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Abstract 
Fatigue cracks can induce fracture of the catenary Contact Wire (CW) and thus 

huge costs for the operator. Nowadays the wear criterion to replace the CW leads to 

lifespan over than 50 years, and the catenary can see a very high number of cycles so 

that fatigue life must be taken into account. 

A full process to compute the multiaxial transient stress field in the CW has been 

developed. A fatigue criticality indicator to assess the risk of crack initiation was 

introduced. This elaborate indicator is used to validate a simplified fatigue indicator 

based on the uniaxial Euler-Bernoulli beam stresses that are much faster to compute. 

This indicator is then used to assess parameters influencing the risk of fatigue in the 

case of junction claws. 

 

Keywords: Catenary, contact wire, fatigue, wear, modelling. 

 

1 Introduction 

With a high speed network more than 35 years old and more than 800 trains 

operated every day, SNCF has a solid feedback in catenary maintenance and design 

of a High-Speed infrastructure patrimony. SNCF developed an economic 

maintenance strategy based on equilibrium between maintenance and regeneration 

expenses. The infrastructure design strategy also considers the whole system by a 

continuous optimization of the interaction between infrastructure and rolling stock. 

With targeted maintenance actions and improvement of components, the catenary 

lifetime has been extended to more than 50 years. However, this extension may lead 

to new failure modes that have to be taken into account in the maintenance strategy 

in order to avoid unpredictable failures that have a huge impact on traffic disruption, 

client discomfort (delays, speed slowdowns) and associated costs. 
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This paper is focused on renewal of contact wires which is currently based on 

wear rate. On high speed lines, the wear rate is almost negligible and the contact 

wire lifetime is estimated over 60 years. However, the overhead contact line of the 

first high speed line (1980) was already renewed because the commercial speed was 

increased from 270km/h to 300km/h and also because some fatigue failures occurred 

due to inappropriate component maintenance for high speed conditions. 

A theoretical and practical study was carried out to analyse parameters that 

significantly influence the fatigue phenomenon. A numerical study associated with 

laboratory testing was handled to determine leading physical phenomena. Indeed, 

this failure mode results of interaction of all aspects of contact wire life: design 

(mechanical tension, material properties), building (methodology of unrolling 

contact wire), system (quality of dynamic interaction with the pantograph), 

maintenance (contact wire wear rate), etc. 

 

Fatigue studies need to compute stresses in the Contact Wire (CW). OSCAR [1] 

is the tools used by SNCF to study the dynamic interaction between pantograph and 

catenary. The catenary is meshed using beam elements, and stress could be 

evaluated using the Euler-Bernoulli formalism. But the occurrences of crack 

initiation were typically reported in transition areas (claws, …), where the validity of 

a beam model can be doubted.  For this objective, a process for evaluations of 3D 

stresses compatible with the simulation of a full catenary section has been developed 

(Bianchi [2]) and is detailed in section 2.1. This process is an extension of the 

standard OSCAR computations with the ability to include a 3D wire segment. 

 
Figure 1 : Sample reported ruptures 

 

Section 2.2 illustrates that the CW sees mostly bending deformation so that the 

axial component of stress is the main contributor in fatigue analyzes. Section 2.3 

details the level of error found when only using beam stresses rather than the real 

volume stresses. 

In section 3, effects influencing criticality are analyzed in detail. Claw position 

within a span, interactions between claws and droppers and wear are thus shown to 

have significant impact on stresses viewed in the wire. Such studies can be used to 

orient maintenance guidelines.  



3 

2 Stresses and fatigue analysis 

Fatigue analyses need to know the stress cycle at given point of the CW. OSCAR 

models are based on beam elements so that only uniaxial stress can be computed. A 

full volume model strategy to compute the six components of the transient stresses 

has first been developed and is detailed in section 2.1. Section 2.2 introduces the 

criticality indicator used to evaluate fatigue and the typical stress cycles of a CW 

point when a pantograph is passing. Section 2.3 compares the uniaxial stress 

computed through a beam model of CW with the axial component of the full stress 

field, and goes back to the criticality indicator. 

