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Abstract

In this work, a crystal plasticity constitutive model is proposed to describe the me-
chanical behavior of metallic materials for which twinning plays a significant role
in the deformation process. Constitutive relations are obtained from a microme-
chanical approach that explicitly considers the interactions between twinned and
untwinned domains. Then, based on a thermodynamical analysis of the problem, a
new expression for the driving force for the expansion of twinned domains is pro-
posed. Finally, to account for the polycrystalline nature of metallic materials, the
constitutive model is implemented in a FFT spectral solver.

In the second part of this paper, the model is used to study the mechanical behav-
ior of a AZ31 magnesium alloy under compression, for which a significant amount
of experimental data is available in the literature. The comparison between numer-
ical and experimental data allows for discussion of the influence of the different
deformation modes on the development of both crystallographic texture and lattice
strains. The evolution of lattice strains is found to be largely influenced by the inter-
nal stress redistribution process associated with the expansion of twinned domains.
Also, the polycrystalline plasticity model provides a correct description of how the
morphological texture is strongly altered during the deformation process due to the
important activity of twinning systems.
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1 Introduction

For some metallic alloys (e.g. magnesium alloys, zirconium alloys, austenitic
steels), mechanical behavior is strongly impacted by the coexistence of me-
chanical twinning and crystallographic slip deformation modes. While the
crystal plasticity framework (Asaro and Needleman, 1985; Cuitiño and Ortiz,
1992; Rashid and Nemat-Nasser, 1990) provides a convenient way of intro-
ducing the influence of crystallographic slip in constitutive models, the incor-
poration of deformation twinning within such models is not trivial. Indeed,
in order to include the role of deformation twinning in a consistent manner,
some specific features of twinning deformation modes have to be considered:

• First, because of the abrupt crystallographic reorientation process associ-
ated with twinning, significant texture evolution is often observed during a
deformation process (Brown et al., 2005; Vercammen et al., 2004; Xu et al.,
2009). As a result, for polycrystalline aggregates, the anisotropic nature of
macroscopic properties is strongly dependent on the crystallographic orien-
tations of twinned domains.
• Second, as mentioned by Remy (1981) and Basinski et al. (1997), during a

deformation process, deformation twinning results in the formation of addi-
tional boundaries that provide a significant contribution to strain hardening.
The mechanical behavior of materials for which twinning plays an impor-
tant role is thus governed by a strong coupling between slip and twinning
deformation modes.
• Third, depending on loading conditions, twinning may contribute impor-

tantly to the plastic deformation process because the expansion of twinned
domains involves the accumulation of large plastic shear strains at the grain
scale. The macroscopic behavior is therefore very sensitive to the growth rate
of twinned domains.
• Finally, different diffraction studies have demonstrated that twinning is ac-

companied by a significant redistribution of internal stresses (Clausen et
al., 2008; Wu et al., 2008; Xu et al., 2009). Indeed, because the local behav-
ior of individual crystals is influenced by their orientation, the reorienta-
tion process associated with twinning results in some complex load sharing
mechanisms that affect the macroscopic behavior.

To account for these aspects of deformation twinning in constitutive relations,
different strategies have been adopted. Using the self-consistent approxima-
tion, many efforts have been made to incorporate twinning in polycrystalline
plasticity models. For instance, to investigate the evolution of texture in zirco-
nium and magnesium alloys, some extensions of the viscoplastic self-consistent
model of Lebensohn and Tomé (1993) have been proposed (Capolungo et
al., 2009a; Knezevic et al., 2015; Proust et al., 2007). However, by construc-
tion, such models do not readily allow the evaluation of internal stresses be-
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cause elastic strains are not considered. To circumvent this limitation, different
elasto-(visco)plastic formulations have been developed. From a micromechani-
cal approach considering twins as ellipsoidal inclusions, Cherkaoui (2003) pro-
posed a set of constitutive relations to investigate the behavior of f.c.c. metals.
Shiekhelsouk et al. (2009) developed a physically based model where the resis-
tance opposed by twin interfaces to dislocation glide is explicitly considered.
Clausen et al. (2008) constructed a rate-independent self-consistent model
to study the development of lattice strains and texture in a magnesium alloy.
Nevertheless, mostly because the interactions between twinned and untwinned
domains are ignored, the approach of Clausen et al. (2008), which has been
reformulated in a rate-dependent framework by Mareau and Daymond (2011),
does not completely succeeds in matching the experimental observations. To
better describe these interactions, Juan et al. (2014) proposed a self-consistent
formulation based on a double inclusion formalism. Although this strategy
allows the investigation of the competition between slip and twinning defor-
mation modes, the moving boundary aspect of the problem of twin growth is
not considered in the approach of Juan et al. (2014).

Though some efforts have been made to include the effect stress field fluctua-
tions on twin variant selection (Niezgoda et al., 2014; Zecevic et al., 2015), self-
consistent formulations do not explicitly account for the intragranular stress
and strain field gradients. To circumvent this limitation, several attempts have
been made at incorporating deformation twinning within crystal plasticity
based finite element models (Abdolvand et al., 2012; Cheng and Ghosh, 2015;
Kalidindi, 2001; Staroselsky and Anand, 2003). In a large strain formalism,
Kalidindi (2001) has developed a constitutive model that uses a simple mix-
ture rule to include the contribution of both twinning and slip deformation
modes. While this type of approach has been successful in describing texture
evolution, some aspects of the development of internal stresses are not well
described, mostly because the elastic strain field is assumed to be the same
in the twinned and untwinned domains. Cheng and Ghosh (2015) proposed
a non-local crystal plasticity model to investigate the twin nucleation process
in magnesium alloys. Also, as discussed by Knezevic et al. (2016), different
strategies have been employed to explicitly model discrete twinned domains
(Ardeljan et al., 2015; Kumar et al., 2015; Zhang et al., 2008). Indeed, Zhang et
al. (2008) and Kumar et al. (2015) have used either the finite element method
or FFT-based techniques to investigate the internal stress field produced by
an isolated deformation twin. A more complex numerical procedure has re-
cently been proposed by Ardeljan et al. (2015) to deal with twin propagation
and twin growth in crystal plasticity based finite element models. The major
drawback of these approaches is that the twin morphology needs to be known
a priori.

