
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/11537

To cite this version :

Pierre GILORMINI, Julie DIANI - Some features of the PPR cohesive-zone model combined with
a linear unloading/reloading relationship - Engineering Fracture Mechanics - Vol. 173, p.32-40 -
2017

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/11537
mailto:archiveouverte@ensam.eu
https://artsetmetiers.fr/


Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech

researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://sam.ensam.eu
Handle ID: .http://hdl.handle.net/null

To cite this version :

Pierre GILORMINI, Julie DIANI - Some features of the PPR cohesive-zone model combined with
a linear unloading/reloading relationship - Engineering Fracture Mechanics - Vol. 173, p.32-40 -
2017

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

http://sam.ensam.eu
http://hdl.handle.net/null
mailto:archiveouverte@ensam.eu


Some features of the PPR cohesive-zone model combined
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Abstract

A loading/unloading/reloading process is applied to a cohesive zone where
the model proposed by Park, Paulino and Roesler in 2009 is combined with a
linear unloading/reloading relationship. The applied loading and unloading
use the same mixed mode and reloading is in mode I. When the ampli-
tude of preloading is varied, several features are evidenced: jumps of the
dissipated energy, reversibility maintained after a traction peak, nonlinear
traction variations during unloading, increasing traction during unloading,
finite traction after a fracture criterion has been fulfilled, different traction
values at the beginning of unloading and when dissipative reloading begins.
Moreover, the results depend strongly on the path followed during unload-
ing. Simple modifications of the model allow none of these questionable
features to appear.

Keywords: Cohesive zone, PPR model, Loading/unloading relationship

1. Introduction

In 2009, Park, Paulino and Roesler [1] proposed a potential-based cohesive-
zone model (CZM) that is very flexible and can cover a large scope of
applications. This model has been cited in many papers since then, and
programmes were made available to apply the Park-Paulino-Roesler (PPR)
model in two-dimensional [2] or three-dimensional [3] finite element simu-
lations. This is one of the noteworthy merits of the model, which should
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spread its use widely. The PPR model governs the traction-separation rela-
tion during loading of the CZM, and it has been shown recently by Park et
al. [4] that it does predict a negative tangent stiffness in the softening region
along certain loading paths where the CZM model of Camanho et al. [5]
that is implemented in the Abaqus code [6] does not, as well as the model
of McGarry et al. [7]. Nevertheless, a CZM is of little use when defined
for continuous loading only, since unloading and reloading of cohesive zones
are likely to happen when complex structures or microstructures containing
cohesive zones, like in [8], [9] and [10], for instance, are submitted to gen-
eral loading conditions. To prevent unphysical reversibility of the CZM, the
finite element implementations of [2] and [3] combine the PPR model with
a linear unloading/reloading relationship. More recently, Spring et al. [11]
noted that the latter formulation may induce undesired self-healing under
sinusoidal loading/unloading/reloading, and proposed a rightful thermody-
namically consistent formulation to prevent the unphysical response of the
model. The purpose of this paper is to further expand and explain the list of
questionable features (including energy jumps) that may appear when for-
mulation [2] or [3] is used, and to show that the reformulation [11] prevents
them. This is all the more important for formulations [2] and [3] are openly
available as Abaqus user element routines, and therefore they are already in
use and likely continue to spread among the community.

In what follows, the original PPR model is recalled first, with emphasis
put on some aspects that are important for the subsequent analysis. At-
tention is restricted to the PPR model of 2009, which does not include the
variant of Spring and Paulino [9], where friction was added, or the extrinsic
version of the model [1]. Moreover, this model is combined with a linear
unloading/reloading relationship, like in the programmes given in [2] and
[3]. For comparison purposes, the reformulation of Spring et al. [11] is
also recalled briefly. The rest of the paper focuses on the application of
the model and its reformulation to essentially a mixed-mode proportional
loading followed by proportional unloading and finally by mode I reloading.

