solution techniques has happened in parallel to the increase in

size and complexity of classification problems. In [Cortes and Vapnik, 1995], they proposed the

classical binary SVM algorithm to separate the input data into two di↵erent classes. During

the last couple of decades, hundreds of applications and experiments have shown the high

classification accuracy of SVM classifiers, e.g. [Carrizosa and Martin-Barragan, 2006, Guyon

et al., 2002, Heisele et al., 2001, Tong and Koller, 2001]. There are two types of theoretical

explanations of the superior performance of the SVM procedures. The first is represented by

the theoretical justification of SVM in Vapnik’s structure risk minimization approach [Vapnik,

1995, 1998]. The other theoretical explantation of SVM’s good performance is given by Lin in

2002, who identified the asymptotic target function of the SVM formulation and associated it

with the Bayes decision rule, [Lin, 2002].

1.1 Classical binary SVM

We briefly introduce the classic binary SVM, as the basic reference for further developments,

and in particular for the proposals in this dissertation. As in [Cortes and Vapnik, 1995], we

assume that we have a training set {xi}ni=1 ✓ Rl, of objects from two classes ”+” and ”�”. Let

I = {1, 2, · · · , n} ✓ R to denote the indexes of the training objects. Let yi = +1 if xi belongs to

” + ” class and �1 otherwise. The aim is to use the training set I to construct a classification

rule that predicts the class membership of objects with high accuracies. To achieve this aim,

1
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we need to find a discriminant hyperplane that separates the training set with high accuracy

and maximum margin. The discriminant hyperplane is defined as: !Tx+ � = 0. And the class

membership of a new object is predicted using the decision function:

f!,�(x) = sign(!Tx+ �).

The ideal case is when we have all the class ” + ” objects above the discriminant hyperplane

and all the class ” � ” objects below the discriminant hyperplane (or viceversa). When the

available data fits this ideal case, we call the binary training data “linearly separable”, as shown

in Figure 1.1.

Figure 1.1: Binary linearly separable training data

For binary classification problems, when we have linearly separable data we introduce constraints

to ensure that all the training instances should be correctly classified; the corresponding binary

SVMs are called hard-margin binary SVMs. To avoid overfitting or if we have nonlinearly

separable training data, we add slack to these constraints using auxiliary variables. These

slack variables allow the presence of some misclassification errors; these classification errors

are minimized in the objective function. The binary SVMs havin gthis structure are called

soft-margin binary SVMs.

1.1.1 Hard-margin classical binary SVM

When all the training data can be linearly separated, a hard-margin classical binary SVM

problem (1.1) is constructed to define the optimal hyperplane. This hyperplane is optimal not

only because it can separate the training data correctly, but also because it presents the largest

functional margin between the classes. The functional margin is calculated as the distance

between the two supporting hyperplanes: !Tx+� = 1 and !Tx+� = �1. Note that maximizing
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the functional margin
p
2/k!k is equivalent to minimizing k!k.

min
!,�

1

2
k!k2,

s.t. yi(!
Txi + �) � 1, i 2 I,

(1.1)

where ! 2 Rl and � 2 R.

When the training data can be separated without errors, the expected value of the probability

of misclassification can be bounded [Vapnik and Vapnik, 1982] as follows:

E[P (error)]  E[number of support vectors]

number of training vectors
.

This bound does not explicitly contain the dimensionality of the feature space, and as con-

sequence, the generalization ability of the classification rule is not directly a↵ected by this

dimension, as opposed to the properties of other traditional statistical approaches.

1.1.2 Soft-margin classical binary SVM

For the nonlinearly separable case, the two main approaches are either mapping the data onto

a higher dimensional space or allowing some objects in the training set to be misclassified. An

example of the first approach is illustrated in Figure 1.2. For this example, in R2, the data can

Figure 1.2: A nonlinearly separable example

not be linearly separated. With the help of the transformation �((x1, x2)) = (x1, x21, x2), we can

linearly separate the (modified) data in R3.

The ideal case is that we can find a map function �(x), with which we can separate the training

data. However, it may be hard to find the proper �(x). In practice, we usually accept the pres-

ence of some classification errors. Then, by maximizing the functional margin and minimizing
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the classification errors, a soft-margin classical binary SVM is defined as:

min
!,�

1

2
k!k2 + C

X

i2I
(1� yi(!

T�(xi) + �))+,

where ! 2 Rl, � 2 R and C quantifies the tradeo↵ between the e�ciency and generalization

properties of the solution.

For a map function �, the Kernel function is defined as K(xi, xj) = �(xi)T�(xj). And the

corresponding dual problem is:

max
↵

X

i2I
↵i �

1

2

X

i2I

X

j2I
↵i↵jyiyjK(xi, xj),

s.t.
X

i2I
↵iyi = 0,

0  ↵i  C, i 2 I.

(1.2)

In the dual problem (1.2), all the information related to the nonlinear transformation that

is required is K(xi, xj). So instead of defining a map function � with the desired separation

property, the “kernel trick” directly defines a proper Kernel function in the dual problem. This

approach is widely used, [Lin and Lin, 2003, Rüping, 2001, Zhang et al., 2006], as it simplifies

significantly the formulation of the SVM problem.

1.2 Unbalanced binary SVM

The classical binary SVM does not consider the di↵erence between di↵erent misclassification

costs, nor any a priori information that might be available (such as skewed class distributions).

However, the use of this type of information may be critical for the e�ciency of the method.

For example, in medical diagnosis it is known that the cost of misclassifying a healthy person as

ill is quite di↵erent from the one of misclassifying an ill patient as healthy. A direct way to solve

this problem is to assign di↵erent weights to the di↵erent penalties in the objective function, as

done in [Akbani et al., 2004, Veropoulos et al., 1999]. Alternatively, bi-objective SVMs can be

used for binary classifications, [Carrizosa and Martin-Barragan, 2006].

1.2.1 Single-objective unbalanced binary SVM

Di↵erences in misclassification costs, or the presence of skewed class distributions, a↵ect the

performance of the SVMs. As in [Akbani et al., 2004, Veropoulos et al., 1999], di↵erent weights

can be assigned to the di↵erent misclassification penalties. Then, the single-objective unbalanced
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binary SVM is constructed as:

min
!,�,⇠

1

2
k!k2 + C+

X

i2I+

⇠i + C�
X

i2I�

⇠i,

s.t. yi(!
Txi + �) + ⇠i � 1, i 2 I,

⇠i � 0, i 2 I,

(1.3)

where ! 2 Rl, � 2 R, ⇠ = (⇠1, ⇠2, · · · , ⇠n) 2 Rn, I+ = {i | i 2 I and yi = 1} and I� = {i | i 2
I and yi = �1}, C+ and C� are the di↵erent weights given to the classification errors (the

penalties) of class ”+” and class ”-” objects, respectively.

1.2.2 Bi-objective binary SVM

The di�culty for the single-objective unbalanced binary SVM is to find proper values of C+

and C�. In many situations, the misclassification costs are imprecise or unknown. As we have

mentioned for medical diagnosis problems, the cost of misclassifying a healthy person as ill

is quite di↵erent from the one of misclassifying an ill patient as healthy. However, assigning

concrete values to such costs is not simple. For this case, a more e↵ective approach may be to

use a bi-objective binary SVM method, as proposed in [Carrizosa and Martin-Barragan, 2006].

By maximizing the soft geometric margins e⇢1(!,�, ⇠) and e⇢�1(!,�, ⇠) 1, which have the penalties

embedded in the objective functions, the bi-objective binary SVM is constructed as follows:

max
!,�,⇠

(e⇢1(!,�, ⇠), e⇢�1(!,�, ⇠)),

s.t. yi(!
Txi + �) + ⇠i � 1, i 2 I,

⇠i � 0, i 2 I,

(1.4)

where ! 2 Rl, � 2 R, ⇠ = (⇠1, ⇠2, · · · , ⇠n) 2 Rn,

e⇢xi(!,�, ⇠) =
yi(!Txi + �) + ⇠i

k(!, ⇠)k⇤ ,

e⇢1(!,�) = min
i2I+

⇢xi(!,�),

e⇢�1(!,�) = min
i2I�

⇢xi(!,�),

and k · k⇤ stands for the weighted Euclidean norm, defined as:

k(!, ⇠)k⇤ =
s
k!k2 + C+

X

i2I+

⇠2i + C�
X

i2I�

⇠2i .

1Here, we have just reviewed the soft geometric margin version, but there exists also a hard geometric margin
version, see [Carrizosa and Martin-Barragan, 2006]. In practice, it is more common to use the soft-margin SVMs,
as it can be applied to the non-separable case and helps to avoid the overfitting problem. For the literature in
the later property, we review only the soft-margin version to reduce the length of the presentation.
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For the bi-objective programming problem problem (1.4), we need to get their Pareto-optimal

solutions, instead of their optimal solutions. More generally, for multi-objective optimization

problems, the goal is to identify their Pareto-optimal solutions. Following [Chinchuluun and

Pardalos, 2007, Deb, 2001, Ehrgott, 2005], we can define the Pareto-optimal solutions and weakly

Pareto-optimal solutions as follows: Given a general multi-objective problem,

max
µ2C

(f1(µ), f2(µ), · · · , fh(µ)).

• A feasible solution µ⇤ is Pareto-optimal i↵ there does not exist another feasible solution

µ 2 C such that fi(µ) � fi(µ⇤) for all i 2 {1, 2, · · · , h}, and fj(µ) > fj(µ⇤) for at least

one j 2 {1, 2, · · · , h}.

• A feasible solution µ⇤ is weakly Pareto-optimal i↵ there does not exist another feasible

solution µ 2 C such that fi(µ) > fi(µ⇤) for all i 2 {1, 2, · · · , h}.

In Theorem 1.1 the Pareto-optimal solutions of problem (1.4) are characterized.

Theorem 1.1. [Carrizosa and Martin-Barragan, 2006] The set of Pareto-optimal solutions of

the bi-objective problem (1.4) is given by

W = {(�!1,��,�⇠1) : |� � �1| < 1,� > 0},

where (!1,�1, ⇠1) is the optimal solution of problem (1.5).

min
!,�,⇠

k!k2 + C+
X

i2I+

(⇠i)
2 + C�

X

i2I�

(⇠i)
2,

s.t. yi(!
Txi + �) + ⇠i � 1, i 2 I,

⇠i � 0, i 2 I.

(1.5)

Taking advantage of this theorem, it is possible to get di↵erent Pareto-optimal solutions of

problem (1.4) from the solution of one quadratic problem problem (1.5). Thus, this bi-objective

approach has a low computational cost, compared with other binary SVMs, while providing a

large number of high quality solutions.

1.3 Single-objective Multi-class SVM

In real-life problems, we usually have more than two classes. Researchers have proposed sev-

eral single-objective SVM models for multi-class classifications. These single-objective methods

can be roughly grouped into two families. The first family constructs and combines several

binary (two classes) classifiers, such as one-against-one, one-against-all and directed acyclic

graph (DAG) SVMs, e.g. [Hsu and Lin, 2002, Kreßel, 1999, Platt et al., 2000, Vapnik, 1998].

Alternatively, all-together methods directly find a discriminant function by solving a single op-

timization problem, which attempts to classify all patterns into the corresponding classes, e.g.



Chapter 1: Introduction 7

[Bredensteiner and Bennett, 1999, Crammer and Singer, 2001, Hsu and Lin, 2002, Weston and

Watkins, 1999].

For the results presented in this dissertation, we will assume that we have a training set {xi}ni=1 ✓
Rl, corresponding to m(m � 3) di↵erent classes. Let I = {1, 2, · · · , n} denote the indexes of

the training instances and yi 2 G = {1, ...,m} denote the class membership of vector xi.

1.3.1 All-together method

This approach aims to classify all the classes simultaneously, by solving one single optimization

problem. As in binary SVMs, to find high classification-ability classifiers and overcome the over-

fitting problem, it maximizes all the functional margins and minimizes all the misclassification

errors at the same time. Each of these functional margins is defined as the distance between

two support hyperplanes which are used to separate one class from the remaining ones. In the

approach proposed by [Weston and Watkins, 1999], the classical binary SVM has been extended

to multi-class classification problems as follows:

min
!,�,⇠

1

2

X

p2G
[(!p)T!p] + C

X

i2I

X

p 6=yi

⇠pi

s.t. !T
yixi + �yi � [(!p)Txi + �p] + ⇠pi � 2, p 2 G \ yi, i 2 I,

⇠pi � 0, p 2 G \ yi, i 2 I,

(1.6)

where !p 2 Rl, ! = (!1T ,!2T , · · · ,!mT )T 2 Rlm, � = (�1,�2, · · · ,�m)T 2 Rm and ⇠ 2 R(m�1)n

is a vector collecting all the ⇠pi , p 2 G \ yi, i 2 I.

The solution of this problem allows the definition of a decision function as:

f(x) = argmax
p2G

[(!p)Tx+ �p] (1.7)

This single-objective approach is also known as an “all-together” method, in [Hsu and Lin,

2002]. This all-together method is limited to small problems due to the di�culty of solving

large quadratic problems problem (1.6) when m is large.

1.3.2 One-against-all method

For multi-class classification, two commonly used single-objective SVM methods are the “one-

against-all” and the “one-against-one” SVM methods. The one-against-all SVM method con-

structs m di↵erent classifiers. Each of these classifiers is defined from a classical binary SVM,
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considering one of the m classes as class ”+” and all the remaining classes as class ”-”. Specifi-

cally, the p� th classifier is constructed as:

min
!p,�p,⇠pi ,i2I

1

2
(!p)T (!p) + C

X

i2I
⇠pi ,

s.t. (!p)Txi + �p + ⇠pi � 1, if i 2 Ip,

� (!p)Txi � �p + ⇠pi � 1, if i /2 Ip,

⇠pi � 0, i 2 I,

(1.8)

where !p 2 Rl, �p 2 R, ⇠pi 2 R and Ip = {i 2 I|yi = p}.

After constructing the m classifiers, a decision function similar to (1.7) is used to decide the

class membership.

1.3.3 One-against-one method

Alternatively, one-against-one methods construct m(m�1)/2 classifiers. Each of these classifiers

is constructed from a classical binary SVM which considers only two of the m classes. The

classifier which considers classes p and q, for example, is constructed as:

min
!pq ,�pq ,⇠pq

1

2
(!pq)T (!pq) + C

X

i2Ip[Iq

⇠pqi ,

s.t. (!pq)Txi + �pq + ⇠pqi � 1, if i 2 Ip,

� (!pq)Txi � �pq + ⇠pqi � 1, if i 2 Iq,

⇠pqi � 0, i 2 Ip [ Iq,

(1.9)

where !pq 2 Rl, �pq 2 R, and ⇠pqi 2 R.

For this one-against-one SVM, a voting strategy is used as the decision rule after computing

the classifiers. This voting strategy (also known as ’Max Wins’) is defined as in [Hsu and Lin,

2002]: For instance x, if !pqx + �pq > 0, then the vote for the p-th class is increased by one.

Otherwise, the vote for the q-th class is increased by one. After this procedure is completed,

x is assigned to the class with the largest vote. In the case when two classes have identical

numbers of votes, the one with smaller index is selected.

1.4 Multi-objective multi-class SVM

The aforementioned single-objective multi-class SVM methods have the same drawback as the

classical binary SVM method: They do not consider di↵erences in misclassification costs nor any

a priori information available about the class distributions. Asymmetrically weighted single-

objective SVMs provide a simple approach to overcome this drawback. Traditionally, a grid
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search is used to find proper values for the tradeo↵ parameter in the binary SVMs. We can also

use a grid-search method to find proper values of these weights for the multi-class classification

problems. However, this approach requires solving the QPs associated to pairs of classes re-

peatedly, using di↵erent values of the parameters. As an alternative, we can use multi-objective

approaches to address this problem. In [Tatsumi et al., 2011, 2007, 2009a,b, 2010, 2011, Tat-

sumi and Tanino, 2014], they extend some of the single-objective methods, such as all-together,

one-against-all and one-against-one, to their multi-objective counterparts.

These multi-objective SVMs share many common features. They use the same classification

rule: the value of (!p)Tx + �p, p 2 G is used to measure the degree of confidence that object

x belongs to class p; then, x is assigned to the class with the highest degree of confidence.

Also, their m(m � 1) objective functions and (m � 1)k constraints share the same structure.

In general, the main properties sought in the definition of an SVM-based procedure are a high

generalization ability and low training classification errors.

In the preceding multi-objective SVM proposals, pairwise geometric margins ⇢pq were used

instead of functional margins
p
2/k!p � !qk, to achieve a higher generalization ability.

• The geometric margin between instances of class p and class q is defined as:

⇢pq =
�pq

k!p � !qk , q > p, p, q 2 G,

where

�pq = min

⇢
min
i2Ipq

�
(!p � !q)Txi + �p � �q

 
, min
i2Iqp

�
(!q � !p)Txi + �q � �p

 �

and Ipq = {i 2 Ip|(!p � !q)Txi + �p � �q � 1}, q > p, p, q 2 G.

When looking for high classification accuracies, these proposals minimize certain penalty func-

tions, defined as weighted proportions of the sums of the auxiliary variables over the geometric

margins, instead of minimizing each of the auxiliary variables.

