

TOWARDS A COMPARATIVE EVALUATION OF TEXT-BASED

SPECIFICATION FORMALISMS AND DIAGRAMMATIC NOTATIONS

by

KOBAMELO MOREMEDI

submitted in accordance with the requirements

for the degree of

MASTER OF SCIENCE

in the subject

Information Systems

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: PROF JOHN ANDREW VAN DER POLL

2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unisa Institutional Repository

https://core.ac.uk/display/79171124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

ABSTRACT

Specification plays a vital role in software engineering to facilitate the development of

highly dependable software. The importance of specification in software

development is to serve, amongst others, as a communication tool for stakeholders

in the software project. The specification also adds to the understanding of

operations, and describes the properties of a system. Various techniques may be

used for specification work.

Z is a formal specification language that is based on a strongly-typed fragment of

Zermelo-Fraenkel set theory and first-order logic to provide for precise and

unambiguous specifications. Z uses mathematical notation to build abstract data,

which is necessary for a specification. The role of abstraction is to describe what the

system does without prescribing how it should be done.

Diagrams, on the other hand, have also been used in various areas, and in software

engineering they could be used to add a visual component to software specifications.

It is plausible that diagrams may also be used to reason in a semi-formal way about

the properties of a specification. Many diagrammatic languages are based on

contours and set theory. Examples of these languages are Euler-, Spider-, Venn-

and Pierce diagrams. Euler diagrams form the foundation of most diagrams that are

based on closed curves.

The purpose of this research is to demonstrate the extent to which diagrams can be

used to represent a Z specification. A case study is used to transform the

specification modelled with Z language into a diagrammatic specification. Euler,

spider, Venn and Pierce diagrams are combined for this purpose, to form one

diagrammatic notation that is used to transform a Z specification.

Keywords: case study, diagrammatic notation, formal specification, set theory,

Spider diagrams, Venn diagrams, Euler diagrams, UML, Venn-Pierce diagrams, Z

iii

Table of Contents

1. INTRODUCTION ... 1

1.1 CONTEXT AND MOTIVATION ... 1

1.2 PROBLEM STATEMENT .. 3

1.3 RESEARCH APPROACH ... 4

1.4 RESEARCH METHODOLOGY ... 4

1.4.1 Qualitative research .. 4

1.4.2 Positivism ... 6

1.5 THE SIGNIFICANCE OF THE RESEARCH .. 7

1.6 STRUCTURE OF THE DISSERTATION... 7

1.7 CHAPTER SUMMARY .. 8

2. Z NOTATION .. 9

2.1 SPACEFLIGHT BOOKING SYSTEM .. 9

2.1.1 Given sets ... 10

2.1.2 Flight details ... 11

2.1.3 Type of passengers .. 12

2.1.4 Abstract state .. 13

2.1.5 Initial state .. 18

2.1.6 Specification approach ... 19

2.1.7 Operations of the booking system .. 20

2.2 CHAPTER SUMMARY .. 35

3. DIAGRAMS BASED ON CLOSED CURVES AND SET THEORY 36

3.1 Overview of diagrams.. 36

3.2 EULER DIAGRAMS .. 37

3.3 Extended Euler diagrams .. 42

3.4 VENN DIAGRAMS .. 43

3.4.1 Venn I ... 45

iv

3.4.2 Venn II .. 50

3.4.3 Venn/Euler diagrams .. 53

3.5 SPIDER DIAGRAMS ... 54

3.5.1 Syntactic elements of spider diagrams ... 55

3.5.2 Spider diagrams 1 (SD1) .. 56

3.5.3 Spider diagrams 2 (SD2) .. 57

3.5.4 Extended spider diagrams 2 (ESD2) .. 57

3.5.5 Spider Diagrams 3 (SD3) .. 58

3.5.6 Transformation rules ... 59

3.5.7 The use of spider diagrams .. 63

3.6 PIERCE DIAGRAMS ... 65

3.7 UNIFIED MODELLING LANGUAGES... 67

3.7.1 Use case diagram ... 68

3.7.2 Class diagram ... 69

3.7.3 State chart .. 70

3.8 CHAPTER SUMMARY .. 71

4. TRANSFORMING Z CONSTRUCTS INTO DIAGRAMMATIC NOTATIONS ... 73

4.1 SPECIFICATION STRUCTURES AND OPERATORS 73

4.1.1 Domain restriction ... 73

4.1.2 Overriding operator ... 77

4.1.3 Domain subtraction ... 79

4.1.4 Range subtraction .. 80

4.1.5 Range restriction .. 82

4.1.6 Specifying non-singleton sets ... 83

4.1.7 Bags ... 85

4.1.8 Combining operations ... 89

4.2 CHAPTER SUMMARY .. 92

v

5. MODELLING Z CASE STUDY WITH DIAGRAMS .. 93

5.1 SYMBOL TABLE ... 93

5.1.1 States and operations ... 94

5.1.2 Operations on the symbol table .. 96

5.2 COMPARISONS ... 106

5.3 CHAPTER SUMMARY .. 107

6. CONCLUSION .. 108

6.1 RESEARCH QUESTIONS AND FINDINGS .. 108

6.2 ANALYSIS OF FINDINGS... 110

6.3 FUTURE WORK ... 111

6.3.1 Power set .. 111

6.3.2 Arbitrary union .. 112

REFERENCES ... 114

vi

PUBLICATIONS

The below publications are emanated from the research reported in this dissertation.

1. Moremedi, K., van der Poll, J.A., 2013. Transforming Formal Specification

Constructs into Diagrammatic Notations. The 3rd International Conference on

Model & Data Engineering, (MEDI). Lecture Notes in Computer Science (LNCS),

No 8216, pp 212–224. ISBN 978-3-642-41365-0.

2. Moremedi, K., van der Poll, J.A., 2014. Comparing Formal Specifications with

Diagrammatic Notations: A Case-Study Approach. Proceedings of the

International Conference on Advances In Bio-Informatics, Bio-Technology And

Environmental Engineering (ABBE). pp 79–84. ISBN: 978-1-63248-009-5.

vii

ACKNOWLEDGEMENTS

Firstly, I would like to thank my late mother (1961 - 2012) for her support when I

started this degree. The love, support and wisdom that I received from my mom was

incredible and led me to where I am today.

I would also like to thank my supervisor professor John Andrew van der Poll for his

guidance and support throughout my studies. Your great support and supervision

has led to publication of two papers at international conferences and the successful

completion of this project.

My previous managers at work, David Swai, Jenny Sturges and Lance Steneveld

have given me an immense support and encouragement during my studies. I

appreciated the contribution that you have made towards my studies.

I would like to extend my appreciation to UNISA, Directorate of Student Funding, for

providing me a bursary to further my studies. Without your assistance, I wouldn‟t

have been able to achieve this goal. Another vote of thanks goes to the Research

Directorate for organising the workshops which provided me with the guidance of

conducting a research.

Finally, I would like to thank my family, friends and colleagues who gave me words of

encouragement to continue with my studies during hard times. Your immense

support is greatly appreciated.

viii

DEDICATION

This dissertation is dedicated to the memory of my mother (1961 - 2012), to my

brother, my sister, my two years old niece, my grandmother, my uncle and my aunts.

1

CHAPTER ONE

1. INTRODUCTION

The study conducted in this research is aimed at comparing the formal text-based

specification to a diagrammatic notation. The textual specification that will be used is

Z language. Diagrams based on closed curves and set theory are combined to form

a single diagrammatic language. Z structures are transformed into diagrams in order

to observe if Z can be represented by a diagram. A case study modelled in Z and

diagrammatic notation is also presented to strengthen the comparisons.

This chapter provides a background on Z and diagrams that will be used in this

research. The problem statement that prompted the research is also discussed.

Lastly, we state the questions, which are answered at the end of the research, as

well as the methodology that is used to conduct the research.

1.1 CONTEXT AND MOTIVATION

The goal of software development is to produce software that will meet the intended

requirements successfully. Using a specification in software development facilitates

the production of a design of quality and reliable software. A software specification

refers to a high-level description of system objects and sets of methods used to

control them (Alagar & Periyasamy, 1998). The importance of specification in

software development is to serve as a communication tool amongst designers,

developers and system testers. The specification also adds to the understanding of

operations, and describes the properties of a system. Abstraction is a key tool in

software specification (Alagar & Periyasamy, 1998; Lamsweerde, 2000). The role of

abstraction is to describe what the system does without prescribing how it should be

done (Spivey, 1998).

The need and growth of specification has resulted in the origination of many

specification languages. The „Z notation‟ is a formal specification language, which is

2

based on set theory and predicate logic (Woodcock &Davies, 1996; Diller, 1994).

Research shows that Z can be used to provide clear specifications and that it has

been used successfully to specify safety critical systems (Potter, Sinclair & Till, 1996;

Diller, 2007). Z uses mathematical notation to build abstract data, which is necessary

for a specification. In Z, various objects are grouped according to various types, and

the descriptions of objects are then placed together into „schemas‟. Types are used

to describe the allowable values of a variable (Bowen, 2003; Spivey, 199).

Diagrammatic notations have been applied in various disciplines, including software

engineering to model software. Many diagrammatic languages are based on

contours and „set theory‟. Examples of these languages are Euler-, spider-, Venn-

and Pierce diagrams. Euler diagrams form the foundation of most diagrams that are

based on closed curves. Spider diagrams are the emerged work from Euler and

Pierce diagrams (Howse, Taylor, Stapleton, Bosworth, Fish, Rodgers & Thompson,

2011). John Venn introduced overlapping circles in 1880 to present all possible

intersections of sets of objects (Stapleton, 2005; Chow & Ruskey, 2004).

Unified modelling language (UML) is an object-modelling language that uses various

diagrams to model software. Different diagrams are used at different stages to

represent the system. For example, a use-case diagram is used to describe the

interactions between users and a system. UML uses conceptual and use-case

models to represent the system (Martins, 2004). A formal part of UML, namely

Object Constraint Language (OCL) is used to describe the rules that apply to UML.

Since UML is a high-level specification language and the focus here is at a lower

level of specification, it will not form part of the research.

In this research, Z will be compared to diagrammatic notations. The research aims to

transform the Z specification into a diagrammatic notation and observe the extent to

which diagrams can be used to present Z. To achieve this goal, a case study based

in Z will also be modelled with diagrams.

3

1.2 PROBLEM STATEMENT

The use of Z in software development can provide a clear specification and has the

potential to minimise the defects in a system. Z also has the capability of managing

large specifications by using schemas for restructuring. Even so, not all systems can

be modelled successfully in Z. It may be difficult to specify systems with concurrent

operations, as Z is more suited for systems with a sequence of operations (Bowen,

2003). Similarly, diagrams may lead to a better understanding and allow clients to

play an important role in the specification (Larkin & Simon, 1987) but diagrams also

have disadvantages. They may produce a specification that is long, unstructured and

ambiguous, which could result in contradictions.

As a result, there is a need to compare the characteristics of Z to diagrams in order

to understand the differences between using the diagrammatic and Z notations in

specification work. For this purpose, it is proposed to recommend a notation that has

the capabilities of specifying the described specification problem. The research aims

to answer the below research questions (RQs):

Main research question

To what extent can diagrams be used to model a formal Z-like specification?

The sub-research questions below can be derived from the main RQ:

RQ1: Which diagrammatic languages can be combined to form a notation that could

be compared to Z?

RQ2: To what extent can diagrammatic notation capture the ideas presented in a Z

specification?

RQ3: What are the differences between using Z and diagrammatic notations in the

specification? This question aims to compare Z and diagrammatic notations based

on the specification results that each notation generates.

4

1.3 RESEARCH APPROACH

A case study approach is used to conduct this research. The Z language is

introduced, and a case study is used to illustrate how Z can model the properties of a

system. Different diagrams based on contours are discussed. Furthermore, we

indicate how these diagrams can be used in the specification. Three diagrammatic

languages are then combined to form a comprehensive notation that is used to

represent a Z specification. The research identifies some of Z structures modelled in

schemas and represent them with diagrams. A case study modelled in Z is also

transformed into a diagrammatic specification. The outcome of the specification in

the case study is evaluated. The evaluation compares the specification results of

diagrams to Z. Conclusions are drawn on how each notation performs in the

specification. A qualitative research method is used to discover findings in this

research.

1.4 RESEARCH METHODOLOGY

A main aim of conducting research is to gain new knowledge and subsequently add

to the body of knowledge. According Rajasekar, Philominathan and Chinnathambi

(2013), doing research enables one to:

 Discover new facts

 Find solutions to scientific and social problems

 Test and verify outcomes

 Develop new tools, concepts and theories to solve current problems

1.4.1 Qualitative research

The design of this research is descriptive with an interpretive case study that was

analysed by using the qualitative method. A case study is used to transform the

5

specification from Z notation to diagrammatic notation to observe the extent to which

diagrams can be used to represent a Z specification.

Three (3) diagrammatic notations are combined to form a comprehensive notation

that is used to model a case study. The specification outcome of Z and diagrams is

evaluated. The evaluation compares these two specification languages (Z and

diagrams), and draw conclusions on how each language can be used to specify the

properties of a system. The method used is participant observation, which is suitable

for collecting data on natural behaviours of participants in their usual context (FHI

360, 2005).

Qualitative research aims to (FHI 360, 2005):

 Provide answers to questions that are often asked in research

 Use a set of predefined steps to provide answers to questions

 Seek evidence

 Provide findings that are unlimited to the research and have not been

predetermined

Qualitative methods can be used effectively in providing the intangible factors in the

research that does not have apparent results. It asks questions that allow

participants to respond in their own words. Data analysis is comprised of text and not

numbers. As a result, the research generates findings that are (FHI 360, 2005):

 Salient and meaningful

 Unexpected

 Rich and explanatory in nature

In this research, we intend to understand the extent to which diagrams can capture

the specifications developed in Z by using the qualitative research method. The aim

of this method is to answer why, what and how questions rather than how many

(Patton &Cochran, 2015). The characteristics of the qualitative research method are:

6

 It is non-numerical, applies reasoning and uses words.

 It intends to get the meaning across and provide the description of the domain

solution.

 It provides the answers to the “why”, “what” and “how” questions.

1.4.2 Positivism

The research paradigm is the pattern that will be used to find the solution to the

problem. The paradigm provides the approach, structure and framework that the

research approach will follow (Thomas, 2007).

Positivism is based on the assumption that reality exists. The observation of the

behaviour of specification languages can result in the understanding and true

knowledge on how each language performs in the specification. According to

Thomas (2007), positivism:

 Assumes that reality is given

 Is measurable, using properties independent of the research, which means

that knowledge is objective and quantifiable

 Is concerned with discovering the truth

 Adopts methods and knowledge to improve the accuracy in the description of

constraints and the relationship among them.

This research intends to study the behaviour of how diagrams capture the essence

of a Z specification. In the end, the aim is to find the specification that can yield

precise and unambiguous results that are accessible to all stakeholders.

7

1.5 THE SIGNIFICANCE OF THE RESEARCH

Diagrams have been used to represent the logical statements in a simple and

intuitive way (Howse et al., 2011). The software specification should be accessible to

all stakeholders involved in the software project, including customers, programmers

and project managers. Diagrams are able to deliver the specification in an accessible

way (Howse et al., 2009). However, they are perceived not to be rigorous enough

and may yield long specifications when used in large projects.

The Z language is able to produce the specification that is readable and

unambiguous. The schema notation is used to break down large specifications into

smaller parts and represents each part individually. Nonetheless, the Z language

requires rigorous of training and practical experience before the benefits can be

realised.

Consequently, the research is intended to indicate how diagrams can be used to

represent the formal specification modelled in Z notation. The Z operators and

constructs specified in schemas will be transformed into diagrammatic notations to

indicate the extent that a diagrammatic language can represent a Z specification. A

case study modelled in Z is also specified, using the diagrammatic notation.

1.6 STRUCTURE OF THE DISSERTATION

Following the current chapter, Chapter 2 introduces the Z notation and defines the

small parts that form the specification as a whole. Different structures and operators

of Z are described, and examples are used to indicate how they represent the

specification. There is also a case study, which signifies the way in which a system is

modelled during the specification.

Chapter 3 illustrates various diagrammatic languages and the use of each diagram in

the specification. The transformation rules, advantages and disadvantages,

topologies and the evolution of these diagrams are discussed.

8

Chapter 4 illustrates how the Z structures and operators are transformed into

diagrams. The Z structures and operators are specified in a Z schema, and the

diagrams are used to transform the specification from a Z specification into a

diagrammatic specification.

Chapter 5 represents a case study modelled in Z notation and diagrammatic

language. This chapter evaluates the specification done in Z and diagrammatic

notation, and compares the specification results.