2. The models considered

Consider a separation vector
−→
∆ in a cohesive zone, with a normal com-

ponent ∆n =
−→
∆ .−→n and a tangential component ∆t =

√

−→
∆ .

−→
∆ − ∆2

n. The
case of negative ∆n values, for which an elastic response applies, is not con-
sidered here to keep things simple, and therefore ∆n is assumed positive in
what follows. The original PPR model of [1] as well as its reformulation by
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Spring et al. [11] can be stated simply from the following functions
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if the mode II fracture energy φt is larger than the mode I fracture energy
φn, or
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otherwise (including the case where φt = φn). In addition to the fracture
energies φn and φt, six parameters are involved in the model: the normal and
tangential cohesive strengths (σmax and τmax), the shape exponents α ≥ 1
and β ≥ 1, and the ratios λn and λt between 0 and 1. From these eight
parameters, the following quantities can be deduced, which are used in (1)
and (2):

m =
α(α − 1)λ2

n

1 − αλ2
n

and n =
β(β − 1)λ2

t

1 − βλ2
t

(3)

as well as the normal and tangential separation lengths for mode I and mode
II fractures, respectively:

δn =
φn

σmax

αλn(1 − λn)
α−1

(

1 +
α

m

) (

1 + λn

α

m

)m−1

and

δt =
φt

τmax

βλt(1 − λt)
β−1

(

1 +
β

n

)(

1 + λt

β

n

)n−1

. (4)

With f ′

n(∆n) and f ′

t(∆t) denoting the first derivatives of fn(∆n) and
ft(∆t), respectively, the normal and tangent traction components write as
follows in the original PPR model:

Tn = f ′

n(∆n) ft(∆t) and Tt = f ′

t(∆t) fn(∆n) (5)

provided that no fracture has occurred yet and that no unloading or partial
reloading applies. The fracture conditions are given by the normal traction
Tn or the tangential traction Tt reaching a zero value for a non-zero sep-
aration. When one of these conditions applies, the corresponding traction
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component stays zero for further loadings. Therefore, four cases apply: no
fracture has occurred yet, the cohesive zone has lost its stiffness for normal
separation but not yet for tangential separation, it has lost its stiffness for
tangential separation but not yet for normal separation, or any load bearing
capacity is lost (both Tn and Tt have reached a zero value). According to
(5), the zero stiffness condition for normal separation is obtained when either
f ′

n(∆n) = 0 or ft(∆t) = 0, which occurs for either ∆n = δn or for ∆t = δt if
φt ≤ φn or for ∆t = δt if φt > φn, where δt is the single root of ft(δt) = 0
between 0 and δt [1]. Similarly, the zero stiffness condition for tangential
separation is obtained when either ∆t = δt or for ∆n = δn if φt > φn or
for ∆n = δn if φt ≤ φn, where δn is the single root of fn(δn) = 0 between 0
and δn. Accordingly, it may be noted that the load bearing capacity of the
cohesive zone for normal (resp. tangential) separation can be zeroed by a
purely tangential (resp. normal) loading of sufficient magnitude. It can also
be checked that the energy dissipated during a purely normal (resp. tangen-
tial) and continuously increasing separation is equal to φn (resp. φt) when
the fracture condition is met, which confirms the physical interpretation of
δn (resp. δt) as the separation length for mode I (resp. mode II) fracture.

In addition to lost load bearing capacities, the other cases where (5)
does not apply are unloading and partial reloading. In the implementations
given in [2] and [3], these cases are controlled by two state variables ∆max

n

and ∆max
t , which are the largest values of ∆n and ∆t reached so far, keeping

∆max
n = 0 (resp. ∆max

t = 0) as long as ∆n < δpeak
n (resp. ∆t < δpeak

t ),

with δpeak
n = λnδn (resp. δpeak

t = λtδt). Unloading corresponds to decreasing
∆n and ∆t, and partial reloading to increasing values lower than ∆max

n

and ∆max
t . Park and Paulino [2] proposed a nonlinear unloading/reloading

response that involves two additional shape parameters, which are not used
in their implementation actually. Therefore, a linear response to the origin
is considered here, which is considered frequently in CZMs ([12], [13], [8],
for instance) and is implemented in the programmes given in [2] and [3].
According to [2], the traction components are given by

