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a b s t r a c t 

This study investigates the significance of use case points (UCP) variables and the influence of the com- 

plexity of multiple linear regression models on software size estimation and accuracy. 

Stepwise multiple linear regression models and residual analysis were used to analyse the impact of 

model complexity. The impact of each variable was studied using correlation analysis. 

The estimated size of software depends mainly on the values of the weights of unadjusted UCP, which 

represent a number of use cases. Moreover, all other variables (unadjusted actors’ weights, technical com- 

plexity factors, and environmental complexity factors) from the UCP method also have an impact on 

software size and therefore cannot be omitted from the regression model. The best performing model 

(Model D) contains an intercept, linear terms, and squared terms. The results of several evaluation mea- 

sures show that this model’s estimation ability is better than that of the other models tested. Model D 

also performs better when compared to the UCP model, whose Sum of Squared Error was 268,620 points 

on Dataset 1 and 87,055 on Dataset 2. Model D achieved a greater than 90% reduction in the Sum of 

Squared Errors compared to the Use Case Points method on Dataset 1 and a greater than 91% reduction 

on Dataset 2. The medians of the Sum of Squared Errors for both methods are significantly different at 

the 95% confidence level ( p < 0.01), while the medians for Model D (312 and 37.26) are lower than Use 

Case Points (3134 and 3712) on Datasets 1 and 2, respectively. 

© 2016 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

Predicting the effort required to create software has been based

n numerous software size models such as the Constructive Cost

odel ( Anandhi and Chezian, 2014; Clark, 1996; Manalif et al.,

014 ) and all its alternatives ( Attarzadeh and Ow, 2011; Kazemi-

ard et al., 2011; Tadayon, 2004; Yang et al., 2006 ) as well as on

unction points ( Borandag et al., 2016 ) and analogy based mod-

ls ( Idri et al., 2015 ). The main goal of all these approaches is to

inimize prediction error. Prediction is needed during the initial

hase of software project developments. One significant approach

o software size prediction is the Use Case Points (UCP) method,

hich is a prediction model based on the work of Karner (1993) .

zevedo et al. (2011) brings a discussion about influence of ex-

ends association in use cases, which helps to count UCP more pre-

isely. Software size prediction through use case analysis addresses

bject-oriented design; thus, this method is now widely used. As
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eported in Silhavy et al., (2015a,b ) UCP has some important draw-

acks. Several approaches help identify the drawbacks of the UCP

ethod and offer solutions, many of which are based on an anal-

gy approach. Analogy based size estimation is commonly used for

rediction in all the methods mentioned above ( Idri et al., 2015;

hepperd and MacDonell, 2012 ). Many researchers have addressed

ffort estimation and, therefore, consider productivity factors (PFs)

 Wang et al., 2009 ), but they do not address the possibility of po-

entially inappropriate variables in the UCP algorithm itself, which

s important for software size estimation. Humans introduce errors

hen evaluating actors or use cases. Therefore, the goal of this

tudy is to improve size estimation accuracy by minimizing the in-

uence of human errors during Use Case model analysis and other

nfluences that are understood as unsystematic noise. The noise

s not addressed in the UCP equation. Multiple Regression Models

MLR) handles any unsystematic noise by selecting new formula

nd values of regression coefficients. This new formula will achieve

etter prediction performance than UCP, as will be shown later in

he text. 

First, the UCP variables and their impacts on size estimation

re analysed to determine whether using all the variables is appro-

riate when predicting software size. Second, this study discusses
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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the selection of MLR models based on the UCP variables that can

improve the UCP method and make the estimation less sensitive to

unsystematic noise. 

1.1. Related work 

The UCP method is based on use case models, which are com-

monly used as functional descriptions of proposed systems or soft-

ware. The method involves assigning weights to groups of actors

and use cases. Karner’s original UCP method ( Karner, 1993 ) iden-

tifies three groups: simple, average and complex. The sum of the

weighted actors creates a value called unadjusted actor weights

(UAW); the unadjusted use case weights (UUCW) value is defined

similarly. Two variables, called technical complexity factors and en-

vironmental complexity factors, are used to describe the project,

related information and the experience level of the development

team. A final UCP score is obtained by summing the UAW and the

UUCW and then multiplying the resulting value by the technical

and environmental factor coefficients. 

A number of use case scenario steps are typically involved in

the initial estimation process. There have also been several modifi-

cations of the original UCP principles including use case size points

( Braz and Vergilio, 2006 ), extended UCP ( Wang et al., 2009 ), modi-

fied UCP ( Diev, 2006 ), adapted UCP ( Mohagheghi et al., 2005 ), and

transaction or path analysis ( Robiolo et al., 2009 ). 

The use case size points method was evaluated in Braz and

Vergilio (2006 ). The authors emphasised the internal structure of

the use case scenario in their method, where the primary actors

take on roles and are classified based on an adjustment factor. This

approach can lead to better evaluations of actors and use cases.

Fuzzy sets are used for the estimations. 

Several authors have presented improvements to Karner’s

method based on the identification of transactions rather than

steps in use cases. This approach is based on analysing a scenario,

not step by step, but using steps merged logically into so-called

transactions in which each transaction should include more than

one step. Robiolo et al., (2009 ) improved transactions by calculat-

ing paths by which the complexity of each transaction is based on

the number of binary or multiple conditions used in the scenar-

ios. Their approach is based on Robiolo and Orosco (2008) , where

number of transactions is equal to the number of stimuli. A stimu-

lus is a system entry point, which generates response (transaction)

of an actor action in a use case. Ochodek et al., (2011a) discusses a

reliability of transaction identification process and Jurkiewicz et al.

(2015 ) discusses event identification in use cases, which should be

useful for path identification. 

Wang et al., (2009) proposed an extended UCP in that employed

fuzzy sets and a Bayesian belief network used to set unadjusted

UCP. The result of this approach was a probabilistic effort estima-

tion model. 

Diev (2006) noted that when the actors and use cases are

precisely defined, unadjusted UCP (the sum of the UAW and the

UUCW) can be multiplied by the technical factors. The product of

the technical complexity factors (see Table 3 ) and unadjusted UCP

is considered as the coefficient of the base system complexity in

Diev (2006 ). According to Nageswaran (2001 ), added effort must

be taken to consider support activities such as configuration man-

agement or testing. 