In this work, a method for considering the influence of deformation twinning
in polycrystalline plasticity models is presented. The first part of this paper is
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dedicated to the description of the proposed model. Adopting a similar strat-
egy as Cherkaoui (2003), the local constitutive relations are derived from a
micromechanical analysis of the problem. Within a thermodynamically con-
sistent framework, the proposed formulation provides an explicit description
of the interactions between twinned and untwinned domains. To account for
intragranular heterogeneities, the constitutive relations are then implemented
in a spectral (FFT) solver that exploits the method originally proposed by
Moulinec and Suquet (1998). In the second part, to demonstrate the relevance
of the proposed constitutive relations, the model is used to investigate the
behavior of an AZ31 magnesium alloy, for which an extensive experimental
dataset has been obtained by Clausen et al. (2008). During the mechani-
cal testing of a magnesium alloy sample, Clausen et al. (2008) carried out
neutron diffraction measurements to study the development of lattice strains
and crystallographic texture. The direct comparison of numerical results with
experimental measurements thus allows for better understanding the contri-
bution of the different deformation modes, the evolution of internal stresses,
the formation of intragranular lamellar microstructures and the reorientation
processes.

2 Model description

2.1 Constitutive model

In this section, a constitutive model, which is developed for an element of
volume v with external boundary ∂v, is proposed. The volume element v is
an intragranular domain for which plastic deformation possibly results from
both slip and twinning deformation modes. For a such volume element, the
constitutive model aims at connecting the stress tensor σ̄ to the strain tensor
ε̄ with an appropriate set of internal variables.

As shown in figure 1, to account for the contribution of twinning, the volume
element is decomposed into two domains separated by a planar interface of
area a (t): an untwinned domain (superscript u) of volume vu (t) and a twinned
domain (superscript t) of volume vt (t). Based on this decomposition, the
stress, strain and rotation fields are assumed to be piecewise uniform within
the volume element. Thus, with an indicator function η (x, t) taking a unity
value within a twinned domain and a zero value elsewhere, the stress, strain
and rotation tensors at position x are written:

σ (x, t) = η (x, t)σt (t) + (1− η (x, t))σu (t) (1)

ε (x, t) = η (x, t) εt (t) + (1− η (x, t)) εu (t) (2)

ω (x, t) = η (x, t)ωt (t) + (1− η (x, t))ωu (t) (3)
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External boundary ∂v

Twinned domain vt

lt
kt

Interfa
ce a

Untwinned domain vu

Figure 1. Schematic representation of a twinned volume element.

The values of the stress, strain and rotation fields within the untwinned do-
main (and for the twinned domain) are denoted by σu (t), εu (t) and ωu (t)
(respectively σt (t), εt (t) and ωt (t)). In the following, the dependence with
time and position will be omitted unless needed.

2.1.1 Crystal plasticity framework

Under the infinitesimal deformation framework, the strain and rotation tensors
associated with the untwinned and twinned domains are divided into elastic
(superscript e) and plastic (superscript p) contributions:

εu = εe,u + εp,u (4)

ωu = ωe,u + ωp,u (5)

εt = εe,t + εp,t (6)

ωt = ωe,t + ωp,t (7)

Assuming a linear relation between the elastic strain tensors (εe,u and εe,t)
and the corresponding stress tensors (σu and σt), one obtains:

σu = cu : (εu − εp,u) (8)

σt = ct :
(
εt − εp,t

)
(9)

where cu (or ct) is the elastic stiffness tensor of the untwinned domain (re-
spectively for the twinned domain).

Within a crystal plasticity framework, a set of s slip systems is associated
to each of the untwinned and twinned domains. For the untwinned domain
(or twinned domain), a given slip system (say α, with α = 1 to s) is defined
as the combination of a slip plane of normal nα,u (respectively nα,t) and
a slip direction pα,u (respectively pα,t). The plastic shear strain associated
with the αth slip system of the untwinned domain (or twinned domain) is
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denoted by γα,u (respectively γα,t). For the untwinned and twinned domains,
the corresponding plastic strain and rotation tensors are connected to the
plastic shear strains according to:

εp,u =
1

2

∑
α

(pα,u ⊗ nα,u + nα,u ⊗ pα,u) γα,u (10)

ωp,u =
1

2

∑
α

(pα,u ⊗ nα,u − nα,u ⊗ pα,u) γα,u (11)

εp,t =
1

2

∑
α

(
pα,t ⊗ nα,t + nα,t ⊗ pα,t

)
γα,t + εtw,t (12)

ωp,t =
1

2

∑
α

(
pα,t ⊗ nα,t − nα,t ⊗ pα,t

)
γα,t + ωtw,t (13)

where εtw,t and ωtw,t represent the additional contributions due to twinning.
These contributions are expressed as a function of the characteristic twin shear
strain γtw,t as follows:

εtw,t =
1

2

(
lt ⊗ kt + kt ⊗ lt

)
γtw,t (14)

ωtw,t =
1

2

(
lt ⊗ kt − kt ⊗ lt

)
γtw,t (15)

where lt is the twin direction and kt is the twin plane normal (see figure 1).

