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ABSTRACT  

 

Specification plays a vital role in software engineering to facilitate the development of 

highly dependable software. The importance of specification in software 

development is to serve, amongst others, as a communication tool for stakeholders 

in the software project. The specification also adds to the understanding of 

operations, and describes the properties of a system. Various techniques may be 

used for specification work.  

 

Z is a formal specification language that is based on a strongly-typed fragment of 

Zermelo-Fraenkel set theory and first-order logic to provide for precise and 

unambiguous specifications. Z uses mathematical notation to build abstract data, 

which is necessary for a specification. The role of abstraction is to describe what the 

system does without prescribing how it should be done. 

 

Diagrams, on the other hand, have also been used in various areas, and in software 

engineering they could be used to add a visual component to software specifications. 

It is plausible that diagrams may also be used to reason in a semi-formal way about 

the properties of a specification. Many diagrammatic languages are based on 

contours and set theory. Examples of these languages are Euler-, Spider-, Venn- 

and Pierce diagrams. Euler diagrams form the foundation of most diagrams that are 

based on closed curves.  

 

The purpose of this research is to demonstrate the extent to which diagrams can be 

used to represent a Z specification. A case study is used to transform the 

specification modelled with Z language into a diagrammatic specification. Euler, 

spider, Venn and Pierce diagrams are combined for this purpose, to form one 

diagrammatic notation that is used to transform a Z specification.  

 

Keywords: case study, diagrammatic notation, formal specification, set theory, 

Spider diagrams, Venn diagrams, Euler diagrams, UML, Venn-Pierce diagrams, Z 
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CHAPTER ONE 

1. INTRODUCTION 

 

The study conducted in this research is aimed at comparing the formal text-based 

specification to a diagrammatic notation. The textual specification that will be used is 

Z language. Diagrams based on closed curves and set theory are combined to form 

a single diagrammatic language. Z structures are transformed into diagrams in order 

to observe if Z can be represented by a diagram. A case study modelled in Z and 

diagrammatic notation is also presented to strengthen the comparisons.  

 

This chapter provides a background on Z and diagrams that will be used in this 

research. The problem statement that prompted the research is also discussed. 

Lastly, we state the questions, which are answered at the end of the research, as 

well as the methodology that is used to conduct the research.  

 

1.1 CONTEXT AND MOTIVATION 

 

The goal of software development is to produce software that will meet the intended 

requirements successfully. Using a specification in software development facilitates 

the production of a design of quality and reliable software. A software specification 

refers to a high-level description of system objects and sets of methods used to 

control them (Alagar & Periyasamy, 1998). The importance of specification in 

software development is to serve as a communication tool amongst designers, 

developers and system testers. The specification also adds to the understanding of 

operations, and describes the properties of a system. Abstraction is a key tool in 

software specification (Alagar & Periyasamy, 1998; Lamsweerde, 2000). The role of 

abstraction is to describe what the system does without prescribing how it should be 

done (Spivey, 1998).  

 

The need and growth of specification has resulted in the origination of many 

specification languages. The „Z notation‟ is a formal specification language, which is 
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based on set theory and predicate logic (Woodcock &Davies, 1996; Diller, 1994). 

Research shows that Z can be used to provide clear specifications and that it has 

been used successfully to specify safety critical systems (Potter, Sinclair & Till, 1996; 

Diller, 2007). Z uses mathematical notation to build abstract data, which is necessary 

for a specification. In Z, various objects are grouped according to various types, and 

the descriptions of objects are then placed together into „schemas‟. Types are used 

to describe the allowable values of a variable (Bowen, 2003; Spivey, 199).  

 

Diagrammatic notations have been applied in various disciplines, including software 

engineering to model software. Many diagrammatic languages are based on 

contours and „set theory‟. Examples of these languages are Euler-, spider-, Venn- 

and Pierce diagrams. Euler diagrams form the foundation of most diagrams that are 

based on closed curves. Spider diagrams are the emerged work from Euler and 

Pierce diagrams (Howse, Taylor, Stapleton, Bosworth, Fish, Rodgers & Thompson, 

2011). John Venn introduced overlapping circles in 1880 to present all possible 

intersections of sets of objects (Stapleton, 2005; Chow & Ruskey, 2004). 