Yet another modification to the UCP is called adapted UCP

( Mohagheghi et al., 2005 ). In this method, the UCP method is

adapted to provide incremental development estimations for large-

scale projects. Initially, all actors are classified as average (based

on the UCP native classifications) and all use cases are classified as

complex. Ochodek et al., (2011b) also proposed omitting UAW and

the decomposition of use cases into smaller ones, which are then

classified into the typical three use case categories. 
However, the existing use case-based estimation methods have

ome well-known issues ( Diev, 2006 ). Use cases are written in

atural language; consequently, there is no rigorous approach for

omparing use case quality or fragmentation. The number of steps

n use case scenarios may vary, which affects the estimation accu-

acy. Moreover, an individual use case may contain more than one

cenario, which also affects estimation accuracy. Thus, although

he use case model is critical for system functional or behavioural

odelling, use cases can be employed for estimation purposes only

f the estimation approach can be adjusted or calibrated. Such cal-

bration methods can minimize estimation errors, mainly in situ-

tions when the errors are constant. Furthermore, aspects such as

ugs, new requirements or improvements cannot be resolved by

CP estimation. 

All these aspects can be solved by UCP improvements based on

nalogy or regression approaches. Analogy based estimation meth-

ds are discussed in Azzeh et al., (2015b) , which evaluated 40 vari-

nts of the single adjustment method using four performance mea-

ures and eight test datasets. However, none of the tested methods

ere based on UCPs. 

Amasaki and Lokan (2015) addressed the problem of selecting

rojects using a linear regression model by testing the window

rinciple. The window principle involves first selecting a subset of

he data. Then, the estimation algorithm works with that subset

nly. Their results showed that weighted moving windows have a

tatistically significant effect on estimation accuracy and that vari-

us weighting functions influenced estimation accuracy differently

i.e., weighted moving windows have significant advantages when

he window is large. Likewise, unweighted moving windows are

ignificantly advantageous when the window is small. Rosa et al.,

2014) investigated whether a linear model based on both size and

pplication type was better than a model based on size only; how-

ver, this study did not investigate the effects of each variable nor

valuate additional types of regression models. 

López-Martín (2015) described linear regression models as less

ccurate than neural networks, but they provided no description

f the regression models studied. Moreover, they did not consider

he stepwise principle for model construction nor did they investi-

ate whether all the UCP variables contribute to size estimation. A

iscussion of variable significance can be found in Urbanek et al.,

2015a) . Silhavy et al., (2015a, 2015b ) offered a linear model ob-

ained by the least squares approach, in which two prediction coef-

cients were used to adjust the UAW and the UUCW. These studies

id not focus on evaluating of variables for use in regression mod-

ls, nor did they compare linear and polynomial regression models.

Urbanek et al., (2015b) described the number of points in the

se case scenario as the most significant factor, but the scope of

his paper is analytical programing; therefore, this finding is not

pplicable to MLR. Instead, the study by Urbanek et al., 2015b is

ased on artificial intelligence and is an application of the ap-

roach proposed by Senkerik et al., (2014) but with theoretical as-

ects of Oplatkova et al., (2013) . Urbanek et al., 2015b used a sym-

olic regression tool, analytic programming, together with differ-

ntial evolution. 

Several works have attempted to apply various prediction mod-

ls to UCP. Nassif et al., (2013) presented a linear regression model

ith a logarithmic transformation that they created to estimate

oftware effort from use case diagrams. In Nassif et al., (2011) , a

ultiple linear regression model was developed to predict the val-

es of the productivity factor. To adjust the values of the productiv-

ty factor, they first employed a fuzzy logic approach ( Nassif et al.,

011 ). Then, they created an artificial neural network (multi-layer

erceptron) model ( Azzeh and Nassif, 2016; Nassif et al., 2015;

assif et al., 2012, 2013 ). 

The main distinction between this paper and existing ap-

roaches is that we propose a novel approach for estimating soft-
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Table 1 

Actor classification and weighting factors. 

Actor classification (AC) Weighting factor (WFa) 

Simple 1 

Average 2 

Complex 3 

Table 2 

Use case classification and weighting factors. 

Use case classification (UCC) Number of steps Weighting factor (WFb) 

Simple (0 ,4) 5 

Average 〈 4 ,7 〉 10 

Complex (7, ∞ ) 15 

Table 3 

Technical factors. 

Factor ID Description Weighting 

factor (WFc) 

Significance (SIa) 

T1 Distributed System 2 〈 0 ,5 〉 
T2 Response adjectives 2 〈 0 ,5 〉 
T3 End-User Efficiency 1 〈 0 ,5 〉 
T4 Complex Processing 1 〈 0 ,5 〉 
T5 Reusable Code 1 〈 0 ,5 〉 
T6 Easy to Install 0 .5 〈 0 ,5 〉 
T7 Ease to Use 0 .5 〈 0 ,5 〉 
T8 Portable 2 〈 0 ,5 〉 
T9 Easy to Change 1 〈 0 ,5 〉 
T10 Concurrent 1 〈 0 ,5 〉 
T11 Security Feature 1 〈 0 ,5 〉 
T12 Access for Third Parties 1 〈 0 ,5 〉 
T13 Special Training Required 1 〈 0 ,5 〉 

a  

v  

e  

d  

o

 

h  

t  

m  

i

U  

 

c  

o  

e  

a  

t  

o  

c  

u  

u

U  

 

U

U  

 

p  

a  

p

are development effort from use case diagrams that aims to im-

rove on Karner’s method by implementing multiple linear regres-

ion models. Furthermore, none of the existing works proposed a

uitability analysis of UCP variables to investigate their effects on

redicting software size. 

. Problem statement 

In this study we analyse the UCP variables that are used in

CP models. We evaluate the UAW, UUCW, TCF and ECF to de-

ermine their contributions to software size estimation. The cor-

elations to real project size and correlations among independent

ariables are measured. This study discusses the selection of MLR

odels based on UCP variables, which should improve the UCP

ethod and make estimations less sensitive to the introduction of

rrors. We assume that MLR handles any unsystematic noise not

ddressed in the UCP equation. Therefore, the analysis of several

ypes of MLR models ( Table 8 ) is presented. Moreover, the best

erforming model will indicate which UCP variables contribute to

ize estimation. Consequently, the first research question concerns

he UCP variables and the second research question concerns MLR

odel complexity. Here, the number of model terms is treated as

 measure of model complexity. 

.1. Research questions 

The research questions answered by this study are as follows: 

RQ1: Are all UCP variables significant in estimation? 

RQ2: Does MLR complexity improve estimation model accu-

racy? 