Tn = f ′

n(∆
max
n ) ft(∆t)

∆n

∆max
n

and Tt = f ′

t(∆
max
t ) fn(∆n)

∆t

∆max
t

(6)

instead of (5) for unloading or partial reloading of the normal (resp. tan-

gential) component when ∆max
n ≥ δpeak

n (resp. ∆max
t ≥ δpeak

t ). When the
parameters of the next section are used, Figure 1 illustrates this response for
the normal traction as a straight dashed line, whereas the solid curve shows
the response that applies for a continuously increasing normal separation.
The maximum of this curve gives the interpretation of σmax as the peak
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Figure 1: Normal traction induced in mode I when separation increases continuously
(solid line) or during unloading/reloading after a separation of 0.04 mm has been applied
(dashed line). The parameter values of section 3 were used.

normal traction in mode I and of δpeak
n as the separation that leads to this

maximum. Note that (5) applies, and the curve is followed, during unload-
ing and reloading as long as the peak has not been passed: the response is
elastic, but not linear elastic, up to the softening region.

In short, the reformulation of [11] involves two modifications of the above
model. First, the state variables ∆max

n and ∆max
t are updated as soon as

∆n > 0 and ∆t > 0. Thus, δpeak
n and δpeak

t are not used, and the linear
unloading/reloading response applies even before any peak has been passed.
The second modification affects the traction components, which are given
by:

Tn = f ′

n(∆
max
n ) ft(∆

max
t )

∆n

∆max
n

and Tt = f ′

t(∆
max
t ) fn(∆

max
n )

∆t

∆max
t

(7)

where the ratio ∆n/∆max
n (resp. ∆t/∆max

t ) should be omitted if ∆max
n = 0

(resp. ∆max
t = 0). The latter condition is not included explicitly by Spring

et al. [11] but is necessary to avoid indeterminate 0/0 ratios. Equations (7)
apply for loading as well as for unloading/reloading, and the same fracture
conditions as for the original PPR model are used. These two modifications
are easily implemented in the Fortran programmes of [2] (for 2D finite ele-
ment simulations) and [3] (for 3D simulations). In these programmes, the
tangent matrix is also required, which involves the derivatives of Tn and Tt
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with respect to ∆n and ∆t, where it should be kept in mind that the deriva-
tive of ∆max

n (resp. ∆max
t ) is either 1 (if ∆n = ∆max

n , resp. ∆t = ∆max
t ) or

0 (if ∆n < ∆max
n , resp. ∆t < ∆max

t ). This has been applied in [11], where
the various cases that apply to the tangent matrix are detailed. However,
the tangent matrix is not required to perform the computations presented
below.

3. Application

The following set of parameters is used: φn = 100 J/m2, φt = 300 J/m2,
σmax = 2 MPa, τmax = 4 MPa, α = 3, β = 5, λn = 0.20, and λt = 0.25.
The λn and λt values are quite large in order to make some effects more
apparent, but no restriction is given a priori between the bounds 0 and 1 for
the applicability of the PPR model, even though λn and λt are frequently
taken small and related to numerical stability. By the way, λn and λt values
of 0.1 or 0.2 were used in the tests performed by Park et al. [4] and Spring et
al. [11]. More generally, one of the merits of the PPR model is its flexibility
due to the large possibilities offered by eight parameters, and it seems very
difficult to restrict their ranges so as to avoid all the features evidenced
below.

Since φt > φn, (1) applies, and the following useful values are obtained:
m = 0.273, n = 1.818, δn = 0.099 mm, δt = 0.171 mm, δt = 0.039 mm,
δpeak
n = 0.020 mm, and δpeak

t = 0.043 mm. The applied loading consists in
(i) a proportional mixed-mode loading where ∆t = ∆n up to a predefined ∆
value, (ii) a proportional mixed-mode unloading where ∆t = ∆n down to 0,
and (iii) a mode I reloading (keeping ∆t = 0) up to ∆n > δn. In addition,
proportional loading will be followed by various unloading paths in one case.

