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A critical infrastructure is a complicated system whose failure (in whole or in part) has a

significant impact on national interests, including security, the economy and basic human

needs. The system consists of relevant sectors, elements and their mutual linkages. In

order to study critical infrastructures, it is necessary to apply a systems approach based on

cross-sectoral evaluation and research into the linkages between the individual critical

infrastructure sectors. Specifically, it is necessary to describe the individual vertical and

horizontal levels of each critical infrastructure and the associated linkages. From this

point-of-view, a critical infrastructure is embedded within the broader context of emer-

gencies and enterprises, representing a compact and mutually-interconnected system.

This paper focuses on quantitatively assessing the impacts of critical infrastructure

failures. It presents a theory of synergistic linkages, their levels and the synergistic effects

due to the joint action of impacts, which increase the overall impact on the critical

infrastructure and on society. The concepts are formalized in the SYNEFIA methodology,

which is applied in a case study involving the critical infrastructure of the Czech Republic.

In particular, the methodology is applied to determine the synergistic effects of disruptions

to multiple sub-sectors of the Czech infrastructure.

& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Advanced societies require infrastructures [4] for their

smooth functioning as well as to enhance general welfare

and continued development. The purpose of critical infra-

structures is to effectively and rapidly distribute energy,

commodities and services to recipients (i.e., society) through
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its sectors, elements and linkages [3]. However, infrastruc-

tures all over the world are constantly being threatened by a

broad spectrum of interacting anthropogenic and natural

dangers [32]. An activated threat can cause a failure of a

component or function of an infrastructure. Admittedly, such

an event is not very likely, but its impact could be enormous

[17]. The level of unacceptable impacts depends on the
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severity of the failure, its cause (i.e., character of the threat)
and the criticality of the affected elements or sectors. Such
impacts are often expressed in terms of economic losses,
number of people affected, size of the affected region and
other factors that fall into three basic categories: (i) critical
proportion; (ii) critical time; and (iii) critical quality [11]. When
the threshold values of the impacts (i.e., sectoral and cross-
cutting criteria) are exceeded, the corresponding infrastruc-
ture sectors and their elements are deemed to be critical;
taken together, they constitute the critical infrastructure [10].

The importance of critical infrastructure protection was
first highlighted by the United States in 1995. Over the years,
critical infrastructure protection activities were initiated by
other countries – Canada in 1998 and the United Kingdom,
Sweden and Switzerland in 1999. Since the infamous attacks
of September 11, 2001, many European countries have
defined their critical infrastructure assets and launched
critical infrastructure protection efforts.

In the National Infrastructure Protection Plan of 2013 [31],
the U.S. Department of Homeland Security defined the critical
infrastructure as “systems and assets, whether physical or
virtual, so vital to the United States that the incapacity or
destruction of such systems and assets would have a debil-
itating impact on security, national economic security,
national public health or safety, or any combination of those
matters.” The Australian Government [1] defines critical
infrastructure as “those physical facilities, supply chains,
information technologies and communication networks
which, if destroyed, degraded or rendered unavailable for
an extended period, would significantly impact on the social
or economic wellbeing of the nation or affect Australia's
ability to conduct national defense and ensure national
security.”

At the European Union level, the term critical infrastruc-
ture is defined in two key documents. The first is the Green
Paper on the Programme of Critical Infrastructure Protection
[7], which was published in 2005 by the European Commis-
sion. The second is the Council Directive on the Identification
and Designation of European Critical Infrastructures and on
the Assessment of the Need to Increase Their Protection [10],
which was published as a follow-up to the Green Paper in
2008. The council directive defines critical infrastructure as
“an asset, system or part thereof located in Member States
which is essential for the maintenance of vital societal
functions, health, safety, security, economic or social well-
being of people, and the disruption or destruction of which
would have a significant impact in a Member State as a result
of the failure to maintain those functions.” The directive
leaves the responsibility for critical infrastructure protection
to national authorities.

Critical infrastructures are complex. In effect, critical
infrastructures and their dependencies form a system of
systems [20,25]. The overall critical infrastructure has an
obvious hierarchy, consisting of individual sectors such as
energy and transportation, along with their linkages [25]. The
sectors consist of elements that are considered to be a basic
part of the system. Currently, it is possible to distinguish two
basic methodological approaches for the risk assessment of
critical infrastructures. The first is the sectoral approach,
where each sector is assessed separately with its own risk
assessment methods. The second is the systems approach,
where individual critical infrastructure sectors are deemed to
be interconnected networks.