2.1 Methodology to compute 3D stresses 

The general method, detailed in this section and summarized in Figure 2, aims at 

computing stresses at any point of a CW. Two models are defined from OSCAR 

standard model of catenary which combines beams, bar and mass elements. The first 

mixed model combines the OSCAR model and volume mesh of an area of interest 

(study area). It is used to compute 3D static stresses and an expansion basis. The 

second model is a standard beam model refined or adapted to have a number of 

coincident nodes with the mixed model. This adapted beam model is used to 

compute the dynamic displacements that will be expanded to estimate the dynamic 

part of the 3D transient stresses in the mixed model. 

 

 
Figure 2: General process for stress computations. 

 

The first step of the considered strategy is to generate a standard OSCAR mesh 

(Figure 3a) that is composed of pre-stressed beams and mass elements. Then an area 

of interest, where fatigue study will be performed, is meshed in detail using volume 

elements: a CW segment of a few meters and all claws connected to this segment: 

junction claw, dropper claw… The volume mesh is inserted in the beam mesh 

replacing beams, connecting the CW volume mesh extremities to adjacent beams 
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through rigid link rings (Figure 3c), and the dropper claws to the dropper through 

RBE3 ring (Figure 3d). This results in the mixed model of Figure 3b. 

 

 
 (a) (b) (c) (d) 

Figure 3: Parts of the mesh. (a) OSCAR original mesh. (b) Mixed model. (c) 

Rigid link ring at 3D part extremity. (d) Dropper claw connection. 

 

The 3D study area is generated by automated meshing of wire and claw sections 

followed by an irregular extrusion. The resulting elements are pentahedra. Element 

size is varying in CW section around 1 mm, and the extrusion step is typically 2 

mm. The length of the 3D study area varies from 1.5 to 2 meters leading to model 

sizes in the 500 000 to 700 000 DOF range. 

The adapted model is generated from the initial OSCAR model, and the mesh of 

the study area. The adaptation consists mainly in refining the beams in the study 

area to have coincident nodes on the neutral fiber of the CW. This adaptation is key 

to obtain a correct expansion for the dynamic displacements: the adapted model 

must give an accurate beam/bar/mass representation of the mixed model. 

 

The second step is a non-linear static resolution of the mixed model taking in 

account gravity, pre-stress in beam elements, and full geometric non-linearity in the 

volumes. At each iteration step, one considers residuals in the “1D” (beam/bar/mass 

elements) and “3D” parts (volume mesh of the study area). 

In the beam wires (1D part) the tension is adjusted leading to a change in the 

tangent stiffness in beam elements. This change in tangent stiffness is the only effect 

of geometric non-linearity. Unilateral stiffness in the droppers is also accounted for. 

The 1D residual is thus given by 

{𝑅1𝐷(𝑞
𝑛)} = [𝐾1𝐷(𝑞

𝑛)]{𝑞𝑛} − {F𝑔𝑟𝑎𝑣𝑖𝑡𝑦 + 𝐹𝑇𝑒𝑛𝑠𝑖𝑜𝑛} − {𝐹𝑁𝐿(𝑞
𝑛)} (1) 

In the volumes, the full Green-Lagrange strain  

{𝑒} =
1

2
(FFT − I) =

1

2
((I + ∇u)(I + ∇u)T − I) (2) 

is computed and is related to the Piola-Kirchoff stress {S} by an elastic law    

{𝑆} = λTr(e)I + 2μe (3) 

and leads to the 3D residual    

{𝑅3𝐷(𝑞
𝑛)} = ∫ 𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦 . 𝑑𝑣 − ∫ 𝑆(𝑞𝑛)

Ω0
: 𝛿𝑒

Ω
  (4) 

The nonlinear solution then seeks to minimize residuals through iterations on 𝑞𝑛. 