Figure 2 shows how the energy that is dissipated in the whole loading
process varies when the amplitude of the proportional loading increases, for
the original model as well as for the modified model. It may be noted first
that the two models give quite different energy values. In the range of pro-
portional loading amplitudes ∆ considered, the dissipated energy given by
the original model has a plateau at both low and high proportional loading
amplitudes, with the first plateau being equal to the mode I fracture energy
of φn = 100 J/m2, whereas the modified model exhibits one at large values
only, where both models coincide. Another evident feature of the original
model is a set of three discontinuities, at ∆ = δpeak

n = 0.020 mm, ∆ = δpeak
t =

0.043 mm, and ∆ = δn = 0.099 mm, whereas the modified model gives a
smooth continuous curve with a slope jump at ∆ = δt = 0.039 mm. These
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Figure 2: Energy that is dissipated in the process of proportional loading/unloading and
mode I reloading, when the amplitude of the proportional loading varies. Original model
(solid line) and modified model (dashed line).

differences are explained below by analyzing the variations of the traction
components during the loading process.

First, consider proportional loading amplitudes ∆ around δpeak
n = 0.020

mm. As expected, Figure 3a shows that during unloading both traction
values back up along the same curves that they followed during loading
when ∆n and ∆t reached 0.019 mm, below δpeak

n and δpeak
t , respectively. It

may be noted that the Tn unloading curve has a peak, and this consolidation
(increasing traction) during an unloading process (decreasing displacement)
may surprise. This is comparable to the traction fluctuations evidenced by
Park et al. [4], but here in the elastic region of the PPR model, whereas the
fluctuations noticed in [4] appeared in the softening regions of the models
of Camanho et al. [5] and McGarry et al. [7]. Recalling that an elastic,
reversible, behavior applies in pure mode I (Figure 1) or mode II up to the
peak but not beyond, the fact that a peak may be passed during mixed-
mode loading while reversibility is maintained lessens the physical meaning
of peaks in this model. As a consequence of reversibility during proportional
loading/unloading, the same solid curve as in Figure 1 is followed during
mode I reloading, and the final dissipated energy when ∆n = δn is equal
to φn = 100 J/m2. In contrast, both unloading curves follow straight lines
with the modified model (Figure 3b) because no peak value is used to start
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Figure 3: Variations of the traction components Tn (solid lines) and Tt (dashed lines)
during the process of proportional loading/unloading and mode I reloading, for a propor-
tional loading amplitude of ∆ = 0.019 mm, (a) and (b), or ∆ = 0.021 mm, (c) and (d).
Original model on the left, modified model on the right.

using the linear response. The reloading curve reaches the final proportional
loading point, where it kinks, and then decreases up to mode I fracture. As
can be observed directly from the area below the curves, the total dissipated
energy (80.5 J/m2) is lower than φn. Thus, Figure 3a and b explain why

the energy dissipated by the original model has a plateau up to ∆ = δpeak
n

and why the modified model gives lower values.
When proportional loading is applied up to ∆ = 0.021 mm, the δpeak

n

value is exceeded, and therefore the unloading curve for Tn obeys (6). Since
∆t varies during proportional unloading, (6) indicates that Tn does not
vary linearly, as can be observed in Figure 3c. This illustrates that the
unloading/reloading relationship used is linear for pure mode I (Figure 1,
for instance) or mode II, but not for mixed modes. Figure 3c also shows that
the energy that is dissipated during the proportional loading/proportional
unloading process jumps from 0 (Figure 3a) to a finite value (equal to the
surface between the loading/unloading curves for Tn in Figure 3c, since Tt
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is reversible) when the δpeak
n value is crossed. Such an energy discontinuity

is inherent to any CZM model that obeys a curved line in the reversible
range and an unloading straight line when irreversibility has appeared. In
the case of mode I, for instance, this energy jump can be visualized easily in
Figure 1 by shifting the end of the dashed line to the peak of the curve. As
can be observed in Figure 3c, mode I reloading adds a significant amount
of dissipated energy and the final value (98.9 J/m2) is close to the plateau,
which leads to a small energy jump in Figure 2. Note also that the kink
point of the curve for Tn during mode I reloading, which starts with a straight
segment, differs from the final proportional loading point. This difference
is not observed when the modified model is used (Figure 3d), where the
dissipated energy varies continuously (compare Figures 3b and d).