• The penalty function for the misclassification errors for a pair of classes p and q is defined

as:

&pq(�, ⇠) =
⌘pq(⇠)/k!p � !qk
�pq/k!p � !qk =

⌘pq(⇠)

�pq
, q > p, p, q 2 G,

where

⌘pq(⇠) =
X

i2Ip

⇠pqi +
X

i2Iq

⇠qpi , q > p, p, q 2 G.

In this way, it is not necessary to optimize a very large number of objective functions. For

the constraints, all the objects are required to be correctly classified by all the associated

discriminant hyperplanes, taking into account the auxiliary variables.
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To solve these multi-objective problems it is usual to apply a "�constraint method, which guar-

antees the weakly Pareto-optimality of the corresponding solutions by solving a large second-

order cone-program (SOCP). This "�constraint method will be reviewed in Section 1.4.4.

1.4.1 Multi-objective multi-class SVM based on an all-together method

In [Tatsumi et al., 2009b], the authors extend the all-together SVMmethod to its multi-objective

counterpart. By maximizing all the pairwise geometric margins ⇢pq and minimizing the penalty

functions &pq, they construct the multi-objective SVM based on an all-together method (MS22)

as follows:

max
!,�,�,⇠

 
�12

k!1 � !2k , · · · ,
�(m�1)m

k!m�1 � !mk ,�&12(�, ⇠), · · · ,�&(m�1)m(�, ⇠)

!
,

s.t. (!p � !q)Txi + (�p � �q) � �pq � ⇠pqi , i 2 Ip, q > p, p, q 2 G,

(!q � !p)Txi + (�q � �p) � �pq � ⇠qpi , i 2 Iq, q > p, p, q 2 G,

�pq � 1, q > p, p, q 2 G,

⇠pqi � 0, i 2 Ip, q 6= p, p, q 2 G,

(1.10)

where ! = (!1T ,!2T , · · · ,!mT )T 2 Rml, � = (�1,�2, · · · ,�m)T 2 Rm, � = (�12,�13, · · · ,�(m�1)m)T 2
Rm(m�1)/2 and ⇠ 2 R(m�1)n collecting ⇠pqi , i 2 Ip, q 6= p, p, q 2 G. Problem (1.10) has m(l+ 1) +
m�1
2 (m+2n) decision variables and m�1

2 (4n+m) constraints with m(m�1) objective functions.

1.4.2 Multi-objective multi-class SVM based on a one-against-all method

To alleviate the computational burden of MS2, Tatsumi et al. proposed a multi-objective multi-

class SVM based on a one-against-all method (SM-OA) in [Tatsumi et al., 2010], which reduces

the number of decision variables. They solve this SM-OA model in two phases: in the first

phase, m classical binary SVMs have been solved as in a one-against-all method to compute a

set of vectors !̄p, p 2 G; in a second phase they define !p ⌘ ↵p!̄p, and the values for the scalars

↵p, p 2 G are obtained by solving:

max
↵,�,�,⇠

 
�12

k↵1!̄1 � ↵2!̄2k , · · · ,
�(m�1)m

k↵m�1!̄m�1 � ↵m!̄mk ,�&12, · · · ,�&(m�1)m

!
,

s.t. (↵p!̄p � ↵q!̄q)Txi + (�p � �q) � �pq � ⇠pqi , i 2 Ip, q > p, p, q 2 G

(↵q!̄q � ↵p!̄p)Txi + (�q � �p) � �pq � ⇠qpi , i 2 Iq, q > p, p, q 2 G,

�pq � 1, q > p, p, q 2 G,

⇠pqi � 0, i 2 Ip, q 6= p, p, q 2 G,

(1.11)

2We use MS2 to name this method following [Tatsumi et al., 2009b]. In all instances mentioned in this thesis
we have chosen to keep the nomenclature used in the original reference.
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where ↵ = (↵1,↵2, · · · ,↵m)T 2 Rm, � = (�1,�2, · · · ,�m)T 2 Rm, � = (�12,�13, · · · ,�(m�1)m)T 2
Rm(m�1)/2 and ⇠ 2 R(m�1)n collecting ⇠pqi , i 2 Ip, q 6= p, p, q 2 G.

1.4.3 Multi-objective multi-class SVM based on a one-against-one method

A hard-margin multi-objective multi-class SVM based on a one-against-one method (SM-OAO)

was introduced in [Shoki Ishida, Keiji Tatsumi, 2012]. It is very easy to extend it to a soft-

margin version as described for MS2 and SM-OA. As in previous cases, a soft-margin version

is more useful than the corresponding hard-margin one in practice, because it can deal with

the nonlinearly separable case and avoid the overfitting problem. The model problem (1.12)

presents a soft-margin version for a multi-objective multi-class SVM based on a one-against-one

method extend by us. This model again o↵ers a reduction in the size of the decision variables

of MS2. As in the case of SM-OA, they process SM-OAO in two phases. In the first phase,

m(m � 1)/2 classical binary SVMs are solved to obtain a set of vectors !̄pq, q > p, p, q 2 G.

Then, in a second phase they compute the optimal classifiers by solving:

max
↵,�,�,⇠

 
�12

k!1 � !2k , · · · ,
�(m�1)m

k!m�1 � !mk ,�&12, · · · ,�&(m�1)m

!
,

s.t. (!p � !q)Txi + (�p � �q) � �pq � ⇠pqi , i 2 Ip, q > p, p, q 2 G

(!q � !p)Txi + (�q � �p) � �pq � ⇠qpi , i 2 Iq, q > p, p, q 2 G,

�pq � 1, q > p, p, q 2 G,

⇠pqi � 0, i 2 Ip, q 6= p, p, q 2 G,

(1.12)

where ↵ = (↵12,↵21, · · · ,↵(m�1)m,↵m(m�1))T 2 Rm(m�1), � = (�1,�2, · · · ,�m)T 2 Rm, � =

(�12,�13, · · · ,�(m�1)m)T 2 Rm(m�1)/2, ⇠ 2 R(m�1)n collecting ⇠pqi , i 2 Ip, q 6= p, p, q 2 G and

!p =
X

q 6=p

↵pq!̄pq 2 Rl, where !̄qp = !̄pq, q > p, p, q 2 G.

1.4.4 A "-constraint method

These multi-objective approaches (SM2, MS-OA and MS-OAO) are frequently solved using a

"�constraint method. For example, a weakly Pareto-optimal solution of problem (1.10) can be
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obtained by solving the following program:

max
!,�,�,⇠

�rs

k!r � !sk ,

s.t.
�pq

k!p � !qk � "pq, q > p, (p, q) 6= (r, s), p, q 2 G,

&pq  µpq, q > p, p, q 2 G,

(!p � !q)Txi + (�p � �q) � �pq � ⇠pqi , i 2 Ip, q > p, p, q 2 G,

(!q � !p)Txi + (�q � �p) � �pq � ⇠qpi , i 2 Iq, q > p, p, q 2 G,

�pq � 1, q > p, p, q 2 G,

⇠pqi � 0, i 2 Ip, q 6= p, p, q 2 G,

(1.13)

where (r, s), "pq and µpq are selected to ensure that the feasible region of problem (1.13) is not

empty. A property of this solution is given in the following Theorems:

Theorem 1.2. [Tatsumi et al., 2009b] Let (!,�,�, ⇠) be an optimal solution of problem (1.13)

for some (r, s). Then (!,�,�, ⇠) is weakly e�cient for problem (1.10).

Theorem 1.3. [Tatsumi et al., 2009b] (!,�,�, ⇠) is Pareto optimal for problem (1.10) if and

only if there exist values "�rs and µ such that (!,�,�, ⇠) is optimal for problem (1.13) for any

(r, s).

However, problem (1.13) is still di�cult to solve due to its fractional nonlinear objective function.

In [Tatsumi et al., 2009b], they add a constraint �rs = crs with an appropriate constant crs � 1,

to obtain the following model:

max
!,�,�,⇠

crs

k!r � !sk ,

s.t.
�pq

k!p � !qk � "pq, q > p, (p, q) 6= (r, s), p, q 2 G,

&rs =
⌘rs(⇠)

crs
 µrs,

&pq =
⌘pq(⇠)

�pq
 µpq, q > p, (p, q) 6= (r, s), p, q 2 G,

(!r � !s)Txi + (�r � �s) � crs � ⇠rsi , i 2 Ir,

(!s � !r)Txi + (�s � �r) � crs � ⇠sri , i 2 Is,

(!p � !q)Txi + (�p � �q) � �pq � ⇠pqi , i 2 Ip, q > p, (p, q) 6= (r, s), p, q 2 G,

(!q � !p)Txi + (�q � �p) � �pq � ⇠qpi , i 2 Iq, q > p, (p, q) 6= (r, s), p, q 2 G,

�pq � 1, q > p, (p, q) 6= (r, s), p, q 2 G,

⇠pqi � 0, i 2 Ip, q 6= p, p, q 2 G.

(1.14)

We have the following results, related the solutions of this problem:
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Theorem 1.4. [Tatsumi et al., 2009b] Let (!̂, b̂, �̂, ⇠̂) be an optimal solution of (problem (1.13))

and crs = t�̂rs for t � 1. If (!⇤,�⇤,��rs⇤, ⇠⇤) is an optimal solution of (problem (1.14)), then

(!⇤,�⇤, (��rs⇤, crs), ⇠⇤) is optimal for (problem (1.13)).

Theorem 1.5. [Tatsumi et al., 2009b] If (!⇤,�⇤,�⇤, ⇠⇤) is an optimal solution of (problem (1.13)),

then for any t � 1, (t!⇤, t�⇤, t��rs⇤, t⇠⇤) is an optimal solution of (problem (1.14)) with

crs = t�rs⇤.

From the description of these multi-objective approaches, it is possible to identify several chal-

lenges associated to their use. First of all, an e�cient application of the "�constraint method

requires finding proper values of the constraint parameters ✏�rs, µpq, and objective parameters

(r, s) and crs. This task is made even more complex whenm is large. Second, after finding proper

values of these parameters we have to solve large SOCPs as defined in problem (1.14), to obtain

weakly Pareto-optimal solutions of the classification problem. Finally, as for multi-objective

optimizations, we wish to find good approximations of the Pareto frontier. The solutions of

problem (1.14) provide only weakly Pareto-optimal solutions. To get better approximations of

the Pareto frontier, we have to repeatedly solve these large SOCPs, with very large associated

computational costs.

1.5 Contributions

In this work, our focus is on SVM approaches for multi-class classifications. To generalize

multi-class SVM models, we present two approaches taking into account the di↵erences among

misclassification costs. One is based on using a multi-objective SVM method, while the second

one is formulated as a weighted single-objective SVM method.

Specifically, in Chapter 2 we introduce a multi-objective SVM (PM) for multi-class classification

problems. This proposed multi-objective multi-class SVM is based on an adapted projection of

the data (the reason why we call it a Projected Multi-objective SVM). Compared with the multi-

objective SVMs described in the literature, PM provides higher quality classifiers using less

computation. One interesting property of the proposed projection is that we are able to provide

a theoretical guarantee for the Pareto-optimality solutions of PM, while the multi-objective

SVMs in the literature apply a "�constraint method, which can only guarantee the solutions’

weakly Pareto-optimality. To approximate the Pareto-frontier, other multi-objective approaches

face the big challenge of having to choose proper constraint parameters and solve large scale

SOCPs repeatedly. As opposed to these properties, the Pareto-optimal solutions of PM are

parallel to the solution of a single-objective QP, for any choice of parameters in the model.

As a consequence, PM o↵ers better quality solutions using significantly lower computational

costs, compared with the multi-objective approaches in the literature. The properties of PM’s

Pareto-optimal solutions also allow us to o↵er decision makers a large number of good choices,

with quite reasonable computational costs, compared with other multi-class approaches such

as the all-together method, one-against-all method, one-against-one method, MS2, SM-OA or
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SM-OAO. Numerical experiments in Chapter 2 also give strong evidence for the advantage of

PM.

In Chapter 3, we construct a weighted single-objective SVM to solve multi-class classification

problems considering any di↵erences among the misclassification costs. A di�culty of this

approach is to find proper weights for the penalties in the objective functions. A grid search

can be used to find these values, as most researchers have done for the binary classification

problem. However, this grid search method needs to solve the weighted single-objective SVM

repeatedly with di↵erent values of these parameters; this has a very high computational cost.

Instead of using grid searches, it is possible to take advantage of the piecewise linearity of the

optimal solutions of the single-objective SVM. In this thesis, we propose a partial parametric-

path algorithm (PPPA) to overcome this di�culty. For PPPA, and given initial weights, we

start the procedure by solving the corresponding single-objective SVM. Then, along a chosen

search direction on the weights, a path of solutions for PPPA can be found by solving some

linear equation systems, while finding the extremes of the segments in the piecewise-linear path

by monitoring any changes in the active sets. We show that PPPA o↵ers an e�cient method

to find proper values for the weight parameters. To improve the search space and to be able

to explore in a systematic manner di↵erent weight vectors, we have combined PPPA and a

variable neighborhood search method. Numerical experiments in Chapter 3 show the reliability

and e�ciency of PPPA.

In Chapter 4, concluding remarks of this thesis and some possible research lines are provided.



Chapter 2

A Projection Method for

Multi-objective Multi-class SVM

2.1 Overview

As we have mentioned in Chapter 1 that the di↵erences between the misclassification costs are

necessary to be considered as they a↵ect the classification performances of SVMs, [Akbani et al.,

2004, Veropoulos et al., 1999]. A direct way to consider these di↵erences is applying di↵erent

weights to the misclassification penalties in a single-objective multi-class SVM for example an

all-together SVM method. However, in many situations, the misclassification costs are fuzzy

or unknown. So, in order to use a single-objective SVM approach to solve this problem, we

need to find proper values for the weights of the misclassification penalties. Traditionally, grid

searching is used to find proper values for these weights. This needs a lot of computation. We

will focus on solving this di�culty in Chapter 3. Alternatively, we can use a multi-objective

multi-class SVM approach to consider these di↵erences.

In [Tatsumi et al., 2007], they used a multi-objective multi-class SVM for pattern recognition.

Then based on one-against-all, one-against-one and all-together methods, they proposed a series

of multi-objective SVMs to solve multi-class classification problems, e.g. [Tatsumi et al., 2011,

2009a,b, 2010, 2011, Tatsumi and Tanino, 2014]. As we have mentioned in Chapter 1, these

multi-objective SVMs share many common features. On the other side, as we can see that MS2

has m(l+ 1) + (m� 1)(k+ m
2 ) variables. SM-OA and SM-OAO are multi-objective approaches

introduced to reduce the number of the unknown variables. The number of variables in SM-OA

is 1
2m(m + 3) + (m � 1)k, while for SM-OAO we have 1

2m(3m � 1) + (m � 1)k variables. We

can see that SM-OA has the smallest number of variables among these three multi-objective

SVMs and if l > m � 1, then SM-OAO has m(l + 1 � m) fewer variables than MS2. Thus,

both SM-OA and SM-OAO should be more computationally e�cient than MS2, although as

the optimal coe�cients (!⇤,�⇤) obtained from SM-OA (SM-OAO) are also feasible for MS2,

their solutions will be no better than those provided by MS2.

15
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However, it may be di�cult and expensive to compute the complete set of Pareto-optimal

solutions in many cases (e.g., large-scale optimization problems, complex structure of the Pareto-

optimal solutions). In practice, the most common approach is to build an approximation to the

Pareto-optimal solutions based on a limited number of solution values.

The aforementioned multi-objective multi-class SVMs have their drawbacks. Tatsumi et al.

suggested to use the "�constraint method, where the problem is transformed into a single-

objective one, by selecting one of the objective functions while transforming all the rest into

constraints, while setting a limit to their values. As these multi-objective SVMs have m(m� 1)

objectives, we have to introduce m(m� 1)� 1 constraint parameters to define the constraints.

When m is large, to find proper values for these constraint parameters may be a big challenge

in practice (In their papers, they solved a large-scale QP (e.g. OS in [Tatsumi et al., 2010]) to

get the proper values for these constraint parameters.). Each of the solutions approximating the

Pareto-optimal set would be associated with a given set of values for these constraint parameters.

The use of an "�constraint method also introduces significant limitations to the solutions of

these multi-objective SVMs. From [Ehrgott, 2005], we know that the "�constraint method

only guarantees weakly Pareto-optimal solutions. When m is large, to obtain a reasonable

approximation to the Pareto-optimal solutions, beside the complication of finding proper values

for these constraint parameters, we need to solve several computationally-expensive large-scale

SOCPs (e.g. "SMOA2 in [Tatsumi et al., 2010]). It sums up that, with these aforementioned

multi-objective multi-class SVMs using "�constraint method, to get reasonable approximation

to the Pareto-optimal solutions, we need a lot of computation to get the weakly Pareto-optimal

solutions. Besides, they ignored that the cost of misclassifying class A objects as class B objects

may be di↵erent from the cost of misclassifying class B objects as class A objects. For example,

in medical diagnosis, it’s known that the cost of misclassifying a healthy patient as ill is di↵erent

from the one of misclassifying an ill patient as healthy. In medical diagnosis, as in many other

applications, these di↵erences need to be considered. For example, an investor may need a SVM

which can separate high volatility shares from low volatility shares as accurately as possible,

while it may be acceptable to misclassify some of the low volatility shares as high volatility

shares.