Chapter 6 provides answers to the research questions outlined in the beginning of

the research. It indicates to extents which of the research questions indicated in

Chapter 1 are answered. This chapter also provides a summary of findings and

concludes the research.

1.7 CHAPTER SUMMARY

This chapter set the scene for the rest of the dissertation. The extent to which

diagrammatic notations may be used to model a formal specification in Z will be

investigated. Aspects of research terminology and design were also briefly

addressed.

The next chapter introduces Z which is the formal specification language used in this

research.

9

CHAPTER TWO

2. Z NOTATION

Chapter 1introduced the research and provided the background of Z and diagrams.

The purpose of conducting the research was outlined as well as the questions that

the research intended to answer. Furthermore, the previous chapter indicated the

way in which the research had been structured.

This chapter illustrates the use of various structures and operators in Z by using a

case study to indicate how Z specifies the operations of a system. The Z notation

and other formal specification techniques have been applied in a variety of

application areas to provide clear and unambiguous specifications. The case study

used throughout this chapter is from Barden, Stepney and Cooper‟s work of 1994

called Z in practice.

2.1 SPACEFLIGHT BOOKING SYSTEM

Ventures Unlimited into Space (VENUS) is a company that provides flights into

space. The flights are offered, using an improved TARDIS technology, which is used

by space companies to reduce the time travelled to the space and as a result, the

duration of the flight into space is less.

VENUS is looking for an automated system that will enable the space company to

add the details of a flight, such as ticket price, duration and size of the spacecraft

online. Once flights are available, the travel agents will be able to make bookings on

behalf of passengers. The system should also allow agents to enquire about the time

of departure, arrival time, seat price and number of seats available on the flight. The

space company must be able to add or cancel flights, enquire about the number of

spare and booked seats as well as generate a report of the passenger list.

The information below will be maintained in the system:

10

 The routes that the flights take to and from space

 The launch and landing sites of the spacecraft

 The dates on which flights are available

 The number of seats available in each class of the flight

 The type of spacecraft used for the flight

 The local departure time of the flight

The system should be able to determine the local arrival time, speed of the

spacecraft and route details. The local and arrival times for each flight are in GMT

(Galactic Mean Time). VENUS offers reduced price to children between two and

twelve years old and free flights for infants. The system should allow modifying the

booking and printing reports, such as passenger lists and the total number of seats

booked.

The specifications below follow the established strategy for modelling a system in Z.

2.1.1 Given sets

The travel agents, users and space companies access the system to enquire about

flight numbers, places, prices of flights, departure and arrival times, days of travel,

kinds of spacecraft and seat classes.

Below are the given sets of the system:

[AGENT, CLASS, CRAFT, DATE, DAY, PLACE, PRICE, SPACECO]

The descriptions of the abovementioned sets are provided in the table below,

synthesised by the researcher:

11

Table 2.1: The description of given sets of the flight system

Given sets Description

AGENT Access the system and make bookings on behalf of

clients

CLASS Various kinds of seating on board the spacecraft

CRAFT The type of spacecraft

DATE The date on which flight takes place

DAY Days of the week on which the craft operates

PLACE Departure and destination points

PRICE The ticket prices

SPACECO Space companies that access the system

2.1.2 Flight details

The schema below denotes the details of the flight to support the descriptions of the

operations in the system. Each flight describes a departure and arrival time,

departure and arrival points, the number of seats and the model of the spacecraft.

The invariant start ≠ dest states that the departure location is different from the

arrival location.

 Flight

depart : GMT

start, dest : PLACE

seating : bag CLASS

craft : CRAFT

start ≠ dest

12

Flight schema uses bag function. The bag function is defined as follows:

Bag X == X⇸ℕ1

The definition of a bag function indicates the set of bags whose elements are drawn

from the set X. The occurrences of an element in set X can only be a positive natural

number.

The sign of inequality (≠) used in the flight schema is defined below. The expression

t1 and t2 are elements of set T, which is a subset of set X. The negation (¬) sign is

used to represent the inverse of an expression. The definition states that t1 is not

equal to t2.

t1 ≠ t2 == ¬ (t1 = t2)

2.1.3 Type of passengers

There are three groups of passengers and their age has an impact on the price of

their tickets. They are:

 Infants (younger than two years) travel for free, but do not occupy a seat.

 Juveniles receive a discount

 Adults pay the full price

The three groups of passengers are described as follows:

[INFANT, JUVENILE, ADULT]

PASSENGER:: = infant⟪INFANT⟫

| juvenile⟪JUVENILE⟫

| adult⟪ADULT⟫

The ⟪…⟫ brackets are used to define the free types. The free types are used above

to provide an easy description of the different groups of passengers.

13

2.1.4 Abstract state

The state of the system is described by schedule, bookings and system users.

2.1.4.1 Schedule

The Schedule schema specifies only flights that have been scheduled by VENUS.

The schema below uses the identifier FID to indicate unique flights.

[FID]

It also uses duration : FID ⇸ℤ,which denotes that the duration depends on a

particular flight.ℤ is used to represent a set of integers, including positive, zero and

negative numbers. The purpose of using ℤ instead if ℕ (which represents a set of

strictly positive numbers) is to allow flights using TARDIS technology to have

duration less than zero. The variable of price(defined byℙ(FID × bag CLASS) ⇸

PRICE)is calculated, using details of the route, the class of the ticket, and the kind of

passenger. The predicate

dom price ⊆ℙ {f : dom flight; b : bag CLASS | b ⊑(flight f).seating}

denotes that the price is calculated from the number of seats booked on a flight.

 Schedule

flight : FID ⇸ FLIGHT

duration : FID ⇸ℤ

price : ℙ(FID × bag CLASS) ⇸PRICE

dom duration = dom flight

dom price ⊆ ℙ{f : dom flight; b : bag CLASS | b ⊑(flight f).seating}

14

Schedule uses partial function (⇸), bag, domain, sub-bag (⊑) and proper subset (⊆),

power set (ℙ). The bag has already been defined in the Flight schema.

 dom is the first set of elements in the binary relationship and it is defined as

follows:

domR = {𝑥 ∶X | (∃𝑦 : Y ⦁𝑥↦𝑦∈R) }

The above expression states that the some components of 𝑦 are related to set

of𝑥components.

 ran is the second set of elements in the binary relationship and can be

represented as:

ranR = {𝑦 ∶ Y | (∃𝑥 : X ⦁𝑥↦𝑦∈ R) }

The definition of range is the inverse of domain, as it states that the set of 𝑦

components are related to some 𝑥.

 Partial function is represented by:

X ⇸ Y == {f: X ↔ Y | (∀𝑥: dom f ⦁(∃1y : Y ⦁𝑥f y))}

The partial function of X to Y shows that the domain of function does not contain the

whole of X but it may.

 Sub-bag is represented as follows:

B1 ⊑ B2 == (∀ 𝑥: X ⦁ (B1♯ 𝑥)∮ (B2 ♯ 𝑥)

B1 is contained in B2, provided that the occurrences of each element in B1 are not

more than the occurrences of elements in B2.

15

 A subset is defined as:

S ⊆ T == (∀ 𝑥 : S ⦁𝑥∈T)

The above expression indicates that all elements of S are included in set T.

 Power (ℙ) set is the set of all subset of S.

The following schema specifies the Booking operation of VENUS flights.

2.1.4.2 Bookings

Booking keep track of seat reservations and uses the BID as the tracking identifier

for booked seats.

[BID]

The booking ID identifies the passenger and the seat booked by the passenger on

the particular flight. Passenger maps the booking identifier to the specific passenger.

Seat also maps the booking identifier to the bag of seats booked on the flight and

lastly onFlight maps the identifier to the relevant flight. The predicate part indicates

that only seats available on the flight can be booked. The flight cannot be over

booked.

 Booking

passenger : BID ⇸ PASSENGER

seat : BID ⇸ bag CLASS

onFlight : BID ⇸ FID

dom passenger = dom seat = dom onFlight

16

2.1.4.3 Users of the booking system

The system is accessed by travel agents and space companies. The state schema

below specifies the users and types that define these users.

 User

agent : ℙAGENT

spaceCo : SPACECO

2.1.4.4 The complete state of the booking system

The schema below is a complete abstract state of VENUS and it is built by

combining individual states. The variable called alloc, returns a bag of seat allocated

to a particular flight.

 Venus

Booking

Schedule

User

alloc : FID ⇸ bag CLASS

dom alloc = dom flight

∀f : dom flight ⦁ alloc f = ⊎ ((dom(passenger ⩥ ran infant) ∩

onFlight∫⦇{ f }⦈)) ◁seat

∧ alloc f ⊑(flight f).seating

The below predicate

alloc f = ⊎ ((dom(passenger ⩥ ran infant) ∩ onFlight∫⦇{ f }⦈)) ◁ seat

17

indicates that, when the alloc function is applied, it returns the bag of seats occupied

on the flight and excludes the infants, as they do not occupy seats.

The ⦇…⦈ represents the relational image and it is defined by the expression below. It

means that the relational image of R⦇ S⦈ of set S through a relational R is the set of

all objects of y to which R relates to some member 𝑥 of S.

R⦇ S⦈ = = { y : Y | (∃𝑥: S ⦁ 𝑥 R y) }

Only seats that have been allocated are available for booking. No overbooking is

allowed; hence this predicate ∧ alloc f ⊑(flight f).seating.

The three symbols, bag union (⊎), range subtraction (⩥) and domain restriction (◁)

used in the above schema can be illustrated as follows:

 Bag (⊎) is the sum of two bags and can be defined as follows:

(B1⊎B2) ♯ 𝑥 =(B1♯ 𝑥) + (B2 ♯ 𝑥)

The expression above indicates that each element of the sum of two bags has the

frequency, which is the sum of the frequencies of two bags.

 Conversely, the bag difference presents the difference between two bags:

(B1⩁ B2) ♯ 𝑥 =(B1♯ 𝑥) - (B2 ♯ 𝑥)

This expression shows that the occurrences of each element in the bag appear, less

the number of occurrences of the same element in another bag.

 Range subtraction (⩥) is used to remove the range elements in the ordered

pair.

18

R ⩥ T == R ▷ (Y \ T)

The result of range subtraction is the R relation with members of T excluded from its

range.

 Domain subtraction (⩤) removes the domain elements in the ordered pairs.

S ⩥ R == (X \ S) ◁ R

Domain subtraction is the R relation with members of T excluded from its domain.

 Domain restriction (◁) restricts the results to the elements in the domain.

S ◁ R == {𝑥 : X ; y : Y | 𝑥∈ S∧𝑥 R y }

The above definition denotes the R relation with members of S restricted to its

domain.

 Range restriction (▷) restricts the results to the elements in the range.

S ▷ R == (𝑥 : X ; y : Y |𝑥 R y ∧ y ∈T)

This expression denotes the R relation with its members restricted to T.

2.1.5 Initial state

The below schema specifies the initial state of the booking system. The initial state

initialises the system and it represents state of the system before the first operation

takes place. The schema below denotes that the system is empty during the

initialisation. The predicates (passenger′ = ∅ and duration′ = ∅) in the schema

indicate that sets of passengers and durations are empty.

19

 InitVenus

Venus′

passenger′ = ∅

duration′ = ∅

We have the obligation to prove that the initial state exists. The following theorem

asserts the initial state of VENUS (Wordsworth, 1992):

⊢∃ Venus′ ⦁ InitVenus

2.1.6 Specification approach

The successful operations of the system are modelled individually. The error

message for each operation is modelled immediately after its operation. Below is a

list of operations in a system. The first operations to be modelled will be the ones

that do not change the state of the system. The operations that change the state of

the system will follow later.

Table 2.2: Operations of the booking system

Type of operation Operation User

Enquiry SeatPrice Agent

Spare Agent, Space company

DepTimes Agent

ArrTimes Agent

NumberBooked Agent, Space company

PassengerList Space company

Update AddBooking Agent

DeleteBooking Agent

AddFlight Space company

DeleteFlight Space company

20

2.1.7 Operations of the booking system

The operations of the booking system are modelled as follows:

2.1.7.1 Finding flight details

In order to obtain the details of a flight, it must be present in the domain of flights.

The operation below queries the details of a flight. The variable f ? (decoration „?‟

indicates an input variable and „!‟ denotes an output variable) is used to identify

unique flights and it belongs to type FID. The variable results! is be used throughout

the specification to display the outcome of each operation to the user.

 KnownFlightOK

ΞVenus

f ? : FID

results ! : RESULT

f ? ∈dom flight

results ! = OK

The predicate f ? ∈ dom flight denotes that the flight must exist in the domain of

flights. If the flight is not present in the domain, it will not be a flight for VENUS. The

schema below models UnkownFlight operation.

 UnknownFlight

ΞVenus

f ? : FID

results ! : RESULT

f ? ∉dom flight

results ! = unknownflight

21

The predicate f ?∉ dom flight indicates that the flight does not exist in the domain of

flights, as a result the system return unknownflight error message.

2.1.7.2 Finding the price details of a group of seats

The price is determined by the flight and the seat class. In order to obtain the price of

a flight, the input variable ticket? (represented by ticket? : ℙ (FID × bag

CLASS),which is a set of flight identity numbers and the number of seats required,

will be required. The system will return price ! as the output.

 SeatPriceOK

ΞVenus

ticket? : ℙ (FID × bag CLASS)

price! : PRICE

results ! : RESULT

ticket ? ∈dom price

price !: price ticket?

results ! =OK

If the details on the ticket are not present in a system, the error message NoSeat will

be displayed.

 NoSeat

ΞVenus

ticket ? : ℙ (FID × bag CLASS)

result ! : RESULT

ticket ? ∉dom price

result != NotSeat

22

2.1.7.3 Number of spare tickets

The spare tickets represent the number of available seats on the flight. They can be

identified by a bag difference of the total number of seats allocated for a flight and

the bag of tickets that has already been booked. The schema below denotes

SpareOK.

 SpareOK

ΞVenus

f ? : FID

spare ! : bag CLASS

results ! : RESULT

f ?∈dom flight

spare ! = (flight f ?).seating ⩁ alloc f

results ! = OK

The predicate spare ! = (flight f ?).seating ⩁ alloc f in the above schema states that

the spare seats is the number of seats remaining after subtracting a bag of allocated

seats from the total number of seats on a particular flight.

2.1.7.4 Departure time

The users should be able to view the departure time of a flight from a particular

departing location at a given date and time. The input variables of this operation are

date ?, port ? and dep ?. The system will return the flight numbers and the departure

time in local time for the spaceport for a particular flight. The θFlight = flight f

ensures that values bounded to variables in the flight schema are correct for the

particular flight.

23

 DepTimes

ΞVenus

date ? : DATE

port ? : PLACE

dep ? : FID ⇸ minute

results ! : RESULT

dep ! = { f : dom flight ; Flight | θFlight = flight f

 ∧ start = port ?

∧localDate (depart, start) = date? ⦁

f ↦ localTime (depart, port ?) }

results ! = OK

2.1.7.5 Arrival time

To determine the arrival time, the duration of the flight is added to the departure time.

The arrival time is calculated in GMT on a particular date. The operation ArrTime

receives date ? and port ? as input variables and returns arrival ! as the output.

The predicate arr = depart + duration f denotes that the arrival time is calculated by

adding the flight duration to the time of departure. The arrival time will be shown in

local time, which is the GMT format. This is indicated by the f ↦ localTime (arr, port?)

predicate.

24

 ArrTimes

ΞVenus

date ? : DATE

port ? : PLACE

arrival ! : FID ⇸ minute

results ! : RESULT

arrival! = { f : dom flight ; Flight; arr : GMT |

θ Flight = flight f

 ∧ dest = Port ?

 ∧arr = depart + duration f

∧localDate (arr, dest) = date? ⦁

f ↦ localTime (arr, port ?) }

results!= OK

2.1.7.6 Number of bookings in flight

The NumberBookedOK schema specifies the operation to obtain a number of seats

that have already been booked on a particular flight. To obtain the report of the

numbers of seats booked on a flight, users must enter the flight ID, upon which the

system returns the number of seats booked. The function sizebag in the predicate

part of the schema is used to return the number of occurrences for each element in

the bag. In this operation, the function will provide the number of seats booked in

each class.

25

 NumberBookedOK

ΞVenus

f ? : FID

n! : ℕ

results ! : RESULT

f ?∈dom flight

n! = sizebag (alloc f)

results ! = OK

2.1.7.7 Passenger list

The space company may require generating a passenger list. To obtain a list of

passengers, the flightID is entered as an input variable and the onFlight function will

determine the bookings on the flight. It returns the list of names of passengers who

have booked the flight. The who ! = passenger ⦇dom(onFlight ▷ {f}) ⦈ predicate

restricts the onFlight function to a flight ID that has been provided and yields the set

of relevant booking IDs (BID). The b ? variable is defined in the AddBookingOK

schema. The relational image of this set will generate the corresponding set of

passengers.

