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1 INTRODUCTION 

Today, the main criterion used to determine the Contact Wire (CW) replacement is its wear. On 
high speed lines, due to their specific geometries, the wear ratio is very small compared to clas-
sical lines so that the CW lifespans due to wear is more than 50 years. The traffic is very im-
portant on French high speed lines: an average of 150 000 pantographs are circulating on a giv-
en line each year. As a consequence, the number of load cycles that a CW will endure during its 
lifespan is very high, so the fatigue process must be taken in account to avoid fractures of the 
catenary CW, leading to traffic disruptions, passengers’ dissatisfaction and huge induced costs 
for SNCF. On-line crack detection is very difficult so numerical simulation can help target criti-
cal areas where crack is likely to occur, but also to understand risk factors, and estimate when 
the crack can occur. This paper presents the fatigue simulation tools developed within the OS-
CAR software.  
 
OSCAR is the software used by SNCF and developed by SDTools to model the dynamic inter-
action between pantograph and catenary [Massat 2015]. This package developed within the 
Structural Dynamics Toolbox for MATLAB [SDTools 2015] is a well validated tool that is used 
for design and validation of catenaries. The catenary is described using the finite element meth-
od, meshing each wire with beam elements. A full nonlinear static taking in account beam pre-
tensions and dropper unilaterality is first computed. Then a nonlinear dynamic computation is 
performed with a sliding contact between one or more pantographs (described from the simplest 
3 lumped mass model to more accurate flexible multibody models), leading to the dynamic dis-
placements of all the contact wire nodes.  
 
Stress could be evaluated from the beam model using the Euler-Bernoulli formalism. But the 
uniaxial nature of beam stresses is insufficient and crack initiation typically occurs in transition 
areas (claws, …), where the validity of a beam model can clearly be doubted. A full volume 
meshing of a CW section (~1 km) is not realistic because of the associated model size, so that a 
volume mesh is included in the beam mesh of the CW only on a short studied area. The process 
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to obtain proper 3D stresses from this model is first described. One then introduces fatigue crite-
ria based on the Dang-Van theory. Finally sample results are shown for the study of a junction 
claw. 

2 TRANSIENT STRESS COMPUTATION IN A VOLUME MESH IN OSCAR 

The general method, detailed in this section and summarized in the Figure 1, aims at computing 
stresses at any point of a CW. Two models are defined from OSCAR standard model of catena-
ry which combines beams, bar and mass elements. The first mixed model, detailed in section 
2.1, combines the OSCAR model and volume mesh of an area of interest (studied area). It is 
used to compute 3D static stresses, detailed in section 2.2, and an expansion basis detailed in 
section 2.3. The second model is a standard OSCAR model refined or adapted to have a number 
of coincident nodes with the mixed model. This adapted model is used to compute the dynamic 
displacements that will be expanded to estimate the dynamic part of the 3D transient stresses. 

 

 
Figure 1. General process for stress computations. 

2.1 Catenary meshing 
The first step of the considered strategy is to generate a standard OSCAR mesh (Figure 2a) that 
is composed of pre-stressed beams and mass elements. Then an area of interest, where fatigue 
study will be performed, is meshed in detail using volume elements: a CW segment of a few 
meters and all claws connected to this segment (junction claw, dropper claw…). The volume 
mesh is inserted in the beam mesh replacing beams (Figure 2b), connecting the CW volume 
mesh extremities to adjacent beams through rigid link rings (Figure 2c), and the dropper claws 
to the dropper through RBE3 ring (Figure 2d). This results in the mixed model of Figure 1. 

 
                        (a)                                         (b)                                 (c)                                 (d) 
Figure 2. Parts of the mesh. (a) OSCAR original mesh. (b) Mixed model. (c) RBE3 ring at 3D part ex-
tremity. (d) Dropper claw connection. 

 
The 3D studied area is generated by automated meshing of wire and claw sections followed 

by an irregular extrusion. The resulting elements are pentahedra. Element size is varying in CW 



section around 1 mm, and the extrusion step is typically 2 mm. The length of the 3D studied ar-
ea varies from 1.5 to 2 m leading to model sizes in the 500 000 to 700 000 DOF range. 

The adapted model is generated from the initial OSCAR model, and the mesh of the studied 
area. The adaptation consists mainly in refining the beams in the studied area to have coincident 
nodes on the neutral fiber of the CW. The claws that are typically defined by masses are also re-
placed by more accurate models. This adaptation is a key to obtain a correct expansion for the 
dynamic displacements: the adapted model must give an accurate beam/bar/mass representation 
of the mixed model. 