In this chapter, we propose a practical multi-objective multi-class SVM that we denominate

Projected Multi-objective SVM (PM), and which works in a higher dimensional space than

the object space. Our aim is to address the main limitations that we have identified in the

existing multi-objective SVM methods. Using PM, we are able to characterize the Pareto-

optimal solutions of the problem by solving a single-objective QP problem once. Another

advantage of our method is that, for large-scale problems, this single-objective QP problem

can be decomposed into smaller subproblems in an e�cient manner, significantly reducing its

computational burden. Our proposal is also able to provide an approximation to the Pareto

frontier with high out-of-sample quality, using limited computational cost. As a result, PM is

both e�cient and e↵ective.
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2.2 Projected multi-objective SVM

For simplicity we just consider the case of a linear classifier, since a nonlinear classifier can be

considered as a linear classifier embedded in a richer object space. As in introduced in Chapter 1,

for multi-class classification, the all-together method, one-against-all method and one-against-

one method are the most commonly used single-objective methods, e.g. [Bredensteiner and

Bennett, 1999, Crammer and Singer, 2001, Hsu and Lin, 2002, Kreßel, 1999, Vapnik, 1998,

Weston and Watkins, 1999]. The single-objective all-together method needs to solve a large-

scale optimization problem, so it is limited to small data sets [Hsu and Lin, 2002, Weston

and Watkins, 1999]. The one-against-all method constructs m binary SVMs where each SVM

classifies one of the classes versus the rest. Unbalances associated to the very di↵erent number of

class objects in these binary SVMs may a↵ect their classification accuracies and generalization

abilities [Tatsumi et al., 2010, 2011]. In this regard, some experimental results seem to show

that the one-against-all method may have a worse accuracy for some problems compared with

the all-together and one-against-one methods [Hsu and Lin, 2002]. So probably, as suggested

in [Hsu and Lin, 2002], the one-against-one method, which constructs m(m � 1)/2 classifiers

(discriminant hyperplanes), may be the most suitable single-objective approach for multi-class

classification, compared with the all-together and one-against-all methods.

As the one-against-one method may be the most suitable single-objective approach for multi-

class classification, we construct the discriminant hyperplanes as follows:

• The discriminant hyperplane to separate class p data against class q data is given by:

Lpq : (!pq)Tx+ �pq = 0, q > p, p, q 2 G,

where !pq 2 Rl and �pq 2 R q > p, p, q 2 G.

Ideally, we would like to have all class p objects lying above hyperplane Lpq, and all class q

objects lying below Lpq. If there exist hyperplanes such that the training objects satisfy this

ideal situation, we say that the training objects are linearly separable.

For the multi-class classification problems, when we have linearly separable training data, we

require all the training instances been correctly classified and call the constructed SVMs as

hard-margin ones. Considering about the over fitting problem and nonlinearly separable cases,

we allow some misclassification errors in the training data. Minimizing all the classification

errors is added to the objective functions and then we can construct the soft-margin multi-class

SVMs.

In the following Section 2.2.1 and Section 2.2.2, we construct the hard-margin and soft-margin

PMs with which we can find proper classifiers. After computing the classifiers from PM, we use

majority voting (also known as ’Max Wins’) to define our classification rule as in Section 1.3.3 .
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Figure 2.1: Linearly separable training objects from three classes

2.2.1 Hard-margin projected multi-objective multi-class SVM

Before we introduce our hard-margin PM method, we first construct a hard-margin single-

objective multi-class SVM problem (P1) with which we can characterize the Pareto-optimal

solution of the hard-margin PM.

min
!,�

X

q>p,p,q2G
k!pqk2,

s.t. (!pq)Txi + �pq � 1, i 2 Ip, q > p, p, q 2 G,

� (!pq)Txi � �pq � 1, i 2 Iq, q > p, p, q 2 G,

(P1)

where ! = (!12T ,!13T , · · · ,!(m�1)mT
)T 2 Rm(m�1)l/2 and � = (�12,�13, · · · ,�(m�1)m)T 2

Rm(m�1)/2.

Note that problem (P1) is separable by pairs of classes. Hence, we have:

Property 2.1. (!⇤,�⇤) is optimal for problem (P1) if and only if the sub-vectors (!pq
⇤ ,�pq

⇤ ), q >

p, p, q 2 G are optimal for the binary problems:

min
!pq ,�pq

1

2
k!pqk2,

s.t. (!pq)Txi + �pq � 1, i 2 Ip, q > p, p, q 2 G,

� (!pq)Txi � �pq � 1, i 2 Iq, q > p, p, q 2 G,

(2.1)

where !pq 2 Rl and �pq 2 R.
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In order to unify the denominators of the objectives so that for hard-margin PM method we

can characterize its Pareto-optimal solutions, we introduce the following projection:

�pq
x = (�12x

T
, �13x

T
, · · · , �(m�1)m

x
T
)T , q > pp, q 2 G,

with

�ijx =

8
<

:
x, if (i, j) = (p, q);

0, else.
(2.2)

Then we can express hyperplane Lpq in the projected space as: Lpq : !T�pq
x + �pq = 0.

We define our hard geometric margin from object x 2 Ip to hyperplane Lpq as the Euclidean

distance in the projected space:

%pqx (!,�) =
|(!)T�pq

x + �pq|
k!k =

(!pq)Tx+ �pq

k!k , x 2 Ip, p 6= q, p, q 2 G.

Notice that, in the separable case, we have all class p objects over hyperplane Lpq. So we have

(!pq)Tx+ �pq > 0, for all x 2 Ip, p 6= q, p, q 2 G.

Now we define the hard geometric margin from class p to hyperplane Lpq as :

%pq(!,�) = min
x2Ip

%pqx (!,�), p 6= q, p, q 2 G.

In order to maximize all the pair-wise geometric margins %pq(!,�), we can construct the hard-

margin projected multi-objective SVM based on all-together method as:

max
!,�

⇣
%12(!,�), %21(!,�), · · · , %(m�1)m(!,�), %m(m�1)(!,�)

⌘

s.t. (!pq)Txi + �pq > 0, i 2 Ip, q > p, p, q 2 G,

� (!pq)Txi � �pq > 0, i 2 Iq, q > p, p, q 2 G,

(hard-margin PM)

where ! 2 Rm(m�1)l/2 and � 2 Rm(m�1)/2.

For this multi-objective problemproblem (hard-margin PM), we define the following minimax

weighted problem that provides Pareto-optimal solutions of problem (hard-margin PM):

max
!,�

min
⇣
%12(!,�), ✓21%21(!,�), · · · , ✓(m�1)m%(m�1)m(!,�), ✓m(m�1)%m(m�1)(!,�)

⌘

s.t. (!pq)Txi + �pq > 0, i 2 Ip, q > p, p, q 2 G,

� (!pq)Txi � �pq > 0, i 2 Iq, q > p, p, q 2 G.

(2.3)

The above problem (2.3) will be a bridge for us to get the characterization of the Pareto-

optimal solutions of problem (hard-margin PM). The following lemma establishes the relation-

ship between problem (2.3) and problem (hard-margin PM). The values ✓pq can be seen as the

proportions of the geometric margin %12 over the geometric margins %pq.



Chapter 2. A Projection Method for Multi-objective Multi-class SVM 20

Lemma 2.1. (1) The optimal solution of problem (2.3) is weakly Pareto-optimal for prob-

lem (hard-margin PM);

(2) The weakly Pareto-optimal solutions of problem (hard-margin PM) are optimal for prob-

lem (2.3) given some specific values ✓✓✓ = (✓21, · · · , ✓(m�1)m, ✓m(m�1)) > 0.

The proof can be seen in Appendix A.1.

Problem (2.3) can be easily replaced with a quadratic problem. By solving that quadratic

problem, we can characterize the weakly Pareto-optimal solutions of problem (hard-margin

PM), as the following theorem shows.

Theorem 2.2. The set of weakly Pareto-optimal solutions of problem (hard-margin PM) is :

{(!!!,���) = (µ!✓, µ�✓) |µ > 0, ✓pq > 0, p < q, p, q 2 G} ,

where ✓12 = 1, !pq
✓ = ✓pq+✓qp

2✓pq✓qp !
pq
1 and �pq

✓ = ✓qp�✓pq

2✓pq✓qp + ✓pq+✓qp

2✓pq✓qp �
pq
1 for all q > p, p, q 2 G, with

(w1,�1) being an optimal solution for problem (P1) .

Proof. First, using the definition of the geometric margins, we can rewrite problem (2.3) as:

min
!,�

k!k

min

⇢
min
i2I1

(!12)Txi + �12, ✓21min
i2I2

�(!12)Txi � �12, · · · , ✓m(m�1) min
i2Im

�(!(m�1)m)Txi � �(m�1)m

�

s.t. (!pq)Txi + �pq > 0, i 2 Ip, q > p, p, q 2 G,

� (!pq)Txi � �pq > 0, i 2 Iq, q > p, p, q 2 G.

(2.4)

We can see that (!,�) is optimal for problem (2.4) i↵ (µ!, µb) is optimal for problem (2.4) for

any µ > 0. So we can standardize the denominator of the objective. Then we can solve the

following problem to get the optimal solution of problem (2.4):

min
!,�

k!k

s.t.min

⇢
min
i2I1

(!12)Txi + �12, ✓21min
i2I2

(�!12)Txi � �12, · · · , ✓m(m�1) min
i2Im

(�!(m�1)m)Txi � �(m�1)m

�
= 1.

(2.5)

Easily we can see the above problem (2.5) is equivalent to

min
!,�

k!k

s.t. ✓pq[(!pq)Txi + �pq] � 1, i 2 Ip, q > p, p, q 2 G,

✓qp[�(!pq)Txi � �pq] � 1, i 2 Iq, q > p, p, q 2 G.

(2.6)
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Problem (2.6) is equivalent to:

min
!,�

k!k2

s.t. ✓pq[(!pq)Txi + �pq] � 1, i 2 Ip, q > p, p, q 2 G,

✓qp[�(!pq)Txi � �pq] � 1, i 2 Iq, q > p, p, q 2 G.

(2.7)

As the objective function of problem (2.7) is strictly convex, we can see that the optimal solution

!✓ is unique. Besides, considering that the objective of problem (2.7) is quadratic (positive

definite) and the constraints are a�ne functions, KKT conditions are necessary and su�cient

for optimality. The KKT conditions for problem (2.7) are:

2!pq
✓ = ✓pq

X

i2Ip

�pq
✓ixi � ✓qp

X

i2Iq

�qp
✓ixi, q > p, p, q 2 G,

✓pq
X

i2Ip

�pq
✓i � ✓qp

X

i2Iq

�qp
✓i = 0, q > p, p, q 2 G,

�pq
✓i [✓

pq(!pq
✓ )Txi + ✓pq�pq

✓ � 1] = 0, i 2 Ip, q > q, p, q 2 G,

�qp
✓i [✓

qp(�!pq
✓ )Txi � ✓qp�pq

✓ � 1] = 0, i 2 Iq, q > p, p, q 2 G,

�pq
✓i � 0, i 2 Ip, p 6= q, p, q 2 G,

✓pq[(!pq
✓ )Txi + �pq

✓ ] � 1, i 2 Ip, q > p, p, q 2 G,

✓qp[�(!pq
✓ )Txi � �pq

✓ ] � 1, i 2 Iq, q > p, p, q 2 G

(2.8)

From these KKT conditions, we can see that (�pq
✓ ,�qp

✓ ) 6= 0, q > p, p, q 2 G. Without loss of

generality, we can say that, for each p, q 2 G with q > p, there exist some xpq✓ 2 Ip such that

�pq
✓x 6= 0. Then we get

�pq
✓ =

1

✓pq
� (!pq

✓ )Txpq✓ , q > p, p, q 2 G.

So we can see that the set of optimal solutions for problem (2.7) is nonempty. Considering the

convexity of the objective function, we have that problem (2.7) has a unique optimal solution.

(!1,�1) is optimal for problem (P1). Let �1 be the corresponding KKT multiplier vector. Then

take:

!pq
✓ =

✓pq + ✓qp

2✓pq✓qp
!pq
1 , q > p, p, q 2 G,

�pq
✓ =

✓qp � ✓pq

2✓pq✓qp
+

✓qp + ✓pq

2✓pq✓qp
⇥ �pq

1 , q > p, q, p 2 G,

�pq
✓i =

✓pq + ✓qp

2✓pq✓qp
⇥ 1

✓pq
�pq
1i , i 2 Ip, p 6= q, p, q 2 G.

(2.9)

Then (!✓,�✓) will be the unique optimal solution of problem (2.7), since it satisfies the KKT

conditions. Then, for any µ > 0 we have that (µ!✓, µ�✓) is optimal for problem (2.4). Using

Lemma 2.1, we conclude that (µ!✓, µ�✓) is weakly Pareto-optimal for problem (hard-margin

PM).
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After characterizing these weakly Pareto-optimal solutions of problem (hard-margin PM), we

try to identify its Pareto-optimal solutions. We now show that these weakly Pareto-optimal

solutions will also be Pareto-optimal for problem (hard-margin PM).

Corollary 2.3. The Pareto-optimal solution set of problem (hard-margin PM) will be:

{(!,�!,�!,�) = (µ!✓, µ�✓) |µ > 0, ✓pq > 0, p < q, p, q 2 G} ,

where ✓12 = 1, !pq
✓ = ✓pq+✓qp

2✓pq✓qp !
pq
1 and �pq

✓ = ✓qp�✓pq

2✓pq✓qp + ✓pq+✓qp

2✓pq✓qp �
pq
1 for all q > p, p, q 2 G, with

(w1,�1) being optimal to problem (P1) .

Proof. From the definitions of Pareto-optimal and weakly Pareto-optimal solutions, we know

that the Pareto-optimal solutions will also be weakly Pareto-optimal. So we only need to prove

that the weakly Pareto-optimal solutions of problem (hard-margin PM) will also be Pareto-

optimal.

Let (!⇤,�⇤) be a weakly Pareto-optimal solution of problem (hard-margin PM). Then, there

exist some ✓ > 0 and µ > 0 such that (µ!⇤, µ�⇤) will be optimal for problem (2.7). Suppose

(!⇤,�⇤) is not Pareto-optimal for problem (hard-marginPM). For any µ > 0 we have %pq(!,�) =

%pq(µ!, µb). So (µ!⇤, µ�⇤), 8µ > 0 will not be Pareto-optimal for problem (hard-margin PM).

Then there exist (!0,�0) such that:

%pq(!0,�0) � %pq(µ!⇤, µ�⇤), p 6= q, p, q 2 G, (2.10)

and at least one (i, j), i 6= j, i, j 2 G, such that %ij(!0,�0) > %ij(µ!⇤, µ�⇤).

Without loss of generality, we can take k!0k = kµ!⇤k. Then we have:

(!pq
0 )Tx+ �pq

0 � (µ!pq
⇤ )Tx+ µ�pq

⇤ , x 2 Ip, p 6= q, p, q 2 G.

As (µ!⇤, µ�⇤) is optimal for problem (2.7), we have that (!0,�0) is also feasible for problem (2.7).

As k!0k = kµ!⇤k, we can say that (!0,�0) is optimal for problem (2.7). Since problem (2.7)

has a unique optimal solution, we must have !0 = µ!⇤, �0 = µ�⇤. Thus, we have:

%pq(!0,�0) = %pq(µ!⇤, µ�⇤), 8p 6= q, p, q 2 G.

This contradicts our assumption that problem (2.10) has at least one strict inequality. We then

conclude that (!⇤,�⇤) is Pareto-optimal for problem (hard-margin PM).

2.2.2 Soft-margin projected multi-objective all-together

In Section 2.2.1 we have introduced the hard-margin PM problem. As before, in order to con-

sider the overfitting problem and nonlinearly separable training objects, we derive a soft-margin
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PM. We first introduce the following soft-margin sing-objective multi-class SVM problem (P2)

with which we can characterize the Pareto-optimal solutions of the soft-margin PM.

min
!,�,⇠

k!k2 +
X

q 6=p,p,q2G
cpq
X

i2Ip

(⇠pqi )2,

s.t. (!pq)Txi + �pq + ⇠pqi � 1, i 2 Ip, q > p, p, q 2 G,

� (!pq)Txi � �pq + ⇠qpi � 1, i 2 Iq, q > p, p, q 2 G,

⇠pqi � 0, i 2 Ip, q 6= p, p, q 2 G,

(P2)

where ! = (!12T ,!13T , · · · ,!(m�1)mT
)T 2 Rm(m�1)l/2, � = (�12,�13, · · · ,�(m�1)m)T 2 Rm(m�1)/2

and ⇠ 2 R(m�1)n collecting all the ⇠pqi , i 2 Ip, q 6= p, p, q 2 G.

The above program (P2) is a strictly convex quadratic problem, so it has an unique optimizer.