2.1.2 Partition method

For the volume element v, the size of the twinned domain is represented by
the twin volume fraction φt (t) which is given by:

φt =
1

v

∫
v
ηdv =

vt

v
(16)

Since two domains coexist within the volume element, the corresponding
stress, strain and rotation tensors (σ̄, ε̄ and ω̄) have to be partitioned be-
tween the untwinned and twinned domains. According to the classical av-
eraging conditions of homogenization theory, the partition must satisfy the
following equalities at each time t:

σ̄ =
1

v

∫
v
σdv = φtσt +

(
1− φt

)
σu (17)

ε̄ =
1

v

∫
v
εdv = φtεt +

(
1− φt

)
εu (18)

ω̄ =
1

v

∫
v
ωdv = φtωt +

(
1− φt

)
ωu (19)
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This set of relations is however not sufficient to uniquely determine the stress,
strain and rotation tensors within the untwinned and twinned domains. Ad-
ditional constraints are introduced by considering the interface between both
domains to be perfect. For a perfect interface, the continuity of the traction
vector imposes:

σu · kt = σt · kt = σ̄ · kt (20)

Using relations (8) and (9), the above equation is reformulated:

(cu : (εu − εp,u)) · kt =
(
ct :

(
εt − εp,t

))
· kt = (c̄ : (ε̄− ε̄p)) · kt (21)

where c̄ and ε̄p are respectively the effective elastic stiffness tensor and the
effective plastic strain tensor of the volume element. Also, the compatibility
of the displacement gradient field provides supplementary equations:

εu :
(
lt ⊗ lt

)
= εt :

(
lt ⊗ lt

)
= ε̄ :

(
lt ⊗ lt

)
(22)

εu :
(
mt ⊗mt

)
= εt :

(
mt ⊗mt

)
= ε̄ :

(
mt ⊗mt

)
(23)

εu :
(
lt ⊗mt

)
= εt :

(
lt ⊗mt

)
= ε̄ :

(
lt ⊗mt

)
(24)

ωu :
(
lt ⊗mt

)
= ωt :

(
lt ⊗mt

)
= ω̄ :

(
lt ⊗mt

)
(25)

(εu + ωu) :
(
kt ⊗ lt

)
=
(
εt + ωt

)
:
(
kt ⊗ lt

)
= (ε̄+ ω̄) :

(
kt ⊗ lt

)
(26)

(εu + ωu) :
(
kt ⊗mt

)
=
(
εt + ωt

)
:
(
kt ⊗mt

)
= (ε̄+ ω̄) :

(
kt ⊗mt

)
(27)

with mt = kt× lt. At time t, for prescribed strain and rotation tensors ε̄ and
ω̄, localization equations (21) to (27) allow for unique determination of the
strain and rotation tensors εu, ωu, εt and ωt associated with the untwinned
and twinned domains. The corresponding stress tensors are obtained with
relations (8) and (9). The effective properties of the volume element c̄ and ε̄p

are calculated to enforce the fulfilment of averaging conditions (17) and (18).

The present strategy, which is quite similar to the lamellar structure model
developed for single polysynthetically twinned crystals by Lebensohn et al.
(1998), has two advantages. First, it relies on a consistent partitioning method
that ensures the respect of averaging conditions (17) and (18). Second, the
computational cost is quite low as no sophisticated numerical procedure is
needed.

2.1.3 Thermodynamics

For the volume element v, the total free energy results from a volume con-
tribution associated with the untwinned domain (with density ψu), a volume
contribution associated with the twinned domain (with density ψt) and an in-
terfacial contribution (with surface density χint). The total free energy density
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ψ̄ is thus obtained from the addition of the above contributions:

ψ̄ = φtψt +
(
1− φt

)
ψu +

a

v
χint (28)

where a/v is the ratio between the twin interface area a and the volume v. The
bulk free energy densities ψu and ψt can be defined with an appropriate set of
state variables which consists of the infinitesimal strain tensors (εu and εt),
the plastic shear strains (γα,u and γα,t) and the isotropic hardening variables
(denoted by qα,u and qα,t) 1 . Assuming a quadratic form for the bulk free
energy densities ψu and ψt leads to:

ψu =
1

2
(εu − εp,u) : cu : (εu − εp,u) +

1

2
Q
∑
α

qα,u
∑
β

Hαβqβ,u (29)

ψt =
1

2

(
εt − εp,t

)
: ct :

(
εt − εp,t

)
+

1

2
Q
∑
α

qα,t
∑
β

Hαβqβ,t (30)

whereQ is the isotropic hardening modulus andH is a symmetric and positive-
definite square matrix of size s describing the interactions between different
slip systems. To express the interface contribution to the total free energy den-
sity, an additional hardening internal variable λt is introduced to represent the
resistance to the expansion of the twinned domain. The interface contribution
χint reads:

a

v
χint = Cλt

(
φt
∑
α

qα,t +
(
1− φt

)∑
α

qα,u
)

+
1

2
Wλt

2

(31)

where W is a hardening modulus and C is a material parameter controlling
the interactions between slip and twinning deformation modes. If a more a
complex type of interaction is observed, it is possible to include a slip system
dependency for the C parameter. The free energy change rate is provided by
the time derivative of relation (28):

˙̄ψ = φtψ̇t +
(
1− φt

)
ψ̇u + φ̇t

(
ψt − ψu

)
+
d

dt

(
a

v
χint

)
(32)

For the volume element v, in the absence of volume forces, the density of power
developed by external forces is:

P̄ e =
1

v

∫
∂v
t · u̇ds (33)

where t is the traction vector acting on the external boundary ∂v and u̇
is the velocity field. The above relation can be reformulated by following the

1 Though kinematic hardening is not considered here, the introduction of a set of
kinematic hardening variables does not bring any additional difficulty.
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strategy proposed by Cherkaoui (2003). Indeed, using the divergence theorem,
the above relation becomes:

P̄ e =
1

v

∫
v

div (σ · u̇) dv +
1

v

∫
a

(
σu · u̇u − σt · u̇t

)
· ktds (34)

When inertia effects are neglected, the application of static equilibrium con-
ditions leads to:

div (σ · u̇) = σ : grad (u̇) (35)

= σ : ε̇ (36)

Also, using the continuity condition given by relation (20), we have:

(
σu · u̇u − σt · u̇t

)
· kt =

1

2

((
σu + σt

)
· kt

)
·
(
u̇u − u̇t

)
(37)

According to Hadamard relation, the velocity jump across the twin interface
is given by:

u̇u − u̇t = kt ·
(
εt − εu + ωt − ωu

)
vt · kt (38)

where vt is the interface velocity vector. An alternative expression of the
density of power developed by external forces is derived by combining relations
(34) to (38):

P̄ e = φtσt : ε̇t +
(
1− φt

)
σu : ε̇u +

1

2v

(
σu + σt

)
:
(
εt − εu

) ∫
a
vt · ktds (39)

The twin volume fraction rate is connected to the interface velocity vector vt

according to:

φ̇t =
1

v

∫
a
vt · ktds (40)

The final expression of the density of power developed by external forces is
obtained by introducing the above expression in relation (39):

P̄ e = φtσt : ε̇t +
(
1− φt

)
σu : ε̇u +

1

2
φ̇t
(
σu + σt

)
:
(
εt − εu

)
(41)

The thermodynamic driving forces associated with the different internal vari-
ables of the constitutive model can be identified from the expression of the
mechanical dissipation source. When inertia effects are excluded, the mechan-
ical dissipation source D̄ is obtained from the difference between the power of
external forces and the free energy change rate. Thus, combining relations (29),
(30), (31), (32) and (41) leads to the following expression of the mechanical
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dissipation source D̄:

D̄ = P̄ e − ˙̄ψ

= f tφ̇t − gtλ̇t + φt
∑
α

τα,tγ̇α,t − φt
∑
α

rα,tq̇α,t

+
(
1− φt

)∑
α

τα,uγ̇α,u −
(
1− φt

)∑
α

rα,uq̇α,u

(42)

In the above expression, the different thermodynamic driving forces (τα,u, τα,t,
rα,u, rα,t, f t and gt) depend on the internal variables (γα,u, γα,t, qα,u, qα,t, φt

and λt). More specifically, the driving forces for plastic slip are the applied
shear stresses τα,u and τα,t acting on the different slip systems. For the αth
slip system, the applied shear stresses τα,u and τα,t are given by the following
projections of the stress tensors σu and σt:

τα,u = pα,u · σu · nα,u (43)

τα,t = pα,t · σt · nα,t (44)

The resistance opposed by obstacles to plastic slip is represented by the shear
stresses rα,u and rα,t. The shear stresses rα,u and rα,t are connected to the
isotropic hardening variables qα,u and qα,t according to:

rα,u = Q
∑
β

Hαβqβ,u + Cλt (45)

rα,t = Q
∑
β

Hαβqβ,t + Cλt (46)

According to relations (43) and (44), isotropic hardening results not only from
the interactions between slip systems but also from the interactions of a slip
system with the twin interface.

The driving force for the growth of the twinned domain f t has the following
expression 2 :

f t =
1

2

(
σu + σt

)
:
(
εt − εu

)
+
(
ψu − ψt

)
+ Cλt

(∑
α

qα,u −
∑
α

qα,t
)

(47)

While many studies (Abdolvand et al., 2012; Juan et al., 2014; Kalidindi, 2001;
Proust et al., 2009) assume the driving force for twinning to be the shear stress
acting on the twinning system (i.e. σu : εtw,t), a different expression, which is
based on thermodynamical arguments, is proposed here. Indeed, according to
the above expression, the driving force does not solely depend on the stress
state within the untwinned domain. It also involves (1) the stress state within

2 Though no application is presented here, detwinning, which would correspond
to a reduction of the twinned domain, can also be investigated with the proposed
constitutive model.
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the twinned domain, (2) the bulk free energy density difference between the
twinned and untwinned domains and (3) the contribution associated with
the twin interface. Twinning is therefore a favored deformation mode when a
reduction of the total free energy is permitted by the growth of the twinned
domain.

The resistance to the expansion of the twinned domain is represented by the
driving force gt whose expression is:

gt = Wλt + C

(
φt
∑
α

qα,t +
(
1− φt

)∑
α

qα,u
)

(48)

2.1.4 Evolution laws

For the description of the constitutive model to be complete, one must define
the evolution laws of the internal variables. For each slip system, the evolution
of the plastic shear strain is given by the following viscoplastic flow rule, which
takes the form of a power law (Méric and Cailletaud, 1991):

γ̇α,u =

(
〈|τα,u| − rα,u −Rα〉

Kα

)Nα

sign (τα,u) (49)

γ̇α,t =

(
〈|τα,t| − rα,t −Rα〉

Kα

)Nα

sign
(
τα,t

)
(50)

where Kα is a viscosity parameter, Nα is a strain rate sensitivity parame-
ter and Rα corresponds to the initial value of the critical shear stress. Both
Kα and Rα represent some kind of resistance to plastic slip. However, while
Kα is associated with lattice friction, Rα stands for the resistance opposed
by crystallographic defects to plastic slip (e.g. dislocations). Rα can thus be
assimilated to be the initial value of rt,α and ru,α.