Linear constraints associated with the beam/volume connections are handled by 

elimination. One starts from a zero state and considers displacement increments  
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{𝛿𝑞} = {𝑞𝑛+1} − {𝑞𝑛} = [𝑇][𝐽(𝑞𝑛)]−1{𝑅(𝑞𝑛)}  (5) 

that verify the constraints. It is noted that the current computation does consider 

constraints in the nominal geometry, when updating these constraints to account for 

the large transformation might be needed.  

A typical computation time for 3D static and expansion matrix is 2 hours. 

 

A full dynamic computation on the mixed model would represent a too high 

computation time. Besides geometry transition between beam and volume meshes 

would be a very complex task (contact strategy, wave reflections problems...) in the 

dynamic problem. 

 

The proposed solution, is thus to expand the response of the adapted model. The 

resolution of the adapted model transient is a standard OSCAR run takes less than 

10 min for a full section. The simulation uses a Newmark implicit scheme with 

Newton iterations, and accounts for beam pretension, dropper unilaterality, and 

pantograph moving contact. 

Static and dynamic solutions of the adapted mesh lead to transient solutions  

𝑢1𝐷(𝑥, 𝑡) = (𝑢𝑠𝑡𝑎𝑡,1𝐷(𝑥) + 𝛿𝑢1𝐷(𝑥, 𝑡)) (6) 

decomposed in a static part 𝑢𝑠𝑡𝑎𝑡,1𝐷(𝑥) and a dynamic part 𝛿𝑢1𝐷(𝑥, 𝑡). It is then 

assumed that the full 3D response can be decomposed in a non-linear static part and 

a linearized dynamic solution 

𝑢3𝐷(𝑥, 𝑡) = 𝑢𝑠𝑡𝑎𝑡,3𝐷(𝑥) + [𝑇](𝛿𝑢1𝐷(𝑥, 𝑡)) (7) 

where recovery of the 3D displacement from beam motion to full 3D response is 

obtained using the static reduction/condensation basis [T] (Guyan [3]).   

  

Since the rotations are not present in volumes, a strategy to couple beam rotation 

DOFs and volumes is needed. One thus considers six independent loads, shown in 

Figure 4, on a ring of nodes around the neutral axis. From these loads, one builds a 

series of static deformation shapes of the mixed model so that observation of 

translations and rotations on the adapted model mesh part correspond to unit 

translations and rotations, thus leading to the reduction basis. 

 

 
Figure 4: Unit loads corresponding to 6 interface DOFs of Guyan condensation. 

Top: translations, bottom: rotations. 
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Stresses are linearly related to displacements. It is thus possible to build an 

observation equation for stresses at specific positions and use the expansion (7) to 

obtain 

𝜎3𝐷(𝑥, 𝑡) = [𝑐] (𝑢3𝐷,𝑠𝑡𝑎𝑡(𝑥) + 𝛿𝑢3𝐷(𝑥, 𝑡)) = 𝜎3𝐷,𝑠𝑡𝑎𝑡 + [𝑐𝑇]𝛿𝑢1𝐷(𝑥, 𝑡) (8) 

where the static stress 𝜎3𝐷,𝑠𝑡𝑎𝑡 and the stress observation matrix [𝑐𝑇] can be 

precomputed so that the application of (8) has a very low cost. Rich parametric 

studies on train configuration can thus be performed with a single time consuming 

3D run. 

2.2 Fatigue criticality and σxx component 

The full volume process has been used to compute the multi-axial stresses in the 

CW. With the full 3D stress field, a multi-slope Dang Van criterion can be computed 

at any point of the contact wire to assess the risk of crack initiation. The unlimited 

endurance domain has been precisely identified for the common copper alloy used 

for CW. The criticality of a given cycle due to a train passage is quantified by a 

scalar called criticality (“Cd” in the figures). This coefficient is directly linked to an 

expected lifespan before crack initiation, in each point of the contact wire. 

 

 
Figure 5: Dang Van criterion at 3 points of a CW section (red on top, blue at 

center, orange at bottom). 