And we have:

Property 2.2. (!⇤,�⇤, ⇠⇤) is optimal for problem (P2) if and only if the sub-vectors (!pq
⇤ ,�pq

⇤ , ⇠pq⇤ , ⇠qp⇤ ), q >

p, p, q 2 G are optimal for the binary problems:

min
!pq ,�pq ,⇠pq ,⇠qp

1

2
k!pqk2 + cpq

X

i2Ip

(⇠pqi )2 + cqp
X

i2Iq

(⇠qpi )2,

s.t. (!pq)Txi + �pq + ⇠pqi � 1, i 2 Ip,

� (!pq)Txi � �pq + ⇠qpi � 1, i 2 Iq,

⇠pqi � 0, i 2 Ip, ⇠
qp
i � 0, i 2 Iq,

(2.11)

where !pq 2 Rl, �pq 2 R and ⇠pqi , ⇠qpi 2 R.

We also need to properly define the geometric margins so that we can characterize the Pareto-

optimal solutions for the resulting soft-margin PM. We are interested in a SVM formulation

whose objective functions integrate both the maximization of the geometric margins and the

minimization of the misclassification errors. We incorporate the misclassification errors into our

model by redefining the geometric margins after embedding the slack variables (as measures of

misclassification) into them. We consider the following projection:

�pq
⇠x = (�12⇠x

T
, �21⇠x

T
, · · · , �m(m�1)

⇠x

T
)T , q > p, p, q 2 G,

where

�rs⇠x =

(
1p
cpq

ei if (r, s) = (p, q) and x is the i-th object in class p,

0 if (r, s) 6= (p, q), r 6= s, r, s 2 G,

and ei is the i-th unit vector.

In the projected space we can construct the hyperplane classifying class p objects against class

q objects as:

Lpq : (!,
p
C⇠)T (�pq

x ,�pq
⇠x) + �pq = 0, q > p, p, q 2 G,
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where,
p
C⇠ = (

p
c12⇠12,

p
c21⇠21, · · · ,

p
cm(m�1)⇠m(m�1)) and �pq

x defined as in Section 2.2.1.

We define the soft geometric margin from object x to hyperplane Lpq as the Euclidean distance

in the projected space.

• The soft geometric margin from object x 2 Ip to hyperplane Lpq is:

%̄pqx (!,
p
C⇠,�) =

|(!,
p
C⇠)T (�pq

x ,�pq
⇠x) + �pq|

k(!,
p
C⇠)k

=
(!pq)Tx+ ⇠pq + �pq

k(!,
p
C⇠)k

, x 2 Ip, p 6= q, p, q 2 G.

• The soft geometric margin for class p objects against class q objects is:

%̄pq(!,
p
C⇠,�) = min

x2Ip
%̄pqx (!,

p
C⇠,�), p 6= q, p, q 2 G.

By maximizing all the soft geometric margins defined with the slack variables embedded, we

can formulate the soft-margin PM as follows:

max
!,�,⇠

⇣
%̄12(!,�), %̄21(!,�), · · · , %̄(m�1)m(!,�), %̄m(m�1)(!,�)

⌘

s.t. (!pq)Txi + �pq + ⇠pqi > 0, i 2 Ip, q > p, p, q 2 G,

� (!pq)Txi � �pq + ⇠qpi > 0, i 2 Iq, q > p, p, q 2 G,

⇠pqi � 0, i 2 Ip, p 6= q, p, q 2 G,

(soft-margin PM)

where ! 2 Rm(m�1)l/2, � 2 Rm(m�1)/2 and ⇠ 2 R(m�1)n.

By applying procedures similar to the ones used in Theorem 2.2 and Corollary 2.3, we can

characterize the weakly Pareto-optimal and Pareto-optimal solutions for (soft-margin PM).

Theorem 2.4. The set of weakly Pareto-optimal solutions for (soft-margin PM) is :

{(!,�, ⇠!,�, ⇠!,�, ⇠) = (µ!✓, µ�✓, µ⇠✓) |µ > 0, ✓ > 0} ,

where ✓12 = 1, !pq
✓ = ✓pq+✓qp

2✓pq✓qp !
pq
1 , �pq

✓ = ✓qp�✓pq

2✓pq✓qp + ✓pq+✓qp

2✓pq✓qp �
pq
1 for all q > p and ⇠pq✓ = ✓pq+✓qp

2✓pq✓qp ⇠
pq
1

for q 6= p, p, q 2 G, with (!1,�1, ⇠1) being optimal to (P2).

The proof is similar to the proof of Theorem 2.2. The details can be found in Appendix A.2.

Corollary 2.5. The Pareto-optimal solution set of (soft-margin PM) will be:

{(!,�, ⇠!,�, ⇠!,�, ⇠) = (µ!✓, µ�✓, µ⇠✓) |µ > 0, ✓ > 0} ,

where ✓12 = 1, !pq
✓ = ✓pq+✓qp

2✓pq✓qp !
pq
1 , �pq

✓ = ✓qp�✓pq

2✓pq✓qp + ✓pq+✓qp

2✓pq✓qp �
pq
1 for all q > p and ⇠pq✓ = ✓pq+✓qp

2✓pq✓qp ⇠
pq
1

for q 6= p, p, q 2 G, with (!1,�1, ⇠1) being optimal to (P2).

The proof of this result is identical to the proof for Corollary 2.3.
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From Corollary 2.5( Corollary 2.3), we can see that the Pareto-optimal solutions of soft-margin

PM( hard-margin PM) are based on the solutions of the quadratic optimization problem P2(

P1). This problem has the added advantage of being decomposable into binary classification

problems, with the corresponding computational advantages when the problem size increases.

2.3 Computational experiments

We have conducted several computational experiments to test the practical behavior of the

proposed procedure PM1, when compared to several alternative multi-class SVMs described

in the literature. These experiments have been conducted on the following datasets: IRIS,

WINE, SEEDS, VEHICLE, CAR (Car Evaluation), GLASS, SCC (Synthetic Control Chart

Time Series) and CTG (Cardiotocography, raw data). All of them are available in the UCI

Machine Learning Repository. A summary of the information for these data sets is listed in

Table 2.1.

Table 2.1: Data set description

Data set size of the data set No. of Dim. No. of classes

IRIS 150 4 3
WINE 178 13 3
SEEDS 210 7 3

VEHICLE 846 18 4
CAR 1728 6 4

GLASS 214 9 6
SCC 600 60 6
CTG 2126 35 10

The first group of experiments compares PM with other multi-class SVMs (both the single-

objective and multi-objective methods) in terms of their training classification accuracies, testing

classification accuracies and training time. We consider that one method is superior to another

when it has higher accuracies and lower computational costs. In this chapter, we compare the

performances of the all-together method (AT) [Vapnik, 1998], one-against-all method (OAA)

[Hsu and Lin, 2002], one-against-one method (OAO) [Kreßel, 1999], MS2, SM-OA, SM-OAO

and PM.

Table 2.2 shows these measures averaged over 100 replications of random splittings of the dataset

into a training sample (80%) used to compute the classifiers and a testing sample (20%) used

to compute their testing accuracy.

We have chosen the parameters required by the di↵erent methods in the following way: for AT,

OAA and OAO, we set the trade-o↵ parameters to C = 1; for MS2, SM-OA and SM-OAO,

we take crs = 10, (r, s) = (1, 2) and fix ("�rs, µ) as the authors suggested in [Tatsumi et al.,

1In the experiments, we just use the soft-margin PM, because it is available for linearly separable and non
linearly separable cases.



Chapter 2. A Projection Method for Multi-objective Multi-class SVM 26

2009a, 2010, 2011, Tatsumi and Tanino, 2014]; for PM, we take cpq = 1, q 6= p, p, q 2 G. For

every replication of each dataset, we solve all the SVM methods (AT, OAA, OAO, MS2, SM-

OA and SM-OAO) once and record the corresponding training classification accuracies, testing

classification accuracies and training time. For PM, we solve (P2) once and choose the best

performance (accuracy) from 100 Pareto-optimal solutions of PM obtained randomly using

Corollary 2.5.

Table 2.2: Mean results to compare the performances of the multi-class SVMs

AT OAA OAO MS2 SM-OA SM-OAO PM

IRIS
tr.ac 0.9859 0.9513 0.9871 0.6667 0.9845 0.9838 0.9902
te.ac 0.9773 0.9387 0.9753 0.6667 0.9750 0.9723 0.9870
tr.t(s) 1.0001 3.0293 3.0435 2.0449 4.0132 4.0770 1.2147

WINE
tr.ac 0.9865 0.9965 0.9959 0.8910 0.9978 0.5122 0.9995
te.ac 0.9415 0.9594 0.9500 0.8718 0.9568 0.4982 0.9741
tr.t(s) 1.7463 3.9034 3.8853 3.0276 5.1931 5.3379 1.8346

SEEDS
tr.ac 0.9518 0.9416 0.9360 0.9412 0.9421 0.8978 0.9570
te.ac 0.9310 0.9255 0.9150 0.9112 0.9212 0.8886 0.9493
tr.t(s) 0.6690 1.9245 1.8638 1.6396 2.4636 2.6796 0.6835

VEHICLE
tr.ac 0.8404 0.8208 0.8481 0.8392 0.8106 0.6585 0.8525
te.ac 0.7984 0.7896 0.7859 0.8014 0.7789 0.6436 0.8016
tr.t(s) 2.9827 9.3945 10.2526 24.7038 12.2850 12.4967 3.4189

CAR
tr.ac 0.8910 0.8548 0.9047 0.8829 0.8744 0.8711 0.9072
te.ac 0.8845 0.8463 0.8959 0.8788 0.8669 0.8681 0.9059
tr.t(s) 0.6279 1.4334 1.9986 37.3476 2.5928 2.9248 1.1151

GLASS
tr.ac 0.6807 0.6478 0.6866 0.6081 0.6366 0.3556 0.7007
te.ac 0.6387 0.5810 0.6302 0.5665 0.5972 0.3375 0.6617
tr.t(s) 0.8233 4.0339 9.7277 2.6385 4.8015 10.4632 1.0687

SCC
tr.ac 1 0.9900 1 0.51 1 0.9907 1
te.ac 0.9827 0.9353 0.9865 0.5037 0.9426 0.9549 0.9926
tr.t(s) 15.0726 5.0784 17.1662 25.7054 6.1961 13.8103 2.2722

CTG
tr.ac 1 1 1 1 1 0.6770 1
te.ac 0.9999 1 0.9743 0.9997 0.9999 0.6717 0.9821
tr.t(s) 14.0502 15.9397 55.0768 6410.388 41.3981 91.1074 18.1388

Note: The results marked in bold are the best average results. The results marked in italics are
the second best average results, when they have been obtained by PM. In the following tables,
we use the same way to highlight the results.

1 tr.ac= training classification accuracy,
2 te.ac= testing classification accuracy,
3 tr.t(s)= training time measured in seconds.

From Table 2.2, we can see that PM performs best for most data sets. In particular, we can

see that PM always shows the best mean training classification accuracies. And except for the

CTG dataset, PM also gives the best mean testing classification accuracies. Even for the CTG

dataset, PM achieves the second-best mean testing classification accuracy. Considering the

mean training time, we can see that PM requires only slightly more time than the best value,

that of single-objective method AT. For the SCC dataset, PM takes the shortest time.
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Nevertheless, as our main goal is to find a reasonably detailed representation of the set of

all Pareto-optimal solutions of the classification problems, these measures are not the ones

most suitable for comparing the performances of the di↵erent multi-objective SVMs. We have

already mentioned that for MS2, SM-OA and SM-OAO, we can obtain the weakly Pareto-

optimal solutions by using the "�constraint method, while for PM, we are able to provide a

characterization for its Pareto-optimal solutions corresponding to a specific set of parameters.

In both cases it is too expensive to determine all the Pareto-optimal solutions, as the structure of

this set is very complex, particularly for high dimensions. Our aim is to find a good and e�cient

approximation to the Pareto-optimal solution sets. In this second set of experiments, we compare

the di↵erent multi-objective methods with respect to the quality of their approximations for the

Pareto-optimal solution sets: we say that a method outperforms another when it approximates

the Pareto-optimal solution set better than the other. In this chapter, we use the epsilon and

hypervolume indicators, defined in terms of the test accuracies as objectives to measure the

performance of these multi-objective SVMs. These indicators have the important property of

being Pareto compliant (whenever an approximation set A is preferable to B with respect to

weak Pareto dominance, the indicator value for A should be at least as good as the indicator

value for B [Fonseca and Knowles, 2005, Zitzler et al., 2003]. Following [Fonseca and Knowles,

2005],

• The hypervolume indicator IH(A) calculates the proportion of the objective space that is

weakly dominated by an approximation set of Pareto-optimal solutions A.

• The epsilon indicator is defined as I✏+ = inf✏2R{8z2 2 R, 9z1 2 A such that z1 �✏+ z2},
where R is an reference set.

For the hypervolume indicator, we take the objective space as the hypercube which contains all

possible testing classification accuracies (a1, a2, . . . , am). ai is the testing classification accuracy

of class i. Based on the definition of the hypervolume indicator, it holds that the values of

the hypervolume indicators will be in [0, 1], and the method which has the largest hypervolume

indicator (closest to 1) outperforms the others.

For the epsilon indicator, we select the reference set R as {(1, . . . , 1)} ⇢ Rm, which corresponds

to the ideal test accuracy. From the definition of the epsilon indicator, it holds that the values

of the epsilon indicators will be in [�1, 0] and the method which has the largest value of its

epsilon indicator (closest to 0) outperforms the others.

To obtain a more stable performance measure, we have applied the procedure described below;

in each replication we have selected a di↵erent subset of 80% of our observations as a training

sample and the remaining observations as our testing sample. We have used Matlab R2014a

and Mosek 7 to solve the optimization problems. As Mosek can give us ’unknown’ solutions,

we have only kept the ’optimal’ and ’near-optimal’ solutions and discarded the other results, to

ensure the reliability of the results.

Step 1: For i = 1, · · · , 50, we repeat:
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– Step 1.1: Arrange the objects in a random order. Choose the last 20% objects as the

testing objects and leave the rest as the training objects.

– Step 1.2: Do:

⇤ 1.2.a: If the method used is MS2, SM-OA or SM-OAO, then

· Step 1.2.a1: As in [Tatsumi et al., 2009a, 2010, 2011, Tatsumi and Tanino,

2014], we obtain the parameters ("�rs
0 , µ0) by solving corresponding single-

objective SVMs such as OS in [Tatsumi et al., 2010].

· Step 1.2.a2: We take (r, s) = (1, 2) and c = 10. Then we uniformly choose 100

di↵erent values for ("�rs, µ) with "�rs from [0.1"�rs
0 , 2"�rs

0 ] and µ from [µ0+

0.01, µ0 + 50]. Then, we solve 100 SOCPs such as "SMOA2 [Tatsumi et al.,

2010] defined from each value of ("�rs, µ). As we only keep the ’optimal’ and

’near-optimal’ solutions, we get at most 100 weakly Pareto-optimal solutions

for the corresponding multi-objective method.

⇤ 1.2.b: If the method used is PM, then

· Step 1.2.b1: We use a 10-fold cross validation method to choose the values

cpq, q 6= p, p, q 2 G, in the objective function of (P2), and we compute their

corresponding optimal solution (!1,�1).

· Step 1.2.b2: From Lemma 2.1, we have ✓pq = %12⇤
%pq⇤

. We generate 100 uniform

random values zpq in (0, 1) for any p 6= q, p, q 2 G, and take ✓pq = z12

zpq . By

using Corollary 2.5 with (!1,�1), we obtain 100 Pareto-optimal solutions of

PM.

– Step 1.3: We calculate the testing accuracy set based on the solutions that we get

from Step 1.2 for each of these multi-objective approaches.

– Step 1.4: From the sets of testing classification accuracies, we calculate the corre-

sponding hypervolume and epsilon indicator values for each multi-objective method.

Step 2: We calculate a statistical summary for these epsilon and hypervolume indicators.

Notice that to obtain an indicator for PM, we only need to solve the single-objective SVM (P2)

once, while for MS2, SM-OA or SM-OAO we have to solve 100 SOCPs and 50 QPs, and not all

of them are guaranteed to provide a solution. Additionally, with PM we get approximation sets,

each composed of exactly 100 testing classification accuracy vectors. So we can see that PM

gives us a richer approximation in a shorter time, compared with MS2, SM-OA and SM-OAO.

The following boxplots (Figure 2.2 to Figure 2.9) and (Table 2.3 to Table 2.10) show the experi-

mental results and statistical information (mean, variance, minimum, 25 percentile, median, 75

percentile and maximum) summarizing the results for the hypervolume and epsilon indicators.

