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Abstract

In statistical process control (SPC) methodology, quantitative standard control charts are often based on the assumption that the 
observations are normally distributed. In practice, normality can fail and consequently the determination of assignable causes may result 
in error. After pointing out the limitations of hypothesis testing methodology commonly used for discriminating between Gaussian and 
non-Gaussian populations, a very flexible family of statistical distributions is presented in this paper and proposed to be introduced in 
SPC methodology: the generalized lambda distributions (GLD). It is shown that the control limits usually considered in SPC are 
accurately predicted when modelling usual statistical laws by means of these distributions. Besides, simulation results reveal that an 
acceptable accuracy is obtained even for a rather reduced number of initial observations (approximately a hundred). Finally, a specific 
user-friendly software have been used to process, using the SPC Western Electric rules, experimental data originating from an industrial 
production line. This example and the fact that it enables us to avoid choosing an a priori statistical law emphasize the relevance of using 
the GLD in SPC.

Keywords: Statistical process control; Western electric rules; Hypothesis testing; Generalized lambda distributions; Numerical simulations; Non-norm-
ality; Sampling data

1. Introduction

The statistical process control (SPC) methodology is
mainly used as a tool to understand, model and reduce
the variability of an industrial process over time. It is based
on the detection of ‘‘non-random’’ patterns on control
charts; many of these patterns being reported in the Wes-
tern Electric Handbook [1] which defines the eight main
detection rules reminded in Appendix. Usually based on

graphical tools such as control charts, the SPC methodol-
ogy uses inference statistical analysis of monitored time
series data to distinguish between common causes of vari-
ation due to the inherent nature of the process and assign-
able causes due to unusual shocks or disruption. Lots of
quantitative control charts exist today and their use is gen-
erally based on the assumption that the distribution of the
process data under study can be modelled by one of the
usual probability laws (Gaussian, lognormal, Weibull,. . .).

In SPC strategy, the most widely used assumption is that
the population under study follows a Gaussian law. It is
often justified by the fact that any measure presents a
variability due to many independent causes. In fact, the
superposition of all these independent causes (having com-
pensative influences) leads to a distribution of the variable
under consideration that converges to a Gaussian law. This
simplistic explanation results from the well known Central
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Limit Theorem [2] which states that the summation of an
infinite number of randomly distributed variables con-
verges to a normal distribution. Nevertheless, several prac-
tical examples of non-Gaussian processes were often
reported [3–6]. Whether the hypothesized model is Gauss-
ian or not is assessed by means of a hypothesis test. How-
ever, whatever the statistical test a major drawback must be
outlined. Indeed, the results of such tests only warranty the
eventual rejection of the classical null hypothesis H0 (The

data under study follow the hypothesized law). Conversely,
failure to reject does not necessarily mean that the tested
null hypothesis is true and it would be very interesting to
get through this limitation of statistical inference.

The present work aims to present an alternative statisti-
cal approach that avoids the previously cited drawback
related to statistical inference. In this approach, a very flex-
ible family of distributions called the GLD is used to model
accurately a series of data while minimizing hypotheses
about the nature and the shape of the unknown underlying
distribution. These distributions have been applied by the
authors firstly to predict the fatigue lifetime of metals [7]
and to model extreme values during the pitting corrosion
process [8]. Two years ago the authors introduced the use
of the GLD in the SPC methodology [9] and in a very
recent paper [10], Pal used the lambda distributions to cal-
culate the capability indices (CP and CPK) widely used in
statistical process control.

In the present paper, a major limitation of the classical
v2 goodness-of-fit test is firstly pointed out from the analy-
sis of a simple example: in practice, a large amount of data
must be processed to reject the assumption of normality.
Secondly, the GLD are presented and used to model
Gaussian, lognormal and Weibull data in order to show
that they are particularly well-adapted to approach lots
of various shapes of distributions and also to predict accu-
rately the control limits considered in SPC methodology. A
numerical simulation is performed to evaluate in particular
the minimal number of data required for an accurate pre-
diction of these limits when considering a GLD based mod-
elling. Finally, specific user-friendly software, are used to
process experimental data originating from an industrial
production line and to emphasize the relevance of consider-
ing GLD-based modelling in SPC.