Research in the critical infrastructure protection field [8,9]
should improve the fidelity and precision of simulation tools
for modeling the impact of critical infrastructure malfunc-
tions [14]. The research should also be extended to the
synergies and synergistic effects of infrastructure failures.
Dynamic functional modeling [29] is a promising approach
that can consider synergistic effects. However, it is currently
used to simulate the systemic impacts on critical infrastruc-
tures (i.e., basic impacts without synergies) and does not
support the modeling and simulation of synergistic effects.
2. National critical infrastructure system

The hierarchic arrangement of a national critical infrastruc-
ture system has three levels that constitute a vertical
classification:

� System level.
� Sector level.
� Element level.

The system level is the basic classification of a critical
infrastructure according to its functions. This level com-
prises: (i) the technical infrastructure and (ii) the socioeco-
nomic infrastructure. For example, the technical
infrastructure in the Czech Republic includes the energy,
transport, water supply, food processing, agriculture, indus-
try, and communications and information systems sectors.
The socioeconomic infrastructure in the Czech Republic
includes health care, financial and currency markets, emer-
gency services and public administration. There are signifi-
cant dependencies between the two types of critical
infrastructure. For instance, all the socioeconomic sectors
require the commodities produced by the technical infra-
structure sectors. The technical sectors depend on the socio-
economic sectors, especially in crisis situations.

The sector level is made up of the individual sectors of a
critical infrastructure (e.g., energy and water supply). This
level represents the classification of actual sectors of the
critical infrastructure and their linkages.

The individual components that form the element level
are the basic building blocks of the system hierarchy of the
sectors. The elements are relevant to the system due to the
impacts produced by their failure. The elements can be
classified into four categories based on their potential
impacts [26]. Table 1 provides a detailed description of the
classification.

In addition to the vertical categorization, it is also possible
to view a critical infrastructure system with respect to its
horizontal linkages. This creates a context with the surround-
ing processes and operators. The linkages define what impacts
a critical infrastructure and what can be affected in the event of
a failure. The correlation of the cause–failure–impact scenario



Table 1 – Classification of critical infrastructure system elements by impact.

Categorization of the critical infrastructure system
elements

Description

Critical infrastructure category III elements (elements at
the local level)

Disturbances of these elements impact social life in a municipality or municipal
district. The disturbances lead to interruptions in the delivery of services (e.g.,
provision of food, electric power and potable water). A Level III Emergency (lowest
level) is declared. The non-functional elements in this category are replaced by
adopting special organizational measures or temporary solutions provided by
emergency services (it is still possible to supply food, backup electric power and
potable water).

Critical infrastructure category II elements (elements at
the regional level)

Disturbances of these elements impact social life in several municipalities,
municipal districts or an entire region. When the elements of this category are
disrupted, the problem is solved by the infrastructure operators in cooperation with
emergency services at the regional level. A Level II Emergency is declared and
regulatory measures are adopted. Humanitarian aid is provided from national
resources.

Critical infrastructure category I elements (elements at
the national level)

Disturbances of these elements impact national security and the provision of
essentials to citizens in two or more regions, or in an entire country. When the
elements in this category are disrupted, the problem is solved by the infrastructure
operators (based on approved crisis preparedness and emergency plans) in close
cooperation with the ministries and central administration authorities responsible
for the regions. The elements of this category are practically irreplaceable and their
disruptions may only be resolved provisionally or through the use of resources
secured in advance (e.g., water and fuel). A Level I Emergency is declared and
regulatory measures are adopted. International humanitarian aid may be requested.

Special critical infrastructure elements category
(elements at the international level)

Disturbances of these elements impact the national security of two or more states.
A Level I Emergency is declared. Extensive regulatory measures are adopted and
there is close international cooperation, coordination and organization of
humanitarian aid (e.g., by the Emergency Response Coordination Centre [6] or the
United Nations Office for the Coordination of Humanitarian Affairs [30]).

Fig. 1 – Correlation between the intensity of cause, failure and impact in a critical infrastructure system.
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shown in Fig. 1 was identified on the basis of these linkages.

The failure of critical infrastructure functions is caused by

stimuli that have various intensity levels according to their

character, scope and duration (i.e., Levels I–III emergencies).