2.2 Static 3D stresses 
The second step is a nonlinear static resolution of the mixed model taking in account gravity, 
pre-stress in beam elements and full geometric non-linearity in the volumes. At each iteration 
step, one considers residuals in the “1D” (beam/bar/mass elements) and “3D” parts (volume 
mesh of the studied area). 

In the 1D part wires the tension is adjusted leading to a change in the tangent stiffness in 
beam elements. This change in tangent stiffness is the only effect of geometric non-linearity. 
Unilateral stiffness in the droppers is also accounted for even though it is usually not activated 
in the static behavior. The 1D residual is thus given by 

{ܴଵ஽(ݍ௡)} = {௡ݍ}[(௡ݍ)ଵ஽ܭ] − ൛F௚௥௔௩௜௧௬ + ௘௡௦௜௢௡ൟ்ܨ −  (1) {(௡ݍ)ே௅ܨ}

In the volumes, the full Green-Lagrange strain  
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is computed and is related to the Piola-Kirchoff stress by an elastic law 
{ܵ} = λTr(e)I + 2μe (3) 

and leads to the 3D residual    

{ܴଷ஽(ݍ௡)} = ∫ ௚௥௔௩௜௧௬ܨ . ݒ݀ − ∫ ஐబ(௡ݍ)ܵ
: ஐ݁ߜ  (4) 

 
The nonlinear solution then seeks to minimize residuals through iterations on ݍ௡. Linear con-

straints associated with the beam/volume connections are handled by elimination. One starts 
from a zero state and considers displacement increments  

{ݍߜ} = {௡ାଵݍ} − {௡ݍ} =  (5) {(௡ݍ)ܴ}ଵି[(௡ݍ)ܬ][ܶ]
that verify the constraints. It is noted that the current computation does consider constraints in 
the nominal geometry, when updating these constraints to account for the large transformation 
might be needed.  

In some configurations, convergence was difficult. Solutions to obtain convergence involved 
application of tension in multiple steps, adjustment of tolerances, Jacobian updating, tuning of 
line-search parameters. Number of iterations can be important. A typical computation time for 
3D static and expansion matrix is 2 hours. 

2.3 Dynamic 3D stresses 
Jacobian reassembly and factorization, while reasonably fast (320 s for a light 350 000 DOF 
model), is incompatible with transient simulations where the moving load of the pantograph 
must absolutely be accounted for as will be shown later in the paper. The passage of the panto-
graph over the 1-2 meter 3D segment would require at least 250 time steps at 300 km/h (mini-
mum because the convergence of such a computation will certainly need a time step far much 
lower than the 1D computation time step of 1e-4 s): that corresponds to more than 20 h. As it 
would be difficult to perform simulation on the mixed model only when pantograph is under the 
studied area, and then go back to 1D model elsewhere, the simulation of the train passage on a 
full section would take a huge amount of time, which is unrealistic. Besides geometry transition 



between beam and volume meshes would be a very complex task (contact strategy, wave reflec-
tions problems...) in the dynamic problem. 

The proposed solution is thus to expand the response of the adapted model. The resolution of 
the adapted model transient is a standard OSCAR run, which is using a fixed Jacobian strategy, 
and takes about 12 min for a full section. The simulation uses a time step of 1e-4 s in a New-
mark implicit scheme with Newton iterations, and accounts for beam pretension, dropper unilat-
erality, and pantograph moving contact. 

Static and dynamic solutions of the adapted mesh lead to transient solutions  

,ݔ)ଵ஽ݑ (ݐ = ൫ݑ௦௧௔௧,ଵ஽(ݔ) + ,ݔ)ଵ஽ݑߜ  ൯ (6)(ݐ

decomposed in a static part ݑ௦௧௔௧,ଵ஽(ݔ) and a dynamic fluctuation ݑߜଵ஽(ݔ,  It is then assumed that .(ݐ
the full 3D response can be decomposed into a nonlinear static part and a linearized dynamic so-
lution 

,ݔ)ଷ஽ݑ (ݐ = (ݔ)௦௧௔௧,ଷ஽ݑ + ,ݔ)ଵ஽ݑߜ)[ܶ]  (7) ((ݐ
where recovery of the 3D displacements from beam motion to full 3D response is obtained us-
ing the static reduction/condensation basis [ܶ] [Guyan 1965]. 