2. Limitations of the Gaussian assumption

A simple illustrated example is developed below on data
following distributions far from being Gaussian in order to
show that a high number of values are required to reject the
null hypothesis H0 (‘‘The data under study are normaly dis-

tributed ’’) studied by means of a classical goodness-of-fit
test. In this example, distributions have been obtained by
summing uniform variables generated by means of
Monte-Carlo simulations. For the sake of simplicity, these
distributions will be denoted, FN, with N being the number
of summated uniform variables hereafter called the ‘‘degree
of summation’’. Thus, a set of 106 uniform scores has firstly

been generated to obtain a classical uniform distribution
(N = 1). Secondly, two uniform variables have been gener-
ated and their sum has been calculated. When repeating 106

times these operations, the resulting sum follows a usual
triangular distribution (N = 2). Thirdly, three uniform
variables have been generated and their sum has been cal-
culated. When repeating 106 times these operations, the
resulting sum follows in this case a distribution which con-
sists of three pieces of parabola (N = 3).

For these distributions far from being Gaussian, the
question is therefore to determine how many values are
required to reject the null hypothesis H0 (‘‘The data under

study are normaly distributed’’) by means of the most
widely used v2 goodness-of-fit test. To evaluate this mini-
mal number of values for a given value of N, datasets of
n values following the law FN are generated. Then, the p-
value representing the probability to reject falsely H0 is esti-
mated by means of the v2 goodness-of-fit test. This process
is repeated 105 times and the mean of p-values is calculated.
The evolution of the mean p-values is represented in Fig. 1
as a function of the sample size n for the distributions FN

for N = 1–5; each point representing the mean of p-values
calculated for a 105 samples with the same size n. In prac-
tice, a critical probability a is often selected to specify an
acceptable Type I error (occurring if the null hypothesis
H0 is falsely rejected). The classical value a = 0.05 is usually
retained, meaning that the user accepts to reject falsely the
distribution’s normality in 5% of cases. For this classical
value, Fig. 1 shows that, even for simulated data originat-
ing from distributions far from being Gaussian, a signifi-
cant number of values is required so that the v2

goodness-of-fit test rejects the normality assumption: at
least 30 values in the case of a uniform distribution
(N = 1) and more than 500 values in the case of a triangu-
lar distribution (N = 2)!

Fig. 2 shows that the minimal number of values required
to reject H0 at a critical value a = 0.05 exponentially
increases as a function of the ‘‘degree of summation’’ N;
i.e. as the distribution under consideration tends to the true
Gaussian distribution (obtained when N! +1 as stated
by the Central Limit Theorem). For N = 3, this minimal
value exceeds 2500 data showing that, in comparison with
distributions that are far from being Gaussian, it is even
more difficult to reject the Gaussian assumption using this
classical v2 goodness-of-fit test in the case of distributions
simply looking similar (without however being precisely
equal) to the true Gaussian distribution. Unfortunately,
such a high number of experimental data is rarely pro-
cessed in practice, meaning that, using a classical hypothe-
sis test, the Gaussian law may be abusively accepted in SPC
to model the unknown underlying population even if it
does not obey a true Gaussian law!