We can see from these experimental results that the PM outperforms the other multi-objective

methods. The values of the indicators obtained by PM are consistently among the best for

the multi-objective SVMs mentioned in this chapter. For the IRIS, WINE, SEEDS, VEHICLE,

CAR and GLASS data sets, PM has the largest mean values for both the hypervolume and
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Table 2.3: Statistic information of epsilon and hypervolume indicators for
IRIS data

Epsilon indicators for IRIS data set

Method mean variance min 25% median 75% max set size time(s)
MS2 -0.3040 0.0139 -0.6 -0.4 -0.3 -0.2 -0.1 100 59.8069

SM-OA -0.068 0.0059 -0.3 -0.1 -0.1 0 0 100 201.7863
SM-OAO -0.244 0.0715 -1 -0.4 -0.1 0 0 83.46 128.1809

PM -0.0280 0.0025 -0.2 -0.1 0 0 0 100 0.9278

Hypervolume indicators for IRIS data set

Method mean variance min 25% median 75% max set size time(s)
MS2 0.7515 0.0107 0.5018 0.7031 0.7717 0.8203 0.9689 100 59.8069

SM-OA 0.9310 0.0006 0.6985 0.8975 0.8975 1 1 100 201.7863
SM-OAO 0.7919 0.0744 0 0.6985 0.9395 1 1 83.46 128.1809

PM 0.9953 0.0001 0.9579 0.9902 1 1 1 100 0.9278

1 25%= 25 percentile, 75%= 75 percentile.
2 set size= the average approximate set size for each of the multi-objective approaches.
3 time(s)= the average time (measured in seconds) for getting a hypervolume and epsilon indicator.

Table 2.4: Statistic information of epsilon and hyper volume indicators for WINE data

Epsilon indicators for WINE data set

Method mean variance min 25% median 75% max set size time(s)
MS2 -0.1290 0.0059 -0.2857 -0.2143 -0.1010 -0.0714 0 100 121.3078

SM-OA -0.0755 0.0035 -0.2222 -0.1111 -0.0714 0 0 100 135.6761
SM-OAO -0.1590 0.0255 -1 -0.2143 -0.1111 -0.0714 0 90.62 145.7128

PM -0.0576 0.0034 -0.2143 -0.0909 -0.0714 0 0 100 1.5107

Hypervolume indicators for WINE data set

Method mean variance min 25% median 75% max set size time(s)
MS2 0.8661 0.0076 0.6314 0.7836 0.8800 0.9245 1 100 121.3078

SM-OA 0.9120 0.0070 0.6301 0.8802 0.9245 1 1 100 135.6761
SM-OAO 0.8415 0.0342 0 0.8096 0.8861 0.9589 1 90.62 145.7128

PM 0.9544 0.0038 0.7820 0.9238 0.9917 1 1 100 1.5107

Table 2.5: Statistic information of epsilon and hypervolume indicators for SEEDS data

Epsilon indicators for SEEDS data set

Method mean variance min 25% median 75% max set size time(s)
MS2 -0.1171 0.0031 -0.2143 -0.1429 -0.1429 -0.0714 0 97.66 185.2025

SM-OA -0.1243 0.0041 -0.2857 -0.1429 -0.1429 -0.0714 0 100 128.2825
SM-OAO -0.3586 0.1248 -1 -0.5714 -0.2143 -0.0714 0 96.46 156.314

PM -0.0771 0.0016 -0.1429 -0.0714 -0.0714 -0.0714 0 100 1.7399

Hypervolume indicators for SEEDS data set

Method mean variance min 25% median 75% max set size time(s)
MS2 0.8440 0.0057 0.7162 0.7927 0.8533 0.9244 1 97.66 185.2025

SM-OA 0.8313 0.0070 0.6599 0.7868 0.8540 0.8625 1 100 128.2825
SM-OAO 0.6421 0.1295 0 0.3937 0.8038 0.9096 1 96.46 156.314

PM 0.9647 0.0017 0.8436 0.9309 0.9813 0.9948 1 100 1.7399
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Table 2.6: Statistic information of epsilon and hypervolume indicators for VEHICLE data

Epsilon indicators for VEHICLE data set

Method mean variance min 25% median 75% max set size time(s)
MS2 -0.3522 0.002 -0.4524 -0.3810 -0.3488 -0.3256 -0.2619 95.72 244.0788

SM-OA -0.3782 0.0017 -0.4762 -0.4048 -0.3765 -0.3488 -0.2857 70.18 290.3144
SM-OAO -0.4086 0.0089 -0.7442 -0.4286 -0.3810 -0.3488 -0.2791 24.08 221.8891

PM -0.3497 0.0014 -0.4286 -0.3721 -0.3488 -0.3256 -0.2857 100 4.6410

Hypervolume indicators for VEHICLE data set

Method mean variance min 25% median 75% max set size time(s)
MS2 0.4914 0.0026 0.3558 0.4599 0.4886 0.5257 0.6228 95.72 244.0788

SM-OA 0.5106 0.0030 0.3708 0.4771 0.5107 0.5594 0.5960 70.18 290.3144
SM-OAO 0.4490 0.0117 0.0766 0.4176 0.4685 0.5116 0.6264 24.08 221.8891

PM 0.6220 0.0018 0.5365 0.5970 0.6169 0.6518 0.7181 100 4.6410

Table 2.7: Statistic information of epsilon and hypervolume indicators for CAR data

Epsilon indicators for CAR data set

Method mean variance min 25% median 75% max set size time(s)
MS2 -0.3215 0.0103 -0.6923 -0.3846 -0.3077 -0.25 -0.1538 72.44 340.689

SM-OA -0.8154 0.0362 -1 -1 -0.8462 -0.6154 -0.4615 92.68 392.7254
SM-OAO -0.2985 0.0080 -0.5385 -0.3846 -0.3077 -0.2308 -0.1447 34.84 521.4667

PM -0.1307 0.0005 -0.1842 -0.1488 -0.1316 -0.1184 -0.0789 100 2.7537

Hypervolume indicators for CAR data set

Method mean variance min 25% median 75% max set size time(s)
MS2 0.5040 0.0109 0.2292 0.4229 0.5154 0.5679 0.7368 72.44 340.689

SM-OA 0.1051 0.0120 0 0 0.0883 0.2119 0.3217 92.68 392.7254
SM-OAO 0.5442 0.0107 0.3404 0.4722 0.5395 0.6230 0.7881 34.84 521.4667

PM 0.9309 0.0006 0.8196 0.9226 0.9314 0.9459 0.9684 100 2.7537

Table 2.8: Statistic information of epsilon and hypervolume indicators for SCC data

Epsilon indicators for GLASS data set

Method mean variance min 25% median 75% max set size time(s)
MS2 -1 0 -1 -1 -1 -1 -1 73.22 139.3754

SM-OA -1 0 -1 -1 -1 -1 -1 95.48 246.4926
SM-OAO -1 0 -1 -1 -1 -1 -1 80.78 248.0824

PM -0.8344 0.0245 -1 -1 -0.8571 -0.6667 -0.5714 100 3.3367

Hypervolume indicators for GLASS data set

Method mean variance min 25% median 75% max set size time(s)
MS2 0 0 0 0 0 0 0 73.22 139.3754

SM-OA 0 0 0 0 0 0 0 95.48 246.4926
SM-OAO 0 0 0 0 0 0 0 80.78 248.0824

PM 0.0354 0.0027 0 0 0.0151 0.0496 0.2247 100 3.3367
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Figure 2.2: Boxplots of epsilon and hypervolume indicators for IRIS data

MS2 SM−OA SM−OAO PM

−1

−0.8

−0.6

−0.4

−0.2

0

Epsilon indicators for IRIS data

MS2 SM−OA SM−OAO PM

0

0.2

0.4

0.6

0.8

1

Hypervolume indicators for IRIS data

Figure 2.3: Boxplots of epsilon and hypervolume indicators for WINE data
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epsilon indicators. For the SCC and CTG datasets, PM shows comparable performance with

respect to the other three multi-objective approaches considered in this chapter. Indeed for

SCC and CTG, PM has the second largest values of the indicators among these multi-objective

methods, and these values are very close to the largest ones.

Evaluating the performances with respect to the training times and the numbers of Pareto-

optimal solutions computed within those times, we can see that PM always outperforms the

other three multi-objective methods. Indeed PM is at least 60 times quicker than MS2, SM-OA

and SM-OAO. Moreover PM always obtains the largest approximation sets. As a summary,

PM gives us more options in a shorter time compared with MS2, SM-OA and SM-OAO.
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2.4 Conclusions

We have proposed a new multi-objective method (PM) for multi-class classification. This

method is an extension of the bi-objective SVM method described in [Carrizosa and Martin-

Barragan, 2006]. From the experimental results in Section 2.3, we can see that the performance

of PM can be advantageously compared to that of the other multi-class SVMs mentioned in

this chapter. In general, PM provides the highest classification accuracies with least training

time among the multi-objective methods, and its performance is also comparable to that of the

single-objective methods. PM provides us with a good approximation to the Pareto frontier

while the single-objective methods need to conduct a large number of computations to o↵er us

Figure 2.4: Boxplots of epsilon and hypervolume indicators for SEEDS data
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Figure 2.5: Boxplots of epsilon and hypervolume indicators for VEHICLE
data
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Figure 2.6: Boxplots of epsilon and hypervolume indicators for CAR data
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Figure 2.7: Boxplots of epsilon and hypervolume indicators for GLASS data
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Table 2.9: Statistic information of epsilon and hyper volume indicators for SCC data

Epsilon indicators for SCC data set

Method mean variance min 25% median 75% max set size time(s)
MS2 -0.018 0.0006 -0.05 -0.05 0 0 0 74.14 285.3247

SM-OA -0.136 0.0025 -0.25 -0.2 -0.15 -0.1 -0.05 96.66 182.1686
SM-OAO -0.07 0.0018 -0.25 -0.1 -0.05 -0.05 0 16.76 395.1692

PM -0.032 0.0006 -0.05 -0.05 -0.05 0 0 100 2.1981

Hypervolume indicators for SCC data set

Method mean variance min 25% median 75% max set size time(s)
MS2 0.9845 0.0005 0.9473 0.9534 1 1 1 74.14 285.3247

SM-OA 0.7570 0.0063 0.6093 0.7142 0.7662 0.8087 0.8993 96.66 182.1686
SM-OAO 0.9078 0.0043 0.7085 0.8891 0.9039 0.9494 1 16.76 395.1692

PM 0.9981 0.0000 0.9875 0.9977 0.9982 1 1 100 2.1981
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Figure 2.8: Boxplots of epsilon and hypervolume indicators for SCC data
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Figure 2.9: Boxplots of epsilon and hypervolume indicators for CTG data
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Table 2.10: Statistic information of epsilon and hypervolume indicators for CTG data

Epsilon indicators for CTG data set

Method mean variance min 25% median 75% max set size time(s)
MS2 -0.0934 0.0018 -0.2 -0.125 -0.0952 -0.0625 -0.0152 17.5641 9710.4

SM-OA -0.005 0.0004 -0.1 0 0 0 0 82.9 1105.2
SM-OAO -0.3131 0.0095 -0.5385 -0.3846 -0.3077 -0.2308 -0.1579 6.46 2496

PM -0.0936 0.0013 -0.2 -0.1 -0.1 -0.0714 -0.02 100 19.1136

Hypervolume indicators for CTG data set

Method mean variance min 25% median 75% max set size time(s)
MS2 0.8783 0.005 0.7159 0.8332 0.8816 0.9443 0.9982 17.5641 9710.4

SM-OA 0.9961 0.0004 0.9050 1 1 1 1 82.9 1105.2
SM-OAO 0.3318 0.01 0.1657 0.2596 0.3234 0.3969 0.5502 6.46 2496

PM 0.9030 0.0048 0.7484 0.8540 0.9244 0.9614 0.9912 100 19.1136
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a similar number of options to choose from. Moreover from the values of the indicators, we

can also see that PM outperforms the other three multi-objective methods (MS2, SM-OA and

SM-OAO), as it always gives us Pareto frontiers with high out-of-sample quality compared to

these other multi-objective methods.

From a theoretical point of view, PM is also an e�cient and e↵ective method. From Corol-

lary 2.5, PM provides us with Pareto-optimal solutions, while the other multi-objective ap-

proaches are only able to o↵er us weakly Pareto-optimal solutions. Furthermore, the Pareto-

optimal solutions obtained from PM can be computed by solving one quadratic problem (P2).

From Corollary 2.2, (P2) can be decomposed into several binary problems problem (2.11). This

property significantly reduces the computational cost when the problems of interest have a large

number of classes.

In summary, both from a theoretical and from a computational point of view, PM is an e�cient

method compared with MS2, SM-OA and SM-OAO. Besides, PM’s performance is comparable

to that of the single-objective SVMs, while being able to provide not just one Pareto-optimal

solution, but a very detailed approximation to the set of all the Pareto-optimal solutions.



Chapter 3

A Partial Parametric Path

Algorithm for Multi-class

Classification

3.1 Overview

In the classical binary SVM setting for the nonlinearly separable case, the classification problem

has two objectives: avoid overfitting and limit any classification errors. This is usually modeled

by combining both objectives using a parameter C, 1/2k!k2 + CF (
P

i2I ⇠i), see [Cortes and

Vapnik, 1995].This parameter can be seen to represent a trade-o↵ between training and testing

misclassification costs. The aim is to construct a suitable classifier which has high classification

ability for the whole instance population. Attaining this aim requires the choice of a proper

value for parameter C.

Selecting a default value for C may not provide acceptable results, as the optimal values from

the SVM have been shown to depend critically on the choice of the value of C [Chapelle et al.,

2002, Friedrichs and Igel, 2005, Hastie et al., 2004]. Usually, a grid search is used to find

the appropriate value of this parameter [Friedrichs and Igel, 2005]. This approach is time-

consuming, especially when we have big datasets to deal with. In [Chapelle et al., 2002], they

treat C as a kernel parameter and minimize estimates of generalization errors by gradient

descent. This approach depends on the di↵erentiability of the estimates and still needs to solve

the optimization problem (a quadratic program) several times.[Hastie et al., 2004] explores the

entire path of binary SVMs based on the fact that the corresponding Lagrange multipliers are

piecewise-linear in C. They achieved very large savings in computational costs when constructing

multiple classifiers for a set of C values.

Notice that the classic binary SVM doesn’t take into account any a priori information (such

as skewed class distributions, di↵erent misclassification costs). However, this information may

36
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be critical. For example in medical diagnosis, the di↵erence between the classification costs of

misclassifying a healthy person as ill and a diseased patient as healthy is large and can’t be

ignored. To take into account these information, [Bach, 2006, Veropoulos et al., 1999] use two

di↵erent parameters C+ and C� associated to di↵erent classes. Also, [Bach, 2006] extends the

path algorithm when considering asymmetric misclassification costs. In [Karasuyama et al.,

2012], di↵erences between the weights of instances are taken into account and a correspond-

ing path algorithm is proposed. Their numerical experiments show that these proposed path

algorithms significantly reduce the computational cost to find proper parameter values for the

binary SVMs.

As in real life we usually have more than two classes, the e�cient two-class SVM approach

has been extended for multi-class classifications. In [Weston and Watkins, 1998], they propose

a single-objective SVM to handle all the classes simultaneously. However, they consider all

misclassification costs to be the same, and they use no a priori information related to the

classes’ distributions. A direct way to overcome this drawback is to assign di↵erent weights to

the penalty terms for di↵erent misclassification errors in the objective function. Another way

is to use multi-objective methods as we have mentioned in Chapter 2. As we discussed before,

the first proposal, based on a direct assignment of weight values, is not e�cient because of the

large computational costs required to choose suitable weights.

L.Wang and X.Shen [Lifeng Wang, 2006] have proposed a path algorithm for multi-class classi-

fication problems based on the L1 norm. It takes advantage of the property that their optimal

solutions are piecewise-linear on a tuning parameter s, which controls the sum of the L1 norms of

all the slope vectors !c. They reconstruct the entire optimal path based on finding appropriate

features characterizing changes in the active sets. To identify the joints and get the solutions,

they need to construct sets of linear equations based on the derivatives of the slopes with respect

to s. Our proposal shares its basic motivation with this one, but it aims to take advantage of the

simplicity of L2 optimization problems, and to take into account di↵erences among classification

costs. We introduce a partial-parametric-path algorithm (PPPA) for multi-class classification

inspired by the previous one and by [Bach, 2006, Hastie et al., 2004]. The partial path begins

with a starting solution obtained from a multi-class SVM problem, and it is extended to di↵erent

values of the weight parameters, while checking if they are acceptable.

In this chapter, we provide a general framework for the application of PPPA. If we have a

su�ciently good classification performance at the starting point (a default set of values for

the parameters), we don’t need to apply PPPA. If the initial classification performance is

not acceptable, we take advantage of the piecewise linearity of the optimal solutions to obtain

e�cient representations of the solution paths for alternative values of the parameters. By

controlling the changes in the active sets, we construct partial solution paths along some chosen

parameter directions. To systematically explore the whole parameter space, we combine PPPA

with a variable neighborhood search method (VNS). When using PPPA, we only need to solve

one quadratic program to get our starting solution. All other solutions are obtained by solving

systems of linear equations. Thus, PPPA is computationally e�cient. From our experiments
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in Section 3.6, we have also verified that PPPA is robust, as it provides the same solutions as

the ones obtained from the corresponding quadratic programming problems, in nearly all cases.

This chapter is organized as follows: In Section 3.2, we present a single-objective multi-class

SVM which takes into account di↵erences in misclassification costs. In Section 3.3, we charac-

terize the piecewise linear nature of the optimal solutions of the quadratic programs of interest.