.2. Evaluation criteria 

All the tested models were evaluated according to ( 1 ) the

djusted coefficient of determination (R 

2 ), ( 2 ) the residual sum

f squares (RSS), ( 3 ) mean squared error (MSE), ( 4 ) root mean

quared error (RMSE), and ( 5 ) the Akaike information criterion for

nite sample size (AICc). Their equations are given as follows: 

 

2 = 1 −
[∑ n 

i ( y i − ̂ y i ) 
2 ∑ n 

i ( y i − ȳ ) 
2 

]
, (1) 

SS = 

n ∑ 

i =1 

ε 2 i , (2) 

SE = 

1 

n 

n ∑ 

i =1 

ε 2 i , (3) 

MSE = 

√ ∑ n 
i =1 ε 

2 
i 

n 

, (4) 

ICc = 2 k − 2 ln ( L ) + 

2 k × ( k + 1 ) 

n − k − 1 

, (5)

here R 2 is the coefficient of determination, which illustrates

odel variability, n is number of observations, k is the number

f independent predictors, L is a maximum value of the likelihood

unction and ε is a residual error value. 

. Methods used 

.1. Use Case Points 

The basic UCP method is based on assigning weights to clus-

ered actors and use cases. It employs three cluster types: simple,
verage, and complex. The sum of the weighted actors creates a

alue called UAW; the UUCW value is calculated similarly. Two co-

fficients, technical factors and environmental factors, are used to

escribe the project, related information, and the experience level

f the development team. 

Actors play roles in the UAW variables ( Azzeh et al., 2015a; Sil-

avy et al., 2015a ). A simple actor typically represents an applica-

ion programming interface and a complex actor represents a hu-

an using a graphical user interface. The actor groups and weight-

ng factors for Eq. (6) are summarised in Table 1. 

The UAW are calculated according to the following formula: 

AW = 

∑ A 
C × W F a. (6)

Use cases are classified in a similar manner (see Table 2 ). The

omplexity of a use case is based on the number of scenario steps

r, sometimes, on the number of transactions it contains ( Ochodek

t al., 2011a ). However, a transaction typically refers to a set of

ctivities, not a simple step in a structured scenario. Therefore, the

erm “step” which is used here can be used in the meaning of step

r transaction. The absolute number of scenario steps are used in

ounting, if the use case is extended by (or included in) another

se case, those steps are not counted; in other words, such nested

se cases are counted as separate scenarios. 

The UUCW are calculated according to the following formula: 

 U C W = 

∑ U 
C C × W F b. (7)

The unadjusted UCP (UUCP) is then calculated by summing the

AW and the UUCW. 

 U CP = UAW + U U CW. (8)

Technical Complexity Factors (TCF) and Environmental Com-

lexity Factors (ECF) later correct UUCP. The TCF is considered as

 correction factor that describes a set of important factors for the

roject. Table 3 presents the technical factors. 
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Table 4 

Environmental factors. 

Factor ID Description Weighting factor (WFd) Significance (SIb) 

E1 Familiar with the rational unified process (RUP) 1 .5 〈 0 ,5 〉 
E2 Application Experience 0 .5 〈 0 ,5 〉 
E3 Object-oriented Experience 1 〈 0 ,5 〉 
E4 Lead Analyst Capability 0 .5 〈 0 ,5 〉 
E5 Motivation 1 〈 0 ,5 〉 
E6 Stable Requirements 2 〈 0 ,5 〉 
E7 Part-Time Workers −1 〈 0 ,5 〉 
E8 Difficult Programming Language 2 〈 0 ,5 〉 

Fig. 1. Boxplots of projects in UCP. 
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The TCF can be calculated according to the following formula

( Robiolo et al., 2009 ): 

T CF = 0 . 6 + 

( 

0 . 01 ×
T 1 ∑ 

T 13 

W F c × SIa 

) 

. (9)

The second correction value is based on the ECF, which de-

scribes non-functional requirements. Table 4 presents the ECF as

defined in the UCP. The ECF is calculated as follows: 

ECF = 1 . 4 + 

( 

−0 . 03 ×
E1 ∑ 

E8 

W F d × SIb 

) 

. (10)

Factors T1–T13 and E1–E8 have fixed weights (WFc, WFd).

Moreover, for each factor, the significance (SIa, SIb) can be set to

a value between 0 and 5, where 0 indicates no impact, 3 indicates

an average impact, and 5 indicates a strong impact. 

The final size estimation is called an adjusted UCP (AUCP) and

represents the project (system or software) size in points. To obtain

the AUCP the UUCP, TCF and ECF are multiplied using the following

formula ( Karner, 1993; Ochodek et al., 2011b; Robiolo and Orosco,

2008; Wang et al., 2009 ): 

 CP = U U CP × T CF × ECF . (11)

3.2. Linear regression models 

Linear regression models describe the relationship between a

dependent variable and one or more independent variables. The

goal is to find the best fit straight line that minimizes the sum of

squared residuals of the linear regression model. The least squares

method is the most common method used to fit a regression line.

The case when a linear regression has only one independent vari-

able is called simple linear regression ( Bardsiri et al., 2014; Jor-

gensen, 2004; Montgomery et al., 2012; Shepperd and MacDonell,
012 ), whereas multiple linear regression ( Bardsiri et al., 2014; Jor-

ensen, 2004; Montgomery et al., 2012; Shepperd and MacDonell,

012 ) involves more than one independent variable. 

The multiple linear regression model is defined as follows: 

 i = β0 + β1 X i 1 + β2 X i 2 + . . . + βp X ip + ε i , i = 1 , . . . n (12)

here y i is the dependent variable, X i 1 … X ip are independent vari-

bles (predictors), β0 is an intercept, and β1 … βn are regression

oefficients. The value of εii represents the error residuals. The

odel is designed as a matrix, where each row represents a data

oint. 

Another type of linear regression is polynomial regression

 Bardsiri et al., 2014; Jorgensen, 2004; Shepperd and MacDonell,

012 ) in which the relationship between the dependent variable

nd the independent variables is modelled as an m 

th degree poly-

omial: 

 i = β0 + β1 X i 1 + β2 X 

2 
i 2 + . . . + βp X 

m 

ip + ε i , i = 1 , . . . n (13)

In matrix notation Eqs. (12) and ( 13 ) could be written as follows

 = X β + ε (14)

Using ordinary least squares estimation, the vector of estimated

egression coefficients is 

ˆ = 

(
X 

T X 

)−1 
X 

T y (15)

In the case of multiple independent variables it is appropriate

o use stepwise regression ( Bardsiri et al., 2014; Jorgensen, 2004;

hepperd and MacDonell, 2012 ). The aim of the stepwise regres-

ion technique is to maximize the estimation power using the min-

mum number of independent variables. Stepwise regression is a

ombination of forward and backward selection that involves an

utomatic process for selecting independent variables and can be

riefly described as follows: 

(1) Set a starting model, which contains predefined terms; 

(2) Set limits for the final model—what type of model is needed,

whether linear terms are used, squared terms, or vice versa;

(3) Set an evaluation threshold (in our case this is whether the

Sum of Squared Errors (SSE) is significantly decreased); 

(4) After adding or removing terms, retest the model; 

(5) Stepwise regression halts when no further improvement in

estimation occurs. 