As far as the SPC methodology is concerned, the
Western Electric rules [1] are based on the comparison of
the position of data under processing with regard to the
limits of the confidence intervals of the Gaussian distribu-
tion. Fig. 3a represents the estimated width of the 99.73%
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confidence interval of simulated data, for a degree of sum-
mation N varying from 1 to 50. It can be seen that this
width increases with the value of N and that it tends
towards 6r; value corresponding to the true Gaussian dis-
tribution (N! +1). As a consequence, if a 6r confidence

interval is set as recommended in the Western Electric rules
based on the Gaussian assumption, the probability to find
a simulated value out of this interval is all the lower as the
value of N is also small. Fig. 3b shows that this probability
tends to 0.27% as the degree of summation increases;
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Fig. 2. Evolution of the minimal sample size required to reject H0 with a Type I error a = 0.05 as a function of the degree of summation N. The
distributions FN are inserted in windows as well as the result of their Gaussian modelling for N = 3 and N = 5.
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Fig. 1. Evolution of the v2 mean p-values as a function of the sample size n for a degree of summation N varying from 1 to 5. The corresponding
distributions FN are inserted in windows as well as the result of their Gaussian modelling for N = 1 and N = 2.
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expected value in the case of a Gaussian distribution. For
N = 1 (uniform), N = 2 (triangular) and N = 3 (pieces of
parabola), this probability becomes null. For these distri-
butions having small N values, the first and major Western
Electric rule [1] (one point out of the 6r interval) is simply

useless. . . This is another striking illustration of the inci-
dences of abusive Gaussian modelling due to a lack of
experimental data.

There is no denying that other statistical tests could be
used in combination to the usual v2 goodness-of-fit test
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Fig. 3a. Evolution of the 99.73% confidence interval width (in terms of units of standard deviation r) of simulated data as a function of the degree of
summation N.
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to assess the validity of the Gaussian assumption. A simple
alternative test would be to check whether the distribution
under study is symmetric or not. To do so, numerous tests
are available [11–15]. Nevertheless, if such complementary
tests can help to reject the Gaussian assumption (and then
to choose a more appropriate distribution), their power as
in the case of the v2 goodness-of-fit test remains linked to
the number of available data.

The previous examples, that illustrated such limitations
due to the abusive use of the Gaussian assumption in the
SPC methodology, are the major reasons for considering
an alternative methodology which avoids making any
assumption about the unknown underlying distribution.
The methodology we proposed is based on the use of a very
flexible and attractive family of statistical distributions
called the generalized lambda distributions.

3. The generalized lambda distributions

In process control strategies, accurate modelling of the
process probability density function (PDF) must be used.
This is pointed out by Forbes et al. [16], who used a
Gram–Charlier PDF to obtain a standard state-space
model of the process. In the framework of dynamic pro-
cesses, Wang [17] proposed a general time-evolving model
of the process PDF based on B-splines. Several other
attempts have been made to find a family of statistical dis-
tributions that could accurately model a broad class of dis-
tribution shapes. For example, Albers et al. [18] used the
normal power family, Lin and Chou [19] the Burr distribu-
tion and Johnson [20] introduced the use of Johnson’s fam-
ily in capability analysis. Defined by means of four
parameters, the GLD firstly introduced by Tukey [21]

Fig. 4. Example of the 3D visualisation of a surface S(k3,k4) (a) and its related contour plot (b) obtained by means of the LambdaFinder software.

Fig. 5. Generalized lambda distribution based modelling results obtained using the LambdaFinder software in the cases of (a) an uniform distribution, (b)
a Gaussian distribution, (c) a lognormal distribution and (d) a right skewed Weibull distribution.
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and further described by others [22–25] have already been
shown to fit accurately most of the usual statistical distri-
butions (Gaussian, lognormal, Weibull, uniform,. . .). Due
to this ability the GLD have been used in lots of various
scientific fields, such as chemical process monitoring
[26,27], finance [28,29], corrosion [8] or meteorology
[30]. . . Such a flexibility with regard to the shape of many
distributions enables to consider the GLD in a more global
SPC strategy without making any preconceived and risky
choice about the unknown underlying distribution.

3.1. Definition

In this paragraph, the definition of this family of distri-
butions is briefly reminded. For more details, the reader
should refer to the recent monograph written by Karian
and Dudewicz [31].