Though more sophisticated formulations can be employed, simple isotropic
hardening rules with saturation are used here. Such hardening rules are ob-
tained with the following evolution laws for qα,u and qα,t:

q̇α,u = (1− Aqα,u) |γ̇α,u| (51)

q̇α,t =
(
1− Aqα,t

)
|γ̇α,t| (52)

where A is a material parameter.

For the evolution of the internal variables associated with the twinning defor-
mation mode (φt and λt), a quite similar description is used. More specifically,
the twin volume fraction rate φ̇t is expressed as a function of the corresponding
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driving force f t according to:

φ̇t =

(
〈f t − gt −Gt〉

Lt

)Mt (
1− φt

)
(53)

where Lt is a viscosity parameter, M t is a strain rate sensitivity parameter
and Gt corresponds to the initial value of the critical driving force for twin-
ning. With the above evolution law, the twin volume fraction is necessarily
comprised between zero and one. For the evolution of the hardening variable
λt, the following non-linear evolution equation is employed:

λ̇t =
(
1−Bλt

)
φ̇t (54)

where B is a material parameter controlling the asymptotic value of λt.

2.1.5 Nucleation criterion

At the beginning of a deformation process, the volume element v is usually
homogeneous with a zero twin volume fraction. It is therefore necessary to
have a nucleation criterion to determine whether a twinned domain should be
created or not. Also, the criterion must allow for selection of the most appro-
priate twinning system amongst all the possible variants. In the present work,
the driving force for nucleation is assumed to be the same as for growth. When
no twinned domain exists, the driving force f t is thus calculated at each time
t for all the possible twinning systems. The nucleation event takes place when
the driving force f t reaches the critical value gt + Gt. When this nucleation
condition is met, the crystallographic orientation of the newly formed twinned
domain is determined according to the orientation relationship of the selected
twinning system.

When a nucleation event occurs, no inheritance mechanism is considered: the
plastic shear strains γα,t and the isotropic variables qα,t associated with the
slip systems of the newly created twinned domain are initially fixed to zero.
As a result, the plastic strain and rotation tensors for the twinned domain are
initially equal to the twinning strain and rotation tensors (i.e. εp,t = εtw,t and
ωp,t = ωtw,t). The partition method described in section 2.1.2 is then used
to determine the initial strain, rotation and stress tensors associated with the
newly created twinned domain.

Also, in the present formulation, once a nucleation event occurs, no further
nucleation event is allowed. Indeed, though multiple twinned domains could
be considered with the partition method described in 2.1.2, the corresponding
twin interfaces would have to be parallel. Since this assumption regarding
the orientation of twin interfaces is not realistic, the coexistence of multiple
twinned domains in a volume element is not allowed here. This is however

12



expected to be a minor limitation since, if the volume element is small enough,
the probability of having two (or more) twins is quite low.

2.2 Spectral method

Let us now consider a volume element with volume V and external boundary
∂V . The volume element V is representative of a polycrystalline aggregate
consisting of a collection of crystallites being perfectly bonded across their
interfaces. For a given loading path, the overall behavior of the representative
volume element is given by the evolution of the macroscopic stress tensor Σ (t)
as a function of the prescribed macroscopic strain and rotation tensors E (t)
and Ω (t).

For the application of the FFT spectral method, the representative volume
element is divided into N1 × N2 × N3 voxels. The stress, strain and rotation
tensors associated with a voxel of volume v (x̄, t) occupying a barycentric
position x̄ are denoted by σ̄ (x̄, t), ε̄ (x̄, t) and ω̄ (x̄, t). For each voxel, the
mechanical response is determined by the constitutive model proposed in the
previous section which provides a relation between the stress and strain tensors
σ̄ (x̄, t) and ε̄ (x̄, t). The integration of constitutive relations is performed with
a semi-implicit finite difference method. This method involves a non-linear set
of equations which is numerically solved with a Newton-Raphson method.

In order to connect the local strain and rotation tensors ε̄ (x̄, t) and ω̄ (x̄, t)
to the prescribed macroscopic strain and rotation tensors E (t) and Ω (t), the
spectral method proposed by Moulinec and Suquet (1998) and Müller (1996)
is employed. Though it has been originally developed for composite materi-
als, this method is now widely used to investigate the mechanical behavior
of polycrystalline materials with an elastic-viscoplastic behavior (Grennerat
et al., 2012; Lebensohn et al., 2012; Robert and Mareau, 2015; Shanthraj et
al., 2015). Assuming the representative volume element to be subjected to
periodic boundary conditions and introducing a homogeneous reference elas-
tic medium with stiffness tensor C, the spectral method aims at finding a
numerical solution to the following integral equations:

ε̄ (x̄, t) = E (t)−
∫
V

Γ (x̄− ȳ) : δσ̄ (ȳ, t) dV (55)

ω̄ (x̄, t) = Ω (t)−
∫
V

Π (x̄− ȳ) : δσ̄ (ȳ, t) dV (56)

where Γ and Π are respectively the symmetric and skew-symmetric parts of
the Green tensor associated with the homogeneous elastic reference medium
and δσ̄ (x̄, t) is the polarization tensor field:

δσ̄ (x̄, t) = σ̄ (x̄, t)−C : ε̄ (x̄, t) (57)
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The application of the Fourier transform, which is denoted by a ’ˆ ’ symbol,
to equations (55) and (56) allows for transforming the circular convolution
operations into tensor products:

ˆ̄ε (ξ, t) =

E (t) , ξ = 0

−Γ̂ (ξ) : δ ˆ̄σ (ξ, t) , ξ 6= 0
(58)

ˆ̄ω (ξ, t) =

Ω (t) , ξ = 0

−Π̂ (ξ) : δ ˆ̄σ (ξ, t) , ξ 6= 0
(59)

where ξ is the frequency vector. According to the spectral method, the inte-
gral equations are conveniently solved in the frequency domain and an inverse
transformation is then applied to express the local strain and rotation tensors
in the original spatial domain. However, because the local polarization tensor
δσ̄ (x̄, t) depends on the local strain tensor ε̄ (x̄, t), an iterative resolution pro-
cedure is required to find the strain tensor. In the present work, the procedure
proposed by Eyre and Milton (1999) is used.