 

With the Dang Van theory, the six stress components are necessary. However, other 

studies demonstrated that the criticality is mainly driven by σxx component. For 

instance, Figure 6 shows a configuration with a junction claw followed by a dropper. 

The added bending stiffness leads to a major drop of axial stress under the claws. 

The left image shows that the cycle is mainly composed by bending due to the 

vertical load from the pantograph. The amplitudes of the other five stress 

components are low compared to σxx (maximum of amplitude of σxx :  ~230 MPa, 

σyy :  ~8 MPa, σzz :  ~4 MPa, σyz :  ~0.3 MPa, σzx :  ~1.7 MPa, σxy :  ~2.5 MPa).  
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Figure 6: Left: Amplitude component of σxx volume stress at the top of CW. 

Junction claw extremities in red dashed lines. Dropper claw @625.5m. Right: 

maximum of amplitude of each stress components. 

 

Figure 7 shows the time evolution of the stress components at a given point 

located before the junction claw, at the top of the CW. The main stress is σxx, and 

other components are very low: we can consider that the deformation of the CW 

when the train is passing is almost pure bending. 

Figure 7: Stress components at the top of the CW at a given point before the 

junction claw. Up: σxx. Dow left: σyy and σzz. Down right: σyz, σzx and σxy. 

 

Figure 8 compares the corresponding Dang Van path computed with the full 6 

stress component cycle in blue line to the Dang Van path computed with only the σxx 

component in red line (other component considered constant at 0 MPa). The V shape 

is expected for a bending cycle. The criticality of a given cycle is mainly driven by 

the mean and the amplitude of the stress field. The amplitude of the red cycle is the 

same as the blue because stress amplitudes other than σxx are very low, but translated 

because of static value of other components that sligthly differ from 0.  

 



8 

 
Figure 8: Dang Van diagram at the top of the CW at a given point before the 

junction claw. Blue: real Dang Van path. Red: Dang Van path with only axial 

component of the stress. 

 

Considering that the deformation of the CW is mostly bending, the Dang Van 

path cycle should be mostly related to the axial stress component. Figure 9 top 

shows the 3D criticality obtained on about 100 m of high speed catenary, on the top 

and bottom line of the CW. Outside singularities such as junction claws, the 

criticality remains under 0, that is to say that there is no risk of crack initiation. 

The lower part of Figure 9 shows the criticality (Cd) versus the amplitude of the 

σxx component of multi-axial stresses, for all points on the top of the CW (blue) and 

the bottom of CW (green). A more critical case with a junction claw is added on the 

same graphs. The correlation between Cd and σxx amplitude is very high and the 

relation is linear.  

One can thus conclude that the multiaxial aspect of the Dang Van criterion does 

not have a major influence here and the amplitude of the σxx component can be 

considered as a good fatigue indicator, linearly correlated to the elaborate fatigue 

criterion (Cd) that has been developped. 
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Figure 9 : Criticality (Cd). Up: Against position (blue: bottom of CW; green: top 

of the CW). Down: Cd against the amplitude of σxx stress component. Left: at the 

bottom of the CW. Right: at the top of CW. Red: the junction claw case. 

2.3 Beam and volume stresses 

In this section, the axial component of the volume stresses is compared with 

uniaxial stress computed in the initial Euler-Bernoulli beam model of the catenary. 

 

As illustrated in Figure 10, the amplitude of σxx computed in the full volume 

process only differs from the beam stress in the vicinity of the claws. There beam 

stresses tend to over-estimate the real axial stress. The relative difference between 

maximum of σxx  computed in the beam model and in the volume model is 16.5 % at 

the bottom of the CW and 19 % at the top of the CW. The position of the maximum 

is also slightly different: with beam stress it is located at the first extremity of the 

junction claw and for the axial component of volume stress it is a few centimeter 

before. 
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Figure 10: Amplitude of σxx. Blue: uniaxial stress from beam model. Red: σxx 

component of the multiaxial stresses computed in the full volume process. Up: at the 

top of the CW. Down: at the bottom of the CW. Junction claw extremities in red 

dashed lines, dropper claw in green dashed lines. 