A GLD, noted GLD (k1,k2,k3,k4), could be specified
firstly by its percentile function defined with parameters
(k1,k2,k3,k4):

QðyÞ ¼ Qðy; k1; k2; k3; k4Þ ¼ k1 þ
yk3 � ð1� yÞk4

k2

ð1Þ

with y 2 [0,1], (k1,k2) are respectively the position and scale
parameters and (k3,k4) are respectively related to the skew-
ness (asymmetry) and the kurtosis (flatness) of the GLD
(k1,k2,k3,k4).

It must be pointed out that this percentile-based defini-
tion for a GLD is very interesting with a view to running
subsequent easy and fast Monte-Carlo simulations.
Besides, the related PDF of the GLD (k1,k2,k3,k4) can eas-

ily be derived from the equation of the above percentile
function:

f ðxÞ ¼ f ðQðyÞÞ ¼ k2

k3yk3�1 þ k4ð1� yÞk4�1
ð2Þ

3.2. Determination of the GLD

As pointed out by Karian and Dudewicz [31,32], the cal-
culation of the values of the parameters (k1,k2,k3,k4) for
which the GLD (k1,k2,k3,k4) models the most accurately
the histogram of experimental or simulated values that
characterizes the population under study is not an easy
task. The two most usual methods are the method of
moments and the method of percentiles [31]. Roughly
speaking, both these methods consist in minimizing a rela-
tively complex function presenting several local minima
(Fig. 4). To perform this special task we resorted to a com-
puter program called LambdaFinder. This software, we
developed two years ago [9] was particularly intended to
provide a three dimensional visualisation of the surface
and of its local minima [33].

4. Introduction of GLD in SPC methodology

4.1. Modelling of usual laws

As already mentioned, thanks to their definition based
on four parameters, the main advantage of the GLD is
their ability to model accurately a large panel of unimodal
distributions. Such attractive property is illustrated in

Fig. 6. Comparison of the accuracy of SPC limits predicted in the case of both Gaussian and GLD-based modelling for data generated from (a) a
Gaussian distribution, (b) an uniform distribution, (c) a lognormal distribution and (d) a Weibull distribution. Error (%) is defined as:
Error ð%Þ ¼ Theoretical value�Predicted value

Theoretical value

�� ��� 100.
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Fig. 5 for usual distributions like uniform, Gaussian, log-
normal or Weibull distributions for which 107 values have
been simulated before being processed by the Lambda-
Finder software. Then, these four usual distributions have
also been modelled using Gaussian distributions to simu-
late the errors that can be made during a SPC process fal-
sely based on the most widely used normality assumption.
Indeed, as previously mentioned, a reduced initial amount
of experimental data in practice may lead to accept abu-
sively the Gaussian law for modelling the unknown under-
lying population even if it is heavily skewed and does not
obey a Gaussian law.

The values of the percentiles used in the definition of the
classical SPC control confidence intervals and the value of
50th percentile used to estimate the central tendency have
been determined for each of the four usual distributions
modelled using either Gaussian distribution or GLD. The
obtained values, presented in Fig. 6, result from the pro-
cessing of a large number of simulated data (107) so that
the estimated experimental percentiles can be considered
as equal to their ‘‘true values’’. These results show that
the GLD allow to model all the statistical laws under study
and, except in the obvious case for which data precisely
originate from a Gaussian law, to predict also more accu-
rately the limits of their confidence intervals in comparison
with a Gaussian-based modelling. In the case of GLD-
based modelling of data originating from a Gaussian law,
the maximal error is only 1% and the central tendency is
estimated with a precision of 0.1%, which is widely suffi-
cient in most practical cases.