 PassengerListOK

ΞVenus

f ? : FID

who ! : ℙPASSENGER

results ! : RESULT

who !=passenger ⦇dom (onFlight ▷ { f }) ⦈

results ! = OK

26

2.1.7.8 Flight bookings

Booking a flight is allowed only if there are still spare seats on the flight. The travel

agent can book a flight through the booking system, provided that there is still a bag

of seats available.

 AddBookingOK

ΔVenusBooking

c? : bag CLASS

p? : PASSENGER

f? : FID

b! : BID

results ! : RESULT

b! ∉dom passenger

passenger′= passenger ∪{b! ↦p ?}

seat′= seat ∪{b! ↦c? }

onFlight′= onFlight{ b! ↦ f ? }

results ! = OK

The AddBookingOK operation receives class, passenger and flight IDs as input

variables and the booking ID is the output return by the system. The precondition of

the operation is that the booking ID (b !) should not exist in the system; hence this

predicate b ! ∉ dom passenger. The following predicates state that once the

operation has been completed successfully, the post-conditions of the operation will

be a set of passengers have a new booking ID assigned to a passenger. The seat in

a certain class will be booked and onFlight will a have a new booking for a particular

flight.

In case the class is full, the system will display the error message classfull to the

user. The schema below denotes the ClassFull error message.

27

 ClassFull

ΞVenus

f ? : FID

c ? : bag CLASS

results ! : RESULT

¬ (c ? ⊑ (flight f ?).seating ⩁alloc f ?)

results ! = classfull

The ¬ (c ?⊑ (flight f ?).seating ⩁ alloc f ?) predicate states that classfull error

message will be displayed by the system if the requested bag of seats is not a sub-

bag of unallocated seats. The system will not allow the travel agent to book a flight if

the number of requested seats is not available.

2.1.7.9 Delete booking

The travel agent can cancel the booking if the passenger is no longer travelling on a

flight. The booking ID should be provided as an input to the system and the system

will generate an error if b ? is not present in the system.

The DeleteBookingOK operation is defined by the schema below.

 DeleteBookingOK

Δ VenusBooking

b? : BID

results ! : RESULT

b? ∈dom passenger

passenger′= {b? } ⩤passenger

seat′= {b? } ⩤seat

onFlight′= {b? } ⩤onFlight

results ! = OK

28

The b ? (bookingID) is the input variable in the DeleteBookingOK operation. The

precondition indicates that b ? should be known to the system. After the successful

completion of the operation, b ? will be removed from the set of passengers, the bag

of seats and onFlight.

If the booking ID does not exist on the system, an error message NotBooked will be

displayed to the user. The error is modelled by the schema below.

 notBooked

ΞVenus

b? : BID

results ! : RESULT

b? ∉dom passenger

results ! =notbooked

2.1.7.10 Adding a flight to the booking system

The schema below models an operation to add a new flight in the booking system.

We have the flt ? and f ? as input variables. The precondition of the operation is that

the flight must not be present in the system. When adding a new flight in the system,

the duration and the price of the flight will also be added; however, there will be no

impact on the price and duration of the existing flights.

The precondition of adding the flight is that the flight ID to be added should not be

present in the system. If the precondition is met, the new flight will be added

successfully in the system. The {f?} ⩤ duration′ = duration and (dom price) ◁ price′ =

price predicates denote that the duration and price of the new flight will not impact

the duration and price of existing flights.

29

 AddFlightOK

Δ VenusScedule

flt ? : FLIGHT

f ? : FID

results ! : RESULT

f? ∉dom

flight ′= flight ∪ flight { f ↦ flt }

{ f?} ⩤duration′ = duration

(dom price) ◁price′= price

∀ ticket : dom (price ′ ∖price) ⦁f ? ∈dom ticket

results ! = OK

If the flight already exists, an error message FlightAlreadyExists will be displayed to

the user. The schema below indicates the FlightAlreadyExists error message.

 FlightAlreadyExists

ΞVenus

f ? : FID

results : RESULT

f ? ∈dom flight

results ! = flightalreadyexists

2.1.7.11 Deleting a flight to the booking system

The flight may be cancelled if there are no reservations. The business rule is that no

flights may be cancelled if reservations have already been made on the flight. To

remove the flight from the schedule, the price and duration of the flight must also be

removed. It will have no impact on the price and duration of other flights.

30

 DeleteFlightOK

Δ VenusScedule

f ? : FID

results ! : RESULT

f ? ∉ran onFlight

flight ′= { f ? } ⩤flight

duration′ = { f ?} ⩤duration

price′= (dom price′) ◁price

∀ ticket : dom (price ∖price ′) ⦁f ? ∈dom ticket

results ! = OK

When VENUS staff members attempt to delete the flight that already has booked

reservations, the error message hasbooking will be displayed to the user.

HasBooking is modelled in the schema below.

 HasBooking

Δ VenusScedule

f ? : FID

result !: RESULTS

f ? ∈ran onFlight

result ! = hasbooking

2.1.7.12 Combining schemas

The successful operations can be shown with an error in the same schema to

specify the complete operation of the system. A schema calculus is used to combine

two or more schemas. The disjunctive (∨) and conjunctive (∧) operations are used

to join the predicates of the combined schemas.

31

The schema below denotes the seat price:

SeatPrice ∬ SeatPriceOK ∨ NotSeat.

 SeatPrice

ΞVenus

ticket ? : ℙ (FID × bag CLASS)

price ! : PRICE

results ! : RESULT

(ticket ? ∈dom price

price !: price ticket ?

results ! =OK) ∨

(ticket ? ∉dom price

 result != notseat)

In order for travel agents to be able to book flights successfully, the flight must be

present in the booking system and it must not be fully booked. The next schema

entails a complete operation for booking a flight and it combines

AddBooking ∬ (AddBookingOK∧KnownFlightOK) ∨ ClassFull ∨ NotFlight.

32

 AddBooking

ΔVenusBooking

c? : bag CLASS

p? : PASSENGER

f? : FID

r! : BID

results ! : RESULT

(b! ∉dom passenger

passenger ′= passenger ∪ { b! ↦p ? }

seat ′= seat ∪ { b! ↦c? }

onFlight ′= onFlight { b !↦ f ? }

 ∧(f ?∈dom flight)

results ! = OK)

∨ (f ?∉dom flight

results ! = notflight)

∨ (¬ (c ? ⊑ (flight f ?).seating ⩁ alloc f ?)

results ! = classfull)

The schema below models the complete operation for cancelling the booking and it

represents the

DeleteBooking ∬ DeleteBooking ∨ NotBooked.

33

 DeleteBooking

ΔVenusBooking

b? : BID

results ! : RESULT

(b ? ∈dom passenger

 passenger ′= { b ? } ⩤passenger

 seat ′= { b ? } ⩤seat

 onFlight ′= { b ? } ⩤onFlight

 results ! = OK)

∨(b ? ∉dom passenger

 results ! = notbooked)

There are more operations of the booking system that can be modelled with errors to

indicate the complete operation. Schemas that can be combined to denote complete

operations are shown below:

KnownFlight ∬ KnownFlightOK ∨ NotFlight

Spare ∬ SpareOK ∨ NotFlight

NumberBooked ∬ (NumberBooked ∧ KnownFlight) ∨NotFlight

PassengerList ∬ (PassengerListOK ∧ KnownFlightOK) ∨NotFlight

AddFlight ∬ AddFlightOK ∨ AlreadyExists

2.1.7.13 Specification summary

The below table, synthesised by the researcher, provides a specification summary

operation of VENUS system thereby listing the operation and indicate the input and

output variables and well as the precondition of each operation. It is customary in Z

to show in a table like the below, only the partial operations.

34

Table 2.3: Summary of partial operations of VENUS

Operation Variables Preconditions

SeatPrice ticket ? : ℙ (FID × bag CLASS)

price ! : PRICE

ticket ?∈dom price

Spare f ? : FID

spare ! : bag CLASS

f ?∈ dom flight

DepTimes date ? : DATE

port ? : PLACE

dep! : FID ⇸ minute

true

ArrTimes date ? : DATE

port ? : PLACE

dep! : FID ⇸ minute

true

NumberBooked f ? : FID

n ! : ℕ

f ?∈ dom flight

PassengerList f ? : FID

who! : ℙPASSENGER

f ?∈ dom flight

AddBooking c? : bag CLASS

p? : PASSENGER

f ? : FID

b ! : BID

b !∉dom passenger

DeleteBooking b ? : BID b ?∈dom passenger

AddFlight flt ?: FLIGHT

f ? : FID

f ?∉dom

DeleteFlight f ? : FID f ?∈dom

35

2.2 CHAPTER SUMMARY

This chapter modelled a case study in Z and described the Z structures, operators

and functions used in the specification. Z has been used successfully in a real-world

environment to provide the specification of large systems where quality and safety

are critical. A project, in which Z was used successfully, is IBM‟s customer

information control system (CICS) (Wordsworth, 1992; Potter, Sinclair & Till, 1996).

However, industries are still reluctant to use formal methods due to complex

mathematical notations used in the language. Formal methods require rigorous

training and experience before the full benefits can be attained.

In formal specification, the system is specified by hiding the details of how the

functions of the system are achieved and only models the important features. The

system is decomposed into smaller pieces and each piece of the system is specified

individually by the Z schema notation.

Mathematical theorems are used to verify the specification and reduce errors. A

theorem was used to indicate that the initial state of the VENUS system exists.

Nevertheless, using Z in the specification does not guarantee that the end product

software will not have defects. If Z is properly used, it can minimise the overall cost

of the software project.

The next chapter discusses various diagrams based on closed curves and set

theory. Chapter 3 also illustrates the area where these diagrams can be used. The

rules governing the modification of diagrams are outlined as well.

36

CHAPTER THREE

3. DIAGRAMS BASED ON CLOSED CURVES AND SET THEORY

Chapter 2 used an established strategy to model a case study in Z. Various functions

and relations of Z were defined and indicated how they could be used to express the

predicates. The previous chapter also indicated how schemas are used to represent

the large specification in a well-structured manner.

This chapter focuses on diagrams that are based on closed curves and used to

express the logic and set-theoretical statements. The concepts are first introduced

and defined later. Euler, Venn, Spider and Pierce diagrams will be discussed, since

they form part of this research.

Euler diagrams were introduced in the 18th century by Leonard Euler and the

language inherited the name from his last name. They form the basis of most visual

languages based on closed curves. Other diagrams extended Euler diagrams by

introducing additional semantics to represent set relations. Various UML diagrams

are also discussed; however, it does not form part of the research.

3.1 Overview of diagrams

Diagrams play an important role in the visualisation of information. A diagram with no

text or any explanation of captions or familiar symbolic devices may not be easy to

interpret. Diagrams must be linked with language from other contexts and the real-

world to represent information properly. It has been emphasised that the essential

way to denote diagrams to be meaningful is to use them in linguistic representations

(Hammer, 1995).

The use of mathematical symbols in proof can yield the required results without

diagrams; therefore, diagrams are not essential parts of proof. Hammer (1995) has

articulated that the use of diagrams in the real-world representation has grammatical

37

structure and meaning; however, if the grammar and semantics can be specified

properly and rectified, the diagrams can yield a rigorous proof.

Shin (1994) defined ten rules of inference to prove that diagrams can be sound and

complete. Six rules were developed for Venn I and four other rules were developed

for transforming Venn II diagrams. These transformation rules are discussed in 3.4.1

and 3.4.2.

3.2 EULER DIAGRAMS

An Euler diagram is a well-known visual language, consisting of a collection of

closed curves, which express information about containment, intersections or

disjointedness in a simple way (Bottoni & Fish, 2011; Stapleton, 2005; Stapleton et

al., 2011).

Closed curves, also known as contours, are closed circles used to represent sets in

a diagram (Fish & Stapleton, 2006; Fish & Flower, 2008; Stapleton et al., 2010).

Each contour has a unique label. Contours divide a plane into zones. A zone

(minimal region) is a region connected to a plane, which has no other region

contained within it (Howse, Taylor & Stapleton, 2005). It is described by the set of

contours enclosing it and the rest of other contours, which lie outside. For example,

in Figure 3.1, the area that is inside EMPLOYEE but outside PILOT is a zone.

PILOT

EMPLOYEE DEPENDENT

Figure 3.1: Example of an Euler diagram

38

The diagram in Figure 3.1 is an example of an Euler diagram containing three sets,

namely EMPLOYEE, PILOT and DEPENDENT. The diagram indicates that PILOT is

an EMPLOYEE, while DEPENDENT and EMPLOYEE are disjoint sets.

Euler diagrams can be asserted in several ways to express logical and set-

theoretical statements. The examples below exemplify the subset of joint and disjoint

Euler diagrams (Hammer, 2005).

A

B

Figure 3.2: An Euler diagram with subset

The above diagram specifies the subset in the Euler diagram. It contains two sets,

namely A and B, as well as three zones, namely the region in both A and B, the

region inside B but outside A, and also the region that is outside both A and B. Set A

is inside B, which means that all elements that are in A also belong to B; as a result,

A ⊂ B. There may be elements in B not belonging to A.

An Euler diagram may contain a disjoint set. Below is the example of an Euler

diagram with a disjoint set.

A B

Figure 3.3: An Euler diagram with disjoint sets

The diagram indicates two disjoint sets, namely A and B; which means nothing in A

is in B. The elements can exist in either A or B, but not in both. In this diagram, A ∪

B, A – B and B – A are represented (Howse et al., 2005).

39

The diagram below represents joint sets. There are five zones and three sets

asserted. It denotes that A is a proper subset of B and some elements are in both B

and C (Hammer, 2005).

A

B

C

Figure 3.4: An Euler diagram with joint sets

Table 3.1 below indicates the zones asserted in the above diagram, synthesised by

the researcher:

Table 3.1: Zones of an Euler diagram with joint sets

The above diagram specifies how a subset is represented by an Euler diagram. It

contains three sets, namely A, B and C. The diagram asserts that there are four

regions: A∪ B ∪ C, A ⊆ B, B ∩ C and B - C. An empty set is denoted by missing

elements in a diagram (Stapleton et al., 2007); however in Euler diagrams, there

may be elements even though they are not explicitly represented. As a result, Euler

diagrams have limited expression in specifying that a set is empty (Hammer, 1995).

The diagram may have any finite number of disjoint sets drawn in any arrangement

whereby every object in the diagram is represented by one minimal region (Fish et

Contours

{∅}, {A, B, C}

{C}, {A, B}),

{B, C}, {A}

{B}, {A, A}

{B, C}, {A}

40

al., 2008). There are various specifications where diagrams have been used

successfully as the basis for system specifications and reasoning, namely statistical

data, database search queries, ontology representations, file system management

and visualising genetic set relations (Howse et al., 2005, Fish & Stapleton, 2008;

2009; Delaney & Stapleton, 2007; Stapleton et al., 2010).

The examples of how diagrams were used successfully in different specification

areas will be shown in the following sections of the chapter.

As other visual languages like pie charts and graphs can be produced automatically,

there are also tools used to draw an Euler diagram automatically (Stapleton et al.,

2010). These tools are classified as dual graph methods, inductive methods and

methods using particular shapes. The diagrams are developed by starting with an

abstract description and have an advantage of producing well-designed diagrams.

The most common properties the desired Euler diagram should have are a unique

label, simplicity and no concurrency (Stapleton et al., 2010). To achieve this goal,

Hammer (1995)has developed the transformation rules for modifying Euler diagrams.

 Rule of erasing a contour

A contour can be removed to change the topology of a diagram. In Figure

3.5Diagram D has sets A, B and C. Set B can be removed from Diagram D, resulting

in a new diagram in D′(Hammer, 1995). If the diagram after erasure is obtainable

from the diagram before, then D′ can be deduced from D.

A

B

C

A

C

D D′

Figure 3.5: Erasing a contour

41

 The rule of introduction of a new curve

A new set can be introduced to enhance the expression of a diagram. When a new

curve is added in a diagram, it should have a label and overlap each zone in a

diagram. Diagram D in Figure 3.6 has three curves, namely A, B and C with five

regions. Set A is a subset of B; some elements of C are present in B, while sets A

and C are disjoint. The introduction of an E-curve results in Diagram D′.

To avoid changing the semantics of a diagram, an E-curve should overlap each

minimal region in the diagram. In essence, the minimal region in D′ should have the

counterpart in D. For example, the minimal region B – A in D should have the

corresponding B – A region existing in D′.

A

B

C

A

B

E

C

D

D′
Figure 3.6: Introducing a contour

 The rule of weakening

Diagram D can result in D′ through weakening if the number of curves is equal in

both diagrams and have the same labels. Each minimal region in D should also have

a counterpart in D′. Initially in Diagram D, set C is a subset of B. However, through

the rule of weakening, the diagram has a different meaning. Set C is not a subset of

B in Diagram D′; it intersects B.