The impacts may have different levels based on the intensity

levels of the causes and the resistance levels (protection) of the

individual elements of a critical infrastructure system.
The easiest way of identifying critical infrastructure elements

is to use a bottom-up approach. In this approach, critical elements

in one sector are gradually identified, starting with the elements

at the lowest level, followed by selections of critical elements at

progressively higher levels. However, this purely deterministic

approach is no longer acceptable due to the strong cohesion of

individual critical infrastructure sectors and, especially, the
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linkages of their elements [24,25]. A better approach is to assess

the joint causes and dependencies of the individual critical

infrastructure sectors (not just each element individually) and

their actual impacts. Researchers have devoted considerable effort

to modeling and simulating the overall impact [21,33], not only on

the interests protected by the state (i.e., security, economy and

basic human needs [10]), but also on the elements of individual

sectors (e.g., service loss, economic loss and reputation loss).
3. Critical infrastructure system linkages

A critical infrastructure system and its organization must be

viewed comprehensively, with the individual elements and
Fig. 2 – Types of linkages in a critical infrastructure system.

Fig. 3 – Grid organization of linkages
sectors interlinked via various types of linkages (e.g., relations

and connections). The basic structure of the linkages arises from

their character. A one-way linkage represents an influence or

dependency; a two-way linkage expresses an interdependency

(see Fig. 2). Rinaldi et al. [25] have categorized interdependencies

as physical, cyber, geographic and logical in nature, and they

argue that interdependencies increase the risk of disturbances

and failures in multiple interconnected infrastructures. Pederson

et al. [24] have further categorized infrastructure linkages, provid-

ing lower levels of detail. Interested readers are referred

to [13,15,19,27] for discussions of critical infrastructure

interdependencies.
All the types of linkages discussed above exist in a critical

infrastructure system – at the vertical level (area-sector-

element) and at the horizontal level (cause-failure-impact).

As shown in Fig. 3, the linkages occur at the following levels:

� Between elements of critical infrastructure sectors (i.e.,
cross-sectoral linkages).

� Between elements within a critical infrastructure sector
(i.e., sectoral linkages).

� Between elements of a critical infrastructure and society.

As with any network, a critical infrastructure system has

elements with different levels of importance (criticality). The

damage, disruption or failure of an important (critical) element

has a more or less serious impact based on the number and

character of linkages that define its level of effect, dependence or

interdependence. A failure may not only cause a serious disrup-

tion of a sector or an entire critical infrastructure system, but it
in a critical infrastructure system.



Fig. 4 – Aspects that create the character of impacts in a critical infrastructure system.
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can also impact national interests such as security, the economy

and basic human needs [10].
4. Impacts of critical infrastructure system
failures

The prediction and subsequent minimization of the impacts

of failures of individual elements, sectors and entire critical

infrastructures are important components of critical infra-

structure protection research. Prediction involves an analysis

of all the available information about the nature of the

impacts, which depend on several external and internal

factors of the system of interest. The external factors include

the resilience of society and the character, scope and dura-

tion of the event. The internal factors include the type and

scope of the system failure inside the system; interested

readers are referred to Rinaldi et al. [25] for details about

system linkages and system resilience. The impacts are

characterized by the scope, structure, intensity, duration

and effects of the adverse event (see Fig. 4).
A critical infrastructure system failure produces two types

of impacts. The first type constitutes the negative impacts

within the critical infrastructure system when the failure of

one infrastructure sector causes a failure of another sector or

its elements (i.e., cascading effect [25]). The second type

corresponds to the negative impacts outside the system,
specifically, on society, including national interests such as
security, the economy and basic human needs [10].

In both cases, the impacts may be classified as direct or
indirect from the structural point-of-view. The immediate
effect of the disturbed sector on another sector or directly on
society is considered to be a direct or primary action. In
contrast, the indirect impacts occur implicitly through a
sector of a critical infrastructure, regardless of whether or
not it affects another sector or society as a whole. The
indirect impacts may be secondary (through one sector) or
multi-structural (through several sectors).

Other important characteristics of an impact are its
intensity and duration. The impact intensity depends on
the scope of a sector failure (i.e., how it affects other sectors
and the levels of sector interdependencies. When the lin-
kages are weak, the impact intensity is low and the impact on
other sectors is only partial. However, when the linkages are
strong, the impact intensity is high and the impact on other
sectors can be devastating (or absolute). The impact duration
is obviously an important variable; the duration may be
short-term, medium-term or long-term. Ouyang et al. [22]
discuss the typical time progression of a critical infrastruc-
ture disruption, which is divided into: (i) a prevention period;
(ii) a propagation period; and (iii) a damage, assessment and
restoration period.