Consider now proportional loading amplitudes ∆ around δt = 0.039 mm.
Figure 4a, for ∆ = 0.038 mm, shows the same effects as Figure 3c, but en-
hanced significantly and with a peak for Tt being overpassed largely in a
reversible manner. The difference between the turning point at propor-
tional unloading and the kink point at reloading is very large, with the
former corresponding to a very low Tn value. Such large tractions reached
in mode I are quite unexpected after the condition for losing load bearing
capacity for normal separation has been almost reached. Moreover, Tn in-
creases significantly during unloading and follows a strongly nonlinear curve.
A similar feature can be observed for the Tt component in Figure 9b of [11]
during a sinusoidal loading history. None of these effects is observed with the
modified model (Figure 4b below and Figure 9c of [11]). The proportional
loading applied in Figure 4c is such that ∆n, which is 0.041 mm, exceeds
δt. Since this is a fracture condition for normal separation, zero Tn values
are obtained but ∆max

t is still zero because ∆t (0.038 mm) has not reached

δpeak
t (0.043 mm) yet. Consequently, (5) applies during unloading and Tn

takes positive values that are very questionable after load bearing capacity
for normal separation has been lost in principle. For the same reason, quite
large positive Tn values are also obtained during mode I reloading, as shown
in Figure 4c. Of course, this very special feature is obtained here because
the parameters have been chosen such that δt < δpeak

t . It is not limited to
mixed-mode loading, as can be checked very simply by applying ∆t = δt in
mode II, unload, and then reload in mode I. This paradox disappears for
a slightly larger ∆ value of 0.044 mm (Figure 4e), Tn remains zero during
unloading and reloading, but energy is now dissipated by Tt during propor-
tional unloading, which induces a jump in Figure 2. The traction variations
in Figure 4e are similar to what is given by the modified model (except
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Figure 4: Variations of the traction components Tn (solid lines) and Tt (dashed lines)
during the process of proportional loading/unloading and mode I reloading, for a propor-
tional loading amplitude of ∆ = 0.038 mm, (a) and (b), or ∆ = 0.041 mm, (c) and (d),
or ∆ = 0.044 mm, (e) and (f). Original model on the left, modified model on the right.
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for Tt during unloading). The latter followed a smooth evolution through
Figures 4b, d, and e, with disappearance of the dissipated energy during
reloading (see bottom of Figure 4b) when ∆ = δt explaining the kink shown
by the modified model in Figure 2.

Another typical feature of the original model is demonstrated in Fig-
ure 5, showing the variations of Tt vs. ∆t, where a proportional loading
up to ∆ = 0.044 mm is applied and is followed by one of three different
unloading paths. The first unloading path is proportional (with ∆t = ∆n),
like in Figure 4e, the second consists in decreasing ∆n to 0 while keeping
∆t constant and then decreasing ∆t to 0 (normal/tangential unloading),
and the third unloading path decreases ∆t before ∆n (tangential/normal
unloading). As expected, the two sequential unloading paths lead to linear
variations of the Tt traction component (and also of the Tn component, not
shown), since they do not involve mixed modes but mode I and mode II only.
Figure 5 clearly shows that changing the unloading path affects the traction
variations significantly. Consistently, the energy that is dissipated along the
loading/unloading closed loop also is different: 60.3 J/m2 for proportional
unloading, 18.7 J/m2 for the normal/tangential sequence, and 82.2 J/m2 for
the tangential/normal sequence. This dependence on unloading path is an-
other questionable feature of the original model, whereas all three unloading
paths lead to the same traction variations with the modified model, which
all coincide with the tangential/normal curve displayed in Figure 5, with
the same dissipated energy of 82.2 J/m2 in all three cases. This is a natural
consequence of the thermodynamic consistency of the latter model shown
by Spring et al. [11]. Similarly, some mode II loading can be applied after
proportional loading/unloading, before mode I is applied finally, and this
has no effect on the normal traction history when the reformulated model
is used, whereas this history is affected (with a lower peak when the mode
II amplitude increases) with the original model.