The components of the partial solution path are presented in Section 3.4. The combination of

PPPA and VNS is introduced in Section 3.5. In Section 3.6, we describe and comment a set

of experimental results showing that PPPA is e�cient and reliable for multi-class classification

problems. Finally, conclusions are presented in Section 3.7.

3.2 Our reference multi-class support vector machine

For simplicity, we still just consider linear classifiers as nonlinear ones can be seen as linear

in a higher dimensional space. For multi-class classifications, the most commonly used single-

objective methods are the all-together, one-against-all and one-against-one methods, [Hsu and

Lin, 2002]. The all-together and one-against-all methods are based on constructing m classi-

fiers. Specifically, the all-together method maximizes the sum of all the functional margins and

minimizes the penalty variables simultaneously within a single quadratic programming. Each

of the functional margins is constructed by considering all instances of one class vs those of

all the remaining classes; a similar approach is used in one-against-all method. One-against-all

methods solve m quadratic programs to obtain the m classifiers. In all these cases, the presence

of asymmetries in the misclassification costs, for example, may have a significant e↵ect on the

accuracies of the classifiers.1 A one-against-one method constructs m(m � 1)/2 classifiers and

each of them are obtained from a binary SVM which just considers a pair of classes. In [Hsu

and Lin, 2002], experiments show that in general a one-against-all method does not achieve ac-

curacies as high as a one-against-one method. In this chapter we prefer to construct m(m�1)/2

classifiers and maximize all the pairwise functional margins. Of course, we could use the path-

algorithm (introduced in [Bach, 2006]) on each of the binary SVMs from the one-against-one

method to find a satisfactory choice of parameters. But when m is large, this would require

tracking a very large number of paths, with very high associated computational costs. In order

to take advantage of the high accuracy of a one-against-one method and the compactness of an

all-together method, we have chosen to construct a single-objective multi-class SVM maximizing

all the pairwise functional margins and minimizing all the penalties at the same time.

We construct our classifiers as follows:
1A one-against-all classifier is constructed from m binary SVMs. Each of these binary SVMs considers only

one class as the positive class and all the remaining classes as the negative class. So we can see that the di↵erence
between the sizes of positive and negative classes can be quite large. The classification accuracies would be
a↵ected because the classical binary SVM gives the same weight to the penalties of the positive and negative
classes misclassification errors.
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• The classifier ( discriminate hyperplane) separating the training data from class p and

class q, is given by:

Lpq : fpq(x) = (!pq)Tx+ �p � �q = 0, q > p, p, q 2 G.

Ideally, we would like to have all class p objects lying above hyperplane Lpq, q 6= p, p, q 2 G,

and all class q objects lying below Lpq. If there exist hyperplanes such that the training objects

satisfy this ideal situation, we say that the training objects are linearly separable. But usually

we have linearly nonseparable data, and we need to take into account both functional margins

and misclassification errors. So, by maximizing all the functional margins of the m(m � 1)/2

classifiers and minimizing the misclassification penalties, we construct a single-objective SVM,

min
!,�,⇠

1

2

X

q>p,p,q2G
(!pq)T!pq +

X

q 6=p,p,q2G

X

i2Ip

tpq0 ⇠pqi ,

s.t. (!pq)Txi + �p � �q + ⇠pqi � 1, i 2 Ip, q > p, p, q 2 G,

� (!pq)Txi � �p + �q + ⇠qpi � 1, i 2 Iq, q > p, p, q 2 G,

⇠pqi � 0, i 2 Ip, q 6= p, p, q 2 G,

(3.1)

where ! = (!12T ,!13T , · · · ,!(m�1)mT
)T 2 Rm(m�1)l/2, � = (�1,�2, · · · ,�m)T 2 Rm, ⇠ 2

R(m�1)n collecting ⇠pqi , i 2 Ip, q 6= p, p, q 2 G and tpq0 denotes the weights for each of the penalties.

Misclassification penalties ⇠pqx are introduced to avoid overfitting and to guarantee the existence

of solutions for problem (3.1) in the linearly nonseparable case. To take into account the possible

di↵erences in misclassification costs, we introduce di↵erent weights tpq0 , q 6= p, p, q 2 G for each

misclassification penalties associated to di↵erent classes and classifiers.

Note that problem (3.1) is a quadratic program, whose solution provides the information to

define the corresponding classifiers. A di�culty is the choice of acceptable values for the weights

tpq0 , that is, values that yield classifiers which have high accuracies and low misclassification costs.

This chapter focuses on the introduction of e�cient procedures to determine acceptable sets of

weights. Our approach is based on a two-step approach:

• We select an initial set of weights, and a “search direction” on the space of these weights.

• We find the optimal combination of weights on this one-dimensional space by building a

partial path from the optimal solution of problem (3.1) as the starting point, and con-

ducting a search on these solutions.

• Finally, we modify the search directions using a variable neighborhood search method

(VNS) and repeat this process until we are close enough to an acceptable solution.

To build the partial path we solve the following program as a function of C:
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min
!,�,⇠

1

2

X

q>p,p,q2G
(!pq)T!pq +

X

q 6=p,p,q2G

X

i2Ip

tpq0 ⇠pqi + C
X

q 6=p,p,q2G

X

i2Ip

tpq1 ⇠pqi ,

s.t. (!pq)Txi + �p � �q + ⇠pqi � 1, i 2 Ip, q > p, p, q 2 G,

� (!pq)Txi � �p + �q + ⇠qpi � 1, i 2 Iq, q > p, p, q 2 G,

⇠pqi � 0, i 2 Ip, q 6= p, p, q 2 G,

(3.2)

here tpq1 , q 6= p, p, q 2 G denotes the direction along which we construct the partial path. After

identifying appropriate parameter values and building the corresponding classifiers, we use the

majority voting to define our classification rule.

3.3 Optimal classifiers are piecewise a�ne functions of C

In this Section, we prove that the solutions of problem (3.2)are piecewise a�ne wrt C. This

is the basic property on which the e�ciency of our proposal rests. We also introduce simple

characterizations for the solutions of interest.

As the classifiers Lpq : (!pq)Tx + �p � �q = 0, q > p, p, q 2 G depend only on the di↵erences

�p��q (instead of the values �p), without loss of generality we will set �1 = 0 in all that follows.

We will use a slightly modified notation, to simplify the representation of the optimal solutions

of problem (3.2). In particular, we will work with the observations projected onto a higher

dimensional space. Let

Xpq
x =

⇣
�12x,pq, �

13
x,pq, · · · , �(m�1)m

x,pq

⌘
, where �ijx,pq =

8
><

>:

x, if (i, j) = (p, q),

�x, if (i, j) = (q, p),

0, otherwise.

We can write (!pq)Tx+�p��q = (!)TXpq
x +�p��q. Let Xpq denote a matrix with row vectors

equal to Xpq
x , x 2 Ip, while ⇠pq denotes a vector containing the values ⇠pqx , x 2 Ip. Define

X =

0

BBBBBBB@

X12

X21

...

X(m�1)m

Xm(m�1)

1

CCCCCCCA

, ⇠ =

0

BBBBBBB@

⇠12

⇠21

...

⇠(m�1)m

⇠m(m�1)

1

CCCCCCCA

and tk =

0

BBBBBBB@

t12k
~1n1⇥1

t21k
~1n2⇥1
...

t
(m�1)m
k

~1nm�1⇥1

t
m(m�1)
k

~1nm⇥1

1

CCCCCCCA

, k = 0, 1,
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where np, p 2 G is the number of class p training instances. Then, we can rewrite problem (3.2)as

follows:

min
!,�,⇠

1

2
k!k2 + (t0)

T ⇠ + C(t1)
T ⇠,

s.t. X! +R� + ⇠ � ~1(m�1)n⇥1,

⇠ � ~0(m�1)n⇥1,

(3.3)

where ! 2 R(m�1)ml/2, � = (�2,�3, · · · ,�m)T 2 Rm�1, ⇠ 2 R(m�1)n and R is the coe�cient

matrix of the variables � in problem (3.2).

As the objective function of problem (3.3) is quadratic (positive semidefinite) and the con-

straints are a�ne functions, the corresponding KKT conditions are necessary and su�cient for

optimality. These KKT conditions for problem (3.3) are:

! = XT�, (3.4)

RT� = ~0(m�1)⇥1, (3.5)

�+ µ = t0 + Ct1, (3.6)

X! +R� + ⇠ � ~1(m�1)n⇥1, (3.7)

⇠ � ~0(m�1)n⇥1, (3.8)

� � ~0(m�1)n⇥1, (3.9)

µ � ~0(m�1)n⇥1, (3.10)

�T (~1(m�1)n⇥1 �X! �R� � ⇠) = 0, (3.11)

µT ⇠ = 0, (3.12)

where � denotes the multipliers of X! + R� + ⇠ � ~1(m�1)n⇥1 and µ denotes the multipliers of

⇠ � ~0(m�1)n⇥1.

We define the following relevant active sets:

• The indices of the above-margin objects: A = {i | Xi! +Ri� > 1},

• The indices of the below-margin objects: B = {i | Xi! +Ri� < 1},

• The indices of the on-margin objects: O = {i | Xi! +Ri� = 1},

where Xi and Ri denotes the i-th row of X and R respectively. As each constraint is associated

to one object, these definitions allow us to separate the objects into three disjoint sets.

Based on the preceding KKT conditions, we refine the preceding definitions as follows:

i 2 A, if and only if �i = 0,

i 2 B, if and only if �i = t0i + Ct1i,

i 2 O, if and only if 0 < �i < t0i + Ct1i.
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Let XA denote the sub-matrix of X collecting all rows Xi with i 2 A. Similarly, we define

XB, XO, RA, RB, and RO. Also, let �O denote the sub-vector of � corresponding to the compo-

nents �i with i 2 O. Similarly, we introduce �A,�B, t0A, t0B, t0O, t1A, t1B and t1O. We have

! = XT
O�O +XT

Bt0B + CXT
Bt1B,

RT
O�O +RT

Bt0B + CRT
Bt1B = ~0(m�1)⇥1,

XO! +RO� = ~1nO⇥1,

where nO denotes the size of the active set O.

From these definitions and the optimality conditions, the solutions of problem (3.3) can be

computed by solving the system

0

B@
I 0 XT

O

0 0 RT
O

XO RO 0

1

CA

0

B@
!

�

��O

1

CA =

0

B@
XT

Bt0B

RT
Bt0B

~1nO⇥1

1

CA+ C

0

B@
XT

Bt1B

RT
Bt1B

~0nO⇥1

1

CA , (3.13)

where XO is a nO ⇥ m(m�1)l
2 matrix and RO is a nO ⇥ (m� 1) matrix.

We will make use of the following auxiliary result characterizing some properties of the coe�cient

matrix for system (3.13).

Lemma 3.1. Given active sets O,A and B, the necessary and su�cient conditions for the

coe�cient matrix of (3.13) to be nonsingular is that the column vectors of RO are linearly

independent and the row vectors of
⇣

XO RO

⌘
are also linearly independent.

Proof. Consider an auxiliary system having the same coe�cient matrix as system (3.13),

0

B@
I 0 XT

O

0 0 RT
O

XO RO 0

1

CA

0

B@
u1

u2

u3

1

CA = ~0. (3.14)

We will use it to study the singularity of the coe�cient matrix of (3.13), based on the properties

of the solutions of problem (3.14).

• Necessity: Suppose the coe�cient matrix of (3.13) and problem (3.14)is nonsingular, then

the unique solution of problem (3.14) is u = ~0.

If the column vectors of RO are linearly dependent, there exists u2 6= ~0 such that ROu2 = ~0.

The coe�cient matrix of (3.13) cannot be invertible in this case, as we can choose u1 = ~0,

u3 = ~0 and obtain a nonzero vector in the null space of this matrix, contradicting our

assumption. It follows that if the coe�cient matrix of (3.13) is nonsingular, the column

vectors of RO must be linearly independent.
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Analogously, if the row vectors of
⇣

XO RO

⌘
are linearly dependent, there exists u3 6= ~0

such that  
XT

O

RT
O

!
u3 = ~0.

Again, in this case we can choose u1 = ~0, u2 = ~0 and obtain a nonzero vector in the

null space of this matrix. This contradicts our assumption, implying that we must have

linearly independent row vectors for (XO RO).

• Su�ciency: Assume that the column vectors of RO and the row vectors of
⇣

XO RO

⌘

are linearly independent. This implies thatM , XOX
T
O+ROR

T
O and RT

ORO are invertible,

and M is positive definite.

From problem (3.14) we have

RT
Ou3 = ~0 ) ROR

T
Ou3 = ~0

u1 = �XT
Ou3

XOu1 +ROu2 = ~0 ) ROu2 = XOX
T
Ou3 = (XOX

T
O +ROR

T
O)u3 ) u3 = M�1ROu2

RT
Ou3 = RT

OM
�1ROu2 = ~0.

AsM is positive definite, RT
OM

�1RO is at least positive semidefinite. As uT2 R
T
OM

�1ROu2 =

0, from the positive-definiteness of M we have ROu2 = ~0. As RO has full column rank, it

must hold that u2 = ~0. As u3 = M�1ROu2 and u1 = �XT
Ou3, we have u1 = ~0 and u3 = ~0.

It follows that the coe�cient matrix of (3.13) and problem (3.14) is nonsingular.

To present our existence result, we introduce the following regularity condition:

C1: The row vectors of
⇣

XO RO

⌘
are linearly independent.

The next result provides the desired characterization of the solutions.

Theorem 3.2. Under condition C1, the solution of (3.13) defines a piecewise-a�ne optimal

solution of problem (3.3).

Proof. As � = (�2,�3, · · · ,�m)T , the number of columns in RO and its maximum column and

row rank is m� 1. Consider an optimal solution of problem (3.3) defined by (!0,�0, ⇠0).

Assume that RO does not have full rank. Then, there exists a non-zero vector u such that

ROu = 0. Define �⇤ = �0 + ✏u, and

⇠pqB⇤ = ~1�Xpq
B !0 � (�p

⇤ � �q
⇤) = ⇠pqB0 � ✏(up � uq).
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As ROu = 0 it holds that XO!0 + RO�⇤ = ~1 for any ✏, and (!0,�⇤, ⇠⇤) are feasible as long as

✏1  ✏  ✏2, with

✏1 = max

(
max

up�uq<0,p 6=q,p,q2G

Xpq
B !0 + �p

0 � �q
0 �~1

�(up � uq)
, max
up�uq<0,p 6=q,p,q2G

Xpq
A !0 + �p

0 � �q
0 �~1

up � uq

)
< 0,

✏2 = min

(
min

up�uq>0,p 6=q,p,q2G

Xpq
A !0 + �p

0 � �q
0 �~1

up � uq
, min
up�uq>0,p 6=q,p,q2G

Xpq
B !0 + �p

0 � �q
0 �~1

�(up � uq)

)
> 0.

Select ✏ = ✏1 if

X

p 6=q,p,q2G,up�uq<0

(uq � up)(tpq0 + Ctpq1 )#Bpq >
X

p 6=q,p,q2G,up�uq>0

(up � uq)(tpq0 + Ctpq1 )#Bpq,

and ✏ = ✏2 > 0 otherwise. We have that

�⇤ =
1

2
k!0k2 + (t0 + Ct1)

T ⇠⇤,

= �0 + ✏

"
X

p 6=q,p,q2G,up�uq<0

(uq � up)(tpq0 + Ctpq1 )#Bpq

�
X

p 6=q,p,q2G,up�uq>0

(up � uq)(tpq0 + Ctpq1 )#Bpq

#
 �0,

where �0 = 1
2k!0k2 + (t0 + Ct1)T ⇠0. As a consequence, there must exist an optimal solution

including an additional support vector in O, the one defining the selected value for ✏. This

procedure can be repeated until the matrix RO has full column rank.

As we can always find a solution such that the column vectors of RO are linearly independent,

if condition C1 holds for active sets O, A and B, from Lemma 3.1 the inverse of the coe�cient

matrix of (3.13) exists, and (3.13) implies that the optimal solution (!,�,�O) is an a�ne

function of C.

Also, as ⇠i = max(0, 1�Xi!�Ri�), �A = ~0, �B = t0B+Ct1B and µ = t0+Ct1��, the optimal

solutions (!,�, ⇠,�, µ) are a�ne with respect to C, under our conditions. Thus, under C1 the

optimal classifiers are piecewise a�ne functions of C.

From this result, the coe�cient matrix of (3.13) is singular only if the row vectors of
⇣

XO RO

⌘

are linearly dependent. If this is the case, we could project the observations onto a higher di-

mensional space in which the number of on-margin observations may be smaller and the row

vectors of the corresponding
⇣

XO RO

⌘
matrix are linearly independent. Thus, for simplicity

we will assume in what follows that the row vectors of
⇣

XO RO

⌘
are linearly independent.
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3.4 The partial parametric path algorithm

To be able to identify good parameter values for the weights of the misclassification errors t,

we follow the procedure described in Section 3.2. The basic step in that procedure consists in

the construction of a univariate path along a given parameter direction (selected using a VNS

method). In this Section, we study the properties of this path and we present e�cient methods

to obtain it.