 

Unified modelling language (UML) is an object-modelling language that uses various 

diagrams to model software. Different diagrams are used at different stages to 

represent the system. For example, a use-case diagram is used to describe the 

interactions between users and a system. UML uses conceptual and use-case 

models to represent the system (Martins, 2004). A formal part of UML, namely 

Object Constraint Language (OCL) is used to describe the rules that apply to UML. 

Since UML is a high-level specification language and the focus here is at a lower 

level of specification, it will not form part of the research. 

 

In this research, Z will be compared to diagrammatic notations. The research aims to 

transform the Z specification into a diagrammatic notation and observe the extent to 

which diagrams can be used to present Z. To achieve this goal, a case study based 

in Z will also be modelled with diagrams. 
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1.2 PROBLEM STATEMENT 

 

The use of Z in software development can provide a clear specification and has the 

potential to minimise the defects in a system. Z also has the capability of managing 

large specifications by using schemas for restructuring. Even so, not all systems can 

be modelled successfully in Z. It may be difficult to specify systems with concurrent 

operations, as Z is more suited for systems with a sequence of operations (Bowen, 

2003). Similarly, diagrams may lead to a better understanding and allow clients to 

play an important role in the specification (Larkin & Simon, 1987) but diagrams also 

have disadvantages. They may produce a specification that is long, unstructured and 

ambiguous, which could result in contradictions.  

 

As a result, there is a need to compare the characteristics of Z to diagrams in order 

to understand the differences between using the diagrammatic and Z notations in 

specification work. For this purpose, it is proposed to recommend a notation that has 

the capabilities of specifying the described specification problem. The research aims 

to answer the below research questions (RQs): 

 

Main research question 

 

To what extent can diagrams be used to model a formal Z-like specification? 

 

The sub-research questions below can be derived from the main RQ: 

 

RQ1:  Which diagrammatic languages can be combined to form a notation that could 

be compared to Z? 

 

RQ2:  To what extent can diagrammatic notation capture the ideas presented in a Z 

specification? 

 

RQ3:  What are the differences between using Z and diagrammatic notations in the 

specification? This question aims to compare Z and diagrammatic notations based 

on the specification results that each notation generates. 
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1.3 RESEARCH APPROACH 

 

A case study approach is used to conduct this research. The Z language is 

introduced, and a case study is used to illustrate how Z can model the properties of a 

system. Different diagrams based on contours are discussed. Furthermore, we 

indicate how these diagrams can be used in the specification. Three diagrammatic 

languages are then combined to form a comprehensive notation that is used to 

represent a Z specification. The research identifies some of Z structures modelled in 

schemas and represent them with diagrams. A case study modelled in Z is also 

transformed into a diagrammatic specification. The outcome of the specification in 

the case study is evaluated. The evaluation compares the specification results of 

diagrams to Z. Conclusions are drawn on how each notation performs in the 

specification. A qualitative research method is used to discover findings in this 

research. 

 

1.4 RESEARCH METHODOLOGY 

 

A main aim of conducting research is to gain new knowledge and subsequently add 

to the body of knowledge. According Rajasekar, Philominathan and Chinnathambi 

(2013), doing research enables one to: 

 

 Discover new facts 

 Find solutions to scientific and social problems 

 Test and verify outcomes  

 Develop new tools, concepts and theories to solve current problems 

 

1.4.1 Qualitative research 

 

The design of this research is descriptive with an interpretive case study that was 

analysed by using the qualitative method. A case study is used to transform the 
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specification from Z notation to diagrammatic notation to observe the extent to which 

diagrams can be used to represent a Z specification.  

 

Three (3) diagrammatic notations are combined to form a comprehensive notation 

that is used to model a case study. The specification outcome of Z and diagrams is 

evaluated. The evaluation compares these two specification languages (Z and 

diagrams), and draw conclusions on how each language can be used to specify the 

properties of a system. The method used is participant observation, which is suitable 

for collecting data on natural behaviours of participants in their usual context (FHI 

360, 2005).  