Another important characteristic is impact effect. If the
impact of a disrupted sector only influences another sector or
society in one way, then the impact effect is referred to as a
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single impact. However, if the impact effects are multi-way

(e.g., a combination of direct and indirect impacts) and occur

in real-time, then the impact effects are synergistic in nature.
The term synergy comes from the Greek syn-ergazomai,

which means cooperation or joint action. Historically, the

term has been used to describe the cooperation of several

people and the theological notion of cooperation of man with

God (synergism). Dictionary.com [5] describes synergy as

“the interaction of elements that, when combined, produce a

total effect that is greater than the sum of the individual

elements, contributions, etc.” The online dictionary also

defines synergy in physiology and medicine as a cooperative

action of two or more muscles, nerves, or the like. In the

areas of biochemistry and pharmacology, synergy is a coop-

erative action of two or more stimuli or drugs. In business

management, synergism is the potential ability of individual

organizations or groups to be more successful or productive

as a result of a merger.
Fig. 5 – Synergistic effects in a c
The term synergy is used in various forms in many areas

of human activity, but it has rarely been used in connection

with the critical infrastructure. The first mention of synergy

in the critical infrastructure domain was in 2001 [25], but only

in the context of linkages in the economic infrastructure.

Nevertheless, a classic example of synergistic effects in the

critical infrastructure domain as emerged – the Fukushima

Daiichi nuclear disaster of March 2011. The earthquake,

tsunami and nuclear cooling system failure induced massive

synergistic effects that may well continue to impact Japanese

society for decades.
Based on the discussion above, synergies potentially exist

at all three horizontal levels of a critical infrastructure

system:

� Synergy of emergencies (Level I synergy): This occurs due
to the interactions of two and more emergencies on an

element or sector of a critical infrastructure.
ritical infrastructure system.



Fig. 6 – Course of the impact of failures of two critical infrastructure sectors with potential synergistic effects.
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� Synergy of elements or sectors (Level II synergy): This
occurs due to the interactions of the impacts of failures
of two or more critical infrastructure elements or sectors
on a third critical infrastructure element or sector.

� Synergy of societal impacts (Level III synergy): This occurs
as a result of the combined interactions of the impacts of
failures of critical infrastructure elements or sectors with
the impacts of emergencies on society. This creates an
imaginary “ring of synergy” of all the current impacts on
society.

Fig. 5 shows the individual synergistic effects that can
occur in a critical infrastructure system. The synergistic
effects are created by the synergy of impacts and the
aggregated effects of the interactions of impacts. This situa-
tion is symbolically expressed as 2þ 244 or 2þ 2¼ 5. Busi-
nessDictionary.com [2] defines synergistic effect as “an
effect arising between two or more agents, entities, factors
or substances that produces an effect greater than the sum of
their individual effects.”

Fig. 6 shows a simplified example of the synergistic effects
arising from concurrent failures of two critical infrastructure
sectors. Nieuwenhuijs et al. [19] have specified several
functions to express the impacts between times t1 and t2 as
well as between times t3 and t4. In particular, Fig. 6 shows the
impacts of the failures of unspecified energy sector elements
and potable water sector elements. The failure of the energy
sector has a social impact CE that occurs at time t0 due to the
effect of an emergency (e.g., storm). The failure of the potable
water sector is the result of a cut-back at time t1, which
causes the social impact to increase to CEþW . The maximum
impact caused by the non-functioning of the two sectors
occurs at time t2.

During the time interval [t1,t3], a synergy of impacts exists
(i.e., Level III synergy) of the energy and potable water sectors
on society, which may lead to synergistic effects that increase
the overall impact to CEþWþS. When the energy sector is
restored at time t3, the synergies and synergistic effects
cease. The restoration of the potable water sector continues
until time t4. At the same time, the synergistic effects and,
thus, the overall societal impact, may increase or decrease
due to the concurrent effects of the non-functioning of two
and more elements/sectors in the critical infrastructure.

The opposite of a synergistic effect is an antagonistic
effect, which is symbolically expressed as 2þ 2o4 or
2þ 2¼ 3. In physiology and medicine, this effect is described
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as “the opposing action of substances, like drugs, that – when
taken together – decrease the effectiveness of at least one of
them” [5]. In the case of a major event or disaster, the societal
and psychological impacts may cause cascading impacts in
the critical infrastructure, and common cause disruptions
may be relegated to minor importance.

Prediction of the synergistic effects in a critical infrastruc-
ture system is much more difficult than predicting impacts.
While the variables involved in predicting single impacts are
relatively obvious, the variables that determine the synergis-
tic effects vary considerably and their specification is limited
by the number and intensity of the emergencies, number of
affected critical infrastructure sectors, resilience of the
affected critical infrastructure sectors and societal vulner-
abilities. Interested readers are referred to [18] for more
information about this subject.
5. Synergistic effect impact quantification

This section discusses the application of the SYNEFIA meth-
odology to quantify the synergistic impacts arising from a
critical infrastructure failure. The theoretical basis of the
methodology is the notion of symmetric operational impacts
– specifically, that the degree of an impact on society is
directly proportional to the significance of a sector, sub-sector
or element of the critical infrastructure system.