There is a modification of forward selection such that after each

tep in which a variable is added, all the candidate variables in

he model are checked to see whether their significance has been

educed below a specified tolerance threshold. Forward selection

tarts without any variables in the model and then iterates to

dd each variable. When a non-significant variable is found, it is

emoved from the model. Backward selection works in a similar

anner, but removes variables when they are found to be non-

ignificant. Therefore, stepwise regression requires two significance

evels: the first for adding variables and the second for removing

ariables. 
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Fig. 2. Scatter plots for Pearson’s correlation (independent vs. dependent Real_P20) for dataset 1. 
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. Experiment design 

The research process consists of the following steps: 

(1) Obtaining data for experiments, 

(2) Analysing the assumptions for linear regression, 

(3) Analysing the correlations between the independent and de-

pendent variables, 

(4) Creating a multiple regression model, in which each vari-

able/term is added and the entire model is retested, 

(5) Comparing models and selecting the best performing model,

(6) Comparing the selected model and the UCP model. 

MLR models are designed as a matrix in which each row rep-

esents a data point in Eq. (12) or Eq. (13) . In this study, the re-

ression models require historical data to evaluate the effort re-

uired in a new project, where the dependent variable y i equals

he Real_P20 vector and the UCP attributes (UAW, UUCW, TCF, and

CF) are used as independent variables ( X i ). Real_P20 describes the

eal project size in points (UCP) obtained as person-hours divided

y 20 (constant which represents productivity factor). Each model

hould contain a sufficient number of independent variables be-

ause of the stepwise approach to model construction. The prin-

iple of the stepwise approach was discussed in Section 3 of this

aper. Therefore, interaction variables or squared independent vari-

bles can be added to the models. 

The proposed models were constructed using standardized

omplexity and were selected based on how well they represent

ifferent approaches to linear regression. All the models were pro-
rammed in computational software and the stepwise principle

as followed. Each step was evaluated using a significance level

f p = 0.05 for the SSE criterion as the threshold for adding or re-

oving variables in the model. The tested models are summarized

n Table 5. 

The comparative analysis of regression models is a basic re-

earch experiment. Statistical linear regression analysis was per-

ormed for all the models. The aim of this analysis was to identify

he model that is best able to predict complexity and achieve the

est values of the evaluation measures. The models are compared

ccording to Eqs. (1) –( 5 ). Predictors were used as variables, as de-

cribed in the following section, and all of them were obtained

y UCP. This approach makes replication experiments simple using

ny other dataset or using only a set of use case models, because

ll the variables were prepared according to the UCP method (see

qs. (6) , ( 7 ), ( 9 ), and ( 10 )). 

. Experiment evaluation 

.1. Project datasets 

The experiment described above was evaluated using two

atasets. Dataset 1 was obtained from Silhavy et al., (2015a ), in

hich the dataset was based on Ochodek et al., (2011b) and

ubriadi and Ningrum (2014) . The UAW, UUCW, TCF, and ECF are

nown from the UCP method. Dataset 2 was collected by the au-

hors from three data donators (D1, D2 and D3) and are based on
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Fig. 3. Scatter plots for Pearson’s correlation (independent vs. dependent Real_P20) for dataset 2. 

Table 5 

Regression model list. 

Model A The model contains a constant (intercept) term only. 

Model B The model contains an intercept and linear terms for each predictor. 

Model C The model contains an intercept, linear terms, and all products of pairs of distinct predictors (no squared terms). 

Model D The model contains an intercept, linear terms, and squared terms. 

Model E The model contains an intercept, linear terms, interactions, and squared terms. 

Model F The model contains no intercept; the terms are used as they appear in UCP equation. Therefore the 

regression formula was specified as Rea l P20 ∼ ( UAW + UUCW ) × TCF × ECF . 

Table 6 

Dataset characteristics. 

Median person-hours Median Real_P20 Range Real_P20 Standard deviation Minimum Real_P20 Maximum Real_P20 n 

Dataset 1 1952 .500 97 .625 183 .650 57 .063 13 .850 197 .500 28 

Dataset 2 7012 .0 0 0 320 .600 109 .750 33 .394 288 .750 398 .500 71 
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following problem domains: Insurance, Government, Banking and

other domain (see Attachments for more details). 

For purpose of this study we do not aggregate data by data do-

nators or problem domains. Fig. 1 shows a boxplot of the datasets.

As shown, the two datasets represent groupings of different project

sizes. Both datasets are available as attachments. 

Table 6 shows the characteristics of the datasets used in the

experiments. As shown, both datasets have a similar standard de-

viation, but Dataset 2 contains larger projects. All the values in

Table 6 are based on the Real_P20, which describes the real project

size in points (UCP). 
.2. Analysis of UCP variables 

The correlations between the variables for Dataset 1 are illus-

rated in Fig. 2 and for Dataset 2 in Fig. 3 . Dataset 1 has a high pos-

tive correlation only between UUCW and Real_P20, which shows

hat the number of use cases is the most important variable in es-

imating the real project size. The other three parameters are only

eakly correlated. Dataset 2 correlations ( Fig. 3 ) should be caused

y using historical data points from different software companies

cross different problem domain. This phenomenon will be under

urther investigation in future research. 
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Fig. 4. Scatter plots for the correlation analysis of independent variables using dataset 1. 

Table 7 

Correlation coefficients between independent variables 

and the dependent variable. 

Variable Dataset 1 Real_P20 Dataset 2 Real_P20 

UAW 0 .142 –0 .531 

sig 0 .471 < 0.001 

n 28 71 

UUCW 0 .656 –0 .338 

sig < 0 .001 0 .004 

n 28 71 

TCF 0 .277 0 .084 

sig 0 .153 0 .486 

n 28 71 

ECF 0 .189 0 .126 

sig 0 .357 0 .295 

n 28 71 
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As Table 7 shows, all the independent variables are correlated

o dependent variables for both datasets. The correlation values

ange from 0.142 to 0.656 for Dataset 1, in which the highest cor-

elation is for UUCW. The Dataset 2 correlations range from −0.531

o 0.126. Weak correlations can be seen for both the TCF and

CF factors. The correlation between the UUCW and Real_P20 is

0.338, while interestingly, the correlation between the UAW and

eal_P20 is −0.531. 