 

Going back to the criticality indicator,  illustrates the variation of the amplitude of 

uniaxial stresses and the criticality on a short area where there is a dropper claw and 

a junction claw. The σxx decrease around the claw is brutal whereas Cd decrease is 

more progressive. That leads to points that strongly differ from the linear relation 

between Cd and σxx amplitude but these points are not critical. 
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Figure 11: Left/Up: beam uniaxial stress amplitude. Left/Down: Cd. Right: Cd 

against uniaxial stress amplitude. 

 

Considering a set of computations on two spans without any junction claw, the 

maximum of uniaxial stress amplitude on each of the 3D study areas (1.2-2.5m) is 

almost linearly linked to the maximum of criticality on the same area, as illustrated 

in Figure 12. However two close but different lines can be observed. The different 

line is clearly due to study areas around dropper claws where the uniaxial stress 

amplitude has a peak that is not found in the Cd curve. 

 

 
Figure 12: Maximum (on the study areas) of Cd against maximum (on the same 

area) of uniaxial stress amplitude. Left (and blue): at the bottom of the CW. Right 

(and green): at the top of the CW. 

 

To conclude this section, uniaxial beam stress is actually a very good 

approximation of the σxx component of the multi-axial stresses. On a given study 

area, computing beam stress during a train passage takes around 10 min whereas the 
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full volume process takes around 2h. We can then have faster an estimation of the 

maximum fatigue criticality in the area of a singularity, and perform richer 

parametric studies. Finally, the amplitude of uniaxial beam stress is a good indicator 

of fatigue criticality, which despite its non absolute nature, can be used to sort the 

criticality of different configurations. 

3 Parameters influencing fatigue criticality 

3.1 Influence of position 

The first influent parameter considered here is the position a junction claw with 

the span. A high speed catenary is considered with a pantograph of a simple unit 

train passing at 300 km/h. The position of the junction claw is varied in a span near 

the middle of the catenary section. Figure 13 illustrates that the maximum amplitude 

of stress is globally more important for a junction claw located at the span 

extremities than near its middle. And a peak is typically visible before droppers.  

A first major peak is found for a claw located 22.5 cm before the first dropper of 

the span. This case will be detailed in sections 3.2 and 3.3. The figure also shows an 

even higher peak just before the last dropper in the span but this case was identified 

later and will not be analyzed in detail in this paper. 

 

 

 
Figure 13: Maximum of amplitude of upper line uniaxial beam stresses against 

the position of the junction claw. Top: on the full span. Down: zoom around the first 

dropper. 

 

Figure 14 illustrates the amplitude of uniaxial beam stresses on the lower line of 

CW. It has the same shape than at the top of the CW but with somewhat lower 

levels. The fatigue risk is lower accounting only the mechanical analysis, but there 

are a lot of other phenomena neglected in simulations that can be preponderant 
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there: electric arcs due to pantograph/CW contact losses, shocks or friction with 

pantograph, heating, wear... 

 

 

 
Figure 14: Maximum of amplitude of lower line uniaxial beam stresses against 

the position of the junction claw. Top: on the full span. Down: zoom around the first 

dropper. 

3.2 Interactions between claw and dropper 

As Figure 13 illustrated a stress range peak for a claw located 22.5 cm before the 

first dropper, this case is analyzed in more detail here. As visible in Figure 15, the 

spacing between the junction and dropper claws is then about 12.6 cm.  

 
Figure 15: Mesh of the considered case. In green junction claw, in light blue 

dropper claw, in orange CW, in blue the droppers. 

 

Beam stress color maps in space/time domain around the junction claw are 

displayed Figure 16. Under the junction and the dropper claws, the stress is always 

low, because the claws are clamped to the CW and thus a part of the static tension of 

the CW passes in the claw. Besides the CW/claw part is very stiff (section is more 

important than elsewhere) so that the level of bending in the wire strongly decreases 

under the claws.  