42

A B

C

D D′

A B

C

Figure 3.7: Rule of weakening

3.3 Extended Euler diagrams

Euler diagrams have been modified to form extended Euler diagrams (EEDs).

According to the study, an EED has fewer minimal regions than a Venn diagram and

also more readable topology. Due to topology constraints, some intersections are

difficult to be represented by Euler diagrams if the number of closed curves exceeds

four in a diagram. Hence, an extension of an Euler diagram is proposed to assert a

diagram that may have a maximum of eight sets and any number of intersections.

The diagram in Figure 3.8 is an example of an EED with four contours (Swoboda &

Allwein, 2004).

A

B

C

D

Figure 3.8: An extended Euler diagram

An EED has the following properties (Verroust & Viaud, 2004):

43

 An intersection may be represented with more than two curves.

 A region may be present in more than one curve.

 Each non-empty intersection is associated with a unique minimal region.

 Each set belongs to a set of minimal regions.

The above properties facilitate to differentiate the extended Euler diagram from the

normal Euler diagram.

3.4 VENN DIAGRAMS

In 1880, John Venn developed a visual language based on closed curves called

Venn diagrams to presents logical statements and set relations (Howse et al., 1999;

Howse, Molina & Taylor, 1999; Bottoni & Fish, 2011). Venn diagrams emerged from

Euler diagrams; however, instead of using missing elements, shading is used to

represent an empty set (Blackwell et al., 2004; Howse et al., 2005). Overlapping

contours are used in Venn diagrams to represent all possible intersections (Flower et

al., 2004; Mineshima et al., 2012; Wilkinson, 2012). A region where two or more

contours overlap in a diagram represents the intersection of sets.

Traditionally, Venn diagrams were presented with three curves intersecting one

another. The diagram seemed to be cluttered when four or more curves were used,

resulting in the diagram being difficult to draw and read. The study done by Verroust

and Viaud (2004) indicated that more than three curves can be represented using

ecliptic shapes and rotational symmetric shapes called Adelaide to allow for the

diagram to be more readable.

Venn diagram is an expressive visual language used to specify constraints and

relationships among sets. In a diagram, every subset of a closed curve has a

minimal region where curves overlap. Projection can be used to reduce the cluttering

44

by presenting only regions that are important and exclude other regions that are not

relevant.

Projected contours are used to denote an intersection with the context and are

represented by a dashed oval shape. The diagram in Figure 3.9below presents the

following regions: A – B; B – A, A∩ B, and C ⊆ B (Howse et al., 2005). The region

where A and B is shaded indicates that A and C are disjoint sets (A∩ C = ∅).

A

C

B

Figure 3.9: A Venn diagram

It has been indicated that Venn diagrams have been used in the industry to visualise

statistical data. Figure 3.10 below depicts an example of visualising statistical data

using a Venn diagram (Swoboda & Allwein, 2004; Thompson, 2011).

Figure 3.10: A Venn diagram presenting statistical data

Female

(5000)

4148

102

146

604
567

183

1069

Visible Minority

(1500)

CS Major

(1500)

45

The diagram indicates that there are 5000 females, 1500 visible minority and 1500

CS major. Out of 5000 females, 102 females are CS major, 164 females are CS

major and visible minority and 604 females are visible minority. There are neither

4148 females that are nor CS major neither visible minority. There also 183 CS

major that are visible minority.

3.4.1 Venn I

Venn I diagrams were developed by Shin (1994) to represent the set relations while

shading was used to denote an empty set. The ⊗-sequences (pronounced X-

sequences) are used to represent the existence of elements. Lines are used to join

the ⊗-sequences that belong to a particular diagram. The universal set is also

introduced to enclose all the curves in a diagram (Howse et al., 2005).

Venn I diagrams are perceived as less expressive than Venn diagrams. Shin

developed transformation rules to prove the completeness of this notation (Shin,

1994).

Venn I diagrams have rules of transformation, which govern the modifications. These

transformation rules are discussed below (Shin 1994; Howse et al., 2000; Molina,

2001; Stapleton, 2005).

3.4.1.1 Rule 1: Erasure of a diagrammatic object

Any object in the diagrams, for instance x-sequence, shading or contours, may be

deleted in a diagram. When the closed curve is erased, certain regions such as

shading or an x-sequence will also disappear. If other regions are not modified after

deleting a closed curve, it will result in a diagram that is not well-formed. Figure

3.11indicates how D2 is derived from D1 after erasing the contour A. The diagram in

D1 has sets A, B and C. In D2, set A is removed and as a result the x-sequence in A

∩ B is also deleted to ensure that the diagram does not lose its semantics.

46

B

C

D2D1

A
B

C

Figure 3.11: Erasing a contour

3.4.1.2 Rule 2: Erasing part of an ⊗-sequence (x-sequence)

A part of x-sequence may be erased if it is placed in a shaded region. The diagrams

below depict the transformation of D1 to D2 after deleting a part of the ⊗-sequence.

The number of x-sequences does not increase in a diagram. This means, if ⊗ is in a

shaded region at the end of the x-sequence, the -⊗ or ⊗- may be removed so that

there is only one part of the x-sequence left. If the ⊗ is in a shaded region in the

middle of the x-sequence, the ⊗ in the middle can be erased and the remaining part

will be joined again with a line to form x-sequences.

The diagram in Figure 3.12 indicates that ⊗ in set A∩ C has been deleted and as a

result D2 diagram has been formed.

B

C

D2D1

A
A

B

C

Figure 3.12: Erasing part of a⊗-sequence

47

3.4.1.3 Rule 3: Spreading the ⊗-sequence (x-sequence)

The legs of the x-sequence may be extended and spread across other zones in the

diagrams. The D1 and D2 in Figure 3.13 show the transformation of diagrams after

the extensions of the x-sequence. The ⊗ is drawn in A ∩ C region and joined with

another part to form one x-sequence.

B

C

D2D1

A
A

B

C

Figure 3.13: Spreading the ⊗-sequence

3.4.1.4 Rule 4: Introducing a basic region

A contour or a boundary rectangle may be introduced in the diagram. The diagram

can only have one boundary rectangle. So, it can only be drawn if the diagram has

none. A closed curve can be introduced in a diagram if it is drawn in the interior of a

rectangle and if there is an x-sequence in the original diagram. Then each ⊗of an x-

sequence is replaced by ⊗ - ⊗.

The diagrams below indicate the introduction of a contour in a diagram. The ⊗ was

also extended to form ⊗ - ⊗ in A ∩ B and a new x-sequence was also drawn from A

∩ C to A – (B ∪ C).

48

B

C

D2D1

AB

C

Figure 3.14: Introducing a contour

3.4.1.5 Rule 5: Rule of excluded middle

If the ⊗-sequence is placed in the same regions with shading, the diagram can be

transformed into any diagram. The transformation of D1 to D2 is illustrated in Figure

3.15. The two ⊗‟s have been drawn in set A and joined with one part that existed

before to form one x-sequence spread across the regions of the contour.

B

C

D2D1

AB

C

A

Figure 3.15: Excluded middle

49

3.4.1.6 Rule 6: Unification of diagrams

Diagrams D1 and D2 can be combined to form one diagram D if a given relation

contained the ordered pair of the rectangle of both diagrams.

The unification of D1 and D2 can be achieved if the following conditions are met:

 The rectangle and closed curves of D1are copied to D2.

 The closed curves of D2 do not stand in the given relation of closed curves of

D1.

 For any shaded region in D1 orD2, D should be shaded.

 For any region with an x-sequence in D1 or D2, it should also be drawn in D.

The diagram in Figure 3.16indicates Diagrams D1 and D2 may be combined to form

Diagram D. The common contours are combined when merging D1 and D2 and

unique contours A and B are imported. The x-sequence has been expanded to touch

at least one region in each contour.

50

B

C

D2
D1

A

C

B

C

D

A

Figure 3.16: Unifying diagrams

3.4.2 Venn II

Due to limitations on Venn I diagrams, Shin (1994) developed Venn II diagrams.

Venn II diagrams are equivalent to first predicate logic (without equality) with

expressiveness. In recent times, Venn II diagrams have been extended to include

the constants.

51

3.4.2.1 Rule 7: Splitting ⊗-sequences

The x-sequence can be split into different diagrams. Diagram D in Figure 3.17 has

an x-sequence with three ⊗’s. The x-sequence is split into diagrams D1 to D3.

B

C

D

A B

C

A B

C

A
B

C

A

D3D2D1

Figure 3.17: Splitting ⊗-sequences

3.4.2.2 Rule 8: Rule of excluded middle

If Diagram D has a minimal region that is not shaded, it can be represented by two

diagrams where one diagram has an extra ⊗-sequence. The diagram has split D

into two diagrams and is represented by D1 and D2.

B

C

D

A
B

C

A
A B

C

D1
D2

Figure 3.18: Rule of excluded middle

3.4.2.3 Rule 9: Rule of connecting diagram

An existing diagram can be connected to any diagram resulting in D to D – D1. See

the example in Figure 3.19.Diagram D can be connected to another diagram D1.

52

B

C

D

A
B

C

A B

C

D1D

Figure 3.19: Connecting a diagram

3.4.2.4 Rule 10: Rule of construction

This rule allows multiple diagrams to be transformed into one diagram if each

diagram is transformed, using some of the first nine rules discussed above (Shin,

1994). Figure 3.18 indicates how D1, D2, D3, and D4 can be transformed into D.

Figure 3.20: The construction rule

53

3.4.3 Venn/Euler diagrams

A Venn/Euler diagram is the combined version of an Euler and a Venn diagram;

however, they are more based on Euler diagrams. This diagrammatic notation uses

disjoint curves to represent sets and constants to denote the existence of elements.

As Venn diagrams, Venn/Euler diagrams use shading to indicate that a region is

empty (Howse et al., 2011).

students

TomTom

teachers

Figure 3.21: A Venn/Euler diagram

The above diagram is an example of an Euler/Venn diagram. The diagram specifies

that Tom is either a student or a teacher, but he cannot be both (Stapleton et al.,

2011).

Basic components that constitute a Venn/Euler diagram are listed in the table below

(Swoboda & Allwein, 2004, 2005):

Table 3.2: Basic components and descriptions of a Venn/Euler diagram

Basic components Description

Rectangle Used to enclose the diagram

Contour Represents sets in a diagram

Shading Denotes that a shaded region is an empty set

Constants Represent the existence of elements

Lines Connect the named constants, which share a name

54

3.5 SPIDER DIAGRAMS

Spider diagrams are a visual language, which consists of a boundary rectangle, a

collection of closed curves, spiders, shaded and unshaded regions (Molina, 2001;

Howse et al., 2011). This diagrammatic language extends Euler, Venn and Pierce

diagrams to specify the properties and relationship between sets (Howse et al.,

2009;Howse, Molina & Taylor, 1999).They emerged from a diagrammatic language

called “constraint diagrams”, which was based on object constraint language(OCL)

(Stapleton et al., 2007; 2011; Stapleton, 2005). OCL is often used in conjunction with

UML. Constraint diagrams and UML do not form part of our research; nonetheless,

UML is discussed briefly in section3.7.

Spider diagrams inherit the topology of shading from Venn diagrams, enclosure and

disjoint curves from Euler diagrams and X-sequences from Pierce diagrams (Howse

et al., 2004, 2009; Howse et al., 2005). However, spider diagrams are based more

on Euler diagrams than they are on Venn diagrams. The topological properties of

Spider diagrams emphasise that the curves should not be parallel to one another so

that the diagram can be more clear and readable.

The diagram below is an example of a spider diagram (Howse et al., 2011):

 A B C

Figure 3.22: Spider diagrams

The above diagram expresses that |A| = 3, |B| – |C| ≥ 2, |B| ∩ |C| ≥ 1 and |C| – |B| ≥

2. The use of shading in curve A, represent that there are exactly three elements in

the set, placing the upper bound cardinalities in that region.

55

Spiders are used to represent the existence of elements, while distinct spiders

represent the distinct elements in a diagram, allowing finite lower bound to be placed

on cardinalities (Molina, 2001). In Venn diagrams, the diagram will result in

contradiction if shading is placed in the same region as the element. Shading may be

placed in the same region as with spiders in spider diagrams to place the finite upper

bound on cardinalities (Fish & Flower, 2004; Molina, 2001). The use of shading in

the diagram signifies that there are no elements other than the ones represented by

spiders in the shaded region. Shading the region that is not touched by any spider

denotes a region is empty. For example, in Figure 3.23 the region (A∩ C) –B is

shaded with no spiders; therefore, that region is empty.

3.5.1 Syntactic elements of spider diagrams

A contour (closed curve) is a simple closed circle in a plane used to denote a set. A

boundary rectangle is a rectangular shape used to enclose all contours of a spider

diagram. A district (basic region) is the bounded set of points in a plane enclosed by

a contour or boundary rectangle. A region is defined by the union, difference or

intersections of two non-empty regions. A zone (minimal region) is a region, which

does not contain any other region within it. Contours combined with regions denote a

set.

A spider is a tree with nodes (called feet) placed in different minimal regions

connected with straight lines (called legs). Distinct spiders denote distinct elements

in a diagram unless connected with a strand or tie. A tie (equal sign) is a double line

used to denote two elements placed in the same zone are equal. The nest is the

collection of connected spiders arranged in a sequence. A strand is the wavy line

connecting two feet from different spiders placed in the same zone. Two spiders with

a non-empty web are called friends(Flower et al., 2004; Howse et al., 1999).

The interpretation of spider diagrams, including ensuring the following (Hammer &

Danner, 1996):

56

 Distinct spiders denote distinct elements unless joined by a strand or a tie.

 Each spider is enclosed within the sets denoted by minimal regions.

 The element denoted by a spider belongs to the set, which the spider inhabits.

 Shading is used to place upper finite bounds on cardinalities.

 The boundary rectangle enclosed all contours and it represents a universal

set.

3.5.2 Spider diagrams 1 (SD1)

SD1 is the first diagram to be found sound and complete. The syntax of spider

diagrams can be classified as abstract/type syntax and concrete/token syntax. In this

context an abstract syntax specifies mathematical properties and descriptions of

diagrams, while concrete syntax captures the topological properties and formalises a

diagram (Stapleton, 2005).

In SD1, reasoning is captured at the abstract level and concrete level is only used for

visualisation. Furthermore, diagrams can be asserted as unitary, which have

disjunctive information. A compound diagram is a set of unitary diagrams, which

contains conjunctive information and a multi-diagram is a set of compound diagrams.

The diagram below indicates an example of an SD1 diagram (Stapleton, 2005).

 A B

C

Figure 3.23: An SD1 diagram

57

The diagram in Figure 3.23, |A – (B ∪ C)| ≥ 3, |B| ≥ 6 and |C| has no fewer than three

elements. Furthermore, A ∩ B ∩ C ≥ 2 and B ∩ C ≥ 1.

3.5.3 Spider diagrams 2 (SD2)

SD2 diagrams are based more on Euler diagrams than on Venn diagrams. Disjoint

contours are used to represent sets and shading can be placed in the same region

as spiders to allow upper finite bounds to be placed on cardinalities (Molina, 2001).

In Figure 3.24, sets A and B are disjoint, given the underlying notation of Euler

diagrams. Set |A| = 1 and |B| ≥ 2. There is one element, which is in either A or B

(Stapleton, 2005).

A B

Figure 3.24: An SD2 diagram

3.5.4 Extended spider diagrams 2 (ESD2)

The ESD2 extends the SD2 diagram by introducing the strand and tie. The strand is

a wavy line used to indicate that the two spiders, placed in the same region,

represent the same element. A tie is a double line used to connect the two equal

spiders placed in the same region.

The diagram below states (Fish & Flower 2005; Howse et. al., 1999;Molina, 2001):

A – (B ∪ C) = {}

|(B ∩ C) – A| ≤ 1

58

s∈ (B – C) ∪ (A ∩ C – B)

t∈ (B – A ∩ B ∩ C) ∪ (A ∩ C – B)

s, t ∈ A ∩ C – B ⇒ s = t, s, t ∈ A ∩ B – C ⇒ s ∭ t

The parts of the spider diagram (such as strands or wavy lines and ties or equal

signs) used in Figure 3.25 are defined in section 3.5.1.

=

A

B

C

D

t

s

Figure 3.25:An ESD2 diagram

3.5.5 Spider Diagrams 3 (SD3)

An SD3 diagram is the first reasoning system to allow the use of „∧‟ (and) and „∨‟ (or)

operators. The ability to change SD3 to logic statements indicates that a spider

diagram is equivalent to the monadic first order predicate logic with equality (FOPL)

(Stapleton, 2005). Figure 3.26 below indicates the conjunctions of a spider diagram

(Howse et al., 2005).