This procedure consists on the following steps:

• For a given starting parameter vector t0 and a parameter direction t1, we compute the

solution to the SVM problem corresponding to C = C0 = 0.

• Then we determine the largest increase in the parameter C that will not change the active

sets, C1. We obtain this value by making use of the linear structure of the optimal solutions

in that interval, using Theorem Theorem 3.2.

• We update the active sets at Ck with k = 1 (a “joint” in the path), and we repeat the pro-

cedure for increasing k until some criterion is optimized, or a stopping criterion is satisfied.

In our experiments, the criterion to optimize has been the training classification accuracy,

and the termination criterion has been defined as reaching a prespecified maximum value

for C.

3.4.1 Characterization of linear segments of the solution path

From Theorem 3.2, for given active sets the classifiers are a�ne with respect to parameter

C. Define Ck as the k-th joint where there is a change in the active sets, Bk, Ak, Ok are the

active sets corresponding to all values Ck  C < Ck+1, and �k, µk denote the corresponding

multipliers.

As the assume that the row vectors of
⇣

XOk
ROk

⌘
are linearly independent, we can define

0

B@
!a
k

�a
k

��a
k,Ok

1

CA =

0

B@
I 0 XT

Ok

0 0 RT
Ok

XOk
ROk

0

1

CA

�10

B@
XT

Bk
t0Bk

RT
Bk

t0Bk

~1

1

CA ,

and 0

B@
!b
k

�b
k

��b
k,Ok

1

CA =

0

B@
I 0 XT

Ok

0 0 RT
Ok

XOk
ROk

0

1

CA

�10

B@
XT

Bk
t1Bk

RT
Bk

t1Bk

~0

1

CA .

Also,

�a
k,Ak

= ~0, �b
k,Ak

= ~0, �a
k,Bk

= t0Bk
, �b

k,Bk
= t1Bk

,
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µa
k = t0 � �a

k, µb
k = t1 � �b

k,

⇠ak,Ak[Ok
= ~0, ⇠ak,Bk

= ~1�XBk
!a
k �RBk

�a
k ,

⇠bk,Ak[Ok
= ~0, ⇠bk,Bk

= �XBk
!b
k �RBk

�b
k.

Then the optimal solution (!,�, ⇠,�, µ) of problem (3.3) with respect to C, Ck  C < Ck+1 is

given by: 0

BBBBBB@

!

�

⇠

�

µ

1

CCCCCCA
=

0

BBBBBB@

!a
k

�a
k

⇠ak
�a
k

µa
k

1

CCCCCCA
+ C

0

BBBBBB@

!b
k

�b
k

⇠bk
�b
k

µb
k

1

CCCCCCA
. (3.15)

3.4.2 Finding the joint values Ck

Between joints, the active sets do not change and the optimal solutions of problem (3.3) are

a�ne functions of C. But as we increase the value of C, the solution path problem (3.15) reaches

values that may not satisfy some of the optimality conditions. In this Section, we describe how

to obtain e�ciently the value of the next joint (the value of C), where the active sets change.

As the value of C changes from the preceding joint, at some point it will become necessary to

adjust the active sets. We can classify these adjustments into four cases:

• Case 1: Some above-margin object changes to become an on-margin one;

• Case 2: Some below-margin object changes to become an on-margin one;

• Case 3: Some on-margin object changes to become an above-margin one;

• Case 4: Some on-margin object changes to become a below-margin one.

We now provide the characterization of the joint values corresponding to each of the four cases,

for C � Ck,

• For the first case, we check Xi! +Ri� = 1, for i 2 Ak. We have

Xi(!
a
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• For the second case, we check ⇠i = ⇠ak,i + C⇠bk,i = 0 for i 2 Bk. As ⇠ak,i + Ck⇠
b
k,i > 0 for

i 2 Bk, we only need to check ⇠ak,i + C⇠bk,i = 0 for i 2 Bk and ⇠bk,i < 0. We define

C2
k+1 = min

(
�
⇠ak,i

⇠bk,i
|i 2 Bk and ⇠bk,i < 0

)
.

• For the third case, we check �i = �a
k,i + C�b

k,i = 0, for i 2 Ok. As �a
k,i + Ck�

b
k,i > 0 for

i 2 Ok, we only need to check �a
k,i + C�b

k,i = 0, for i 2 Ok and �b
k,i < 0. We define

C3
k+1 = min

(
�
�a
k,i

�b
k,i

|i 2 Ok and �b
k,i < 0

)
.

• For the last case, we check µi = µa
k,i + Cµb

k,i = 0 for i 2 Ok. As µa
k,i + Ckµ

b
k,i > 0 for

i 2 Ok, we only need to check µa
k,i + Cµb

k,i = 0 for i 2 Ok and µb
k,i < 0. We define

C4
k+1 = min

(
�
µa
k,i

µb
k,i

|i 2 Ok and µb
k,i < 0

)
.

The next joint value is defined as:

Ck+1 = min{C1
k+1, C

2
k+1, C

3
k+1, C

4
k+1}.

At Ck+1, we can update the new values (!k+1,�k+1, ⇠Ok+1) by observing the changes in the active

sets and solving equations (3.13) for the updated active sets. Then we repeat the procedure

with the updated active sets to find the next joint.

It would be possible to build an entire path starting from t0 close to ~0. But we have found that

this is not useful in practice in many cases, as problem (3.1) would return !pq = ~0, q > p, p, q 2 G

for this value, which is not a very useful choice for data classification. A reasonable initial guess

for the values of the parameters would provide much better starting estimates and would reduce

the amount of computation to carry out to obtain a good final estimate. Thus, our method is

based on constructing partial paths, instead of trying to reconstruct the entire solution path.

3.5 Combining path-following with a VNS method

The partial path method introduced in Section 3.4 is used to find the best C⇤ among the

parameters corresponding to the path along parameter direction t1, starting from t0. This

value depends on the choice of t0 and t1. In this Section, we describe a VNS-based procedure

[Gendreau and Potvin, 2010, Hansen and Mladenović, 2001, Hansen et al., 2010] to obtain

values for t1 yielding good values for the parameters and good solutions for the multi-class

SVM problem, in a systematic manner.
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We consider a good solution to be one such that, if the real misclassification costs are known,

yields lower misclassification costs on the training set. If the real misclassification costs are

unknown, we search for a solution with fewer classification errors on the training set.

To complete the search procedure, we need to obtain:

• An initial direction t10: If we know the real misclassification costs pq, q 6= p, p, q 2 G, we

can start the partial path with tpq0 = pq/ and tpq10 = tpq0 , where  =
P

q 6=p,p,q2G pq.

If we don’t know the real misclassification costs, we suggest taking the initial direction

t0 = ~1 and t10 = 0.01⇥~1, as it is equivalent to the value used in general multi-class support

vector machines [Weston and Watkins, 1998] with the tradeo↵ parameter set as 1+0.01C,

although it does not consider the di↵erent misclassification costs. This is equivalent to

assuming all the misclassification costs pq = 1, q 6= p, p, q 2 G.

Starting from the initial point t0 along t10, we generate the corresponding partial path. To

denote all the joints of the partial path, we introduce PP (t0, t10) = {Ck(t0, t10), k � 0},
where Ck(t0, t10) is the k�th joint. From the solutions obtained at the joints of PP (t0, t10),

we choose the value C0⇤ corresponding to the best misclassification costs on training set

I. Let

PI(C0⇤, t10) =
X

i2I

X

q 6=p,p,q2G
pq#{yi = p, ŷi = q}, (3.16)

to denote the lowest misclassification costs on the training set along the partial path

PP (t0, t10), where ŷi is the class membership of xi determined by the corresponding trained

support vector machine. Note that when pq = 1, problem (3.16) returns the classification

error.

• A neighborhood structure: N◆(t10) = {t1|
��� t

pq
1
tpq10

� 1
���  0.01◆} and ◆  ◆max. Although most

researchers use ◆  2 Hansen and Mladenović [2001], in the experiments of this paper,

we have chosen ◆max = 10. This choice has been made to consider a larger number of

alternatives given its reduced computational cost, compared to that of other proposals.

• The algorithm will stop if at least one of these conditions is met:

– SC1: the number of local searches ls reaches the maximum lsmax. In our experiments

we set lsmax = 100.

– SC2: perfect classification, i.e PI(C0⇤, t10) = 0.

Then we proceed the follows:

• Let ls = 0.

• While ls  100 and PI(C0⇤, t10) > 0, repeat the following steps:

– Step 1: Set ◆ = 1;

– Step 2: Until ◆ = ◆max, repeat the following steps:
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⇤ Step 2.a: Generate a direction t̃10 at random from the ◆-th neighborhood of t10;

⇤ Step 2.b: Conduct a local search using t̃10 as the initial solution by doing the

following:

· Step 2.b.1: Randomly generate t̃1i, i = 1, · · · , N (we use N = 10 in our

experiments) from the neighborhood N1(t̃10);

· Step 2.b.2: For t̃1i, generate the corresponding partial path PP (t0, t̃1i).

Along PP (t0, t̃1i), we find

C⇤
1i = arg min

C2PP (t0,t̃1i)
{PI(C, t̃1i)};

· Step 2.b.3: Select

(C1⇤, t̃1⇤) = arg min
(C⇤

1i,t̃1i),i=1,··· ,10
{PI(C⇤

1i, t̃1i)};

· Step 2.b.4: Let ls = ls+ 1.

⇤ Step 2.c: If PI(C1⇤, t̃1⇤) < PI(C0⇤, t10), take t10 = t̃1⇤, C0⇤ = C1⇤ and go back

to Step 2.b, otherwise set ◆ = ◆+ 1 and go back to Step 2.a.

3.6 Numerical experiments

To test the e�ciency and reliability of this parametric partial path algorithm, we have conducted

several computational experiments. All these experiments have been implemented on a Macbook

with 8 gigabytes of memory, using code written in R. The RMOSEK package has been used to

solve the quadratic problem (3.1) defining the start point of the algorithm.

These experiments have been conducted on the following benchmark datasets: IRIS, WINE,

SEEDS, VEHICLE, CAR (Car Evaluation), GLASS, SCC (Synthetic Control Chart Time Se-

ries) and CTG (Cardiotocography, raw data). All of them are available in the UCI Machine

Learning Repository. A summary of the information for these data sets is listed in Table 2.1.

Table 3.1 presents the classification performance obtained from the solutions computed at the

starting point. As the real costs are unknown, we start with t0 = ~1 and C = 0. This means that

at the starting point we don’t consider the di↵erences among misclassification costs, maximizing

the pairwise functional margins and minimizing the training classification errors using the same

weights for all of them.

From Table 3.1, we can see that for data sets WINE, SCC, CTG and these starting values, we

already find the best parameters, with the best training classification accuracies. So for these

data sets we don’t need to construct partial paths to find better parameters.

For each of the remaining data sets, we construct a partial path starting with C = 0 and t1 =

0.01⇥~1, as we don’t know the real misclassification costs; we assume that these misclassification
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Table 3.1: Classification accuracies at the starting point

Data set IRIS WINE SEEDS VEHICLE CAR GLASS SCC CTG

tr.ac 0.9831 1 0.9464 0.8711 0.9226 0.6488 1 1
te.ac 0.9667 0.9730 0.9048 0.8129 0.7457 0.6444 0.9833 0.9814

1 tr.ac= classification accuracy on training set,
2 te.ac= classification accuracy on testing set.

costs are same. We also tried some randomly chosen values for t0 and t1. The corresponding

results show the reliability of the partial path algorithm; for details, see Appendix B.

To test the reliability of the partial paths, at each joint we compute the corresponding solutions

of problem (3.3) using RMOSEK. The following figures (from Figure 3.1 to Figure 3.8) compare

the solutions obtained from the partial path algorithm and directly from the optimization code.

We should mention that, for both the CAR and VEHICLE data sets, the coe�cient matrices

are singular and do not satisfy condition C1, as defined in Section 3.3. For these data sets we

have projected the original data onto a higher-dimension space in which we obtain nonsingular

coe�cient matrices. We have used a modification of a nearest neighbor rule [Cover and Hart,

1967] to modify the data and to avoid this problem, in the following way:

• For the CAR data set, we add the euclidean distances from the instances to each of the

means of I1, I2, I3 and I4, as additional coordinates for each instance;

• For the VEHICLE data set, we add the euclidean distances from the instances to the

means, 25% quantiles and 75% quantiles of I1, I2, I3 and I4 as additional coordinates.

From Figure 3.1 to Figure 3.8, we can see that the PPPA procedure is very reliable, as the

solutions at the joints computed from the optimization problem and PPPA are quite similar.

Notice that using PPPA we need to solve only one quadratic problem (3.1), while optimization

methods repeatedly solve problem (3.3) for di↵erent values of the parameters. Thus, PPPA of-

fers significant savings in computation times. We show the execution times used for constructing

the partial paths and completing the optimizations at all the joints of the paths in Table 3.2.

Table 3.2: Time used for getting solutions at the joints

Data set IRIS SEEDS VEHICLE CAR GLASS

t.op(s) 5.102 12.801 2016.6 1438.690 104.864
t.pp(s) 0.207 0.338 92.418 16.545 9.480

1 t.op= time used for completing the optimizations at all the
joints,

2 t.pp= time used for constructing the partial path.

Note additionally that a traditional grid search method may miss some good solutions, and will

o↵er in general solutions of lower quality than PPPA.
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Figure 3.1: Compare the solutions gotten from optimization and partial
path algorithm for IRIS data

Figure 3.2: Compare the solutions gotten from optimization and partial
path algorithm for SEEDS data
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Figure 3.3: Compare the solutions gotten from optimization and partial
path algorithm for CAR data

Figure 3.4: Compare the solutions gotten from optimization and partial
path algorithm for VEHICLE data
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Figure 3.5: Part1: Compare the solutions gotten from optimization and
partial path algorithm for GLASS data
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Figure 3.6: Part2: Compare the solutions gotten from optimization and
partial path algorithm for GLASS data
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Figure 3.7: Part3: Compare the solutions gotten from optimization and
partial path algorithm for GLASS data
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Figure 3.8: Part4: Compare the solutions gotten from optimization and
partial path algorithm for GLASS data
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Up to this point, we have constructed paths using t1 = 0.01⇥ ~1. We now introduce a variable

neighborhood search to find better values of the parameters. The results are shown in Table 3.3.

Table 3.3: Results obtained before and after performing a variable neighborhood
search

Unknown misclassification costs With simulated misclassification costs
b.C ac.tr ac.te b.C cc.tr cc.te

IRIS
before 22.8497 0.9915 0.9667 22.8497 6 6
after 22.8497 0.9915 0.9667 22.8497 6 6

SEEDS
before 7930.496 0.9940 0.9286 7930.496 2 7
after 7930.496 0.9940 0.9286 7930.496 2 7

VEHICLE
before 22.9161 0.8740 0.8129 22.9161 135 65
after 24.2008 0.8756 0.8129 25.0835 133 65

CAR
before 7678.431 0.9378 0.8266 7678.431 548 356
after 7678.431 0.9378 0.8266 2590.884 452 329

GLASS
before 4560.535 0.8274 0.62222 4560.535 209 109
after 6805.878 0.8333 0.6222 9935.552 201 118

1 b.C= Best parameter C found among the paths,
2 cc.tr= classification cost on the training set,
3 cc.te= classification cost on the testing set.

From Table 3.3, we can see that for asymmetric training data (VEHICLE, GLASS) the variable

neighborhood search provides better solutions with higher classification accuracies.

We have also conducted some experiments to study the case when classification costs are known

and di↵erent. We simulated values for the real misclassification costs as integers randomly

generated in the interval (1, 10). We compare the performance of the proposed method before

and after the variable neighborhood search in Table 3.3. We can see that when there are

di↵erent misclassification costs, the proposed variable neighborhood search method provides

better parameter values. This would imply that when misclassification costs are known and

di↵erent, to obtain better results we should assign di↵erent weights to di↵erent misclassification

errors.

3.7 Conclusion

In this chapter we have proposed a method, PPPA, which starting from an optimal solution

given by RMOSEK for multi-class SVMs, is able to identify good values for the weights of the

misclassification costs with limited computational cost.

In general, we apply the proposed partial path algorithm in the following manner:

• Obtain a starting set of values for the parameters. Based on the optimization criterion

(misclassification costs, for example), decide whether we need to construct a partial path.
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• Along a selected parameter direction, construct a partial path from the starting point.

• Along the preceding path, find the best parameter C value. If the classification errors

are not acceptable, combine the PPPA and a VNS method to systematically search for

better parameter values.

Compared with a traditional grid search method, the partial path algorithm only needs to solve

one quadratic program (3.1), while the grid search method repeatedly solves quadratic programs

for each one of the parameter values tested. Thus, PPPA is much more e�cient. Additionally,

the quality of the solutions obtained from PPPA is higher than those from a traditional grid

search method, as the number of potential solutions considered is much higher.

The partial path is constructed by following changes in the active sets. In our experiments,

we have shown that the PPPA is e�cient and reliable, because it gives us solutions which are

almost the same as the ones obtained directly from the optimization problem, while requiring

at most one tenth of the computational e↵ort. From our experiments, we also see that if the

misclassification costs are di↵erent (or the training data is asymmetric), a VNS method provides

significantly better parameter values.