This section applies the SYNEFIA methodology at the sub-
sector level. In this case, the sub-sector significance is directly
proportional to the activity and passivity of the sub-sector in
the critical infrastructure system.

The SYNEFIA methodology has five phases:

1. Critical infrastructure sub-sector identification.
2. Critical infrastructure sub-sector correlation analysis.
3. Critical infrastructure sub-sector significance determination.
4. Impact evaluation.
5. Synergistic effect determination.

5.1. Critical infrastructure sub-sector identification

The identification phase creates an inventory of all the
critical infrastructure sub-sectors that must be evaluated in
Table 2 – Correlation results.

Index

1 2 3
Index Critical infrastructure sub-

sectors Si

Electricity Natural
gas

Petrole
produc

1 Electricity x 1 1
2 Natural gas 1 x 1
3 Petroleum and petroleum

products
1 1 x

4 Water management 1 0 0
Σ Passivity of sub-sector Pi 3 2 2

x: Sub-sector failure can be caused internally.
1: Sub-sector Si can cause the failure of sub-sector Sj.
0: Sub-sector Si cannot cause the failure of sub-sector Sj.
the geographical region of interest (Fig. 1). This phase also
determines the maximum number of sub-sectors to be
considered in the geographical region of interest. The inven-
tory is specific to each national critical infrastructure system.
Indeed, the definition and designation of critical infrastruc-
ture sectors differs considerably for different countries [28].
For example, the Annex to the European Council Directive of
2008 [10] defines sub-sectors only for the energy and trans-
port sectors. Consequently, an inventory of sub-sectors may
have to be created for a geographical region, country or group
of countries.

5.2. Critical infrastructure sub-sector correlation analysis

The second phase evaluates the interactions between the
sub-sectors of a critical infrastructure system. This research
has employed the KARS method [23], which is primarily used
for quantitative risk analysis based on risk correlation.

The first step is to determine the correlations of the sub-
sectors. The correlations are evaluated using pairwise com-
parisons that compare the importance of the two selected
sub-sectors. The more important sub-sector from each pair is
selected. Table 2 shows the correlation results.

The second step is to determine the activities and passiv-
ities that are latent in each critical infrastructure sub-sector.
The activity coefficient KASi of sub-sector Si expresses the full
potential of sub-sector Si to cause failures of other sub-
sectors. It is computed as:

KASi ¼
Pn

i ¼ 1 Ai

n�1
ð1Þ

where Ai is the sum of the activity of sub-sector Si and n is the
number of sub-sectors.

The passivity coefficient KPSi of sub-sector Si expresses the
potential that the other sub-sectors can cause a failure of
sub-sector Si. It is computed as:

KPSi ¼
Pn

i ¼ 1 Pi
n�1

ð2Þ

where Pi is the sum of the passivity of sub-sector Si and n is
the number of sub-sectors.

The passivity coefficients of the electricity and natural gas
sub-sectors are determined to illustrate the computations.
Using the data in Table 2 and applying Eq. (2), the passivity
4 Σ
um and petroleum
ts

Water
management

Activity of sub-sector
Ai

0 2
0 2
0 2

x 1
0 x



Fig. 7 – Graphical representation of sub-sector significance.
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coefficient of the electricity sub-sector is equal to 1 (¼3/3) and
the passivity of the natural gas sub-sector is equal to 0.67
(¼2/3).

5.3. Critical infrastructure sub-sector significance
determination

The significance of critical infrastructure sub-sectors is deter-
mined in two steps. In the first step, the quantification results
are obtained by plotting each sub-sector on a graph based on
its activity and passivity coefficients as shown in Fig. 7. The
graph is then divided into four segments to classify the sub-
sectors according to their significance. Segment I contains
sub-sectors with the highest levels of influence and depen-
dence (primary significance). Segment II contains sub-sectors
with the highest level of dependence (secondary signifi-
cance). Segment III contains sub-sectors with the highest
influence (secondary significance). Segment IV contains sub-
sectors with the lowest levels of influence and dependence
(tertiary significance).

