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Toward on-line robot vibratory modes estimation

Romain Delpoux, Richard Béarée, Adel Olabi and Olivieb&u

Abstract— This paper is concerned with preliminaries results approaches can also be found, such as asymptotic observers
on robot vibratory modes on-line estimation. The dominatiry  ysing the extended Kalman filter [4] or finite time ones like
oscillatory mode of the robot arm is isolated by comparing e~ q)iging modes observers. Another approach for the paramete

robot position given by the motors encoders and an external . s ) .
measure at the tool-tip of the robot arm. In this article the identification is based on an algebraic method. In this paper

external measurement is provided by a laser tracker. The We propose to compare the algebraic method and the sliding
isolation of the oscillation permits to identify the vibratory = modes for the parameter identification. The objective to

mode, i.e. the natural frequency and the damping ratio of the  characterize the oscillatory behaviour of manipulatorotsh
undesired phenomena. Here we propose a comparison between; o the natural frequency and damping ratio in order to com-

the algebraic method and the sliding modes for the parameter . h .
identification. This comparison is motivated by the fact tha pensate the vibrations. Both methods lead to non-asyneptoti

both methods provide finite time convergence. Experimental COnvergence estimation procedure.
identifications are proposed on a 6 degrees of freedom (DOF)  The algebraic approach was introduced by M. Fliess and

manipulator robot, Staubli RX-170B. o _ H. Sira-Ramirez in [14], [15]. The method is based on
Index Terms—Manipulator robots, dominating oscillatory  gifferential algebra and operational calculus. The désire
mode, parameter estimation, algebraic approach, sliding mdes. . .
parameters are expressed as a function of integrals of the
measured outputs and inputs of the system. It does not
. INTRODUCTION need any statistical knowledge of the noise (for instanee th
Manipulat bot idel di field Tassumption that the noise is Gaussian is not required). This
anipufator Tobols are widely used in many 1I€lds Ol,qiqq hag already been successfully applied to parameter

it_ndetryk SLfJCh proceTses_csn bde l:sed to carry (l))lljt [eplfégtimation [10], [18], [20], [23], to abrupt change detens
IVE 1asks, for exampie, pick and piace or assembly 1askS,q e efficient identification of time delays [2], [13].

However to 'mprove the per.formar_lce in terms of speed, SURlmerical differentiation of noisy signals may also benefit
robots are becoming more lightweight and thus more erX|bI§rom this approach, as demonstrated in [19], [26]
Speed and accuracy require consideration of vibrationef th Sliding modes h'ave been popularized b;/ the. precursor

enld efrf]ect?r [21]. luti d article of V.-I. Utkin [32]. Their popularity is due to the
n ¢ € |teraFure, solutions are propose .to guarant§y, siness properties with respect to perturbations and un

trajectories which does not excite the vibration modes g ertainties [12], [24]. Chattering phenomenon was a main

the systems. Among these techniques it can be ment'onﬁpawback of the method, however the introduction of high-

the Input Shaping (1S) [28]. IS methoglology C.OnSiSts irbrder sliding modes has overcome this problem. In this
the convolution of impulse sequences with a desired syste per second order sliding modes observers are presented

comman;igto lgroduce a}sshapzd mputéhfat IS u§ed ;0 drive t . These observers ensure the finite time convergence to
system [29]. However, IS are designed for a given frequen e observed variables, providing equivalent output injec

In industrial applications, where uncertain or time-vagi Ol). The EOI is exploited to obtain the desired parameter

parameters are cqnsidered, IS can lose efficiency. IS wi timations [8]. Sliding modes have been used in a wide
parameter adaptations have bee_n proposed, knqwn as Ad 1ge of application for the control, the observation arel th
tive Input Shaper (AlS). AlS solutions can be designed basc? entification [1], [11], [16], [17], [25], [27]

on frequency domain [31] or time domain [5], [22]. The de- The paper is organized as follows: Section Il describes

velopment of such algorithms has motivated the comparisqfle problem statement, the robotic system and a description

of two mg?cfrflods for onr;lige ?arahmeter. identificzla(;ion..f. . of vibratory phenomena. The algebraic and sliding mode
Many different methods for the parameter ident 'Cat'o.r?dentifications algorithms are presented lll. Finally, thst

exist in the_IlteraFure. One of t_he most popular concept 'Section presents experimental results on the manipulator
the regression (linear or nonlinear) [30]. Observer bas bot
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time domain by the second order system:

0i(s)  Y(s) Kw? 1
0.(s)  U(s) 824 2wps + w2’ @
whereY (s) is the output (the angular position of the axis),
U(s) is the input (angular position of the gearbox output
shaft),¢ is the damping ratiay,, is the natural frequency and
K is the gain of the system. This model is considered with
the assumption that the system is governed by one vibration
mode and that the others have negligible contributions.
Consider the equation (1), expressed as a second order
differential equation:

Fig. 1. Staubli RX-170B robot arm. y(t) + 2§wny'(t) + wiy(t) _ Kwiu(t). (2)

In order to simplify the following developments, equation
typically around some millimeters. Dynamic accuracy ig2) is expressed as:
mainly deteriorated by joint deformations, which induced

low-damped vibrations of the tip of the robot. Classically, G(t) + a2y(t) + ony(t) = azu(t), 3)
each robot axis are submitted to a dominating flexible vibraynere-

tory mode [21]. This paper focused on the fast estimation of -2 L mK=% 4
this vibration for one axis of the robot. ¢ 2y " b e%) @)

The Staubli CS8 controller provides access to the actual Introducing the variables; = y, zo = 7, the model (3)
joints positions and velocities measured through encodeggy, pe rewritten under the state-space form:
on the motor shafts. The controller is sampled at a sampling )
frequency ofdms (250H z). In order to measure the absolute o= T, (5)
position of the robot, a Laser Tracker from API inc. is used, T2 = —01%1 — 0% + Q3U.
where a retroreflector target is mounted on the tool-tip ef th  The different representations introduced in this sectidh w
robot. The system resolution ig)u.m ™" and the sampling pe thereafter used to develop the identification algorithms
frequency is3ms (333H z).

I1l. PARAMETERS ESTIMATION

B. Vibratory dynamics A. Algebraic Approach

Considering the first dominating flexible mode, robot axis The algebraic estimator presented in this article is based
can be considered as a two mass coupled system, having #iethe basic approach introduced by M. Fliess and H. Sira-
rigid link driven by electrical motor through a rotationalit  Ramirez and can be found in [22] for its application on a
transmission undergoing a viscoelastic joint deformatiogecond order system. In this article a theoretical devetspim
with a constant stiffness K and a viscosity D (see Fig. 2). was proposed with the objective to tune an Adaptive Input

The objective of the paper is to identify the flexibleShaping. Modifications are proposed to estimate the system’
vibratory mode of this axis, i.e. the equivalent harmonigain. Consider the differential equation (3). Its Laplace
oscillator parameters between the gearbox output and the eTransform is given by:
of the axis. This behavior can be represented in continuous 2V (5) — sy(0) — §(0) + an (sY (s) — 4(0) ©

+agY(s) —agU(s) = 0.

The initial conditions which appear in the equation (6)
are annihilated by taking two derivatives w.r.t the complex
variables. One obtains

A2y ay A2y dy
52——|—4S——|—2Y—|—a1( +2—)

ds? ds 5 ds? ds @)
d*Y ?U
T2 T =
Torque T Recall that derivation w.r.ts in the operational domain
command !7’ E translates into multiplication by-¢ in the time domain.
k L Multiplication by s in the operational domain corresponds to

i derivation in the time domain. Applying the linear estinrato
Gearbox (7) is not appropriate. Derivation amplifies the high fre-
guency components and consequently, the noise contnibutio