SD3 combines two or more diagrams to present the disjunctive and conjunctive

information. There are four diagrams, which are combined to form one diagram. The

diagram D1 is combined with D2 by a conjunction operator (∧) and D3 and D4 are also

59

combined with a conjunction operator. Furthermore, the rectangle enclosing all

diagrams combined the diagrams with a disjunctive operator (∨).

The meaning of the diagrams below is that

(D1 ∧ D2) ∨ (D3 ∧ D4),

which means (D1 andD2) or (D3 and D4.)

A

B

 ∨

 ∧

 ∧

A
B

B
AA

d1 d2

d3 d4

Figure 3.26: SD3 diagram

3.5.6 Transformation rules

Spider diagrams also have transformation rules governing their assertion and

modification. The rules below have been developed for SD2 to convert one diagram

into another by adding, removing or modifying any part of the diagram (Howse et al.,

1999, 2000; Molina, 2001; Howse et al., 2011).

60

 Introduction of a contour

A contour can be added inside the boundary rectangle overlapping each minimal

region in a plane. The pair of feet will be connected to the foot of a spider and spread

to each new zone. In Figure 3.27, a contour is introduced in Diagram D′ and it

intersects with contours A and B. In addition, there is a pair of feet introduced in the

new contour C and connected to the other pair of feet already existing in Diagram D.

D′D

A
B

C

BA

Figure 3.27: A spider diagram – introducing a contour

 Introduction of a strand

A strand may be added to join the feet of any two spiders in the same minimal

region. In Diagram D, the spiders s and t are equal in A – B; however they don‟t have

to be equal after the introduction of a strand in Diagram D′. Placing the equal sign

between s and t spiders in D′ will weaken the meaning of the diagram. As a result the

equal is replaced with a strand.

=

s

ut

s

t
u

D D′

B
A BA

Figure 3.28: A spider diagram – introducing a strand

61

 Removing a spider in a diagram

The spider, which was placed in a non-shaded region, may be erased together with

the strand or tie associated with it. If removing a spider disconnects any element in a

zone, then the elements must be reconnected.

When the spider u is erased, the strands connecting s to u and t to u will also be

disconnected. However, in Diagram D′ spiders t and u are reconnected with a strand.

D′D

A
B

u

t

s

A
B

t

s

Figure 3.29: A spider diagram – removing a spider diagram

 Spreading the feet of a spider diagram

If the diagram has a spider in a region that is not shaded, a new foot can be

connected to it, provided that a new foot has a unique name. In Figure 3.30, the

spider has been extended to the A ∩ B region; thus, indicating that there is an

element in A or in (A ∩ B).

D′

A
B

D

A B

Figure 3.30: A spider diagram – spreading the feet

62

 Removing shading

Shading may be removed in the entire region from any shaded region, giving

Diagram D′. Diagram D in Figure 3.31 denotes that there is exactly one element in A.

After shading has been removed, the meaning of the diagram changes, Diagram D′

denotes that there is at least one element in A.

A

D

A

D′

Figure 3.31: A spider diagram – removing shading

 Rule of excluded middle

If the diagram D has an unshaded region, the conjunction of D1 and D2 may replace

D, except that B has an extra spider.

A B

D

A B A B

D1 D2

 ∧

Figure 3.32: A spider diagram – excluded middle

 Splitting a spider

If Diagram D has a spider that inhabits various zones in the diagram, then the spider

may be split into two diagrams, each foot touching the corresponding one in D2.

63

A B

D

A BA B

D1 D2

Figure 3.33: A spider diagram – splitting a spider

 Removing a contour

If a contour is erased in a diagram, any shading in the remaining part of the diagram

should be erased. If the spider has feet in the zone of the contour that will be erased,

then these feet will be combined to form a single foot of the spider.

D

C

BA

D′

BA

 Figure 3.34: A spider diagram – removing a contour

3.5.7 The use of spider diagrams

Spider diagrams have been used to model the failures of the safety critical system

(Clark, 2005) and the automatic parking systems (Bottoni & Fish, 2011). The

example below indicates the use of spiders in the foresaid areas.

The diagram in figure 3.35 (Clark, 2005; Howse et al., 2011) shows the heater

control system. The heater control system has the power supply that provides AC

64

(alternating current) for the heating element, the microprocessor, which controls the

temperature and the switch for turning the entire heating system on and off. The

diagram indicates the four overlapping sets of spider diagrams. It denotes the ways

in which the power supply of the heating system can fail during its operation.

There are five ways in which the power supply can fail:

 Normal operation

 No power supply to the heating system

 Supply AC but no DC to the diagrams

 Supply DC but no AC

 Incorrect voltage provided to the entire circuit

BRIDGEFAILURE

POWEREDON

RESISTORFAILUREREGULATORFAILURE

normalOperation

incorrectVoltage

AC_ONLYmainSwitch

Figure 3.35: A heating system

Diagram 3.36 below denotes the specification of an automatic parking system

(Bottoni & Fish, 2011).

All cars using the parking can be in the following states of mobility/immobility:

 RUNNING which means a car is moving

 FREEPARKING if a car is in a free parking zone

65

 TOLLPARKING when a car is parked in a toll parking zone

The system uses car registration numbers to identify the cars entering the parking lot

and the duration the cars were parked, to charge parking fees. The cars parked in a

toll may be within the permitted time of parking or the time may have expired. The

shaded area outside the set indicates that there are no other elements except for

those elements that are represented in the sets.

RUNNING

Car

FREEPARKING TOLLPARKING

WITHINTIME

Car

EXPIRED

Figure 3.36: Automated car parking

3.6 PIERCE DIAGRAMS

Pierce indicated that Venn diagrams are not able to represent the existence of

elements and disjunctive information. Therefore, the diagrammatic language called

Pierce diagrams or Venn-Pierce diagrams was introduced (Stapleton, 2005).

Venn-Pierce diagrams use „x‟ to represent the existence of elements and „o‟ to

indicate that a set is empty (Blackwell et al., 2004; Stapleton et al., 2011). The line

used to connect „x‟ and „o‟ represents the disjunctive operation (or). Below is an

66

example of a Pierce diagram with three curves: A, B and C. The diagram asserts that

B ∩ C = ∅ ∨ C - B ∭ ∅.

0

x

C

B
A

Figure 3.37: An example of a Pierce diagram

Pierce diagrams are often not visually effective. For example, if the two upper

diagrams in Figure 3.38 can be represented in a single diagram, then the diagram

will not be interpreted easily (Molina, 2001).

0 x

B
A

B
A

0

B
A

0 x

0
0

x
0 x

x

A – B = ∅ ∧
A ∩ B ∭ ∅

A ∩ B = ∅ ∧
B – A ∭ ∅

(A - B = ∅ ∨ A ∩ B = ∅) ∧

(A - B = ∅ ∨ B – A ∭ ∅) ∧

(A ∩ B ∭ ∅ ∨ A ∩ B = ∅) ∧

(A ∩ B ∭ ∅ ∨ B – A ∭ ∅)

x

Figure 3.38: Combing Pierce and Venn diagrams

67

However, the issue of readability presented by the above diagram can be resolved

by enclosing the diagrams in a universal set. The diagram below represents the

same information that the lower diagram presented above (Molina, 2001).

0 x

B
A

0

B
A

x

Figure 3.39: Precise representation of combined diagrams

The syntax of a Pierce diagram allows „x‟ and „o‟ to be connected; statement like A =

∅∨ B ∭∅ can be represented in one diagram. Shin suggested that Pierce‟s

transformation rules were not differentiating between syntax and semantics of visual

languages. Pierce admitted to this, simplified the six transformation rules and omitted

other rules (Molina 2001; Shin, 1994).

Below are Pierce‟s transformation rules:

1. Any entire sign of assertion can be removed. For example: „x‟, „o‟ or both

connected to each other can be erased in a diagram.

2. Any sign of assertion can receive accretion. A sign can be added in a

diagram either „o‟, „x‟ or a straight line.

3. Two different signs cannot be disconnected in the same zone. Both „o‟

and „x‟ cannot be asserted disjoined in the same minimal region.

3.7 UNIFIED MODELLING LANGUAGES

Unified modelling language (UML) is a graphical language used to specify, virtualise

and document the properties of software (Tutorial point, 2015). The UML diagrams

are used to model the business processes as well as the practical systems in the

68

real-world environment. UML uses diagrams to represent the specification and it is

accessible to all users.

It was introduced by Jim Rumbaugh, Ivar Jacobson and Grady Booch as a unifying

language to specify software (IBM, 2003). The UML standard has been accepted by

the object management group (OMG) (Williams, 2004). UML is widely used in

modelling the object-oriented system (Tutorial point, 2015). There are various UML

diagrams, namely class, object, component, deployment, use case, sequence,

collaboration, state chart and activity diagrams (Stapleton et al, 2007). However, the

scope of our research is based only on diagrams defined below.

3.7.1 Use case diagram

Use case diagram is used to provide a visual representation of functional

requirements, to describe the relationship between actors and processes as well as

the relationship among use case (IBM, 2003). The purpose of use case diagrams is

to gather requirements, identify external and internal factors of the system, and

indicate the interaction between requirements and use cases.

Components of use case diagrams are the following:

 Actors – represent anyone who interacts with the system. The actor may be a

person or a system. The name of an actor must be a noun and describe the

role played by an actor in the system. The actor is a stick person drawn on the

side of a diagram.

 Use case – is an oval shape containing the name in the centre and captures

certain functionalities of the system.

 Lines – indicates the relationship between actors and use cases.

69

CD Sales system

View sales for

band‟s CD

View Billboard

2000 report

View sales for

specific CD

Get latest

Billboard 2000

report

Band manager

Record manager

Billboard reporting

service

Figure 3.40: A use case diagram

The above diagram illustrates the system for selling CDs (IBM, 2003). The system

allows the band manager to view the sales and billboard reports for the band‟s CD.

The record manager can also view the reports for sales and the billboard for a

specific CD. The system sends the billboard report to the external system called the

billboard reporting service (IBM, 2003).

3.7.2 Class diagram

A class diagram is used to describe the static view of an application and construct

the executable code for the software system. The diagram also describes the

variables and methods of a class (Tutorial point, 2015). The class diagram is used in

the analysis stage to describe the relation between classes as well as in the design

stage to describe how the system will be developed (Williams, 2004).

The aims of class diagrams are to:

 Analyse and design the static view of a system

 Specify the operations of a system

 Forward and reverse engineering of the software application

70

Customer

name: String

location: String

sendOder()

reciveOder()

Order

date: Date

number: String

confrim()

close()

SpecialOrder

name: String

location: String

sendOder()

reciveOder()

dispatch()

NormalOrder

name: String

location: String

sendOder()

reciveOder()

dispatch()

receive()

1 n

Figure 3.41: An example of a class diagram

Figure 3.41(Tutorial point, 2015) indicates the class diagram modelling the Order

System. The diagram states that one customer can place many orders and one

order can be placed by one customer. The Order class is a super class and has two

subclasses, which are SpecialOrder and NormalOrder (Tutorial point, 2015).

3.7.3 State chart

A state chart diagram is used to describe all possible states an object can occupy

and the way states are affected by external and internal entities (Tutorial point,

2015). It also specifies the various states of an object in a system, the flow of the

system from one state to another and the life time of an object from initiation to its

termination (Tutorial point, 2015). The state chart diagram is mostly used in reactive

systems. Reactive systems are affected by external and internal events (Tutorial

point, 2015).

The purposes of state diagrams are to:

 Model dynamic aspects of the system

 Specify the life time of an object in a reactive system

 Define a state machine

71

Idle
Send order

 request

Select normal or

special order

Confirm order

Dispatch order

Figure 3.42: An example of a state chart diagram

The example of a state chart diagram in Figure 3.42above (Tutorial point, 2015)

illustrates the state of the order object. The process starts with an idle state; then the

following states are sent a request, they confirm the request and dispatch the order.

The order object occupies these states during the ordering processes (Tutorial point,

2015).

3.8 CHAPTER SUMMARY

In this chapter, we have outlined various diagrams. Most of these diagrams use

closed curves for representing the relationship between sets. Venn and Euler

diagrams seem to be less expressive; however, Venn II and Euler/Venn diagrams,

which extended these languages, made a significant contribution to facilitating the

enhancement of semantics. Spider diagrams inherited its semantics from various

languages. SD2 and SD3 are extended versions of spider diagrams that are more

expressive in their reasoning.

This research covered the basic features of diagrammatic languages. Euler

diagrams form the basis of most diagrams discussed in this research.

UML is one of the most widely used diagrammatic languages for software

specification in the industry. However, it might be very interesting if diagrams that

were based on closed curves could also receive such wide use in the industry for

72

specifying large critical software projects where reliability is the very essential

requirement. An important goal of software specification is to have a notation that is

able to yield a specification that is precise and accessible to all stakeholders.

Unfortunately, UML will not form part of the research, as it is a high-level

diagrammatic language.

Diagrams are expressive and can yield good specification results in a software

project. The next chapter investigates the extent to which diagrams can be used to

capture the constructs of Z notation. The operations in Z schemas will be

represented in a diagrammatic format.

73

CHAPTER FOUR

4. TRANSFORMING Z CONSTRUCTS INTO DIAGRAMMATIC

 NOTATIONS

In the previous chapter, various diagrams based on closed curves and set theory

were discussed. Most of the diagrams based on closed curves emerged from Euler

diagrams. Diagrams also have transformation rules that manage modification of their

parts or objects.

This chapter is an extension of the paper published in the Lecturers Notes in

Computer Science (LNCS) MEDI 2013 (Moremedi & van der Poll, 2013).It is aimed

at investigating the extent to which diagrams can capture the structures and

operations of discrete structures omnipresent in Z specifications.

Translating semi-formal notations (e.g. UML) to variants of Z have been done before

(Soon-Kyeong, David & Carrington, 2000), but since UML may be viewed as being at

a “higher” level than the core set-theoretic structures and operations on which a Z

specification is based, our translations are based on closed-curve constructs, Euler-,

Venn-, Spider- and Pierce diagrams. The set-theoretic structures and operations in Z

have been identified and specified, using diagrams.

4.1 SPECIFICATION STRUCTURES AND OPERATORS

The Z notation operators and constructs are transformed into a diagram. The

specifications shown stem mainly from Hayes (1992). The first operation considered

is domain restriction, indicated by ◁

4.1.1 Domain restriction

Below is an example specification showing two basic types, namely a state space

(File) and one partial operation (SelectRecord) on the state. The example is

modelled on specifications in Hayes (1992) and Van der Poll (2010).

74

The basic types are:

[KEY, RECORD]

The abstract state of the file system is shown below:

 File

file: KEY ⇸ RECORD

The relationship between KEY and RECORD is defined by a partial function (⇸).

Consider the above file system. Figure 4.1 below gives a diagrammatic

representation of the state File. The „rectangles‟ containing the closed curves are

used to indicate the basic types in the specification. It is a notation introduced by this

research. Closed circles called contours, represent sets in the specification.

It was stated in section 1.3 that the features of various diagrammatic languages will

be combined to form one diagrammatic notation that will be used to capture the

constructs of Z. Closed curves, also known as contours, are used by most diagrams

based on Euler diagrams to represent sets. These diagrams based on Euler

diagrams include Venn, Pierce and spider diagrams, discussed in Chapter 3.

The curved arrow connecting two contours denotes a relation. Pierce and spider

diagrams also use lines to connect elements in a set; however, lines used by these

diagrams do not have arrows. In this diagrammatic notation, lines with arrows from

one set to another represent a partial function (pf). The name of the relation (file)

appears at the top of the curve and its type is labelled below the curve.

75

file

RECORDKEY

KEY RECORD

pf

File

dom(file)

Figure 4.1: The abstract state of a File system

Next we consider an operation, SelectRecord, to restrict the file system to just one

record for which a key (k?) is provided.

The schema below specifies an operation on the state ΔFile. It specifies that the

operation will change the state of the system. The operation receives the k? as input.

Predicates are specified below the short dividing line in a schema, and further

constrain the state components and any additional variables. The predicate k? ∈

dom file indicates that the key should be known to the system. The file system is

changed to just the record matching k?. Note, in practice, one would define a

variable for this purpose instead of removing all other records from the state.

 SelectRecord

ΔFile

k? : KEY

k? ∈dom file

file′= {k?} ◁file

Figure 4.2 shows how the above operation may be translated into a diagrammatic

language. The top part of the diagram (called a before diagram) represents the

precondition of the system. It indicates that the key k? should exist in the file domain.