In order to divide the graph into four segments, it is
necessary to specify the lines P1 and P2. The parameters of
the two lines are set using the Pareto Principle [16], which
assumes that 80% of the sub-sectors are in Segment I (most
significant critical infrastructure sub-sectors). The parameter
P1 of line P1 is computed as:

P1 ¼ KA max�
ðKA max�KA minÞ

100
� 80 ð3Þ

where KA max is the maximum value of the activity coefficient
and KA min is the minimum value of the activity coefficient.

Similarly, the parameter P2 of the line P2 is computed as:

P2 ¼ KP max�
ðKP max�KP minÞ

100
� 80 ð4Þ

where KP max is the maximum value of the passivity coeffi-
cient and KP min is the minimum value of the passivity
coefficient.

In the second step, the significance of each sub-sector is
determined mathematically as the simple sum of the sub-
sector activity and passivity in the critical infrastructure
system. Thus, sub-sectors with the higher composite levels
of influence and dependence are considered to be more
significant. The significance Ri of sub-sector Si is given by:

Ri ¼ KASi þ KPSi ð5Þ

where KASi is the activity coefficient of sub-sector Si and KPSi
is the passivity coefficient of sub-sector Si.
5.4. Impact evaluation

The fourth phase determines the impact of each sub-sector.
The impact is computed as the ratio of the sub-sector failure
impact to the overall critical infrastructure system failure
impact. Note that, in this phase and in the next phase, the
results are expressed as percentages. Thus, the impact
(percentage) Ci of sub-sector Si on society is computed as:

Ci ¼
RiPn

i ¼ 1 Ri
� 100 ð6Þ

where Ri is the significance of sub-sector Si and n is the
number of sub-sectors.
5.5. Synergistic effect determination

The fifth and final phase of the SYNEFIA methodology is to
determine the synergistic effects. In particular, the synergis-
tic effects due to cascading failures of two or more sub-
sectors are computed. The synergistic effects can be viewed
as arising from the lack of resilience of a critical infrastruc-
ture with respect to the impact of an incident, causing
accumulative effects that increase the impact on the system
and society.

Fig. 8 presents a graphical representation of the synergistic
effects due to disruptions to three sub-sectors. In the figure,
an incident X causes a failure in sub-sector S1 (e.g., electri-
city). The failure impacts society Y as well as other sub-
sectors (e.g., S2). The impacts are represented by C1.

The failure in sub-sector S1 causes a cascading effect at the
same time due to the failure of sub-sector S2 (e.g.,



Fig. 8 – Graphical representation of the synergistic effects of an emergency on society through the cascading of disruptions to
three critical infrastructure sub-sectors.

Table 3 – Critical infrastructure sub-sectors in the Czech Republic.

Index Sub-sector Index Sub-sector Index Sub-sector

1 Electricity 10 Rail transport 19 Cyber security
2 Natural gas 11 Air transport 20 Financial markets and currency
3 Petroleum and petroleum

products
12 Inland water transport 21 Joint rescue system

4 Water management 13 Technological elements of fixed electronic
communications networks

22 Radiation monitoring

5 Crop production 14 Technological elements of mobile electronic
communications networks

23 Forecasting, warning and
warning services

6 Livestock 15 Technological network elements for radio and
television broadcasting

24 Public finance

7 Food production 16 Technological elements for satellite
communications

25 Social protection and
employment

8 Healthcare 17 Technological elements for postal services 26 Other government
9 Road transport 18 Technological elements of information systems 27 Intelligence services
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information and communications systems). The impact of

the failure in sub-sector S2 on society Y is expressed by C2.
The synergistic effect level C2;1 is caused by the simulta-

neous failure of sub-sectors S1 and S2, which occurs due to

the failure of sub-sector S1. The synergistic effect level C3;2 is

caused by the simultaneous failure of sub-sectors S2 and S3
(e.g., road transport), which occurs due to the failure of sub-

sector S2. The synergistic effect on society caused by the

failures of all the affected sub-sectors is computed as the sum

of all the sub-sectoral synergistic effects.
The synergistic effects are determined based on the

assumption that the impact of the sub-sector failure on

society is proportional to the impacts of the sub-sector failure

on other critical infrastructure sub-sectors that are connected

to it through their mutual dependencies (see Fig. 2). For

example, if the impact of an electricity sub-sector failure is

5%, then the sub-sector failure impact on other sub-sectors

(e.g., information and communications systems, and road

transport) would also be 5%. This value increases the impact
of the affected sub-sector on society, which expresses the
synergistic effect.