Fig. 2. Flexible mode interpretation. A simple solution is to make the estimator proper. It is



enough to multiply both sides of (7) by 2, to eliminate of the form:

Fhf derllvatlontterms and obtain a relationship in functiébn o a(t) = Aai(t) — :El(t)|1/25igr(:z:1(t) —a)(@),
Integral opera qu. - . ZQ(t) _ asign(xl (t) _ :f?l(t))
After algebraic manipulations, one has:
d’y dy (14)
—1¢r -2
gz TS o2y At the initial moment,1 (0) = 21 (0) and2(0) = 0.
i _1d2_Y 19 9 dY Taklng el(t) = .Il(t) — j?l(t) and eg(t) = ZCQ(t) — j?Q(t)
o1 ds? ds (8) the error equations are given by:
_2d2Y _,d?U . N 1/2¢; .
+ao 752 —a3 | S E =0. (&3] (t) = eg(t) — )\|$1 — X1 (t)| Slgl’.(:vl — .”L'l(t)),
é2(t) = F(t,x1(t),22(t), u(t)) — asign(zi(t) — 1(1)),
By application of the Laplace inverse, the equivalent time
domain expression is: (15)
where F(t,z1(t), 22(t), u(t)) = f(t,x1(t), z2(t),u(t)) —
() +auma(t) +azns() = asm(®) =0, O f(t,a,(t), & (1), u()) +¢(t, 21(t), 22(1), u(t)). Suppose that
in which: the system states can be assumed bounded then the existence
is ensured for a constarft”, such that the inequality:
m(t) = t2y(t) — /Uy da+2// A)dXdo,
0 [F(t,21(t), 22(8), u(t))| < f7, (16)
n():/ay dU—///\y )dAdo, _ )
(10) holds for any possiblet,z1(t),z2(t) and ia(t) <
n(t) :/ / A2y(\)dAdo, 2sugxa (t)|-
0,70 Let o and \ satisfy the inequalities:
o 2
na(t) = | /(; A u(N)dAdo. a > ft
As mentioned in [22], the set of equations can be imple- B > 4/ 2 (at+ /D0 +p), (17)
mented by means of time varying linear (unstable) filters. -/t (1-p)

From equation (9) we have one equation for three urwherep is some chosen constaft< p < 1.
known parameters. A solution would consist in integrating Theorem 3.1:Suppose that the parameters of the observer
(9) successively twice to obtain a set of three independe(it3), (14) are selected according to (17) and condition (16)
equations linear with respect to the parameter to be idedtifi holds for system (12). Then, the variables of the observer
The resulting equation (9), is linear in the unknowrconverge in finite time to the states of the system, i.e.

parameters. We rewrite it as: (Z1(t), 22(t)) = (z1(t), x=2(t)).
Proof, see [7].
p1(t)0 = qi (1), (11) 2) Parameter Identification FormulationThe parameter

identification developed in this section comes from [9]. The
finite time convergence to the second order sliding mode set
ensures that there exists the time constgnt 0 such that

for all t > tq, from (15) the following identity holds:

éa2(t)
F(t, 21 (t), 22(1), u(t)) — asign(z, () — 21(1)),

t), (18)
21 (1), w2(t), u(t)) + (¢, 21(t), x2(t), u(t)), notice thatF (t,x1(t), &2(t),u(t)) = C(t, z1(t), 22(t), u(t))
) becauset,(t) = z2(t). Then the equivalent output injection

Zeq 1S given by:
(12)

Zeqg = a18ign(eq (1)) = ((t, z1(t), Z2(1), u(t)). (19)
where  f(t,z1(¢t),z2(t),u(t)) is a known function )
while the uncertainties are concerned in the terreOnsider that((t, xi(t), >(t), u(t)) can be decomposed
C(t,z1 (1), 22 (1), u(t)) using the regressor notation [30] as:

1) Observer design:The proposed Super-Twisting ob- C(t, 21 (1), 22 (1), u(t)) = 0(t)p(t, 21 (1), #2(1), u(t)), (20)
server has the form: z
whered(t) € R"*" is a matrix composed by the value of
Ilg; B f?t(t) +(51( )( D) + 2a(t), (13)  the uncertain parameters apdt, z; (t), zo(t), u(t)) € R' is
kb= 1), 2 =2 a known nonlinear function vector.
where 1 (t) and z»(t) are the state estimations, and the For the case where the system parameters are time in-
correction variables; (¢) andz.(t) are the output injections variant, i.e.f(t) = 6, the equivalent output injection can be

wherep, (t) = [—m(t) —n2(t) n3(t)], 1 (t) = m(t) and
0= [041 (65) 043].

B. Sliding Modes Approach

Consider a second order system written under the state!
space form:

x'l (t) = T
ia(t) = f
y(t) = =

2
(t,
1(t

(
t
(



represented in the form:

C(t, a1 (t), wa(t), u(t)) = Op(t, x1(t), 22(¢), u(t)). (21) 475
Applied to the article configuration, none of the parametet
are known. The equation (12) is expressed with: 470 Encodet . -
[t zi(t), 22(t),u(t)) = 0, z Laser
Ct,wi(t), 2(t), u(?)) = —onzi(t) — azaa(t) + asult). 2
(22) E
Equation (21) can then be expressed by
p2(t)0 = q2(t), (23)
where py(t) = [-zi(t) —w2(t) u(t)], @) =

C(t,wi(t),z2(t),u(t)) andd = [o1 a2 asg].

Remark 1:For the purpose of this article, we have consid
ered that none of the parameters were known. Another co
figuration could have consider that we have nominal param
ters expressed by(t, z1 (), z2(t), u(t)) and parameter vari-
ations to be identified expressed bit, 1 (t), z2(t), u(t)).

500

o Fig. 3. Experimental measurement of the robot trajectamgking in the
C. Parameters ldentification (X,Y, Z) cartesian frame.
The proposed approaches for the parameter identification
based on an algebraic approach and on sliding modes led to
the two similar linear expressions (11) and (23). The sofuti

for ¢ is obtained as a classical solution given by the Leasgpresents the encoder measure, the red one, the laser. In
Squares method [6] order to exhibit the oscillatory behavior, the second sabpl
. t “lr oot represents the difference between the two measures whether
0; = [/ pf(a)pi(a)do—] [/ pf(a)qi(a)do—] . (24) the deformation noted\d. This figure shows that indeed
0 0 the assumption of a second order system for the modelling
for i € {1,2}. The algebraic parameter estimation is givernf the flexible mode makes sense. Using classical results
for i = 1 while the sliding modes parameters identificatioron temporal response of second order system one can easily
is given fori = 2. define the parameters to be compared with the ones identified

In the next section, the algorithms for the parameter identsing the on-line approaches. Indeed the damping ratio can
tification are applied experimentally for the robot system. be defined using the formula:

IV. EXPERIMENTAL RESULTS In (a)
Az
A. Experimental setup = ; (25)
The experimental results are carried out on the manipulator \/(QW)Q +In (ﬁ—;)
robot described in the Section II. In order to exhibit the

oscillatory behavior, the desired trajectory was planned a From Fig. 4 one hag, = 0.74mm anddy, = 0.43mm

an angular motion of the first joint3(°), represented Fig. thys from this response, we have a damping rétio 8.6%.

1, while the five others are fixed. The positions measurefhe figure also show a static gain close to zero. A measure
by the encoders are collected during the displacement. TRe the oscillation period could give the natural frequency,
position of the robot in the cartesian frame is obtained@isinmowever to be more precise we propose to compute the
the kinematic model of the robot, which was previously=gurier transform of the deformation. The analysis of the
identified. At the same time, a laser tracker measures th®yrier transform highlight the different frequencies.eTh
position of the tool-tip. The frames of the robot and the lase-oyrier transform of this signal is represented Fig. 5 and

tracker have been matched using an Iterated Closest Poigkpws that dominating mode as a pure natural frequency of
(ICP) algorithm [3]. The two trajectories are represented F g 1377,