When the pantograph arrives near the junction claw, its inertia prevents wire 

motion and its section prevents bending, so that wire bending is localized before the 
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claw. There is an increase of the stress before the claw on the top of the CW due to 

its upward bending and the corresponding decrease on the bottom line. A similar 

behavior is found at the claw exit. 

 

 
Figure 16: Axial stress on lower line (left) and upper line (right) of CW. 

Space/time color map. Red dashed lines: extremities of claws. Blue dashed line: 

position of the train. Top: zoom around the claws. 

 

The specific position of junction claw chosen here is interesting because a second 

stress peak occurs about 0.02 s after train passage. Figure 17 displays the time 

evolution of stresses at 3 points of the CW: far from junction claw, just before the 

junction claw, and just before the dropper claw, on the upper and lower line of CW. 

Those stress curves are compared to the tension of the dropper in the vicinity of the 

junction claw. 

Far away from the claw and other singularities (blue curves), stresses show a 

peak at the pantograph passage, and very low fluctuation around ~130 MPa that 

corresponds to the static stress induced by the CW tension. This corresponds to the 

usual effect of wire bending due to pantograph passage. 

Just before the junction claw, there is an important peak on the upper line 

(corresponding to a decrease-peak on the lower line). 0.02s later the same point sees 

a strong decrease of stress, which will augment the stress amplitude and thus the 

criticality of this configuration. 
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Figure 17: Up (resp. Down): Uniaxial beam stresses at upper (resp. lower) line of 

CW (blue: far away from junction claw, red: just before junction claw, orange: just 

after dropper claw). Middle: Tension in dropper. Junction claw @625.275m. 

 

The important stress decrease is due to an interaction with the dropper. When the 

pantograph is arriving, the dropper is compressed so that tension decreases to 0 N 

(compression force in the dropper is compensated in OSCAR). After train passage, 

the wire is moving down, and the dropper gets brutally tensed. The load applied to 

the CW results in a significant drop of stress in the junction claw entry which 

increases stress amplitude and thus criticality. Near the dropper claw entry, two 

stress peaks are found: positive on top of the CW and negative at the bottom. But 

these do not augment the stress range and are thus not expected to have a major 

influence.  

3.3 Influence of wear 

Wear of contact wire is a phenomenon that affects the catenary dynamics, and the 

interaction with the pantograph. Even though global wear ratio is very low on high 

speed lines, the CW can be locally worn at higher level near the singularities, in 

particular near the junction claws, as illustrated Figure 18. Understanding the 
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potential effects of wear, in particular at specific points such as junction claws, thus 

seems important for fatigue studies. 

 
Figure 18: CW worn under two junction claws where ruptures have been 

reported. 

 

A non-uniform wear has then been introduced in the model, with the following 

assumptions: 

 Variable beam sections are defined for each beam element but the neutral 

axis is assumed to be straight. 

 Variation of the position of the contact line is accounted using geometric 

irregularity. The contact is handled by penalization, and irregularity is added 

to the distance from pantograph head to the neutral axis of the CW. This 

irregularity is interpolated linearly. 

The pantograph model is updated to take into account the Contact Strip (CS). 

Indeed the CS has flexibility whose effect can be visible in the response. 

A first computation is performed on a catenary with no wear. The raw contact 

force is illustrated Figure 19. The contact force near the junction claw shows a peak 

but clearly bigger peaks are seen elsewhere in the span. However there is clear 

contact loss (contact force equals zero) after the junction claw.  

 
Figure 19: Contact force (raw), GPU model of pantograph with CS (First free 

bending mode at 200 Hz), no wear. Top: on the full span. Down: zoom around 

junction claw. 
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From this first computation, a wear profile is defined by scaling the raw contact 

force between 0 and a maximum wear value. 21 simulations are performed for a 

maximum value of wear from 0 % to 20 % of the wire section worn. 