3 Application to a AZ31 magnesium alloy

The model presented in the previous section provides a way of estimating both
the local and macroscopic stress states in a representative volume element
subjected to known loading conditions. It is thus well suited for the study
of the development of texture and internal strains in metallic alloys since it
allows for quantifying of the relative importance of the different possible plastic
deformation modes. In this section, the proposed model is used to investigate
the mechanical behavior of a AZ31 magnesium alloy for which an extensive
experimental dataset has been obtained by Clausen et al. (2008).

3.1 Experimental data

Clausen et al. (2008) carried out neutron diffraction measurements during
the mechanical testing of a magnesium alloy cylindrical sample. As shown in
figure 2, the magnesium alloy is initially characterized by an extrusion texture
where most of the basal poles are oriented perpendicularly to the extrusion
direction. A compressive load was applied to the sample along the cylinder
axis, in the direction where almost all the grains are favorably oriented for
tensile twinning. The evolution of the macroscopic stress as a function of the
macroscopic strain is represented in figure 3. Also, during the compression
test, lattice strains were measured for the {1010}, {0002}, {1011} and {1120}
diffraction peaks in two directions: axial (parallel to the loading axis) and
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{0002} pole figure {1010} pole figure

0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 2. Initial pole figures for the AZ31 magnesium alloy. The pole figure centers
correspond to the original rod extrusion direction, which is also the axial loading di-
rection. Pole figures were plotted using the MTEX package (Hielscher and Schaeben,
2008).
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Figure 3. Comparison between the experimental (Exp) and calculated (Mod)
stress-strain curves obtained for the compression test conducted along the axial
direction of the AZ31 magnesium alloy cylindrical specimen.

radial (perpendicular to the loading axis). The evolution of the lattice strains
are plotted in figures 4 and 5 for these two directions. In addition, based on
diffraction peak intensities, the twin volume fraction was evaluated during the
test. The twin volume fraction is represented as a function of the macroscopic
axial strain in figure 6.
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Figure 4. Comparison between the experimental (Exp) and calculated (Mod) axial
lattice strains obtained for different crystallographic planes during the compression
test conducted along the axial direction of the AZ31 magnesium alloy cylindrical
specimen.
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Figure 5. Comparison between the experimental (Exp) and calculated (Mod) radial
lattice strains obtained for different crystallographic planes during the compression
test conducted along the axial direction of the AZ31 magnesium alloy cylindrical
specimen.

3.2 Material parameters

The calculations were performed with a polycrystal consisting of 500 equiaxed
grains that was constructed from a periodic Voronöı tessellation according to
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Figure 6. Comparison between the experimental (Exp) and calculated (Mod) twin
volume fraction evolutions obtained during the compression test conducted along
the axial direction of the AZ31 magnesium alloy cylindrical specimen.

the procedure of Fritzen et al. (2009). For the application of the spectral
method, the polycrystal was then discretized into 128 × 128 × 128 voxels.
The crystallographic orientations were extracted from measured pole figures
to ensure that the volume element is representative of the real material. The
plastic deformation modes that are considered are the same as in (Agnew et al.,
2006; Clausen et al., 2008): the plastic activity is restricted to the basal (Bas),
first order prismatic (Pri) and second order pyramidal (Pyr) slip systems while
only tensile twinning (TTw) is accounted for.

Except for the single crystal elastic constants, which are those identified for
pure magnesium by Simmons and Wang (1971), the material parameters were
adjusted to best reproduce the macroscopic stress-strain behavior, the twin
volume fraction evolution and the lattice strain development. The material
parameters are listed in table 1. An important issue concerns the unicity of the
set of material parameters. Indeed, with the considered experimental dataset,
the optimal set of material parameters is not necessarily unique. As a result,
there are some material parameters, especially the hardening matrix H, for
which some additional experimental data would be needed to obtain more
accurate values.

3.3 Discussion

As shown in figure 3, the macroscopic behavior, which exhibits a two-stage
hardening, is correctly described by the model. The plateau observed in the
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Elasticity

C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa)

59.75 23.24 21.17 61.70 16.39

Basal slip systems

Rα (MPa) Kα (MPa) Nα Hαα Hαβ

10 10 50 1.1 1.0

First order prismatic slip systems

Rα (MPa) Kα (MPa) Nα Hαα Hαβ

50 60 50 1.1 1.0

Second order pyramidal slip system

Rα (MPa) Kα (MPa) Nα Hαα Hαβ

140 80 50 1.1 1.0

Twinning

Gt (MPa) Lt (MPa) M t

5.5 4 50

Hardening

Q (MPa) A W (MPa) B C (MPa)

10 0 -50 10 30

Table 1
Material parameters for the AZ31 magnesium alloy. Only independent elastic con-
stants are indicated.

first stage is mostly due to the development of an important twinning activity.
Indeed, the activities of the different deformation modes, which are represented
in figure 7, show that the nucleation of tensile twins coincides with the initial
yielding. Also, although basal slip is the first deformation mode to be active, it
provides a negligible contribution to the macroscopic strain. The second stage,
which is usually attributed to the multiplication of twin boundaries (Basinski
et al., 1997), is captured because a coupling between slip and twinning modes is
considered in the constitutive model. Indeed, when interactions between twin
boundaries and slip systems are ignored (i.e. C = 0 MPa), the model fails
in correctly reproducing the experimentally observed hardening behavior. For
this magnesium alloy, the role of twin boundaries, which act as barriers to
dislocation motion, is thus important for explaining the mechanical behavior.