3. Although the trajectories are close the figure exhibies th

oscillatory behavior at the end effector. The off-line analysis previously presented gives an idea of
_ ) _ the parameters to be estimated. Note that these parameters
B. Off-line deformation analysis have been identified experimentally and cannot be considere

In this section is presented the identification of the paranmas reference parameters. These values are used to give an
etersw,, ¢ and K along theX position. Fig. 4 represents the order of magnitude to be compared with the online estimation
temporal evolution of theX' position. On top, the blue curve presented in the next section.
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Fig. 4. Temporal evolution of the X position (top) and its affiation Fig. 6. Sliding mode deformation observation and its error.

(bottom).

is represented Fig. 7. The figure shows that after conver-
C. On-line parameter estimation gence, the estimations give the same results, whether

Before comparing the estimation results, it is importan§'4%’ wn = 8.12H2 and K = 0.02 moreover the results are

L close to the ones obtained off-line. However, for the stidin
to show the convergence of the sliding mode observerrﬁOde approach, the convergence is faster (ar s for
Indeed as mentioned in Section lll, the estimation via stidi PP ’ 9

. . ...~ . the Sliding modes an@.12s for the algebraic method). The
modes relies on the design of an observer. The finite t|mei . ) . : .

. algebraic approach does not require gain tuning, which can
convergence of the observer is based on the assumptlgrg !
, - e a complicated task. Note that the parameter convergence
of bounded system states. Without loss of generalities, one . .

: time can be obtained using a method based on the standard

can assume that the modal deformation of the robot ax(lls e .
. . - . eviation of the estimated parameters [22].
is bounded (its derivative equally). The observer gains are
chosen in accordance with equation (17). In Fig. 6 the
axis deformationAd is represented with its estimatiahé. ) ] )
The estimation error plotted in the second subplot show !N this paper was proposed an experimental comparison
the good behavior of the proposed observer. Note that th§tween two on-line parameter estimation methods. The
observer tracking error represents an interesting aitefior ~ 2/9€braic approach was compared to the sliding modes ap-

the parameter estimation convergence. proach. The algorithms have been evaluated experimentally
The experimental comparison of the identification method¥" @" industrial robot axis. The objective was to identify

V. CONCLUSION
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Fig. 7. On-line parameter estimation, (blue) sliding modpproach, (red)
Fig. 5. Fourier transform of the X deformation. algebraic approach.



the first modal deformation of the robot axis. This vibratory11] S.-v. Drakunov, T. Floquet, and W. Perruquetti. Stahiion and
dynamics were modelled by a second order system where
the natural frequency and the modal damping were tqu]
parameters to be identified.
The comparison between both algorithms has shown sirf#3!
ilar results in terms of estimated parameter results atthou
the time of convergence is faster for the sliding modeg4]
approach. The main difference between these algorithms
concern the gains tuning and the algorithmic complexite Thy;s;
sliding modes structure is simpler to implement, however ob

servers are based on gains which depend on the perturbation

amplitudes. The algebraic method, on the other hand, does
not depend on parameter tuning but are more complex fs]
implement.

Regarding the convergence time of both the algorithmg7;
experimentations have pointed that around one period of
the vibration signal was necessary for the estimators

converge. This result can be considered insufficient fortmo

P51

of the vibration shaping methods require half a period to
be efficient. The observation can be relativized consi@erir{lgl
the sampling frequency of the sensor. Higher the sampling
frequency is, the faster the estimation convergence will béo]

One can note that the sensing device used for these estima-

tions, a 3d absolute position system, works at a maximum
sampling frequency of 333Hz. A simpler and lower-cosi21]
vibration sensor, such as accelerometer, can be used with
higher sampling frequency.
Future works on vibration control concern the on-line
implementation of these estimation technics for real-tim&3]
adaptation of input-shaping parameters.
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