The independent variables correlation analysis is presented in

ig. 4 (Dataset 1) and in Fig. 5 (Dataset 2). Table 8 shows that

he variables UAW and UUCW are correlated (0.423, resp. 0.869),

hich is expected, because when there are more actors in the use

ase models, more use cases can be expected. This should have
n impact on model variability. Contrastingly, UAW or UUCW are

mportant variables for application of method in problem domain,

herefore UAW or UUCW were not omitted. Moreover, both vari-

bles were found significant for estimation by stepwise approach.

CF and ECF show signs of correlation too, but there is no obvious

eason for the correlation; we will investigate this aspect further

n future research. 

.3. Regression model evaluations 

The regression models obtained from stepwise regression were

et according to Table 5 . For each model, all four variables were

sed. Tables 9 and 10 show the regression formulas obtained for

ach model. All the models are presented in Wilkinson Notation.

odels A, B, C and F are linear models, while Models D and E are

lassified as polynomial models. 

Further, Fig. 6 shows the histograms of the residuals for Mod-

ls A–F, using Dataset 1, and Fig. 7 shows the histograms of the

esiduals using Dataset 2. 

Tables 11 and 12 list the selected evaluation measures of Mod-

ls A–F for Datasets 1 and 2, respectively. The R 

2 values show

he coefficients of determination, which are calculated according

o Eq. (1) . The MSE was calculated based on the MLR models for

ataset 1 and Dataset 2. A similar approach was used to calculate

SE, RMSE, AICc and the p -values. All the models except Model

 on Dataset 1 are statistically significant. The Mean SSE 10-Fold is

ased on 10-fold cross validation as one of the factors for selecting

he best performing model. 
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Fig. 5. Scatter plots for the correlation analysis of independent variables using dataset 2. 

Table 8 

Correlation coefficients for the independent variables. 

Dataset 1 Dataset 2 

UAW UUCW TCF ECF UAW UUCW TCF ECF 

UAW sig n – – – – – – – –

UUCW 0 .423 – – – 0 .869 – – –

sig 0 .025 – – – < 0.001 – – –

n 28 – – – 71 – – –

TCF 0 .299 0 .0575 – – −0 .075 −0 .076 – –

sig 0 .121 0 .771 – – 0 .533 0 .527 – –

n 28 28 – – 71 71 – –

ECF 0 .021 −0 .005 0 .424 – −0 .068 0 .039 0 .494 –

sig 0 .021 0 .980 0 .025 – 0 .575 0 .749 < 0 .001 –

n 28 28 28 – 71 71 71 –
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5.4. Selecting the best performing model 

The regression models are able to explain from 43% to 70% (R 

2 )

of the model uncertainty for Dataset 1 and from 56% to 91% (R 

2 )

of the model uncertainty for Dataset 2. Model D outperforms the

tested models with respect to SSE and Mean of SSE 10-Fold as listed

in Tables 11 and 12 . Model D’s SSE and Mean SSE 10-Fold are the

lowest in both tested datasets. Moreover, its adjusted R 

2 values

(0.712 and 0.907) are also better than those of most of the other

models. An analysis of the AICc results leads to the same conclu-

sion. Therefore, we can conclude that Model D is the best perform-

ing model. The linear models (Models A, B, C and F) are unable to

match the performances of the polynomial models (Model D and

E) according to all the evaluation measurements. Fig. 8 shows plots
f the residuals for Model D vs. the fitted values, where the left

ide shows the results from Dataset 1 and the right side shows the

esults from Dataset 2. 

This study performed a comparative analysis of regression mod-

ls with respect to predicting software size. The results show that

ore complex models tend to predict the value of software size

ore accurately. Tables 11 and 12 support these results, listing all

he performance measures. All the variables used in the final re-

ression equation can be found in Model D. Model D contains an

ntercept, linear terms, and squared terms. 

The effects of predictors on Model D can be seen in Fig. 9 . The

ots show the magnitude of the effect and the lines show the up-

er and lower confidence limits for the main effect. The obtained

esults for Dataset 1 show that an increase in the UAW value from
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Fig. 6. Histograms of residuals for dataset 1: models A–F. 

Table 9 

Regression formulas for dataset 1: models A–F. 

Model A Rea l P20 ∼ 1 + U U CW 

Model B Rea l P20 ∼ 1 + U U C W + EC F + UAW ∗ U U CW 

Model C Rea l P20 ∼ 1 + UAW ∗ U U C W + UAW ∗ T C F + UAW ∗ EC F + U U C W ∗ T C F + U U C W ∗ EC F + T C F ∗ EC F 

Model D Rea l P20 ∼ 1 + U U C W + EC F + UAW ∗ T C F + UA W 

2 + U U C W 

2 + T C F 2 + EC F 2 

Model E Rea l P20 ∼ 1 + UAW ∗ U U C W + UAW ∗ T C F + UAW ∗ EC F + U U C W ∗ T C F + U U C W ∗ EC F + T C F ∗ EC F + UA W 

2 + U U C W 

2 + T C F 2 + EC F 2 

Model F Rea l P20 ∼ 1 + U U C W + T C F + UAW ∗ T C F 

Table 10 

Regression formulas for dataset 2: models A–F. 

Model A Rea l P20 ∼ 1 + UAW ∗ U U CW 

Model B Rea l P20 ∼ 1 + T CF + ECF + UAW ∗ U U CW 

Model C Rea l P20 ∼ 1 + UAW ∗ U U C W + UAW ∗ T C F + UAW ∗ EC F + U U C W ∗ T C F + U U C W ∗ EC F + T C F ∗ EC F 

Model D Rea l P20 ∼ 1 + T CF + ECF + UAW ∗ U U CW + UA W 

2 + U U C W 

2 + T CF 2 + EC F 2 

Model E Rea l P20 ∼ 1 + UAW ∗ U U C W + UAW ∗ T C F + UAW ∗ EC F + U U C W ∗ T C F + U U C W ∗ EC F + T C F ∗ EC F + UA W 

2 + U U C W 

2 + T C F 2 + EC F 2 

Model F Rea l P20 ∼ 1 + UAW ∗ U U C W + UAW ∗ EC F 

Table 11 

Selected evaluation measures for dataset 1 ′ models A–F. 

Model R 2 MSE SSE RMSE AICc Mean SSE 10-Fold p -value 

Model A 0 .430 1928 .171 50 ,132.449 43 .911 293 .667 19 ,778.993 < 0.001 

Model B 0 .646 1413 .128 31 ,088.807 37 .592 291 .808 11 ,184.311 < 0.001 

Model C 0 .700 1549 .912 26 ,348.508 39 .369 309 .676 9216 .102 < 0.001 

Model D 0 .712 1406 .300 25 ,313.402 37 .501 302 .995 8987 .093 < 0.001 

Model E 0 .727 1843 .550 23 ,966.154 42 .937 338 .522 8356 .717 0 .055 

Model F 0 .646 1413 .128 31 ,088.807 37 .592 291 .808 11 ,184.311 < 0.001 
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Fig. 7. Histograms of residuals for dataset 2: models A–F. 