Based on the above discussion, the synergistic effect
(percentage) of the simultaneous impacts of sub-sectors Si
and Sj on society induced by sub-sector Si's influence on sub-
sector Sj is given by:

Cj;i ¼
Cj � Ci

100
ð7Þ

where Cj is the impact (percentage) of sub-sector Sj on society
and Ci is the impact (percentage) of sub-sector Si on society,
which is also the impact (percentage) of sub-sector Si on sub-
sector Sj. Having determined the synergistic impacts, the
overall impact (percentage) of a critical infrastructure system
on society CY is given by:

CY ¼
Xn

i ¼ 1

Ci þ
Xn

i ¼ 1

Cj;i ð8Þ

where Ci is the impact (percentage) of sub-sector Si on society
and Cj;i is the synergistic effect (percentage) of the simulta-



Table 4 – Correlation analysis of the first 12 critical infrastructure sub-sectors in the Czech Republic.

x: Sub-sector failure can be caused internally.
1: Sub-sector Si can cause the failure of sub-sector Sj.
0: Sub-sector Si cannot cause the failure of sub-sector Sj.
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neous impacts of sub-sectors Si and Sj on society induced by
sub-sector Si's influence on sub-sector Sj.
6. SYNEFIA methodology application

This section presents a case study involving the critical
infrastructure of the Czech Republic. The SYNEFIA methodol-
ogy is applied to determine the synergistic effects of disrup-
tions to multiple sub-sectors of the Czech infrastructure.

The Czech Republic's critical infrastructure currently com-
prises nine sectors and 27 sub-sectors [12]. As mentioned
above, the SYNEFIA methodology is applied only to the 27
sub-sectors.

The first phase of the methodology is to identify the
critical sub-sectors. Table 3 presents the results of this step.

The second phase focuses on sub-sector correlation ana-
lysis. The correlations are evaluated using pairwise compar-
isons of sub-sectors; the more important sub-sector of each
pair is selected. Table 4 presents the matrix created by the
pairwise comparisons of sub-sectors.

Table 5 presents the activity and passivity coefficients of the
27 sub-sectors. The activity coefficients KASi and passivity coeffi-
cients KPSi were calculated using Eqs. (1) and (2), respectively.

The third phase of the SYNEFIA methodology is to deter-
mine the significance of the individual sub-sectors. As
described in the previous section, the sub-sectors are plotted
on a graph based on their activity and passivity coefficients.
The graph is then divided into four segments using the two
lines with parameters P1 and P2 computed using Eqs. (3) and
(4), respectively. Fig. 9 shows the resulting graph with the
sub-sectors placed in four segments.

Based on the placement of the sub-sectors in the graph,
the following classification of sub-sectors is obtained based
on their significance:

� Primary sub-sectors (Segment I): 1, 2, 3, 4, 8, 9, 10, 19, 20, 21.
� Secondary sub-sectors (Segments II and III): 6, 7, 11, 12, 13,

14, 15, 16, 17, 18, 23, 24, 25, 26, 27.
� Tertiary sub-sectors (Segment IV): 5, 22.

The fourth phase is to determine the interrelated sub-
sectors that are affected by cascading consequences. These
sub-sectors are identified based on correlation analysis.
Table 4 shows the results. For reasons of space, only the
correlations of Sub-Sector 1 (electricity) with the primary
significant sub-sectors are assessed. Fig. 10 presents a visua-
lization of the correlations of the selected sub-sectors.

Next, the impact of each sub-sector on society is deter-
mined using Eq. (6). To accomplish this, the significance of
each sub-sector in the Czech Republic's critical infrastructure
has to be computed using Eq. (5). Table 6 presents the results
of the two computations.

The fifth and final phase of the SYNEFIA methodology is to
determine the impact of each sub-sector on society. Follow-
ing this, the synergistic effects of the failures of two or more
sub-sectors due to cascading consequences are computed. In
the case study, the synergistic effects are computed only for



Table 5 – Activity and passivity coefficients of the 27 critical infrastructure sub-
sectors in the Czech Republic.

Sub-sector
index

Activity coefficient
ðKASiÞ

Passivity coefficient
ðKPSiÞ

1 0.73 0.46
2 0.27 0.35
3 0.58 0.42
4 0.35 0.50
5 0.15 0.23
6 0.15 0.35
7 0.15 0.46
8 0.27 0.73
9 0.35 0.38

10 0.38 0.54
11 0.08 0.50
12 0.15 0.35
13 0.73 0.19
14 0.65 0.23
15 0.42 0.27
16 0.58 0.23
17 0.23 0.31
18 0.92 0.27
19 0.77 0.35
20 0.35 0.50
21 0.27 0.54
22 0.19 0.27
23 0.38 0.27
24 0.23 0.50
25 0.15 0.38
26 0.23 0.42
27 0.54 0.27

Fig. 9 – Graphical representation of sub-sector significance.
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the cascading failures of Sub-Sector 1 (electricity), Sub-Sector

8 (health) and other key sub-sectors shown in Fig. 11.
Eq. (7) is used to determine the synergistic effects and Eq.