Besides, it can be seen that, contrary to the Gaussian
distribution, the GLD can perfectly model data originating
from a uniform law since every error on the estimated per-
centiles is null. However, the major advantage of GLD-
based modelling is emphasized in the case of the analysis
of data originating from common skewed distributions like
lognormal or Weibull ones. Indeed, for these distributions,
the SPC intervals defined in terms of percentiles are asym-
metrical (i.e. they are not centered on the distribution mean
contrary to that resulting from a Gaussian based model-
ling). In the case of GLD-based modelling, the limits calcu-
lated for these intervals result from the rigorous definition
of the related percentile function. As a consequence, the
precision obtained on the predicted limits is always supe-
rior or in worse cases noticeably equal to that resulting
from Gaussian-based modelling.

In summary, these results show that, for all studied dis-
tributions, the GLD allow more flexible modelling of
shapes than the classical Gaussian law while keeping a very
accurate approximation of the predicted limits considered
in SPC methodology. That is why such a family of distribu-
tions should be considered with particular attention as far
as SPC methodology is concerned. Nevertheless there is no
denying that the GLD cannot model all the possible shapes
of statistical distribution, and that the adequacy with the
data under study must be assessed by performing good-
ness-of-fit tests.

4.2. Influence of the initial population size

The size of the initial population obviously has an effect
on the accuracy of the values of the estimated parameters

Fig. 7. Influence of the initial sample size on the evolution of the
confidence intervals of the predicted SPC limits’: (a) percentile 0.14th, (b)
percentile 2.5th and (c) percentile 16th – mean values for either generalized
lambda distribution or Gaussian-based modelling.
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related to the statistical law retained to model the data. In
this part, the influence of the initial population size on the
accuracy of the SPC confidence intervals (bounded by the
0.14th, 2.28th, 15.87th, 84.13th, 97.72th and 99.87th per-
centiles) is studied in the case of GLD-based modelling
of data originating from a Gaussian law; i.e. in a very unfa-
vourable case with regard to the selected model.

A 1000 samples of 2n standard Gaussian random num-
bers have been generated for n = 5–10 thanks to the Box
and Muller transformation [34]. For each sample, the asso-
ciated GLD has been determined using the LambdaFinder
software and the 6 SPC limits have been calculated both
from the initial dataset and from the analytical expression
of the determined GLD percentile function. For each n
value, the descriptive statistics (i.e. the mean of the 1000
values and their 90% confidence intervals) of these limits
have been calculated and plotted in Fig. 7.

Fig. 7 shows the evolution of the confidence intervals of
only the three lowest SPC limits (i.e. 0.14th, 2.28th and
15.87th percentiles; the three upper limits present a sym-
metrical evolution) obtained from both the original popu-
lations of Gaussian random numbers (without modelling)
and their associated GLD models. As expected, the band
width of the confidence intervals related to these limits
decreases as the sample size increases for both the original
and modelled data. It can be noticed that the mean values
of the limits predicted by using GLD-based modelling con-
verge to the theoretical values related to the underlying
Gaussian law as n increases. Even for a limited number
of data (25 = 32), the mean value of the first SPC interval
limit (15.87th percentile) predicted by GLD-based model-

ling is almost perfect with a standard deviation lower than
1% of the theoretical value corresponding to the underlying
Gaussian law. Nevertheless, Fig. 7 shows that a larger
amount of initial data is required to predict accurately
the 2nd and 3rd SPC lower limits (2.28th and 0.14th) since
the confidence intervals of the predicted limits are very
wide for n = 5. The overall results show that starting from
an initial sample of size 27 (=128 data) the SPC limits are
predicted with a precision of at least 5% on the mean value
and with a standard deviation lower than 1%. Such a level
of accuracy is sufficient in most practical cases.

In summary, this example shows that, even in an unfa-
vourable case, the use of GLD-based modelling requires
only a hundred of initial data to estimate the SPC limits
with an acceptable accuracy.