Table 12 

Selected evaluation measures for dataset 2 ′ models A–F. 

Model R 2 MSE SSE RMSE AICc Mean SSE 10-Fold p -value 

Model A 0 .566 505 .717 33 ,883.042 22 .488 648 .023 4830 .691 < 0.001 

Model B 0 .572 513 .684 33 ,389.459 22 .665 651 .687 4790 .819 < 0.001 

Model C 0 .586 539 .266 32 ,355.934 23 .222 662 .617 4686 .665 < 0.001 

Model D 0 .907 118 .44 7224 .813 10 .883 553 .36 1165 .248 < 0.001 

Model E 0 .909 126 .235 7069 .161 11 .235 566 .875 1131 .333 < 0.001 

Model F 0 .623 482 .745 29 ,4 47.4 4 4 21 .971 653 .121 4261 .34 < 0.001 

Table 13 

Comparison of model D and UCP for datasets 1 and 2. 

Dataset 1 – model D Dataset 1 – UCP Dataset 2 – model D Dataset 2 - UCP 

SSE 25, 313 268, 620 7224 87,055 

n 28 28 71 71 

Median SSE 312 3134 37.26 7312 

Wilcoxon Rank Sum Test P < 0.01 at alpha = 0.05. P < 0.01 at alpha = 0.05. 
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6.38 to 18 caused a 10-unit reduction in Real_P20. In comparison,

a change in UUCW from 60 to 515 caused a 120-unit increase in

Real_P20. Both examples have the expectation that all other vari-

ables are held constant. 

5.5. Best performing model and use case points comparison 

In the previous section we selected Model D as the best per-

forming model for both datasets. In this section, we compare

Model D to UCP, where UCP represents the Karner’s UCP method
see Eq. (11) ). As can be seen in Table 13 Model D is demonstra-

ly better then UCP with respect to SSE, and attains a significantly

ower SSE median on both datasets. A two-tailed Wilcoxon’s rank

um test was used to evaluate the medians. 

.6. Threats to validity 

The threats to validity in this study can be summarized as fol-

ows. The major risk to the validity of these evaluations lies in the

uality of the datasets. The Dataset 1 used in this study was col-
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Fig. 8. Residuals vs. fitted values of model D. 
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ected from publicly available sources. We selected this dataset to

chieve an appropriate level of replicability and comparability to

reviously published results. The dataset contains 28 data points,

hich represent relatively small projects (the median person-hours

s 1952). The second dataset, Dataset 2, was collected by the au-

hors (the median person-hours is 7012). The construct validity

ncludes a question regarding the PFs. The collected data also in-

ludes the total effort in person-hours. This value represents real

evelopment time, but because the PF factor of each project is

nknown (for Dataset 1), it could not be included in our exper-

ment. For Dataset 2, team productivity is based on the differ-

nce between the starting date for a project work and the accep-

ance date (at which time each project was formally completed).

herefore, Real_P20 was used for all calculations and predictions.

he Real_P20 value was obtained by dividing the total effort by a

onstant value for PF (20). During the data collection process for

ataset 2, authors obtained copies of the use case diagrams for

nly some of the projects—the rest of the participants considered

heir use case models proprietary. Therefore, we were forced to

ely on the information provided by those who were involved in

reparing the data for the survey in the software companies. For

he set of projects for which use case models were available, there

s still a risk that the use case scenarios and actors were improp-

rly designed by the data donator. 

All the models were constructed according to the stepwise

ethod for MLR. As listed in Tables 9 and 10 , the MLR obtained a

lightly different set of models for Dataset 1 vs. Dataset 2; however,

p  
ypologically, the best performing models are the same. Therefore,

e believe our research is generally repeatable and that the same

pproach can be used for projects of different sizes, although the

odel formula cannot be replicated as-is with new datasets. 

MLR models depend on assumptions, and when those assump-

ions are violated, data transformation ( Christensen, 2006 ) may be

equired. However, such transformations also change the method

f prediction because the predicted value of the dependent vari-

ble does not represent the project size. 

. Conclusion 

Based on the experimental results detailed in this study, the re-

earch questions that all MLRs are equal can be rejected. All the

CP variables are significant, although some have only slight cor-

elations. Still, all the UCP variables are correlated with the depen-

ent variable and are therefore significant as predictors. 

We can conclude that the sizes of a software development

rojects depend mainly on the value of UUCW, which represents a

umber of use cases. Moreover, all the other variables (UAW, TCF,

CF) from the UCP method have an impact on software size es-

imation, and therefore cannot be omitted from regression model.

he best performing model (Model D) contains an intercept, linear

erms, and squared terms. 

RQ1: All UCP parameters are significant for estimation. Correla-

ion was found between UAW and UUCW ( Table 8 ), which was ex-

ected, because in the tested datasets, there is at least one use case
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Fig. 9. Predictor effects plots for model D. 
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for each actor. The most important variable is the UUCW, as can

be seen from the effect plots in Fig. 9 . The effects plots show that

all predictors (UAW, UUCW, TCF, and ECF) are valuable for estima-

tion; however, TCF was not as valuable as the rest of the variables

in estimating the sizes of the projects in Dataset 2. We can con-

clude that the UAW also has an effect on size estimation, which is

different than the findings published previously in Ochodek et al.,

(2011b) . Here, the UAW values were valuable because the number

of actors helps determine the number of interfaces required in the

project, which, in turn, impacts software product construction. 

Both TCF and ECF have a low impact but cannot be omitted.

They are not only significant for the regression model because they

have an effect on size estimation; they also have an impact on

project size. However, we may find them to be more valuable in

project management. 

RQ2: Model D is a complex model. The evaluation measure-

ments show that it has a better estimation ability than the other

models. A notable difference can be seen between Model D and

Model A, the latter of which is based only on the intercept and

the UUCW variable. 

Model D obtained the best R 

2 values (0.712 and 0.907) on both

datasets and the lowest AICc scores (302.995 and 553.36). The

SSE scores of Model D (25,313 and 7224) are slightly worse than

those of Model E (23,966.154 and 7069.161). If we compare the

AICc scores of Model D (302.995 and 553.36) to those of Model
l

 (338.522 and 566.875) we can see that Model D is better. More-

ver, Model E was not statistically significant for Dataset 1. 