Since the rotations are not present in volumes, a strategy to couple beam rotation DOFs and 
volumes is needed. One thus considers six independent loads, shown in Figure 3, on a ring of 
nodes around the neutral axis. From these loads, one builds a series of static deformation shapes 
of the mixed model such that observation of translations and rotations on the adapted model 
mesh part correspond to unit translations and rotations, thus leading to the reduction basis. 

 

 

 
Figure 3. Unit loads corresponding to 6 interface DOFs of Guyan condensation. Top: translations, bottom: 
rotations. 

  
The Guyan condensation matrix [T] can be quite large. For example, for a simple case where 

study part is 2 m long, extruded with 2 mm step, there are 1000*6 master DOFs on the neutral 
fiber and 700 000 DOFs in the volume mesh. That leads to an expansion matrix of approximate-
ly 30 GB. This matrix takes a lot of memory so that it is stored out of core. 
 

Stresses are linearly related to displacements. It is thus possible to build an observation equa-
tion for stresses at specific positions and to use the expansion (7) to obtain 

,ݔ)ଷ஽ߪ (ݐ = [ܿ] ቀݑଷ஽,௦௧௔௧(ݔ) + ,ݔ)ଷ஽ݑߜ ቁ(ݐ = ଷ஽,௦௧௔௧ߪ + ,ݔ)ଵ஽ݑߜ[ܶܿ]  (8) (ݐ

where the static stress ߪଷ஽,௦௧௔௧ and the stress observation matrix [cT] can be precomputed so that 
the application of (8) has a very low cost. 
Rich parametric studies on train configuration can thus be performed with a single time consum-
ing 3D run. Examples of parameters are pantograph properties or types, distance between pan-
tographs. Their impact on the fatigue criticality can be assessed. Results of such a study are pre-
sented in section 3.4. 



3 APPLICATION 

This section illustrates the proposed method. Section 3.1 summarizes the principles used to go 
from stress predictions to fatigue analysis. Section 3.2 details the behavior for a junction claw. 
Section 3.3 justifies the need to compute full multi-axial stresses. Section 3.4 illustrates how this 
tool can be used to hierarchize pantograph aggressiveness in terms of fatigue damages caused to 
the CW. 

3.1 Principle of crack prediction 
The computation of the transient stress field is meant as input to a fatigue prediction model, 
based on the Dang-Van theory, with enrichment and extensions. The fatigue limit domain of the 
common copper alloy is modeled with a multi-slope Dang Van criterion, as shown in Figure 4. 
The material characteristics were identified thanks to fatigue tests performed by SNCF on small 
specimen subjected to cyclic bending loads. In the Dang Van histogram (mesoscopic shear 
stresses according to hydrostatic pressure), the cyclic stresses path of any point of the CW can 
be plotted. The criticality of a given cycle due to a train passage is quantified by a scalar called 
criticality (“Cd” in the figures). This criticality Cd has been directly linked to an expected 
lifespan before crack initiation via an innovative method detailed in a later publication. 

A negative Cd means that there is no criticality of the studied cycle, according to the number 
of cycles chosen to build the unlimited endurance domain (in this study, five million cycles have 
been retained). In Figure 4, the red (+) and blue (triangle) cycles corresponding to points located 
at the center and the bottom of CW have negative Cd. A positive Cd implies that the risk of fa-
tigue needs to be taken in account. This is the case of the point at top of the CW in Figure 4.  

 
Figure 4. Dang-Van cycles at 3 points of the CW section : top (green plain line with stars), center (red 
plain line with triangles) and bottom (blue dashed line with + markers). 

3.2 Detailed behavior for a junction claw 
We consider here, as an example, the case of junction claw, on a French high speed catenary. 
The train circulates at a speed of 300 km/h and has only one pantograph. The criticality diagram 
representing the criticality on the upper line and on the lower line of the CW against the position 
on the studied area given in Figure 5. Criticality is maximum about 1.5 cm before the junction 
claw, on the top of the CW. 



 
Figure 5. Criticality on a line on the top (green plain line) and on the bottom of the CW (blue dashed line) 
against position in the line (PK). Claws are delimited by vertical red dashed lines (left: junction claw, 
right: dropper claw). 