76

The bottom diagram (called an after diagram) specifies that k? is the only key left in

the file. The black dot • indicates that there is at least one element in the set.

The syntax is a feature used in spider diagrams to present an element. As indicated

in Chapter 3, spider diagrams use spiders to indicate the existence of elements in a

set. It further states that distinct spiders represent elements unless joined by a strand

or tie. Having restricted the domain of file to just {k?} leaves one record in the file.

Any such key equals k?.

KEY

SelectRecord

Any x = k?

Δ

k?

KEY RECORD

file

KEY RECORD

file′

RECORD

pf

pf

dom(file′)

dom(file)

File

Figure 4.2: Operation SelectRecord

The diagram also has the list of the basic types on the top left. The syntax was

introduced into the notation to indicate the types used in the operation. The

rectangles indicate the set assigned to each type. The diagrammatic notation

developed in this research also has the states of the system on the top right-hand

side. This syntax was imported from Z notation so that it can be used to indicate

whether the state of the system will change after the operation or not.

77

Note that the diagrammatic notation allows the researcher to abstract away from the

set connotation {k?} specified in the schema, simply because he is working with a

singleton, and the only element, such as a singleton, is explicitly instantiated.

4.1.2 Overriding operator

Consider a symbol table, which stores a set of symbols with associated values. SYM

and VAL are basic types used to represent the set of symbols and values associated

with symbols respectively. The state, ST, consists of one component, st, a partial

function from SYM to VAL.

 ST

st: SYM ⇸VAL

Figure 4.3 below gives a diagrammatic representation of the above state. Note that

the denotation 'dom(st)' may be omitted, since it may be inferred from the diagram.

st

VALSYM

SYM VAL

pf

ST

Figure 4.3: The abstract state of a symbol table

The following operation associates a value v? with a symbol s?. The operation gives

feedback to the user. The precondition of the operation is that the symbol to be

replaced should exist in the system. The old value will be replaced if the precondition

has been satisfied. The user will receive an OK response once the operation has

been completed successfully.

78

 Replace
Δst

s? : SYM

v? : VAL

rep! : REPORT

s? ∈ dom st

st′= st ⊕ {s? ↦ v?}

rep! = OK

The diagram in Figure 4.4 denotes the operation to update a symbol in the symbol

table defined in the above schema. The top part of the diagram is the precondition of

the system. The before diagram indicates that s? should exist in the symbol table,

while v?, the input to the system, may either be in the range of st or not. The after

diagram indicates that s? maps to v? and variable rep! has the value “OK” after the

operation.

The line used to connect variable v? with another element outside the set of values

is a syntax used in spider and Pierce diagrams to represent „or‟. The dotted line with

an arrow mapping s? to v? is another new syntax introduced in this notation to map

one variable to another, thereby forming pairs, a domain and a range.

rep! = Ok

st′

STΔVAL REPORTSYM

v?

dom(st)

SYM VAL

s?

REPORT

pf

Replace

rep!

st

v?

dom(st)

SYM VAL

s?

REPORT

pf

Figure 4.4: The Replace operation of symbol table

79

4.1.3 Domain subtraction

Consider the next higher level of the above file system to model file identifiers

mapped to files. Each file has a unique identifier. The schema below depicts the

state of such a file storage system (SS). The abstract state denotes a partial

function.

 SS

fstore: FID ⇸ FILE

Figure 4.5 shows the abstract state of SS. It specifies fstore as a partial function.

SS

FID FILE

fstore

pf

FILEFID

Figure 4.5: The abstract state of SS

The schema below specifies the operation of deleting a file (Hayes, 1992). Only files

that exist in the system can be deleted.

 destroySS

ΔSS

fid? : FID

fid? ∈ dom fstore

fstore′ = {fid?} ⩤fstore

80

The domain subtraction operator „⩤‟ is used to remove fid?; the state of the system is

changed, as indicated. After the operation, fid? no longer exists as a valid file

identifier in the system.

The diagram below captures operation destroySS. The before diagram specifies that

the file to be deleted should exist in the system and the after diagram states that the

file identifier has been removed from the set of valid file identifiers. A dashed line,

also a new syntax introduced in this notation, indicates that the movement is used to

denote the variable that is deleted from the system. It will move from outside into the

contour if a new variable is added in the system.

Figure 4.6: The destroySS operation of the file storage system

4.1.4 Range subtraction

A simplified banking system stores the details of customers with the corresponding

branches to which they belong. A customer can be registered with only one branch.

The state of the system is given by bankSystem.

FILE

destroySS

fid?

Δ

fid?

FID FILE

fstore

FID FILE

fstore′

FID

pf

pf

dom fstore

dom fstore

SS

81

 bankSystem

bank : CUSTOMER ⇸ BRANCH

The diagram below models the abstract state of the bankSystem.

BRANCH

bankSystem

bank

pf

CUSTOMER BRANCH

CUSTOMER

Figure 4.7: Abstract state of the bankSystem

An operation to delete an entire branch from the system is similar to the domain

subtraction operation shown earlier, and is given by:

 deleteBranch

Δ bankSystem

branch? : BRANCH

branch? ∈ ran bank

bank′= bank ⩥{branch?}

To simplify the specification, one assumes that no customers are registered at the

branch to be deleted. In practice, customers would have been moved to an

alternative branch beforehand. The diagram follows below.

82

BRANCH

bank′

branch?

pf

bankSystemΔ

deleteBranch

CUSTOMER BRANCH

bank

branch?

pf

CUSTOMER BRANCH

CUSTOMER

Figure 4.7: The deleteBranch operation

4.1.5 Range restriction

The schema below indicates the operation of the bankSystem to view a report of

customers that are registered with a specific branch. In this example, the assumption

is that the branch has a set of customers.

 viewCustomerReport

ΞbankSystem

name! : CUSTOMER

branch? : BRANCH

branch? ∈ ran(bank)

name! = bank ▷{branch?}

83

The diagram in Figure 4.8 illustrates the viewCustomerReport operation.

BRANCH

bank′

branch?

pf

bankSystem

viewCustomerReoprt

CUSTOMER BRANCH

bank

branch?

pf

CUSTOMER BRANCH

CUSTOMER Ξ

name!

name!

Figure 4.8: The viewCustomerReport operation

4.1.6 Specifying non-singleton sets

So far we have removed from a set or restricted the domains or ranges of relations

to a set containing one element only. We were able to abstract away from the

complexities of sets and showed in such cases a single item only instead of a

singleton containing only that item.

The following operation removes a set containing an unspecified number of items

from a domain and also overrides the relation with one of the same type. The

abstract state of the File system is given above and the operation is specified by

FileUpdate below.

84

 FileUpdate

Δ File

d? : ℙKEY

u? : KEY⇸ RECORD

d? ⊆dom file

d? ∩dom u? = {}

file′= (d? ⩤ file) ⊕ u?

The file f and the updated file f′ are modelled by partial functions from keys to

records. The set of keys to be deleted is represented by d?; hence, modelled with

ℙKEY. Only valid keys may be deleted. The variable u? is specified by a partial

function from KEY to RECORD, and it is used to represents the set of updated keys

and the corresponding new values. The preconditions d?⊆ dom file state that only

keys in a file can be deleted. The predicate d?∩ dom u? = {} indicates the system

does not allow a record to be deleted and updated simultaneously. The updated file

is the result of a new file with deleted keys in d?, overridden by new records in u?.

FileUpdate is modelled by the diagram in Figure 4.9. The diagram below contains

overlapping contours, which is a syntax used in Venn diagrams as well as some of

the spider diagrams. The overlapping contours indicate that the two sets share some

of the elements. In this operation, a set of keys to be deleted as well as the set of

keys to be updated are from the same file. Hence, the overlapping contours are

used. The variables d? and u? are represented with contours instead of black dots

(⦁). The reasoning for using the contours is that the variables also resent sets and

not elements.

85

FileUpdate

d?

KEY RECORD

u?

pf

file′

dom(u?)

dom (file′)

RECORD

d?

KEY RECORD

u?

pf

file

dom(u?)

dom(file)
pf

pf

KEY

Figure 4.9: FileUpdate operation

4.1.7 Bags

An example of stock consisting of orders and products can be used to illustrate bags

(Bowen, 2014). Basic types of the stock system are defined below.

[ORDERID, PRODUCT]

The number of occurrences should be recorded for each product in a stock. The

schema below specifies the abstract state of the stock system using a bag. The

declaration in this indicates that different products occurring multiple times in a bag

constitute a stock.

 Stock

stock:bagPRODUCT

86

The diagram below specifies the abstract state of the stock system. It illustrates that

the type PRODUCT is a bag and stock is a member of the type bag PRODUCT.

Stock

PRODUCT

PRODUCT

bag

stock

Figure 4.10: Abstract state of Stock

Figure 4.11 specifies the diagrammatic version of the abstract state of the stock

system. It is an expanded version of a bag in terms of its underlying partial function

definition.

stock

N1KEY

PRODUCT N1

pf

Stock

dom(stock)

PRODUCT void

Figure 4.11: Expanded Bag PRODUCT definition

Products may be ordered in case of shortage of stock or if the stock is depleted.

However, it is not desirable to place an order when the stock is completely finished,

as customers will be inconvenienced. The abstract state of order is modelled in the

schema below.

87

 OrderInvoices

orders : ORDERID ⇸ORDER

orderStatus : ORDERID ⇸ ORDERSTATE

dom orders = dom orderStatus

The relationship of orders and orderStatus are partially dependent on ORDERID;

hence, they are defined with a partial function (⇸). The orderState can have

„pending’ and „invoiced’ value.

The diagrams below capture the abstract state of OrderInvoices defined in the above

schema. The two-sided arrow in the part of the diagram between orders and

orderStatus indicates that all orders in the domain have status.

orders

ORDERKEY

ORDERID
ORDER

pf

OrderInvoices

dom(stock)

ORDERID voidORDERSTATE

ORDERSTATEorderstate

pf

Figure 4.12: Abstract state of OrderInvoices

88

EnterStock operation is modelled in the schema below.

 EnterStock

ΔStock

newstock? : bag PRODUCT

stock′= stock ⊎ newstock?

orders′= orders

orderStatus′= orderStatus

The operation above will change the state of the system once completed

successfully. In this operation, newstock? is the input variable and it is defined by

type bag PRODUCT. The bag union operator adds the new stock to the existing to

form a new bag of stock′.

The Enterstock operation is specified in the diagram below.

ORDERPRODUCT

EnterStock

ORDERID StockΔ

ORDERID

ORDER

pf

orders

dom(orders)

ORDERSTATE

stock

newstock?

bag PRODUCT

dom(orderStatus) orderStatus

pf

ORDERPRODUCT ORDERID StockΔ

ORDERID

ORDER

pf

inv(orders’)

dom(orders’)

ORDERSTATE

stock’

newstock?

bag PRODUCT

dom(orderStatus’) inv(orderStatus’)

pf

Figure 4.13: The EnterStock operation

89

4.1.8 Combining operations

The schema is the building blocks of Z specification; as a result, various operations

will be combined to increase the expressiveness and form one comprehensive

operation (intro to form). In this example, we will use the Delete operation from the

symbol table. The Delete operation deletes a symbol and its associated value in the

symbol table. The precondition of deleting the symbol in the system is that it should

be present before it is deleted. If this condition is not met then the error message

symbol_not_present will be displayed. The Delete operation and NotPresent error

can be modelled individually; however, the two schemas have been combined to

illustrate this example. The schemas are joined using the disjunction symbol (∨). The

schema below models the STDelete, which combines the Delete and NotPresent

schemas.

 Delete

ΔST

s? : SYM

rep! : REPORT

(s? ∈ dom st

st′ = {s?} ⩤st

⋀rep! = OK)

∨

(s? ∉ dom st

rep! = Symbol_not_present)

The variable s? represents the symbol to be deleted and rep! will hold the value of

the message that will be displayed when the operation is complete. In this operation,

rep! can hold two values, OK if the operation is completed successfully and

symbol_not_present if the precondition has not been met.

rep ::= OK | symbol_not_present

90

The first predicate s?∈ dom st states that the symbol should be present in the

system. Upon the successful completion of the operation, the symbol will be deleted

on the system and the message OK will be displayed to the user. However, if the

symbol is not present, no symbol will be deleted from the system. The error message

symbol_not_present will be displayed to the customer.

The diagram below has two sub-diagrams, which represent the operation in the

schema above. It has preconditions, post-conditions as well as the results that will be

returned after completion of the operation. The two sub-diagrams are joined by a

disjunctive symbol, the same way as in the schema above.

91

rep! =

Symbol_not

_present

REPORT

rep!

st
dom(st)

SYM VAL

s?

REPORT

pf

st′
dom(st)

SYM VAL

s?

pf

rep! = OK

st′

VAL REPORTSYM

dom(st)

SYM VAL

s?

REPORT

pf

STDelete

rep!

st
dom(st)

SYM VAL

s?

REPORT

pf

∨

Δ ST

Figure 4.14: The STDelete operation

92

4.2 CHAPTER SUMMARY

This chapter considered the feasibility of translating Z constructs to the language of

contoured diagrams. The formality of Z lends itself to precise specifications and it

has been applied successfully to specify systems where the quality and reliability are

critical (Woodcock, 1996). Z may also be used as a documentation tool to increase a

specifier‟s understanding of system operations.

A possible disadvantage of a formal notation is that specialist knowledge of the

underlying mathematics is required before the real benefits of formal specification

can be realised (Bowen, 2003). This steep learning curve is often the reason cited

why formal notations are not used more widely in the software industry.

Diagrams model a system by using contours to represent the relationships between

mathematical structures. The use of diagrammatic languages is perceived as a way

whereby software specifications are made more accessible to stakeholders and

potential users of the system (Gil & Howse, 1999). In the past diagrams were often

excluded as contenders of formality; however, the research done by Shin challenged

the view that diagrams could not be used in the arena of formal specification work

(Dau, 2004).

Chapter 5 develops a specification in our diagrammatic notation to determine the

feasibility of the notation developed in this chapter. The specification results of

diagrammatic language will be compared to the Z specification and conclusions will

be drawn, based on the results.

93

CHAPTER FIVE

5. MODELLING Z CASE STUDY WITH DIAGRAMS

In Chapter 4, Z constructs and operators were transformed into diagrams. The

notations of spider, Pierce and Euler diagrams were combined to form one

diagrammatic notation. The diagrams were used to represent the states and

operations modelled in Z schemas.

The purpose of this chapter is to determine the merits of diagrammatic notations with

respect to the established techniques of formal specifications, in particular the Z

specification language. Formal specification languages generally embody a fair

amount of mathematics, requiring rigorous training and experience in order to

comprehend the specification and gain the desired benefits. Our case study is the

specification of a symbol table (Hayes, 1992) from the arena of compiler

construction.

5.1 SYMBOL TABLE

A symbol table (ST) maintains a set of unique symbols, and each symbol is

associated with a corresponding value.

The usual operations performed on a symbol table are:

 Adding a symbol with a corresponding value, provided that the symbol does

not already exist in the ST

 Looking up the value associated with a given symbol

 Replacing the value of an existing symbol

 Deleting a symbol from the table

94

The specification follows the established strategy for constructing a Z spec (Potter,

Sinclair & Till, 1996), augmented by a set of enhanced principles (Van der Poll &

Kotze, 2005) to model the operations of a system. Each schema representing the

state and operations of the system is also modelled with a diagrammatic notation

throughout the specification.

Three basic types are defined for our specification:

[SYM, VAL, REPORT]

SYM represents the set of all symbols that may ever find their way into the symbol

table; VAL specifies the set of all allowable values, and feedback to a user of the

specification is indicated by REPORT.

In line with a proposed design principle Van der Poll and Kotze (2005) stated that

communication with the user of the specification ought to be maximised.

Subsequently, feedback to the user is defined and consists of a data type definition:

REPORT ::= OK

 | Symbol_not_present

 | Symbol_present

Further user communication may be defined but it is beyond the scope of this

research.

5.1.1 States and operations

5.1.1.1 Abstract state

The schema ST below denotes the abstract state of the system. The relationship

between SYM and VAL is modelled by a partial function, st.

 ST

st : SYM⇸VAL

95

The diagram in Figure 5.1 below is a graphical representation of the above abstract

state. The three basic types mentioned above are represented in the diagrams.

Furthermore, the diagram indicates that SYM is mapped to VAL by partial function.

st

VALSYM

SYM VAL

pf

ST

REPORT

Figure 5.1: The abstract state of ST

5.1.1.2 Initial state

The initial state, Init_ST, of the symbol table system appears below. Unless dictated

otherwise (e.g. schema involving numeric components), it is customary to start with

empty sets as indicated: st′ =∅.System components are included above the short

dividing line and relationships among components are given below the line.