By comparing Model D and the simplest Model A we can con-

lude that more complex models (more terms) obtain better re-

ults. Model A achieved R 

2 values of 0.430 and 0.556 while the

 

2 values obtained by Model D were 0.712 and 0.907. Similarly,

odel A had SSE scores of 50,132.449 and 33,883.042 while Model

 achieved SSE scores of 25,313.402 and 7224.813 

Finally, Model D performed better compared to UCP. The SSE

alue for UCP was 268 620 points for Dataset 1 and 87 055 for

ataset 2. Therefore, Model D achieved a greater than 90% de-

rease in SSE (25,313) compared to UCP on Dataset 1 and a greater

han 91% decrease of SSE (7224) on Dataset 2. The median SSE for

oth are significantly different at 95% confidence level ( p < 0.01),

nd the medians for Model D (312 and 37.26) are lower than UCP

3134 and 3712). 

In future work, we plan to address two major areas. First, as

an be seen from the results obtained here, regression models are

ensitive to the data range. Therefore, cluster analysis will be per-

ormed to determine the optimal variables for clustering. A proper

lustering method will also be investigated. Second, other forms

f regression will be studied and, moreover, the principles of re-

ursive regression will be addressed. The recursive method leads

o approaches such as partial, exponential, and directed forgetting,

hich should be valuable when building a historical dataset and

ead to an optimal estimation ability. 
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Supplementary material associated with this article can be

ound, in the online version, at doi:10.1016/j.jss.2016.11.029 . 

eferences 

masaki, S. , Lokan, C. , 2015. On the effectiveness of weighted moving windows:

experiment on linear regression based software effort estimation. J. Softw. Evol.
Proc. 27, 488–507 . 

nandhi, V. , Chezian, R.M. , 2014. Regression techniques in software effort estimation
using COCOMO dataset. In: 2014 International Conference on Intelligent Com-

puting Applications. IEEE, pp. 353–357 . 

ttarzadeh, I. , Ow, S.H. , 2011. Improving estimation accuracy of the COCOMO II us-
ing an adaptive fuzzy logic model. In: IEEE International Conference on Fuzzy

Systems. IEEE, pp. 2458–2464 . 
zevedo, S. , Machado, R.J. , Bragança, A. , Ribeiro, H. , 2011. On the refinement of use

case models with variability support. Innov. Syst. Softw. Eng. 8, 51–64 . 
zzeh, M. , Nassif, A. , Banitaan, S. , Almasalha, F. , 2015a. Pareto efficient multi-objec-

tive optimization for local tuning of analogy-based estimation. Neural Comput.

Appl 1–25 . 
zzeh, M. , Nassif, A.B. , 2016. A hybrid model for estimating software project effort

from use case points. Appl. Soft Comput . 
zzeh, M. , Nassif, A.B. , Minku, L.L. , 2015b. An empirical evaluation of ensemble

adjustment methods for analogy-based effort estimation. J. Syst. Softw. 103,
36–52 . 

ardsiri, V.K. , Jawawi, D.N.A. , Hashim, S.Z.M. , Khatibi, E. , 2014. A flexible method to

estimate the software development effort based on the classification of projects
and localization of comparisons. Empir. Softw. Eng. 19, 857–884 . 

orandag, E. , Yucalar, F. , Erdogan, S.Z. , 2016. A case study for the software size es-
timation through MK II FPA and FP methods. Int. J. Comput. Appl. Technol. 53,

309–314 . 
raz, M.R. , Vergilio, S.R. , 2006. Software effort estimation based on use cases, com-

puter software and applications conference, 2006. In: COMPSAC’06. 30th Annual

International. IEEE, pp. 221–228 . 
lark, B.K. , 1996. Cost modeling process maturity - COCOMO 2.0. In: 1996 IEEE

Aerospace Applications Conference. IEEE, pp. 347–360 . 
iev, S. , 2006. Use cases modeling and software estimation. ACM SIGSOFT Softw.

Eng. Notes 31, 1 . 
hristensen, R. , 2006. Log-Linear Models and Logistic Regression. Springer Science

& Business Media . 

dri, A . , Amazal, F.A . , Abran, A . , 2015. Analogy-based software development effort
estimation: a systematic mapping and review. Inf. Softw. Technol. 58, 206–230 . 

orgensen, M. , 2004. Regression models of software development effort estimation
accuracy and bias. Empir. Softw. Eng. 9, 297–314 . 

urkiewicz, J. , Nawrocki, J. , Ochodek, M. , Glowacki, T. , 2015. HAZOP-based identifica-
tion of events in use cases an empirical study. Empir Softw Eng 20, 82–109 . 

arner, G., 1993. Metrics for objectory’, December 1993, Diploma, University of
Linkoping, Sweden, No. LiTH-IDA-Ex-9344 21. 

azemifard, M. , Zaeri, A. , Ghasem-Aghaee, N. , Nematbakhsh, M.A. , Mardukhi, F. ,

2011. Fuzzy emotional COCOMO II software cost estimation (FECSCE) using mul-
ti-agent systems. Appl. Soft Comput. 11, 2260–2270 . 

ópez-Martín, C. , 2015. Predictive accuracy comparison between neural networks
and statistical regression for development effort of software projects. Appl. Soft

Comput. 27, 434–449 . 
analif, E. , Capretz, L.F. , Ho, D. , 2014. Fuzzy rules for risk assessment and con-

tingency estimation within COCOMO software project planning model. In:

Masegosa, A.D. (Ed.), Advances in Computational Intelligence Robotics. Informa-
tion Science Reference, Hershey, PA, pp. 88–111 . 
ohagheghi, P. , Anda, B. , Conradi, R. , 2005. Effort estimation of use cases for incre-
mental large-scale software development. In: 27th International Conference on

Software Engineering. IEEE, pp. 303–311 . 
ontgomery, D.C. , Peck, E.A. , Vining, G.G. , 2012. Introduction to Linear Regression

Analysis, 5th ed. Wiley, Hoboken, NJ . 
ageswaran, S. , 2001. Test effort estimation using use case points. Quality Week

1–6 . 
assif, A. , Azzeh, M. , Capretz, L. , Ho, D. , 2015. Neural network models for software

development effort estimation: a comparative study. Neural Comput. Appl 1–13 .

assif, A.B. , Capretz, L.F. , Ho, D. , 2011. Estimating software effort based on use case
point model using sugeno fuzzy inference system. In: 23rd IEEE International