4.3. The Lambda SPC software

The Western Electric rules recalled in Appendix are
based on the calculation of percentiles defining the median
and the limits of the major confidence intervals related to
the distribution under consideration. In the case of a
GLD, these rules do not need to be modified since the cal-
culation of such percentiles is particularly oversimplified
from the knowledge of the related percentile function. To
be compatible with the industrial need of simplicity in daily
use of SPC methods, a second software has been pro-
grammed to automate completely the application of the
GLD to the SPC rules in an industrial context. Called
LambdaSPC and programmed in C++ language, this sec-
ond software is complementary with the LambdaFinder

Fig. 8. Schematic process diagram of the cold rolling process with the water–oil lubricant apparatus.
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software. Indeed, in a first stage, LambdaFinder enables to
determine the analytical expression of the GLD associated
with the process characteristic under study and, in a second
stage, LambdaSPC automatically detects any shift or
abnormality in the evolution of this process over time by
the application of the Western Electric rules.

4.4. Example

In order to illustrate the use and relevance of the GLD
in SPC methodology, a set of industrial experimental data
[35] has been studied using the two dedicated software
LambdaFinder and LamdbaSPC. These experimental data
consist of measures of the chloride concentration in a
water–oil lubricant used during the cold rolling process
of steel sheets (Fig. 8); measures recorded every hour over
one week (168 values). In order to prevent post-rolling cor-
rosion, this concentration must strictly be controlled in the
sense of SPC to assert that the cold-rolling process is under
control.

First of all, the LambdaFinder software is used to deter-
mine the GLD’s parameters. Fig. 9 compares the GLD
modelling of the dataset with parameters (0.1431,
�0.1171, �0.0037, �0.0973) to that obtained with a log-
normal law (l = �0.7088 and r = 1.4776). Even though
the usual v2 goodness-of-fit test fails to reject the Gaussian
assumption for a = 0.05, it seems obvious, from this figure,
that the chloride concentration does not follow a Gaussian
law. Moreover the symmetry of the distribution is rejected
by several simple tests [11–15], which is the reason why a
lognormal law is compared to the GLD modelling.

Once the parameters obtained, the LambdaSPC soft-
ware is used to draw the SPC control chart in order to
detect assignable causes. Fig. 10 illustrates the control

Fig. 9. Comparison between lognormal and generalized lambda distribu-
tion-based modelling of the chloride concentration probability density
function.

Fig. 10. Control chart obtained using the Lambda SPC software in the case of generalized lambda distribution-based modelling. Only six abnormal
patterns are detected.

1095



chart resulting from a GLD modelling. A usual SPC meth-
odology based on a lognormal modelling would have led to
eleven alert signals, whereas the lambda distribution meth-
odology leads to only six ones over the week (Table 1). As
the process is stopped when an abnormal pattern is
detected in order to find an assignable cause, this means
that the steel production would have been stopped unnec-
essarily five times in a week if the chloride concentration
had been modelled using a lognormal law. Knowing the
industrial cost of a production interruption, this example
illustrates the economic nonsense of using the SPC meth-
odology without an appropriate statistical modelling of
the process under study.

In the previous example, the eight Western Electric rules
were tested together, leading to an overall probability of a
false alarm (Type I error) close to a = 2.23% (see Appendix
for details), which is of course an intolerably high false
alarm rate for most applications. In practical SPC imple-
mentations, a choice of some of these different rules is often
made, and exact calculation [36] or simulation [37] of the
false alarm rates for usual combinations can be performed.
A rules-selection feature is included in the LambdaSPC
software in order to try different possible combinations.
Nevertheless, if one wants, for a given combination of
rules, to limit the overall false alarm rate to a chosen value,
it is necessary to adjust these rules. Such an adjustment for
multiple testing can be performed by means of a Bonfer-
roni-type procedure [38] as advocated in the multivariate
case by Alt et al. [39] or using some other method [40–
42]. The use of the GLD modelling has no incidence on
these procedures, except that it eases the modification of
the SPC limits thanks to the percentile-based definition of
the GLD.