 Init_ST

ST

st′ = ∅

Figure 5.2 captures Init_ST in a diagram. The shading of the closed curve is used to

denote that the set is empty, which is in line with a particular version of the language

of Venn diagrams (Chow & Ruskey, 2004). Our operation diagrams are divided into

two parts. The top half of the larger box is called a before diagram, while the lower

part is coined the after diagram.

Notice a slight deviation from the information in schema Init_ST: In the formal

notation we specify an empty function; in the diagram we explicitly show that the

domain of st' is empty, leading to a proof obligation st′ = ∅ as far as the diagram is

concerned. Shading is a feature taken from Venn and spider diagrams to indicate

96

that the set is empty. In spider diagrams, if shading is used in a region with no

elements, it denotes an empty set. The Venn diagrams also use shading to indicate

an empty set or region; however, if there are elements in a shaded region, then it is a

contradicting diagram.

VALSYM

Init_ST

st′
SYM VAL

pf

st
SYM VAL

pf

Figure 5.2: Initial state of the symbol table

5.1.2 Operations on the symbol table

The following schema specifies the operation to add a new symbol in the symbol

table. A precondition is that the symbol to be added should not already be in the

table.

 Add

ΔST

s? : SYM

v? : VAL

rep! : REPORT

s? ∉ dom st

st′ = st ∪{ s? ↦ v? }

⋀rep! = OK

97

The Add operation receives the inputs s? and v?, denoting the new symbol and its

associated value respectively, to be added to the symbol table. Feedback to the user

is indicated by rep!. For a correct Add operation, the new symbol ought not to be in

the symbol table already – s? ∉ dom st. The after state contains the new symbol and

its associated value. The user is informed of a successful addition to the table.

The diagram in Figure 5.3 represents the above Add operation in appropriate before

and after diagram notation. A possible state change is indicated in the top right-hand

corner of the before diagram.

rep! = OK

st′

STΔVAL REPORTSYM

v?

dom(st)

SYM VAL

s?

REPORT

pf

Add

rep!

st

v?

dom(st)

SYM VAL

s?

REPORT

pf

Figure 5.3: The Add operation of ST

In the before diagram, s? represents an input variable that is not yet in the symbol

table (indicated as being outside the circle, which represents the domain of st).

Notice this deviation, giving more information in the diagram than what is available in

the schema. The straight line, which joins the two dots in the before diagram

indicates that it is immaterial whether v? is already a value in the symbol table or not.

Strictly speaking, the component rep! of type REPORT does not exist in the before

state (diagram); it only comes into „existence‟ as part of the post-condition of the

98

schema. However, looking ahead at refinement into executable code, variable rep!

would presumably be a global variable in a programming language and would,

therefore, be declared and exist in a program before an operation (like Add) would

be invoked. Hence, we made it part of our before diagram. Note that the Z schema

notation is not specifically clear about this aspect.

The after diagram indicates that s? has „moved‟ to be part of the symbol table and is

related to its value v?. Appropriate feedback is conveyed to the user of the

specification.

The LookUp operation is used to determine the current value associated with a

symbol. ΞST indicates that the state of the system remains invariant. Input to the

operation is represented by s?, and output is specified by v! and rep!.

 LookUp

ΞST

s? : SYM

v! : VAL

rep! : REPORT

s? ∈ dom st

v! = st (s?)

⋀rep! = OK

99

Figure 5.4 below is a diagrammatic representation of operation LookUp.

VAL REPORTSYM

rep! = OK

st′

v!

dom(st)

SYM VAL

s?

REPORT

pf

ST

LookUp

rep!

st

v!

dom(st)

SYM VAL

s?

REPORT

pf

Ξ

Figure 5.4: The LookUp operation

Variable s? ought to exist in the before diagram. Naturally it is related to a value

(according to our Add operation), but such value is not known beforehand. The after

diagram states that s? is linked to its value v!. Feedback to the user is specified

accordingly.

The schema below describes an operation to replace the value of a symbol already

in the table. The Replace operation may also change the state of the system just like

in operation Add. Hence, the notation ΔST. The precondition of the operation states

that s? ∈ dom st indicates that the symbol of the value to be replaced should be

present in the system. The post-condition st′ = st ⊕ {s?↦v?} denotes that st′ is st

overwritten by the symbol associated with a new value.

100

 Replace

ΔST

s? : SYM

v? : VAL

rep! : REPORT

s? ∈ dom st

st′ =st ⊕{s? ↦ v?}

⋀rep! = OK

The diagram in Figure 5.5 models the above Replace operation.

rep! = OK

st′

VAL REPORTSYM

v?

dom(st)

SYM VAL

s?

REPORT

pf

Replace

rep!

st

v?

dom(st)

SYM VAL

s?

REPORT

pf

STΔ

Figure 5.5: The Replace operation

The symbol whose value is to be replaced ought to exist in the table. As before, it is

immaterial whether the associated value is present in the range of the function or

not. Afterwards, the value of s? is mapped to v?.

A symbol may also be deleted from the symbol table. For a correct deletion, we

would require the symbol to exist in the table beforehand. The following schema

101

specifies the operation to delete a symbol. A proof obligation of Delete is to show

that s? does not exist in the after state of st.

 Delete

ΔST

s? : SYM

rep! : REPORT

s? ∈ dom st

st′ = {s?} ⩤st

⋀rep! = OK

The diagram below captures the operation for Delete. The after diagram indicates

that s? is not in the domain of st′. For the sake of clarity, one could show that s? has

been related to some value in its range and that such value may continue to exist or

may not exist anymore (cf. the notation in figures 5.3 and 5.5) in the range of st′. But,

since schema Delete is silent about such information, our diagram follows suit. One

could argue that the indication of such tautological information would indeed

strengthen the visual characteristics of the diagram.

rep! = OK

st′

STΔREPORTSYM

dom(st)

SYM

s?

REPORT

pf

Delete

VAL

rep!

st
dom(st)

SYM

s?

REPORT

pf

VAL

VAL

Figure 5.6: The Delete operation

102

So far in this research we showed partial and correct versions of our operations. If

any of the preconditions are not satisfied, error conditions arise together with the

appropriate feedback to the user. An example is NotPresent in conjunction with

LookUp.

 NotPresent

ΞST

s? : SYM

rep! : REPORT

s? ∉ dom st

rep! = Symbol_not_present

A diagrammatic specification of NotPresent is given in Figure 5.7. It shows that the

symbol enquired about is not present in the table (outside dom(st)). The condition

prevails in the after diagram; hence, there is no change in the system state.

rep! =

Symbol_not_

present

STREPORTSYM

REPORT

NotPresent

rep!

st
dom(st)

SYM VAL

s?

REPORT

pf

Ξ

st′
dom(st)

SYM VAL

s?

pf

VAL

Figure 5.7: A representation of NotPresent schema

103

The operation may also fail if the symbol to be added already exists in the system.

The schema below models the error return when the symbol is present in the symbol

table.

 Present

ΞST

s? : SYM

rep! : REPORT

s? ∈ dom st

rep! = Symbol_present

The diagram in Figure 5.8 models the error of adding a symbol that already exists in

ST. The post-condition diagram indicates that the state of the system did not change

after the error had occurred.

rep! =

Symbol_present

STREPORTSYM

REPORT

Present

rep!

st
dom(st)

SYM VAL

s?

REPORT

pf

Ξ

st′
dom(st)

SYM VAL

s?

pf

VAL

Figure 5.8: The Present operation

104

Successful operations and errors can be presented in one schema. The robust

operation can be modelled as:

STAdd ∬ (Add ∧ Success) ∨ Present

STLookup ∬ (Lookup ∧ Success) ∨ NotPresent

STReplace ∬ (Replace ∧ Success) ∨ NotPresent

STDelete ∬ (Delete ∧ Success) ∨ NotPresent

As illustration, we expand the operation STAdd:

 STAdd

ΔST

s? : SYM

v? : VAL

rep! : REPORT

(s? ∉ dom st

st′ = st ∪{ s? ↦ v? } ∧ rep! = OK)

∨(s? ∈ dom st∧rep! = Symbol_present)

The above schema models the Add operation combined with the Present error,

which is displaced. The symbol that already exists is added on the system. The

precondition of the Add operation is that the symbol to be added should not exist in

the system. If the symbol is not present, the system will allow the user to add the

symbol and the value associated with it. Otherwise, if the symbol already exists, the

error message Symbol_present will be displayed to the user.

The diagram below represents the STAdd operation. The operation is represented

with two sub-diagrams joined by disjunction (∨). The operation will display the “OK”

message upon the successful completion of the operation and the error message

Symbol_present if the operation does not meet the precondition.

105

rep! =

Symbol_present

REPORT

rep!

st
dom(st)

SYM VAL

s?

REPORT

pf

st′
dom(st)

SYM VAL

s?

pf

rep! = OK

st′

STVAL REPORTSYM

v?

dom(st)

SYM VAL

s?

REPORT

pf

STAdd

rep!

st

v?

dom(st)

SYM VAL

s?

REPORT

pf

∨Δ

∨

Figure 5.9: The STAdd operation

The spider diagrams (SD3) have the capability of joining two or more diagrams with

conjunction and disjunctive operators to make one diagram. The diagrams of the

Add operation and Symbol_present error are presented in one diagram. The feature

of joining the diagram in this way was taken from SD3 that has been discussed in

Chapter 3. Other diagrams such as Pierce, Euler and spider diagrams are also able

to combine two diagrams; however, this is achieved without using conjunction and

disjunctive operators.

106

5.2 COMPARISONS

A comparison of the differences and similarities between a formal notation, as

embedded in Z, with diagrammatic notations introduced in this research appears in

Table 5.1.

Table 5.1: Comparison of formal and diagrammatic notations

Attribute
Specification Style

Formal specification Diagrammatic

Precision

A formal specification is per

definition precise and

unambiguous.

Diagrams may suffer from

imprecision and ambiguity.

Conciseness
Formal specifications (e.g.

Z) are generally concise.

Diagrams tend to be verbose and

time-consuming to construct.

Clarity

A formal specification is

clear, but only to the

mathematically literate.

Diagrams are comprehensible to

non-mathematicians owing to

their visual character.

Level of

detail

Schema Init_ST specifies st′

= ∅. Information about the

domain and range is to be

inferred indirectly.

Figure 5.2, which represents

schema Init_ST, specifies the

domain of st′ to be empty. This

gives more detail than the

schema predicate.

Additional

information

Schemas leave tautological

information up to the user to

determine.

Tautological information (e.g. v?

∊ ran st or not) is shown explicitly

(e.g. Figure 5.3).

Variables in

precondition

Output variables in the

header of a schema

presumably exist as part of

the precondition.

Output variables are explicitly

shown to exist in a before

diagram.

107

5.3 CHAPTER SUMMARY

In this chapter, a case study from the literature was used as the vehicle of

comparison. Formal specifications are generally concise and precise, while the

corresponding diagrammatic notation is more verbose and takes up more space

than, for example, a Z schema.

In some instances, however, a diagram may convey information more directly, e.g.

when specifying the domain of a function to be empty instead of stating the function

to be empty. Other aspects relate to specifying tautological information and the

presence of output variables as part of the precondition of a schema or a before

diagram. A diagram may also be more easily interpreted than the corresponding

mathematical text.

The proof of concept done in Chapter 4 appears to be useful for translating a Z

specification into diagrams. The findings of this research as well as the extent to

which the research has answered the research questions will be discussed in

Chapter 6. Chapter 6 also concludes the research.

108

CHAPTER SIX

6. CONCLUSION

The previous chapter modelled a Z case study with diagrams. Each operation of the

case study was presented in both diagrams and Z notation. The comparison was

done between Z and diagrams on how each notation model the system.

This chapter concludes the research and analyses the findings. The summary

contribution made by this research will be provided. The research questions stated in

chapter 1 will be discussed and indicate the extent which the research answered the

questions. The future work that can be done on this research will also be stated in

the end.

6.1 RESEARCH QUESTIONS AND FINDINGS

This research had evaluated the extent that the Z specification can be presented by

the diagrammatic notation. The aim is compare the specification results of both

notations is to determine the specification that can provide the specification that can

provide the precise and accessible specification to all stakeholders. Below is first

question that was imposed:

RQ1: Which diagrammatic languages can be combined to form a notation that could

be compared to Z?

Chapter 3 discussed various diagrams that are based on closed curves and set

theory. The capabilities of each diagram are discussed and provide examples to

illustrate how diagrams have been used in the reasoning domain. Euler diagrams

form the basis of most of the diagrams discussed in this research. As a result, these

diagrams have similar features.

109

The Pierce, Spider and Euler diagrams have been combined to form a notation used

in Chapter 4 to represent the structures and operations in Z. The features of these

three diagrammatic notations were used to form a comprehensive notation that can

transform the Z specification into the specification represented by diagrammatic

language. ThereforeRQ1 has been answered through the work done in Chapters 3

and 4. However the challenge is that not all Z constructs can be transformed into

diagrammatic language. Hence the following question is asked:

RQ2: To what extent can diagrammatic notation capture the ideas presented in a Z

specification?

In Chapter 4, the notation formed by three diagrams was used to transform Z

constructs and operators into diagrammatic specification. The paper developed from

Chapter 4 and presented to 3rd annual MEDI conference (Moremedi and van der

Poll, 2013). A Z case study was modelled with diagrammatic notation in chapter 5

and the paper was prepared and published in the IRED conference (Moremedi and

van der Poll, 2014).

The diagrammatic language is able to capture the operation and states of the system

represented in Z schema. It can also assert the variables, sets and basic types. The

diagrammatic language is able to illustrate the preconditions and postconditions of

the operation.

However there are other elements of Z that cannot be represented in diagrams. The

arbitrary union (⋃), intersection (⋂) and power set (ℙ) operations have not been

specified yet by diagrammatic notation. Some state notations in our diagrams need

further work, e.g. the dynamic and static states (Δ and Ξ) are currently imported from

the Z schema.

RQ2 has therefore been answered.

Our last question is:

110

RQ3: What are the differences between using Z and diagrammatic notations in the

specification? This question aims to compare Z and diagrammatic notations based

on the specification results that each notation generates.

The Z constructs transformed to diagrammatic notations in Chapter 4 and in chapter

5 a Z case study modelled in diagrams both provides an indication of how Z and

diagrammatic notation represent the specification. The table 5.1 indicates the

differences observed between two specifications.

 The Z notation yields unambiguous specifications while diagrams produce the

long specifications that consume a lot of time to develop.

 Diagrams are widely used in specification work and can be understood by

stakeholders; the Z notation, however, requires one to have a rigorous

knowledge of (discrete) mathematics and formal logic to understand the set-

theoretic symbols used in the specification.

 In diagrams preconditions are shown together with variables in the declaration

part whereas in Z the precondition is narrated in the predicate part with

postconditions.

 The Z notation uses the schema to break a large specification into operations

and represent it in smaller parts using smaller schemas. Diagrammatic

languages represent the operation by enclosing the top and bottom parts of

diagrams in a rectangular shape.

6.2 ANALYSIS OF FINDINGS

This research has enhanced the expressiveness of diagrams. The features of three

diagrammatic languages (Euler, Spider and Pierce diagrams) were combined to form

one diagrammatic notation. The diagrammatic notation was used in chapter 4 and 5

to capture the constructs and operations of Z notation.

111

Chapter 4 and 5 has also indicated that the diagrams have the ability to representing

the specification research in Z notation. The case study that was initially modelled in

Z was transformed successfully from Z notation into a specification modelled with

diagrams. The diagrammatic notation successfully presented the states and

operations of the systems that were originally modelled in Z schemas.

The research has also enlighten the differences between diagrammatic and Z

notations. The diagrams provide the specification that is accessible to all

stakeholders; however, it yields long specification and also it lack precision. The Z

notation provides the precise and unambiguous specification but it can be interpreted

by only mathematician experts due to formal methods used in the notation.

As a result, this research has recommended a need to develop a comprehensive

specification notation that will be able deliver the specification that is accurate and

accessible to all stakeholders in the software development project. The specification

can be developed by combining the Z notation and diagrammatic languages.

6.3 FUTURE WORK

The diagrammatic notation that we used in chapter 4 and 5 is able to capture the

operation of a system presented in a Z schema; however, there are other complex Z

structures that were not considered. We will discuss some of the structures that we

would like to represent with the diagrammatic notation.

6.3.1 Power set

Let us consider the example of a company that issues credit cards to customers. For

each customer, the company maintains information such as customer name, the

credit card number issued to the customer and the current balance in the customer‟s

account. The below schema denote the abstract state of the system. It states that

the card numbers issued to each customer are unique (Alagar & Periyasamy, 1998).