 
Figure 6 shows more precisely the evolution of the axial stresses σxx in the studied area. In the 

time/space domain, the junction and dropper claws are shown by horizontal dashed lines. The 
pantograph position is represented by oblique dashed line. Waves that come before pantograph 
are visible but low. The point where stresses are the most important is located few centimeters 
before the junction claw and reached a little after the pantograph passage. Under the claw, 
stresses are low with the highest tension due to the wave arriving before the pantograph.  

Displacements of the CW are shown in Figure 7. The junction claw is very stiff and has a 
mass of more than 1 kg so its inertia is important. That explains why the maximum stress is lo-
cated before the junction claw: the bending of the CW generated by the pantograph approach is 
blocked before the claw is raised by the pantograph. 

 

    
Figure 6. Contour color map of CW axial stresses at the upper line of the studied area (left) and at the 
lower line (right).  
 

 



 
Figure 7. Displacement for different time steps during train passage. 
 

Figure 8 shows a zoom of the transient σxx stresses at the 3 positions A, B and C (see  
Figure 5), at the top and the bottom of CW. 
At points A and B, before the train passage, some waves induce low stress variations in the 

CW. When the train passes under a given point of the CW, a strong short stress peak can be ob-
served at its top and bottom. Stress oscillations quickly decrease so that the dimensioning part 
of the stress signals is localized around the time of the train passage. To avoid missing the peak, 
the nominal 1.2 ms time step is divided by 100. 

A 20 000 N tension is applied to the CW extremities. For a section of 151.5 mm2, the mean 
σxx stress is 132 MPa. Under gravity load, the CW is sagging, the top is compressed while the 
bottom is tensed and thus shows a higher stress. When pantograph passes and applies a vertical 
load around 180 N, the CW bends in the direction opposite to sag and tension increases at the 
top and decreases below. Figure 8 shows that maximum stresses are almost opposed to mini-
mum stresses around the mean value equal to 132 MPa: due to the slots of CW, its neutral fiber 
is closer to its bottom than to its top so that during a same bending, σxx stress increases more at 
the top than it decreases at the bottom. 

Point C is rather particular because it is located under the junction claw. The junction claw is 
clamping the CW, without sliding, so that a part of the tension of the CW is passing through the 
claw: static σxx stress is about 40 MPa at the top of CW and 100 MPa at the bottom of CW. 
When the train passes under the junction claw, there is almost no bending of the CW because 
the claw is very stiff, so that the stress peak is very low. 
 

 
Figure 8. Transcient stresses at the 3 positions A, B and C, at the upper point and the lower point of CW. 
 

Figure 9 shows the Dang-Van paths at the top and the bottom of the 3 positions A, B and C 
corresponding to the stresses displayed Figure 8. The Dang-Van paths must be compared to the 
Dang-Van endurance limit to determine the criticality of corresponding cycles. The only critical 
cycle is at the top of the CW at position B. Other cycles are not critical (no risk of crack initia-
tion). 

At positions A and B, the Dang-Van path at the bottom of the CW has a lower hydrostatic 
pressure than at the top. This is due to the fact that mean stress in a cycle is lower at the bottom 
than at the top: when the pantograph passes, the increase of stress occurs at the top whereas 
stress decreases at the bottom of the CW. Besides stress increase is more important at the top of 
the CW than the stress decrease at the bottom. That is why upper point is more critical in simu-
lations than lower point. In reality stress crack may occur at the bottom of the CW. That can be 
explained by neglected phenomena in simulations, such as for example electric arks due to pan-
tograph CW contact losses, shocks or friction with pantograph, wear.... 

At position C, the stress variations are very low because of the claw stiffness that prevents 
CW from deforming too much. There is no risk of crack initiation at this position. 

 



 
Figure 9. Dang-Van paths at the 3 positions A, B and C, at the upper point and the lower point of CW. 

3.3 Discussion on 3D/beam stresses relation 
A full dynamic computation can be performed within the beam model in about ten minutes and 
transient axial stresses in Euler-Bernoulli formalism can be easily computed. In this section the 
interest of a full 3D stress field computation is illustrated. 

The first argument to compute full 3D stress field is that Saint-Venant insures good validity 
of beam theory in area far enough from singularities. In our case the stresses computed are only 
valid few centimeters from the claws. But it has been shown by full 3D computations that these 
areas are critical and consequently of a main interest. 

As an illustration, we compare the σxx amplitudes at the top of the CW during a train passage 
computed in the Euler-Bernoulli formalism and computed from the full 3D process detailed in 
this paper. Outside singularity areas, the two amplitudes are really close, but near the claw it is 
no longer the case. Figure 10 compares the two amplitudes at the level of a dropper claw: the 
beam stress is not regular whereas 3D stress evolution is more progressive. Differences are 
clearly visible. 