5. Conclusions

The limitations of classical hypothesis testing methodol-
ogy with regard to the discrimination between Gaussian
and non-Gaussian data were firstly highlighted through
an original statistical example. As far as SPC is concerned,
an alternative methodology is proposed to leave aside the

nature of the unknown theoretical underlying distribution
characterizing the process and hence to avoid questionable
inference hypothesis. Such a methodology is based on the
use of the GLD; a very flexible family of distributions that
fit to a broad class of distributions including the most usual
ones (uniform, lognormal, Gaussian, Weibull,. . .) while
keeping a very accurate precision on the predicted control
limits used in SPC methodology. Besides, it was shown that
the minimal size of the initial dataset required to obtain an
acceptable accuracy on the predicted SPC limits is only of
approximately a hundred measurements when considering
GLD-based modelling tested in a particularly unfavourable
case. Finally, the relevance of using the GLD in SPC was
illustrated treating experimental data originating from an
industrial production line using the well-known Western
Electric rules. Despite the mathematical complexity of
determining the GLD parameters, this statistical family is
made easy to use in SPC methodology thanks to the Lamb-
daFinder and LambdaSPC software we especially devel-
oped to perform such a task. Further information on
these software and a demo-version can be sent by mail
by the authors upon request.
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Appendix

The eight main rules defined in the Western Electric
Handbook [1] and by Nelson [43,44], under the Gaussian
assumption, are the following (ai denotes the correspond-
ing false alarm rate for rule i):

(a) A data point falls outside the 3r (with r the standard
deviation of the reference population) control limits
(aa ffi 0.27%).

(b) Two out of three consecutive points on the same side
of the center line (which stands for the mean when the
process is in-control) are between the 2r and 3r con-
trol limits or beyond the 3r control limits
(ab ffi 0.31%).

(c) Four out of five consecutive points on the same side
of the center line are between the r and 2r control
limits or beyond the 2r control limits (ac ffi 0.44%).

(d) Nine consecutive points on the same side of the center
line (ad ffi 0.39%).

(e) Eight consecutive points on both sides of the center
line without any point below the 1r control limit
(ae ffi 0.01%).

(f) Fifteen consecutive points between 1r control limits
on either or both sides of the center line (af ffi 0.32%).

(g) Six consecutive points steadily increasing or steadily
decreasing (ag ffi 0.28%).

Table 1
Number of process abnormalities detected both for lognormal and
generalized lambda distribution-based modelling

Violated rule Number of occurrences
using a lognormal
based modelling

Number of occurrences
using a generalized
lambda distribution
modelling

a 4 0
b 1 3
c 0 2
d 6 1
e 0 0
f 4 0
g 0 0
h 0 0

Total 11 6

1096



(h) Fourteen consecutive points alternating up and down
(ab ffi 0.29%).

If one considers that the eight previous rules are inde-
pendent, then the overall false alarm rate a is given by
[45,46]:

a ¼ 1�
Yh

i¼a

ð1� aiÞ ð3Þ

Nevertheless the previous formula must be considered only
as an approximation of the overall false alarm rate. Indeed
firstly the independence assumption is certainly not valid
with the usual runs rules and additionally the ai values
are often approximated through Monte Carlo simulations,
since there is not always a clear analytical expression for
them.

In the case of a combination of the eight previous rules,
the resulting approximation is a ffi 2.23%. Using a direct
Monte Carlo simulation, with no assumption about the
independence between the different laws, the obtained false
alarm rate (with 107 random Gaussian datasets) is
a ffi 1.37%. This very high false alarm rates (an out-of-con-
trol pattern is detected every 45 or 75 measurements using
respectively the previous approximation or the Monte
Carlo modelling), can be reduced by modifying the previ-
ous rules using a Bonferroni-type inequality: if one wants
to fix the overall false alarm rate to b, while running k inde-
pendent tests. Then the false alarm rate of each test must be
lowered to b/k since:

b P 1� 1� b
k

� �k

ð4Þ
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