112

 Company

customer : ℙCUSTOMER

∀c1,c2 : CUSTOMER | c1 ∈customers ∧ c2 ∈customers ⦁

c1 = c2 ⇔c1.cardnumber = c2.cardnumber

The schema below specifies the addCustomer operation that adds new customer

and ensures that the card number of the new customer is unique to any other card

numbers that have already been issued.

 addCustomer

customers, customers′ : ℙCUSTOMER

new_customer? : CUSTOMER

message! : MESSAGE

(∀cust : Customer | cust∈customers ⦁

cust.cardnumber ≠ new_customer?.cardnumber)

customers = customers′∪{ new_customer }

message! = customer_added

Currently our diagrammatic notation may not be able to represent powerset notation

in a schema. The aim is to enable the diagrammatic notation to capture any

operation in a Z schema.

6.3.2 Arbitrary union

The below example is a telephone network system which provide connection

between two telephones. PHONE is the basic type used to describe a set of phones.

The below schema specifies the abstract state of the system. The schema indicates

there a set of requests that are not terminated yet and connections that are currently

active. It further states that only requested connections are active and no phone may

engage in more than one connection (Hayes, 1992).

113

 TN

reqs, cons : ℙ CON

cons ⊆reqs

cons ∈ disjoint

The below schema is the state schema of telephone network system specifying that

only available phones can be engaged in a connection.

 TN

reqs, cons : ℙ CON

avail : : ℙ PHONE

cons ⊆reqs

cons ∈ disjoint

(⋃cons) ⊆avail

As part of future work, our notation will be applied to more complex operations and

structures, e.g. distributed unions and intersections and possible state change (Δ

and Ξ). The feasibility of reasoning about the properties of our diagrams has to be

considered and the scalability of the notations has to be investigated. To this end,

tools for industrial applications have to be further developed. We also plan to

combine Z constructs with our diagrams to generate a comprehensive specification

language to cater for clear specifications that may also be accessible to a wide range

of users. Investigating the scalability of our approach and tool support are further

items on the agenda.

114

REFERENCES

Alagar V. S., Periyasamy K., 1998. Specification of software systems. New York:

Springer.

Blackwell, A., Marriott, K. and Shimojima, A., 2004. Diagrammatic representation

and inference: third international conference, Diagrams 2004. Cambridge: Springer.

pp. 112-127.

Barden, R., Stepney, S., Cooper, D., 1994. Z in practice. Cambridge: Prentice Hall.

Bottoni, P., Fish, A., 2011. Policy specifications with Timed Spider Diagrams. IEEE

Symposium on Visual Languages and Human-Centric Computing. Pittsburgh: IEEE.

pp. 95 – 98.

Bowen, J. P., 2003. Formal specification using Z and documentation using Z – A

case study approach. [online] London: Thomson publishing. Available at:

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.8627 > [Accessed 13

May 2011].

Bowen J. P., Z: A Formal Specification Notation. (n.d.) [onilne]. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.2379&rep=rep1&type=

pdf [January, 2014] .

Chow, S., Ruskey, F., 2004.Drawing area-proportional Venn and Euler diagrams. In

Graph Drawing - 11th International Symposium. Lecture Notes in Computer Science,

2912.Perugia, 21 -24 September 2003. Perugia: Springer. pp 466-477.

Clark, R.P., 2005. Failure Mode Modular De-Composition Using Spider Diagrams. In

Proceedings of the First International Workshop on Euler Diagrams. Electronic Notes

in Theoretical Computer Science. Vol. 134, p 19-31.

115

Delaney, A., Stapleton, G, 2007. On the description complexity of a diagrammatic

notation. In proceedings of the 13th international conference on Distributed

Multimedia Systems, Visual Languages and Computing, 6-8 September 2007.San

Francisco: Knowledge Systems Institute. pp 195-202

Diller, A., 1994. Z: An Introduction to Formal Methods.2nd ed. Chichester: Wiley

Diller, A., Docherty, R., 1994. Z and Abstract Machine Notation: A Comparison. In:

Zuser workshop. Workshop in computing. London: Springer.

Fish, A., Flower, J., 2005. Investigating reasoning with constraint diagrams. In

Proceedings of the Workshop on Visual Languages and Formal Methods, Electronic

notes in theoretical computer science. Rome, 30 September Rome. Rome:

Elsevier.pp53 – 69.

Fish, A., Flower, J., 2008.Euler Diagram Decomposition. In Diagrammatic

Representation and Inference Lecture Notes in Computer Science. Herrsching, 19-

21 September 2008. Herrsching: Springer. pp 28-44.

Fish, A., Stapleton, J., 2006. Formal issues in languages based on closed curves. In

Proceedings of the 2006 International Workshop on Visual Languages and

Computing. Grand Canyon, 30 August - 1 September 2006.Grand Canyon: Springer.

pp 161 – 167.

Fish., A and Stapleton, G., 2006. Defining Euler Diagrams: Simple or What?.In

Diagrammatic Representation and Inference. Lecture Notes in Computer Science.

Stanford, 28-30 June 2006. Stanford: Springer. pp 109-111.

Fish, A., Rodgers, P., Zhang, L., 2008. General Euler Diagram Generation. In

Diagrammatic Representation and Inference. Lecture Notes in Computer Science.

Herrsching, 19-21 September 2008. Herrsching: Springer.pp 13-27.

116

FHI 360, 2005. Qualitative Research Methods: A Data Collector's Field Guide.

[online] Available at:

http://www.ccs.neu.edu/course/is4800sp12/resources/qualmethods.pdf [Accessed

August 2015].

Flower, J., Howse., J. 2002. Generating Euler Diagrams. Diagrammatic

Representation and Inference, Second International conference, Diagrams. Lecture

Notes in Computer Science. Callaway Gardens, 18-2 April 2002.Callaway Gardens:

Springer. pp 61-75.

Flower, J., Mutton, P., Rodgers, P. 2004. Drawing Dynamic Euler Diagram. In

Proceedings IEEE Symposium on Visual Languages and Human-Centric Computing.

Rome, 30 September, 2004. Rome: IEEE. pp 147-156.

Flower, J., Howse, J., Fish, A., 2005. The semantics of augmented constraint

diagrams. In Journal of Visual Languages and Computing. Florida, December, 2005.

Florida: Academic Press. pp 541 - 573.

Flower, J., Masthoff, J., Stapleton, G., 2004. Generating Proofs with Spider

Diagrams Using Heuristics. In International Workshop on Visual Languages and

Computing, 10th International Conference on Distributed Multimedia Systems. pp

279 - 285.

Gil, J., Howse, J., 1999. Formalizing spider diagrams. In Visual Languages

Proceedings. IEEE Symposium. Tokyo, 13 - 16 September 1999. Tokyo: IEEE. pp

130 – 137.

Hammer, E., 1995.Logic and Visual Information. California: CSLI Publications.

Hammer, E., Danner, N., 1996. Logical Reasoning with Diagrams. NewYork: Oxford

University Press.

Hayes, I., 1992. Specification Case Studies. United Kingdom: Prentice Hall.

117

Howse, J., Molina, F., Taylor, J., 1999.Reasoning with spider diagrams. In Visual

Languages, 1999.Proceedings.1999 IEEE Symposium on. Toyko, 13 - 16

September 1999. Tokyo: IEEE. pp 138-145.

Howse, J., Molina, F., and Taylor, J., 2000.A sound and complete diagrammatic

reasoning system.In Visual Languages, 2000.Proceedings.2000 IEEE International

Symposium on. 10 - 13 September 2000.Seattle: IEEE. pp 127-136.

Howse, J., Molina, F., Taylor, J., 2000.On the completeness and expressiveness of

spider diagram systems. In Diagrams 2000 Edinburgh, 2000 Proceedings. Lecture

Notes in Computer Science.Edinburgh,1–3 September 2000. Edinburgh: Springer.

pp 26 - 41.

Howse, J., Taylor, J., Stapleton, G., Simpson, T., 2009.The expressiveness of spider

diagrams augmented with constants. In Visual Languages and Human Centric

Computing, 2004 IEEE Symposium on. Seattle, 10 - 13 September 2000. Seattle:

IEEE. pp 30-49.

Howse, J., Taylor, J., Stapleton, G., Simpson, T., 2004. What can spider diagrams

say?.In Diagrammatic representation and inference: third international conference,

Diagrams 2004.Lecture Notes in Computer Science. Cambridge, 22-24 March

2004.Cambridge: Springer. pp 112-127.

Howse, J., Taylor, J., Stapleton, G., 2005. Spider diagrams. LMS Journal of

Computation and Mathematics [online]. Vol 2980/2004. pp 154-194.

Howse, J., Taylor, J., Stapleton, G., Bosworth, R., Fish, A. Rodgers, P.,

Thompson,P., 2006.Euler diagram-based notations. [Online] Available at:

<http://eprints.brighton.ac.uk/2996/> [Accessed 13 March 2011].

118

Howse, J., 2008. Diagrammatic Reasoning Systems. Conceptual Structures:

Knowledge Visualization and Reasoning Lecture Notes in Computer Science.

Toulouse, 7-11 July 2008. Toulouse: Springer. pp 1- 20.

Howse, J., Gil, J. Y., Tulchinsky, E., 2000. Positive Semantics of Projections in

Venn-Euler. Theory and Application of Diagrams. Lecture Notes in Computer

Science Volume.Edinburgh,1 - 3 September 2000. Edinburgh: Springer. pp 7 - 25.

IBM, 2003. UML basics: An introduction to the Unified Modelling Language. [online]

Available at: http://www.ibm.com/developerworks/rational/library/769.html [Accessed

April 2015].

Jacky, J., 1997. The way of Z: practical programming with formal methods.

Cambridge: Press syndicate of the University of Cambridge.

Lamsweerde, A., 2000. Formal Specification: a Roadmap. In Proceedings of the

Conference on the Future of Software Engineering. Limerick, 4 - 11 June, 2000. pp

147-159.Limerick: ACM.

Mineshima , K., Okada, M., Takemura, R., 2012. A Diagrammatic Inference System

with Euler Circles. In Journal of Logic, Language and Information. Vol 21. pp 365-

391.

Molina, F., 2001.Reasoning with extended Venn-Pierce diagrammatic systems. Ph.

D. Brighton: University of Brighton.

Moremedi, K., van der Poll, J.A., 2013. Transforming Formal Specification

Constructs into Diagrammatic Notations. The 3rd International Conference on Model

& Data Engineering,” (MEDI). Lecture Notes in Computer Science. Amantea, 25 - 27

September 2016. Berlin: Springer. pp 212 – 224.

119

Moremedi, K., van der Poll, J.A., 2014. Comparing Formal Specifications with

Diagrammatic Notations: A Case-Study Approach. In Advances In Bio-Informatics,

Bio-Technology And Environmental Engineering (ABBE). London, 1 – 2 June 2014.

London: SEEK Digital Library. pp 79 - 84.

Patton, M. Q., Cochran, M.,n.d.A Guide to Using Qualitative Research Methodology.

[online] Available at:

http://fieldresearch.msf.org/msf/bitstream/10144/84230/1/Qualitative%20research%2

0methodology.pdf [Accessed August 2015].

Potter, B., Sinclair, J., Till, D., 1996. An Introduction to Formal Specification and Z.

Prentice Hall: Upper Saddle River.

Rajasekar, S., Philominathan P., Chinnathambi, V., 2013.Research Methodology

[online]. Available at: http://arxiv.org/pdf/physics/0601009.pdf [Accessed August

2015].

Shin, S. J., 1994.The Logical Status of Diagrams. Cambridge: University Press.

Spivey, J.M., 1998. Z notation: A reference manual. 2nd ed. Oxford: J.M. Spivey.

Stapleton, G., 2005. A survey of reasoning systems based on Euler diagrams.

Proceedings of the First International Workshop on Euler Diagrams, Brighton, 1 June

2005. Brighton: ACM. pp 127-151.

Stapleton, G., Zhang, L., Howse, J., Rodgers, P., 2010. Drawing Euler diagrams with

circles.In Diagrammatic Representation and Inference, Diagrams 2010. Lecture

Notes in Computer Science. Portland, 9 - 11 August 2010. Portland: Springer. pp 23-

38.

Stapleton, G., Rodgers, P., Howse, J., Taylor, J., 2007. Properties of Euler

diagrams.In Proceedings of the Workshop on the Layout of (Software) Engineering

Diagrams. Idaho, 27 September 2007. pp 1-15.

120

Stapleton, G., Masthoff, J., Flower, J., Fish, A., Southern, J., 2007. Automated

Theorem Proving in Euler Diagram Systems.Journal of Automated Reasoning. Vol

39, pp 431-470.

Soon-Kyeong K., David A. 2000.A Formal Mapping between UML Models and

Object-Z Specifications. In ZB 2000: Formal Specification and Development in Z and

B. Lecture Notes in Computer Science. Users York, 29 August – 2 September

2000.pp 2 - 21.

Swoboda, N., Allwein, G., 2005. Heterogeneous Reasoning with Euler/Venn

Diagrams Containing Named Constants and FOL. Proceedings of the First

International Workshop on Euler Diagrams, vol 134, p 153 - 187.

Swoboda, N., Allwein, G., 2004. Using DAG transformations to verify

Euler/Vennhomogeneous and Euler/Venn FOL heterogeneous rules of

inference.Software and Systems Modeling, vol 3, p 136 – 149.

Thomas, P.Y., 2007. Research Methodology and Design

[online].http://uir.unisa.ac.za/bitstream/handle/10500/4245/05Chap%204_Research

%20methodology%20and%20design.pdf [Accessed August 2015].

Tutorials point.: UML Tutorials. [online]. Available at:

<http://www.tutorialspoint.com/uml/index.htm> [Accessed April 2015].

Van der Poll, John A., 2010. Formal Methods in Software Development A Road Less

Travelled. South African Computer Journal (SACJ), No. 45, pp. 40 – 52.

Van der Poll J. A., Kotze, P., 2005. Enhancing the Established Strategy for

Constructing a Z Specification. South African Computer Journal (SACJ), Number 35,

pp. 118 – 131.

121

Verroust, A., Viaud, M., 2004.Ensuring the drawability of extended Euler diagrams

for up to 8 Sets. In Diagrammatic Representation and Inference, Third International

Conference, Diagrams. Cambridge, 22 - 24 March 2004. Cambridge: Springer. pp

128 – 141.

Wilkinson, L., 2012. Exact and Approximate Area-proportional Circular Venn and

Euler Diagrams. IEEE Trans Vis Computer Graph. pp 321 - 331.

Williams L., 2004. An introduction to Unified Modelling Language [online]. Available

at < http://agile.csc.ncsu.edu/SEMaterials/UMLOverview.pdf> [Accessed April 2015].

Woodcock, J., Davies, J., 1996.Using specification, refinement and proof. Prentice-

Hall, Oxford p3 – 4, 217 – 218.

Wordsworth, J. B., 1992. Software development with Z: A practical approach to

formal methods in software engineering. Hursley Park: Addison-Wesley.

Zafar, N. A., Sabir, N., Ali A., 2009. Formal transformation from NFA to Z notation by

constructing union of regular languages. International journal of mathematical

models and methods in applied sciences. vol. 3. pp 115 - 122.

122

INDEX

Abstraction, 1

Arbitrary union, 112

Bags

bag difference, 13

bag union, 13

sub-bag, 13

Basic types

Given set.

CICS, 35

Contours, 37, 42, 56, 57, 74, 92

Diagrammatic, 2

Diagrammatic notation, 2

Domain

Domain restriction, 18, 73

Domain subtraction, 18, 79

Euler diagrms, 2, 36, 53, 73, 108, 114,

Functions

partial function, 13, 74, 77, 79, 87,

94

Inequality, 12

Negation, 12

Object Constraint language, 2

Parking systems, 64

Pierce diagrms, 2, 36, 65, 73, 109,

110, 118

Power set, 13

Proper subset, 13

Range, 14

Range restriction,18

Range subtraction, 17, 80

Relational image, 17

Schema, 35, 75, 82, 95, 101, 102, 103

Schema calculus, 30, 89, 104

Shin's ten rules, 45

Spaceflight booking system, 9

Abstract state, 13

Booking details

Flight details, 11

Given sets, 9

Initial state, 9

 Type of passengers, 12

Spider diagrams, 2, 36, 57, 58, 73,

109, 110, 114, 116, 117

SD1 diagrams, 56

SD2 diagrams, 57

SD3 diagrams, 58

Symbol table, 93

TARDIS, 9

Transformation rules, 59

UML, 2, 54, 67, 71, 73, 118, 120

 Class diagram, 70

State chart, 68

Use case diagram, 68

Venn diagrms, 2, 36, 37, 45, 50, 53,

65, 73, 95, 114, 118, 120, 118, 121

Venn I, 45

Venn II, 51

VENUS, 9

Z notation, 1, 5, 9, 34, 35, 72, 73, 89