In summary, we conclude that the PPPA is an e�cient and reliable procedure to find good

parameter values for multi-class SVMs. Combining it with a VNS method helps us to system-

atically and e�ciently explore a very large set of potential parameter weight values.



Chapter 4

Conclusions and Future Research

4.1 Conclusion

Binary SVMs have been widely used for classification because of their e�ciency and high classi-

fication accuracy. These e�cient methods have been extended to multi-class classification prob-

lems; these extensions can be roughly classified into two groups: single-objective approaches and

multi-objective ones. One of the main challenges associated to multi-class classification proce-

dures, due to the combinatorial aspects of this problem, is how to construct good classifiers

e�ciently. For a multi-class classification problem, we need to construct at least m classifiers

(exactly m classifiers when using all-together or one-against-all based SVM approaches and

m(m � 1)/2 classifiers when using a one-against-one based SVM approach). In addition to

this, practical considerations require that the methods should be able to incorporate the treat-

ment of di↵erent misclassification costs for di↵erent classes, as well as the possible existence of

skewed class distributions. The adaptation of the traditional approaches to incorporate all of

the preceding aspects, while obtaining good classifiers, has implied huge computational costs,

especially when we have a large number of classes to consider at the same time.

In this thesis we have extended the e�cient binary SVM approach to solve multi-class classifi-

cation problems in two di↵erent ways: i) using a multi-objective approach (PM) and ii) using a

weighted single-objective approach (PPPA). For both of these approaches, we have considered

models that take into account possible di↵erences among the classification costs. These exten-

sions aim to provide a more general, but still computationally e�cient, multi-class SVM class

of models.

Specifically, for PM we solve a model that considers all objectives to obtain its Pareto-optimal

solutions. Note that in general it is not possible to maximize the geometric margins and minimize

the misclassification penalties simultaneously for any set of values of the variables. Thus, our

aim is not to compute optimal solutions for PM. Rather, the advantage of using our model

of interest, PM, is that by working with proper projections of the data and the quadratic

penalties as introduced in Chapter 2, we have the misclassification penalties embedded with the

59
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geometric margins (sharing the same denominators in the objective functions) and thus we can

theoretically characterize its Pareto-optimal solutions based on the optimal solution of a single

QP.

These Pareto-optimal solutions can be obtained as a�ne transformations of the initial solution

with given coe�cients, as presented in Corollary 2.5. Based on the simplicity of this structure,

it is possible to provide decision makers with a large amount of Pareto-optimal solutions, or

to select among them the best ones according to some additional criteria, with limited com-

putational e↵ort. We have compared numerically PM with other multi-class SVM approaches

such as the all-together method (AT), one-against-all method (OAA), one-against-one method

(OAO), multi-objective SVM based on all-together method (MS2), multi-objective SVM based

on one-against-all method (SM-OA) and multi-objective SVM based on one-against-one method

(SM-OAO). Our computational experiments show that PM is both e�cient and e↵ective on a

number of test problems. Compared with single-objective approaches (AT, OAA and OAO),

PM o↵ers comparable or better classification accuracies with low computational cost. Com-

pared with other multi-objective approaches (MS2, SM-OA and SM-OAO), it o↵ers better clas-

sification accuracies and gives better approximations of the Pareto frontiers with computational

times that are smaller by a factor of 60 or more.

Our second proposed model PPPA di↵ers from the first procedure in that, instead of treating

the problem as a multi-objective one, we proceed by constructing a weighted single-objective

SVM. The main aim has been to find proper values for the weights of the penalties, in an e�cient

manner. For PPPA, we define the weights as a linear combination (t0 + Ct1) of some initial

weights t0 and a set of search weights t1. For given t0 and t1 and using linear penalties for the

misclassification costs, it is possible to show that (see Theorem 3.2) when the row vectors of

(XO, RO) are linearly independent, the optimal solution of the weighted single-objective SVM is

piecewise-a�ne with respect to parameter C. This value defines how far we should move along

t1, from t0.

In general, we stop the procedure with the optimal solution corresponding to the initial set

of weights if a satisfying classification performance is achieved. Otherwise, we construct a

partial path along some chosen direction t1. Among the optimal solutions along the path, we

find a value C yielding the best classification performance. If this classification performance

attains a prespecified satisfactory level, we finish the procedure. Otherwise, we combine a

VNS method with PPPA to systematically search for better values of the weight parameters

tpq1 , q 6= p, p, q 2 G. Notice that, for PPPA, we only need to solve one QP at the starting set

of parameter values. The solutions at the joints defining the piecewise linear portions of the

path can be computed by monitoring the active sets for di↵erent values of the parameter C,

and solving some systems of linear equations. Thus, PPPA can be implemented with very

low overall computational costs, requiring the solution of one QP problem and several systems

of linear equations of reasonable size (that of the support sets). In Chapter 3, we have also

numerically shown that PPPA is reliable and e�cient, in the sense that the optimal solutions

o↵ered by PPPA are almost always the same as the ones obtained from directly solving the
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corresponding optimization problem. It also has much lower computational costs: from our

numerical experiments, PPPA is at least 11 times faster than a grid search method which

considers all the joints along the path.

4.2 Future Research Lines

As a consequence of the results obtained in the derivation of the methods proposed in this

dissertation, we have identified several possible research lines to be pursued in the near future:

1. We have noticed that the PPPA method as introduced requires some starting penalty

values to compute an initial optimal solution. This optimal solution is obtained by solv-

ing a weighted single-objective SVM (a QP problem) which obtains all the m(m � 1)/2

classifiers of an all-together method, at the same time. As we have already mentioned,

an all-together method (a single-objective SVM considering all the classes at the same

time) is limited to small problems because of its computational solution costs and mem-

ory requirements [Hsu and Lin, 2002, Weston and Watkins, 1999]. But due to the rapidly

increasing data base sizes in recent years, we would wish to be able to handle very large

QP problems. A sequential minimal optimization (SMO) approach has been introduced in

[Platt, 1999] to solve large-scale binary SVM problems. Numerical experiments in [Platt,

1999] show the e�ciency of SMO when solving problems with up to tens of thousands

of training objects. We would like to extend this e↵ective SMO approach to solve large-

scale single-objective multi-class SVM problems such as those of interest for the proposed

methods.

2. In this thesis, we have used di↵erent forms of the penalties terms in the objective function

for our two proposed models. Compared with PPPA, using PM we obtain a large

number of Pareto-optimal solutions without specifying direct weights for the penalties.

For PM, we have used the quadratic form of the penalties in order to ensure that all the

geometric margins have the same denominator. When there are redundant noise features,

L1�norm SVMs may present advantages over models based on the use of L2�norms, [Zhu

et al., 2004]. Several numerical experiments also show advantages of L1�norm SVMs

over L2�norm SVMs from the point of view of their classification performance, [Wang

and Shen, 2007]. We are interested in extending our e�cient PM method to the use of

L1�norm versions using linear penalties.

3. We are also interested in developing adapted methods, based on the ideas presented in

the thesis, for specific applications of SVM classifiers. SVM has been used successfully

in many real-world problems: text categorization [Joachims, 1998], image classification

[Chapelle et al., 1999], protein classification [Ding and Dubchak, 2001], cancer classifica-

tion [Guyon et al., 2002], hand-written character recognition [Bahlmann et al., 2002], time

series prediction [Kim, 2003, Van Gestel et al., 2001], stock selection[Fan and Palaniswami,
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2001] and so on. In our experiments, we have considered only benchmark multi-class clas-

sification problems. Our goal would be to be able to adapt the proposed methods to much

larger data sets from specific application areas in order to solve very large and complex

multi-class classification problems, by taking advantage of their special structures and

characteristics.
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Appendix to Chapter 2

A.1 Proof of Lemma 2.1

First, assume that (!⇤,�⇤) is optimal for problem (2.3). Notice that the feasible region of

problem (2.3) and the feasible region of problem (hard-margin PM) are the same.

If (!⇤,�⇤) is not weakly Pareto-optimal for problem (hard-margin PM), there will exist a

feasible (!0,�0) such that

%12(!0,�0) > %12(!⇤,�⇤), %21(!0,�0) > %21(!⇤,�⇤) · · · , %m(m�1)(!0,�0) > %m(m�1)(!⇤,�⇤).

As ✓pq > 0, we have:

%12(!0,�0) > %12(!⇤,�⇤), ✓21%21(!0,�0) > ✓21%21(!⇤,�⇤), · · · ,

✓m(m�1)%m(m�1)(!0,�0) > ✓m(m�1)%m(m�1)(!⇤,�⇤).

This contradicts our assumption that (!⇤,�⇤) is optimal for problem (2.3).

As a consequence, (!⇤,�⇤) must be a weakly Pareto-optimal solution of problem (hard-margin

PM). Then, for any feasible (!0,�0), there exists some i 6= j, i, j 2 G such that %ij(!0,�0) 
%ij(!⇤,�⇤). Let

%⇤ = max
⇣
%12⇤ , %21⇤ , · · · , %(m�1)m

⇤ , %
m(m�1)
⇤

⌘
,

where %pq⇤ = %pq(!⇤,�⇤), p 6= q, p, q 2 G.

Formulate the following problem:

max
!,�

min

 
%⇤
%12⇤

%12(!,�),
%⇤
%21⇤

%21(!,�), · · · , %⇤

%
m(m�1)
⇤

%m(m�1)(!,�)

!
,

s.t. (!pq)Txi + �pq > 0, i 2 Ip, p < q, p, q 2 G,

� (!pq)Txi � �pq > 0, i 2 Iq, p < q, p, q 2 G.

(A.1)
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It is easy to see that (!⇤,�⇤) is optimal for problem (A.1). By diving all the objectives in

problem (A.1) by %⇤
%12⇤

, we get the equivalent optimization problem:

max
!,�

min

 
%12(!,�),

%12⇤
%21⇤

%21(!,�), · · · , %12⇤

%
m(m�1)
⇤

%m(m�1)(!,�)

!
,

s.t. (!pq)Txi + �pq > 0, i 2 Ip, p < q, p, q 2 G,

� (!pq)Txi � �pq > 0, i 2 Iq, p < q, p, q 2 G.

(A.2)

Thus, (!⇤,�⇤) is also optimal for problem (A.2).
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A.2 Proof of Theorem 2.4

As before, the weakly Pareto-optimal solution of SPMAT can be found by solving the following

problem:

max
!,�,⇠

min
⇣
%̄12(!,�), ✓21%̄21(!,�), · · · , ✓(m�1)m%̄(m�1)m(!,�), ✓m(m�1)%̄m(m�1)(!,�),

⌘

s.t. (!pq)Txi + �pq + ⇠pqi > 0, i 2 Ip, q > p, p, q 2 G,

� (!pq)Txi � �pq + ⇠qpi > 0, i 2 Ip, q > p, p, q 2 G,

⇠pqi � 0, i 2 Ip, p 6= q, p, q 2 G.

(A.3)

Problem problem (A.3) is equivalent to

min
!,�,⇠

k(!,
p
C⇠)k

min{min
i2I1

(!12)Txi + �12 + ⇠12i , · · · , ✓m(m�1) min
i2Im

(!m(m�1))Txi + �m(m�1) + ⇠
m(m�1)
i }

,

s.t. (!pq)Txi + �pq + ⇠pqi > 0, i 2 Ip, q > p, p, q 2 G,

� (!pq)Txi � �pq + ⇠qpi > 0, i 2 Ip, q > p, p, q 2 G,

⇠pqi � 0, i 2 Ip, p 6= q, p, q 2 G.

(A.4)

By introducing a condition to bound away from zero the denominator of the objective function,

we obtain the equivalent problem

min
!,�,⇠

k(!,
p
C⇠)k,

s.t. ✓pq[(!pq)Txi + �pq + ⇠pqi ] � 1, i 2 Ip, q > p, p, q 2 G,

✓qp[�(!pq)Txi � �pq + ⇠qpi ] � 1, i 2 Iq, q > p, p, q 2 G,

⇠pqi � 0, i 2 Ip, p 6= q, p, q 2 G.

(A.5)

Problem (A.5) is also equivalent to

min
!,�,⇠

k(!,
p
C⇠)k2,

s.t. ✓pq[(!pq)Txi + �pq + ⇠pqi ] � 1, i 2 Ip, q > p, p, q 2 G,

✓qp[�(!pq)Txi � �pq + ⇠qpi ] � 1, i 2 Iq, q > p, p, q 2 G,

⇠pqi � 0, i 2 Ip, p 6= q, p, q 2 G.

(A.6)

From the strict convexity of the objective function of problem (A.6) its optimal solution (!✓, ⇠✓)

is unique. As the constraints are a�ne functions and the objective is quadratic (and positive

definite), the KKT conditions are necessary and su�cient for optimality.
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These KKT conditions are:

2!pq
✓ = ✓pq

X

i2Ip

�pq
✓ixi � ✓qp

X

i2Iq

�qp
✓ixi, q > p, p, q 2 G,

X

i2Ip

✓pq�pq
✓i � ✓qp

X

i2Iq

�qp
✓i = 0, q > p, p, q 2 G

2cpq⇠pq✓i = ✓pq�pq
✓i + ⌧pq✓i , i 2 Ip, p 6= q, p, q 2 G,

�pq
✓i [✓

pq(!pq
✓ )Txi + ✓pq�pq

✓ + ✓pq⇠pq✓i � 1] = 0, i 2 Ip, q > p, p, q 2 G,

�qp
✓i [�✓qp(!pq

✓ )Txi � ✓qp�pq
✓ + ✓qp⇠qp✓i � 1] = 0, i 2 Iq, q > p, p, q 2 G,

⇠pq✓i � 0,�pq
✓i � 0, ⌧pq✓i � 0, i 2 Ip, p 6= q, p, q 2 G,

✓pq[(!pq
✓ )Txi + �pq

✓ + ⇠pq✓i ] � 1, i 2 Ip, q > p, p, q 2 G,

✓qp[�(!pq
✓ )Txi � �pq

✓ + ⇠qp✓i ] � 1, i 2 Iq, q > p, p, q 2 G,

⌧pq✓x [�⇠pq✓i ] = 0, i 2 Ip, q 6= p, p, q 2 G.

(A.7)

From these conditions we can see that (�pq
✓ ,�qp

✓ ) 6= 0, q > p, p, q 2 G. Then, there exists some

xpq✓ 2 Ip( without loss of generality), such that �pq
✓x > 0. So we have

�pq
✓ =

1

✓pq
� (!pq

✓ )Txpq✓ � ⇠pq(xpq✓ ), q > p, p, q 2 G.

From this characterization, the set of optimal solutions for problem (A.6) is nonempty. From the

convexity of the objective function, we have that problem (A.6) has a unique optimal solution.

When ✓ = (1, 1, · · · , 1, 1), we have problem (A.6) () (P2).

Suppose (!1,�1) is optimal for (P2) and (�1, ⌧1) are the corresponding KKT multiplier vector.

Then let

!pq
✓ =

✓pq + ✓qp

2✓pq✓qp
!pq
1 , q > p, p, q 2 G

�pq
✓ =

✓qp � ✓pq

2✓pq✓qp
+

✓qp + ✓pq

2✓pq✓qp
�pq
1 , q > p, q, p 2 G,

⇠pq✓i =
✓pq + ✓qp

2✓pq✓qp
⇠pq1i , i 2 Ip, p 6= q, p, q 2 G,

�pq
✓i =

✓pq + ✓qp

2✓pq✓qp
1

✓pq
�pq
1i , i 2 Ip, p 6= q, p, q 2 G,

⌧pq✓i =
✓pq + ✓qp

2✓qp✓pq
⌧pq1i , i 2 Ip, p 6= q, p, q 2 G.

(A.8)

These values (!✓,�✓, ⇠✓) are the unique optimal solution of problem (A.6), since they satisfy the

KKT conditions problem (A.7).
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Appendix to Chapter 3

B.1 Compare The Solutions Gotten from Optimization and Par-

tial Path Algorithm, t0, t1 randomly chosen

Figure B.1: Compare the solutions gotten from optimization and partial
path algorithm for IRIS data with randomly chosen t0, t1
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Figure B.2: Compare the solutions gotten from optimization and partial
path algorithm for SEEDS data with randomly chosen t0, t1

Figure B.3: Compare the solutions gotten from optimization and partial
path algorithm for CAR data with randomly chosen t0, t1
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Figure B.4: Compare the solutions gotten from optimization and partial
path algorithm for VEHICLE data with randomly chosen t0, t1
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Figure B.5: Part1: Compare the solutions gotten from optimization and
partial path algorithm for GLASS data with randomly chosen t0, t1
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Figure B.6: Part2: Compare the solutions gotten from optimization and
partial path algorithm for GLASS data with randomly chosen t0, t1
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Figure B.7: Part3: Compare the solutions gotten from optimization and
partial path algorithm for GLASS data with randomly chosen t0, t1
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Figure B.8: Part4: Compare the solutions gotten from optimization and
partial path algorithm for GLASS data with randomly chosen t0, t1
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