 
Figure 10. σxx amplitudes at a dropper claw level, on a CW upper line. The axial component of the full 3D 
computation is the dashed line and the plain line is the beam computation. 

 
Due to stagger and Z/Y coupling, there are non axial stresses in the catenary (even if they are 

low), as illustrated Figure 11. At the point C, under the junction claw, there is a -30 MPa σyy 
stress component that is due to the tightening load. 

 
Figure 11. Non axial stresses at positions A, B and C. 
 

The main stress is however σxx. To select the relevant points within the section, Figure 12 
displays σxx stresses map at point B and C sections. The deformation is mainly caused by verti-
cal bending of the CW that justifies considering only CW top and bottom line observations. At 
point C, junction claw is taking a part of the CW tension because of adherence, so that σxx is 
lower at the top than at the bottom. We see also on the picture the 2 points where tightening load 
is applied (σxx stress locally negative).  

 



 
Figure 12.Stress distribution. Left: critical point (point B). Right: under the junction claw (point C). 

3.4 Junction claw:Pantograph damages caused to the catenary 
CW cracks under a junction claw have been reported. Those claws are heavy and stiff so they 
induce important dynamic stresses when the pantograph is passing. In section 3.2 a nominal 
case of a junction claw was studied in detail. In particular Figure 5 showed the criticality on the 
upper and lower line of the CW: there is a visible critical point before the junction claw, on the 
top of the CW. Since fatigue damage is related to criticality, it is obviously interesting to com-
pare the effect of different pantographs, in different setups, in order to assess the induced dam-
age. This will allow the use of fatigue criteria in the selection of pantograph configurations for 
networks that now tend to have multiple operators. 

 
Two realistic pantographs, named 1 and 2 in the paper are considered. Simulations are per-

formed on a standard section of the high speed line that connects Paris to Le Mans. A junction 
claw is added near the last dropper of a span at the middle of the section. Each train is composed 
of a unique pantograph. A simulation is performed for different pantographs and mean contact 
forces (from 70 N to 300 N by 10 N steps) for a train speed of 300 km/h. 

 Figure 13 shows the maximum of criticality around the junction claw, on the top and the 
bottom line. Pantograph 1 is clearly more aggressive than pantograph 2 in terms of fatigue 
whatever the mean contact force Fm. The impact of Fm on criticality is also more important in 
the case of pantograph 1. Criticality is globally increasing in both cases with Fm. Some mean 
contact forces are clearly more damaging: for example there is a peak of criticality for 
Fm=150N for pantograph 1. 

 

 
Figure 13. Maximum of criticality around the junction claw, at CW top (green dashed line) and bottom 
(blue dashed line) against mean contact of pantograph (Fm 70 N to 300 N). Pantograph 1 (+) and 2 (o). 

 
The standard deviation of the contact force on the whole section can be considered as an indi-

cator of current collection quality. Figure 14 shows that pantograph 2 is much better regarding 
the current collection than pantograph 1. The peak in fatigue aggressiveness, observed in Figure 



13 around Fm=150 N, can also be found as a peak in the contact force standard deviation. Fa-
tigue aggressiveness and beam dynamics are thus clearly related. 

 

 
Figure 14. Standard deviation of unfiltered contact force on the whole section. Pantograph 1 (+) and 2 (o). 

4 CONCLUSION 

The fatigue module developed and detailed in this paper gives access to multi-axial stresses at 
any point of the CW. Computing the multi-axial transient stresses gives more precision on the 
axial component σxx that would be really approximated near the singular points, junction claws 
in particular, if computed from the standard beam models. The multi-axial transient stress field 
can be applied for advanced fatigue theories, such as the Dang-Van method that has been used 
and extended to compute the number of years before a crack is likely to occur. This “time to 
live” indicator will be the object of further publication.  

A main result of this study was the confirmation that claws are the most critical points in 
terms of CW fatigue known this day. Details about the behavior in this area were given in the 
paper.  

The proposed tool seems practical to help define maintenance strategies. It indeed allows de-
tection of critical points and classification of the impact of different operating conditions. Con-
tact force and damage were found to be strongly correlated. Using inline contact force meas-
urements to build indicators of critical areas thus seems an interesting perspective. 
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