Finally, consider proportional loading amplitudes ∆ around δn = 0.099
mm. A loss of load bearing capacity for normal separation takes place
during the proportional mixed-mode loading phase because of the large ∆n

value applied, and there remains to examine the evolution of the tangential
traction component during the proportional unloading phase. In Figure 6a,
∆n = 0.098 mm is imposed, which is slightly below the critical value δn that
defines one of the conditions for losing load bearing capacity for tangential
separation. Therefore, the tangential traction component is slightly above
zero at the end of the loading phase and it takes non-zero values during
unloading. The latter traction variations correspond to the Tt term given in
(6), which does not tend to 0 when ∆max

t tends to δn and stays below δn. The
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Figure 5: Variations of the traction components Tt given by the original model during a
proportional loading up to ∆n = ∆t = 0.044 mm (upper solid line) followed by a pro-
portional unloading (dashed line), or by a sequential normal/tangential unloading (dotted
line), or by a sequential tangential/normal unloading (lower solid line).

critical value δn is exceeded by ∆n when the proportional amplitude is of
0.1 mm, hence fracture is complete (Figure 6c), which leads to a dissipated
energy of 121.3 J/m2 that corresponds to the final plateau in Figure 2. A
jump of the dissipated energy happens before the plateau for ∆ = δn because
the finite Tt values during unloading mentioned above are set to zero all at
once when fracture occurs. The same traction variations and dissipated
energy are obtained with the modified model for ∆ = 0.1 mm, as shown in
Figure 6d, and they still apply for larger proportional loading amplitudes,
of course. It may be noted eventually that all traction variations obtained
during the loading phases in Figures 3, 4, and 6 are parts of the curves
shown in Figure 6d.

4. Conclusion

The cohesive-zone model proposed by Park, Paulino and Roesler [1] has
been combined with a linear unloading/reloading relationship like in the
numerical implementations given in [2] and [3], and a loading/unloading/re-
loading process has been applied, where loading and unloading used the
same proportional mixed mode and reloading was in mode I. Several features
could be evidenced when the amplitude of preloading varied: jumps of the
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Figure 6: Variations of the traction components Tn (solid lines) and Tt (dashed lines) dur-
ing the process of proportional loading/unloading and mode I reloading, for a proportional
loading amplitude of ∆ = 0.098 mm, (a) and (b), or ∆ = 0.1 mm, (c) and (d). Original
model on the left, modified model on the right.

dissipated energy, reversibility maintained after a traction peak, nonlinear
traction variations during unloading, increasing traction during unloading,
finite traction after a fracture criterion has been fulfilled, different traction
values at the beginning of unloading and when dissipative reloading begins.
The results have also been shown to depend strongly on the path followed
during unloading. None of these issues appears when the reformulation
of Spring et al. [11] is used. Therefore, users of the programmes already
available for applying the original model in finite element simulations should
be cautious and should check if any of the mentioned features may appear
with their sets of parameters, for instance with very small λn and λt ratios.
If this is the case, the programmes should be modified according to the
reformulation of [11].

It may be noticed finally that the modified model does not include an
initial elastic region, since energy is dissipated by increasing damage from
the very beginning of the loading process. In contrast, the original model
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defined an elastic region before a softening regime. This involved a peak
condition that induced some of the questionable features evidenced here,
but an elastic regime may nevertheless be desirable for some users. This
might be added to the reformulated, thermodynamically consistent, model.
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