The calculated and measured evolution of lattice strains are compared to each
other in figures 4 and 5. For most planes, the evolution of lattice strains is
generally well described by the model. As shown in figure 4, the inflexion ob-
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Figure 7. Calculated activities of the different deformation modes during the com-
pression test conducted along the axial direction of the AZ31 magnesium alloy
cylindrical specimen. For a given deformation mode, the activity is defined as the
ratio between the average equivalent plastic strain produced by this mode and the
equivalent total macroscopic strain.

served for the {1010} plane in the axial direction at -60 MPa (A) is caused by
the early activity of the basal slip mode. Interestingly, in contrast with other
modeling attempts, the discontinuities observed for the {0002} and {1011}
planes in the radial direction for an applied stress of -120 MPa (B) are well
reproduced by the model. Such discontinuities are caused by twinning which
is responsible for a significant redistribution of internal stresses. These results
thus demonstrate the importance of an appropriate strategy for partitioning
the stress and strain fields between the twinned and untwinned domains. Ac-
cording to the model, the slope reversals for the {0002} and {1011} lattice
strains in the radial direction (C) are due to the activation of prismatic slip
systems. The present model however fails in reproducing the inflexion about
-140 MPa for the {0002} lattice strain in the radial direction (D). This discrep-
ancy between numerical and experimental results could be explained by the
fact that secondary twinning is not considered in the proposed model and/or
an overestimation of the hardening contribution associated with the interac-
tions between slip systems and twin planes. Carrying out modelling with a
larger number of grains might also assist in obtaining an accurate description
of internal strains, which are more sensitive than texture or macroscopic stress-
strain response to the statistical representation, particularly in the direction
perpendicular to the applied load (Oliver et al., 2004).

Also, while the growth of a twinned domain is properly depicted by the pro-
posed constitutive model, the estimation of the initial stress state of twinned
domains still remains to be improved. This aspect of the nucleation process is
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underlined by observing the evolution of the {0002} lattice strain in the axial
direction. Indeed, because of the initial crystallographic texture, the {0002}
reflection is absent in the axial direction at the beginning of the compres-
sion test. In this direction, the {0002} diffraction peak is observed only when
the twin volume fraction reaches a significant value. The initial value of the
{0002} lattice strain therefore provides some information regarding the initial
stress state within twinned domains. As illustrated by figure 5, though the
evolution of the {0002} lattice strain is reasonably well described, the model
fails in estimating the initial value (E) which, according to diffraction mea-
surements, is far into tension (about 2000 microstrains). Recent 3DXRD data
suggests this initial twin strain may vary considerably in value depending on
local conditions (Abdolvand et al., 2015).

The evolution of the twin volume fraction is shown in figure 6. The calculated
evolution is in good agreement with the measurement: the rapid increase due
to the activation of the twinning deformation mode and the saturation ob-
served towards the end of the test are both well reproduced. Also, as shown
in figure 8, during the compression test, the local twin volume fraction pro-
gressively increases to form the characteristic intragranular lamellar structure
that is often observed for twinned grains (Capolungo et al., 2009b). With an
increasing applied strain, both the number of twins and the thickness of the
lamellar structure tend to increase. At the end of the compression test, most
grains are entirely filled with tensile twins. To describe how the morphologi-
cal texture is impacted by twinning, the localized aspect of twin propagation
must be accounted for. To include this aspect in the present study, a softening
mechanism is considered by giving a negative value to the parameter W . This
corresponds to the situation where an increase of the twin volume fraction is
accompanied by a reduction of the resistance to the expansion of the twinned
domain. This softening mechanism, which is explained by the fact that nucle-
ation is expected to require a larger driving force than propagation, favors a
localized (rather than diffuse) development of twinned regions. Also, while the
morphological texture evolution is generally well depicted, some aspects need
to be improved. For instance, there are some intragranular regions where the
twinned microstructure is not accurately described since the local twin volume
fraction is possibly inferior to 100% inside twin lamellas (see for instance figure
6c). Indeed, because twinning is modelled as a continuous temporal process,
the twinned microstructure develops in a smooth, rather than abrupt, manner.

The final basal and prismatic pole figures are plotted in figure 9. The strong
texture change induced by tensile twinning that was experimentally observed
by Clausen et al. (2008) is correctly reproduced by the model: the density of
basal poles decreases along the rim and increases at the center while the inverse
is observed for prismatic poles. Therefore, although no specific criterion was
developed for nucleation, the model provides a reasonable description of the
twin variant selection phenomenon. To further investigate the variant selection
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Figure 8. Representative volume element after discretization into 128 × 128 × 128
voxels (a). Evolution of the local twin volume fraction for different imposed axial
strain: E22 = −0, 5% (b), E22 = −1% (c), E22 = −2% (d), E22 = −5% (e) and
E22 = −10% (f).
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Figure 9. Calculated final pole figures for the AZ31 magnesium alloy after the com-
pression test conducted along the axial direction. The pole figure centers correspond
to the original rod extrusion direction, which is also the axial loading direction. Pole
figures were plotted using the MTEX package (Hielscher and Schaeben, 2008).

process, the total twin volume fraction at the end of the compression test is
plotted as a function of the Schmid factor in figure 10. Since the volume average
Schmid factor is quite high (about 0.44), the twin variant selection process is
strongly governed by the macroscopic loading direction. Thus, though efforts
were made to account for local stress field fluctuations, these fluctuations seem
to play a secondary role on the twin variant selection process in this case.