(8) is used to compute the overall critical infrastructure

system failure impact on society. Table 7 presents the results.
This case study demonstrates the utility of the SYNEFIA

methodology in determining the synergistic effects of sub-
sector failures on the overall critical infrastructure of a nation

and on its society. In practice, however, instead of sustained

sub-sector failures, it is more likely to encounter partial disrup-

tions or failures of some elements of a critical infrastructure. In

such instances, before determining the synergistic effects, it is

necessary to understand and evaluate the percentage decreases

in the impacts Ci produced by the sub-sectors of interest.



Fig. 10 – Visualization of selected sub-sector correlations.

Table 6 – Sub-sector significance and impact levels.

Sub-sector
index

Sub-sector significance
ðRiÞ

Sub-sector impact
ðCiÞ (%)

1 1.19 5.8
2 0.62 3.0
3 1.00 4.9
4 0.85 4.1
5 0.38 1.8
6 0.50 2.4
7 0.61 3.0
8 1.00 4.9
9 0.73 3.6

10 0.92 4.5
11 0.58 2.8
12 0.50 2.4
13 0.92 4.5
14 0.88 4.3
15 0.69 3.4
16 0.81 3.9
17 0.54 2.6
18 1.19 5.8
19 1.12 5.5
20 0.85 4.1
21 0.81 3.9
22 0.46 2.2
23 0.65 3.2
24 0.73 3.6
25 0.53 2.6
26 0.65 3.2
27 0.81 3.9
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7. Conclusions

A critical infrastructure is a complex system of socially

significant elements, sub-sectors, sectors and their relation-

ships, all of which are essential to ensuring national security,

a thriving economy and the continued provision of basic
societal needs. Critical infrastructure systems are constantly

exposed to the negative effects of incidents and their failures

can have significant impacts on society. The impact effects

can be one-way (i.e., simple impacts) or multi-way (i.e.,

synergistic effects).
Quantifying the synergistic effects due to critical infrastruc-

ture failures is an extremely important component of critical



Fig. 11 – Cascading effects of failures of the electricity (1) and
health (8) sub-sectors.

Table 7 – Synergistic effects and overall impact of critical
infrastructure system failure on society.

Sub-
sector
index

Simple
impact on
society ðCiÞ
(%)

Synergistic
effect ðCj;iÞ (%)

Overall impact of
critical infrastructure
on society ðCYÞ (%)

1 5.8 –n 5.8
8 4.9 0.3 5.2
4 4.1 0.2 4.3
6 2.4 0.1 2.5
7 3.0 0.1 3.1
11 2.8 0.1 2.9
21 3.9 0.2 4.1
22 2.2 0.1 2.3
25 2.6 0.1 2.7
Total 31.7 1.2 32.9

n The synergistic effect of this sub-sector cannot be determined
because it is the boot sub-sector.
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infrastructure protection research because these effects can

have disastrous impacts on society. The SYNEFIA methodol-

ogy presented in this paper is designed to quantitatively

assess the synergistic effects of critical infrastructure failures.

The theoretical basis of the methodology is provided by the

notion of symmetrical operational impact, where the impact

on society is directly proportional to the significance of a

sector, sub-sector or element of a critical infrastructure sys-

tem. The methodology algorithm incorporates five phases:

(i) critical infrastructure sub-sector identification; (ii) critical

infrastructure sub-sector correlation analysis; (iii) critical infra-

structure sub-sector significance determination; (iv) impact

evaluation; and (v) synergistic effect determination. This

application of the methodology to the critical infrastructure

of the Czech Republic demonstrates its intuitive appeal and
utility. The quantitative determination of the synergistic
effects of disruptions to multiple sub-sectors of the Czech
infrastructure is of value to researchers, government officials
as well as critical infrastructure owners and operators.

The research on synergy and synergistic effect quantifica-
tion should stimulate the development of sophisticated
impact modeling and simulation techniques and tools. An
example is dynamic functional modeling, which is currently
used by the critical infrastructure protection community
primarily for assessing basic impacts – without any synergies.
The injection of the SYNEFIA methodology into current
techniques and tools will enhance the accuracy and fidelity
of impact assessments as well as the prioritization of critical
infrastructure protection, response and resilience efforts.
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