Figure 20 shows the geometric irregularity applied to model wear near the 

junction claw, for all the computed wear levels (from 0 % to 20 %, the wear of 20 % 

is reached later in the span corresponding to the maximum of contact force in the 

unworn case as said below). For the highest wear level considered here, the 

geometric irregularity is 2.5 mm over a 15 cm length ending with no wear in the 

contact loss area.  

 
Figure 20: Profiles of wear irregularity (mm) against position (m) for maximum 

wear. Red dashed lines: Junction claw extremities. 

 

For different levels of wear, Figure 21 shows the contact forces and the maximum 

and amplitudes of stresses. For sufficient wear, the contact force starts to show a 

very visible peak after the junction claw, which would certainly be detected in inline 

measurements. In term of stresses, the wear profile induces a notable stress increase 

with more impact between the dropper and junction claws than before the junction 

claw. The amplitude and thus the fatigue criticality follow the same trend. 

 

 
Figure 21 : Up: raw contact force. Down: amplitude of axial stress.  Red dashed 

lines: Junction claw extremities. Green dashed lines: Dropper claw extremities. 
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To complete the analysis, Figure 22 shows the maximum of stress on the wire as 

a function of time and the location of this maximum. The small steps at the 

beginning correspond to the pantograph motion away from the claw. Then for a long 

period the stress is the highest at the claw entrance. A little after passage of the 

pantograph at the claw mid-point the maximum stress goes the claw exit and stays 

there with a small excursion near the dropper claw. 

 

 

 
Figure 22 : Up: space maximum of axial stresses against time. Down: at which 

position this maximum occurs. Red dashed lines: Junction claw extremities, green 

dropper claw. Blue dashed line: pantograph passage. 

 

Figure 23 top shows the evolution of the σxx amplitude with the wear level. The 

amplitude oscillates with the wear level, but it is the highest for the more important 

wear level considered (20 %). The point where maximum of σxx amplitude is 

reached is the first extremity of the junction claw. Figure 23 bottom illustrates the 

time evolution of the axial stress at the entry of the claw for different level of wear. 

The evolution of maximum and minimum of stress at this point is not clear. For the 

wear level of 20 %, the amplitude is maximum and the peak due to the train passage 

is the higher but the decrease-peak due to the dropper that is going back to its tensed 

state is the lower. 

 



19 

 

 
Figure 23 σxx stress at the top of the CW. Up: maximum of amplitude. Down: 

time evolution of the stress at the entry extremity of the junction claw. 

4 Conclusion 

The full fatigue process that has been detailed in this paper has been used to 

validate an approximated indicator of fatigue which is the beam model uniaxial σxx 

stress amplitude. This approximation can be done because the deformation of the 

CW when a train is passing is mostly bending. This indicator is of course less 

precise than the Cd fatigue criticality computed through the full volume process: it 

tends to over-estimate fatigue criticality, the localization of the critical point is not 

perfect and the absolute value has no real sense (we can’t predict a time to live 

before crack initiation unlike for Cd indicator). This is due to the Euler-Bernoulli 

theory which is known to be false near singularities, such as the junction claw here. 

However this indicator is a good estimator of fatigue criticality, and can be used to 

hierarchize the criticality of different cases. Computation time is much lower and 

enables to perform very rich parametric studies. 

Main result of the study with beam models is to target the junction claw positions 

which are more critical in terms of fatigue. These are located near and before 

dropper, with most critical droppers being the first and the last droppers. The case of 

the first dropper has been studied in detail and shows that the junction claw vicinity 

with dropper claw induces an interaction that is increasing the fatigue risk: the 

dropper that is going back to its tensed state after the train passage tends to brutally 

stop the wire descending motion, that generates downward bending before the 

junction claw and thus a low level peak in the stress that increases its amplitude and 

thus the fatigue risk. The local wear effect near the junction claw (that is due to 
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contact force important variations in this area) has also a strong impact on the 

fatigue criticality. A clear perspective is cycling simulation to account for wear 

evolution (indeed, when the CW is worn, contact force is not the same, and so the 

new wear has not the same shape). More realistic simulations based on real wear 

profile near the junction claw would also be of great interest.  
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