4 Conclusions

In this work, a constitutive model accounting for the contribution of defor-
mation twinning is proposed. The development of the model is based on a
micromechanical approach that describes the interactions between twinned
and untwinned domains in an explicit manner. Following thermodynamical
arguments, an alternative expression for the driving force for twinning is ob-
tained. For a given twinning system, the driving force depends not only on the
corresponding shear stress but also on the different state variables. Finally, to
account for the polycrystalline nature of metallic materials, the constitutive
relations are implemented in a FFT spectral solver.

To demonstrate the relevance of the proposed model, the behavior of a AZ31
magnesium alloy subjected to uniaxial compression is then investigated. The
experimental results of Clausen et al. (2008) are used to identify material

22



0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

T
w
in

v
o
lu
m
e
fr
ac
ti
o
n

Schmid factor

Figure 10. Distribution of the Schmid factor associated with the twins observed
at the end of the compression test (i.e. E22 = −10%) conducted along the axial
direction of the AZ31 magnesium alloy cylindrical specimen. The volume average
schmid factor is about 0.44.

parameters. Since the interactions between twinned and untwinned domains
are explicitly considered, a reasonable description of the evolution of lattice
strains is obtained. Also, the model correctly reproduces the characteristic
intragranular lamellar structure that is classically observed for twinned grains.
The observation of texture evolutions shows that the reorientation process
associated with twinning is properly described with the proposed model.

Future work should focus on the description of the nucleation stage since the
present model fails to correctly estimate the initial stress state within newly
formed twinned domains. In this perspective, the recent development of 3D X-
ray diffraction techniques (Abdolvand et al., 2015; Aydiner et al., 2009; Bieler
et al., 2014) is expected to provide some additional information to help in
proposing an appropriate strategy for the description of the nucleation event.
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Agnew, S.R., Brown, D.W., Tomé, C.N., 2006. Validating a polycrystal model
for the elastoplastic response of magnesium alloy AZ31 using in situ neutron
diffraction. Acta Materialia 54, 4841–4852.

Ardeljan, M., McCabe, R.J., Beyerlein, I.J., Knezevic, M., 2015. Explicit incor-
poration of deformation twins into crystal plasticity finite element models.
Comput. Methods Appl. Mech. Engrg. 295, 396–413.

Asaro, R.J., Needleman, A., 1985. Texture development and strain hardening
in rate dependent polycrystals. Acta Metall. 33, 923–953.

Aydiner, C.C., Bernier, J.V., Clausen, B., Lienert, U., Tomé, C.N., Brown,
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C.N., 2015. Numerical study of the stress state of a deformation twin in
magnesium. Acta Materialia 84, 349–358.
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Proust, G., Tomé, C.N., Jain, A., Agnew, S.R., 2009. Modeling the effect of
twinning and detwinning during strain-path changes of magnesium alloy
AZ31. International Journal of Plasticity 25, 861–880.

Rashid, M.M., Nemat-Nasser, S., 1990. A constitutive algorithm for rate de-
pendent crystal plasticity, Comput. Methods Appl. Mech. Engrg. 94, 201–
228.

Remy, L., 1981. Metall. Trans. A, 12A, 387.
Robert, C., Mareau, C., 2015. A comparison between different numerical meth-

ods for the modeling of polycrystalline materials with an elastic-viscoplastic
behavior. Computational Materials Science 103, 134–144.

Simmons, G., Wang, H., 1971. Single Crystal Elastic Constants and Calcu-
lated Aggregate Properties: A Handbook, Second Edition, The MIT Press,
Cambridge, MA.

Shanthraj, P., Eisenlohr, P., Diehl, M., Roters, F., 2015. Numerically robust
spectral methods for crystal plasticity simulations of heterogeneous materi-
als. International Journal of Plasticity 66, 31–45.

Shiekhelsouk, M.N., Favier, V., Inal, K., Cherkaoui, M., 2009, Modelling the
behaviour of polycrystalline austenitic steel with twinning-induced plasticity
effect. International Journal of Plasticity 25, 105–133.

Staroselsky, A., Anand, L., 2003. A constitutive model for hcp materials de-
forming by slip and twinning: application to magnesium alloy AZ31B. Int.
J. Plast. 19, 1843–1864.

Vercammen, S., Blanpain, B., De Cooman, B.C., Wollants, P., 2004. Cold
rolling behaviour of an austenitic Fe30Mn3Al3Si TWIP-steel: the impor-
tance of deformation twinning. Acta Materialia 52, 2005–2012.

Wu, L., Agnew, S.R., Brown, D.W., Stoica, G.M., Clausen, B., Jain, A.,
Fielden, D.E., Liaw, P.K., 2008. Internal stress relaxation and load redis-
tribution during the twinning-detwinning-dominated cyclic deformation of
a wrought magnesium alloy, ZK60A. Acta Materialia 56, 3699–3707.

Xu, F., Holt, R.A., Daymond, M.R., 2009. Modeling texture evolution during

26



uni-axial deformation of Zircaloy-2. Journal of Nuclear Materials 394, 9–19.
Zecevic, M., Knezevic, M., Beyerlein, I.J., Tomé, C.N., 2015. An elasto-plastic
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