Conference on Tools with Artificial Intelligence. IEEE, pp. 393–398 . 
assif, A.B. , Capretz, L.F. , Ho, D. , 2012. Estimating software effort using an ANN

model based on use case points. In: 11th International Conference on Machine
Learning and Applications. IEEE, pp. 42–47 . 

assif, A.B. , Ho, D. , Capretz, L.F. , 2013. Towards an early software estimation us-

ing log-linear regression and a multilayer perceptron model. J. Syst. Softw. 86,
144–160 . 

chodek, M. , Alchimowicz, B. , Jurkiewicz, J. , Nawrocki, J. , 2011a. Improving the relia-
bility of transaction identification in use cases. Inf. Softw. Technol. 53, 885–897 .

chodek, M. , Nawrocki, J. , Kwarciak, K. , 2011b. Simplifying effort estimation based
on use case points. Inf. Softw. Technol. 53, 200–213 . 

platkova, Z.K. , Senkerik, R. , Zelinka, I. , Pluhacek, M. , 2013. Analytic programming

in the task of evolutionary synthesis of a controller for high order oscillations
stabilization of discrete chaotic systems. Comput. Math. Appl. 66, 177–189 . 

obiolo, G. , Badano, C. , Orosco, R. , 2009. Transactions and paths: two use case based
metrics which improve the early effort estimation. In: 3rd International Sympo-

sium on Empirical Software Engineering and Measurement. IEEE, pp. 422–425 . 
obiolo, G. , Orosco, R. , 2008. Employing use cases to early estimate effort with sim-

pler metrics. Innov. Syst. Softw. Eng. 4, 31–43 . 

osa, W. , Jones, C. , McGarry, J. , Madachy, R. , Dean, J. , Boehm, B. , Clark, B. , 2014. Im-
proved Method for Predicting Software Effort and Schedule. International Cost

Estimating and Analysis Association (ICEAA) . 
enkerik, R. , Oplatkova, Z.K. , Pluhacek, M. , Zelinka, I. , 2014. Analytic programming-a

new tool for synthesis of controller for discrete chaotic lozi map. Comput. Probl.
Eng. 307, 137–151 . 

hepperd, M. , MacDonell, S. , 2012. Evaluating prediction systems in software project

estimation. Inf. Softw. Technol. 54, 820–827 . 
ilhavy, R. , Silhavy, P. , Prokopova, Z. , 2015a. Algorithmic optimisation method for

improving use case points estimation. PLoS ONE 10, e0141887 . 
ilhavy, R. , Silhavy, P. , Prokopova, Z. , 2015b. Applied Least Square Regression in Use

Case Estimation Precision Tuning, Software Engineering in Intelligent Systems.
Springer International Publishing, pp. 11–17 . 

ubriadi, A. , Ningrum, P. , 2014. Critical review of the effort rate value in use case

point method for estimating software development effort. J. Theror. Appl. Inf.
Technol. 59, 735–744 . 

adayon, N. , 2004. Adaptive dynamic COCOMO II in cost estimation. In: Serp’04:
Proceedings of the International Conference on Software Engineering Research

and Practice, 1 and 2, pp. 559–563 . 
rbanek, T. , Prokopova, Z. , Silhavy, R. , 2015a. On the value of parameters of use

case points method. In: Silhavy, R., Senkerik, R., Oplatkova, Z.K., Prokopova, Z.,
Silhavy, P. (Eds.), Artificial Intelligence Perspectives and Applications. Springer

International Publishing, Cham, pp. 309–319 . 

rbanek, T. , Prokopova, Z. , Silhavy, R. , Vesela, V. , 2015b. Prediction accuracy mea-
surements as a fitness function for software effort estimation. Springerplus 4,

17 . 
ang, F. , Yang, X. , Zhu, X. , Chen, L. , 2009. Extended use case points method for

software cost estimation. In: International Conference on Computational Intelli-
gence and Software Engineering. IEEE, pp. 1–5 . 

ang, D. , Wan, Y.X. , Tang, Z.A. , Wu, S.J. , He, M. , Li, M.S. , 2006. COCOMO-U: an exten-

sion of COCOMO II for cost estimation with uncertainty. Softw. Process Change
3966, 132–141 . 

http://dx.doi.org/10.1016/j.jss.2016.11.029
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30231-X/sbref0041


14 R. Silhavy et al. / The Journal of Systems and Software 125 (2017) 1–14 

6), and Ph.D. (20 09) in Engineering Informatics from the Faculty of Applied Informatics, 
ter and Communication Systems Department. His Ph.D. research was on The Verification 

erests are empirical software engineering, software size estimation, effort estimaion and 

), and Ph.D. (2009) in Engineering Informatics from the Faculty of Applied Informatics, 

puter and Communication Systems Department. His Ph.D. research was on Electronic 
terests are data mining, database systems and web-based services. 

uated from the Slovak Technical University in 1988, with a Master’s degree in Automatic 

om the same university. She worked as an Assistant at the Slovak Technical University 
systems in the Datalock business firm. From 1995 to 20 0 0, she worked as a Lecturer at 

 Zlin, in the Faculty of Applied Informatics. She presently holds the position of Associate 
rch activities include programming and applications of database systems, mathematical 
Radek Silhavy was born in Vsetin in 1980. He received a B.Sc. (20 04), M.Sc. (20 0
Tomas Bata University in Zlin. He is a Senior Lecturer and Researcher in the Compu

of the Distributed Schema for the Electronic Voting System. His major research int
system engineering. 

Petr Silhavy was born in Vsetin in 1980. He received a B.Sc. (2004), M.Sc. (2006

Tomas Bata University in Zlin. He is a Senior Lecturer and Researcher in the Com
Communication and Services in Medical Information Systems. His major research in

Zdenka Prokopova was born in Rimavska Sobota, Slovak Republic in 1965. She grad

Control Theory. She received her Technical Cybernetics Doctoral degree in 1993 fr
from 1988 to 1993. During 1993–1995, she worked as a programmer of database 

Brno University of Technology. Since 2001, she has been at Tomas Bata University in
Professor at the Department of Computer and Communication Systems. Her resea

modelling, computer simulation and the control of technological systems. 


	Analysis and selection of a regression model for the Use Case Points method using a stepwise approach
	1 Introduction
	1.1 Related work

	2 Problem statement
	2.1 Research questions
	2.2 Evaluation criteria

	3 Methods used
	3.1 Use Case Points
	3.2 Linear regression models

	4 Experiment design
	5 Experiment evaluation
	5.1 Project datasets
	5.2 Analysis of UCP variables
	5.3 Regression model evaluations
	5.4 Selecting the best performing model
	5.5 Best performing model and use case points comparison
	5.6 Threats to validity

	6 Conclusion
	 Supplementary materials
	 References