 

Qualitative research aims to (FHI 360, 2005): 

 

 Provide answers to questions that are often asked in research 

 Use a set of predefined steps to provide answers to questions 

 Seek evidence 

 Provide findings that are unlimited to the research and have not been 

predetermined 

Qualitative methods can be used effectively in providing the intangible factors in the 

research that does not have apparent results. It asks questions that allow 

participants to respond in their own words. Data analysis is comprised of text and not 

numbers. As a result, the research generates findings that are (FHI 360, 2005): 

 

 Salient and meaningful 

 Unexpected 

 Rich and explanatory in nature 

In this research, we intend to understand the extent to which diagrams can capture 

the specifications developed in Z by using the qualitative research method. The aim 

of this method is to answer why, what and how questions rather than how many 

(Patton &Cochran, 2015). The characteristics of the qualitative research method are: 
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 It is non-numerical, applies reasoning and uses words. 

 It intends to get the meaning across and provide the description of the domain 

solution. 

 It provides the answers to the “why”, “what” and “how” questions. 

 

1.4.2 Positivism 

 

The research paradigm is the pattern that will be used to find the solution to the 

problem. The paradigm provides the approach, structure and framework that the 

research approach will follow (Thomas, 2007).  

 

Positivism is based on the assumption that reality exists. The observation of the 

behaviour of specification languages can result in the understanding and true 

knowledge on how each language performs in the specification. According to 

Thomas (2007), positivism:  

 

 Assumes that reality is given 

 Is measurable, using properties independent of the research, which means 

that knowledge is objective and quantifiable 

 Is concerned with discovering the truth 

 Adopts methods and knowledge to improve the accuracy in the description of 

constraints and the relationship among them.    

This research intends to study the behaviour of how diagrams capture the essence 

of a Z specification. In the end, the aim is to find the specification that can yield 

precise and unambiguous results that are accessible to all stakeholders.   
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1.5 THE SIGNIFICANCE OF THE RESEARCH 

 

Diagrams have been used to represent the logical statements in a simple and 

intuitive way (Howse et al., 2011). The software specification should be accessible to 

all stakeholders involved in the software project, including customers, programmers 

and project managers. Diagrams are able to deliver the specification in an accessible 

way (Howse et al., 2009). However, they are perceived not to be rigorous enough 

and may yield long specifications when used in large projects.  

 

The Z language is able to produce the specification that is readable and 

unambiguous. The schema notation is used to break down large specifications into 

smaller parts and represents each part individually. Nonetheless, the Z language 

requires rigorous of training and practical experience before the benefits can be 

realised.  

 

Consequently, the research is intended to indicate how diagrams can be used to 

represent the formal specification modelled in Z notation. The Z operators and 

constructs specified in schemas will be transformed into diagrammatic notations to 

indicate the extent that a diagrammatic language can represent a Z specification. A 

case study modelled in Z is also specified, using the diagrammatic notation. 

 

1.6 STRUCTURE OF THE DISSERTATION 

 

Following the current chapter, Chapter 2 introduces the Z notation and defines the 

small parts that form the specification as a whole. Different structures and operators 

of Z are described, and examples are used to indicate how they represent the 

specification. There is also a case study, which signifies the way in which a system is 

modelled during the specification. 

 

Chapter 3 illustrates various diagrammatic languages and the use of each diagram in 

the specification. The transformation rules, advantages and disadvantages, 

topologies and the evolution of these diagrams are discussed.  
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Chapter 4 illustrates how the Z structures and operators are transformed into 

diagrams. The Z structures and operators are specified in a Z schema, and the 

diagrams are used to transform the specification from a Z specification into a 

diagrammatic specification.  

 

Chapter 5 represents a case study modelled in Z notation and diagrammatic 

language. This chapter evaluates the specification done in Z and diagrammatic 

notation, and compares the specification results. 

 

Chapter 6 provides answers to the research questions outlined in the beginning of 

the research. It indicates to extents which of the research questions indicated in 

Chapter 1 are answered. This chapter also provides a summary of findings and 

concludes the research. 

 

1.7 CHAPTER SUMMARY 

 

This chapter set the scene for the rest of the dissertation. The extent to which 

diagrammatic notations may be used to model a formal specification in Z will be 

investigated. Aspects of research terminology and design were also briefly 

addressed. 

 

The next chapter introduces Z which is the formal specification language used in this 

research. 
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CHAPTER TWO 

 

2. Z NOTATION 

Chapter 1introduced the research and provided the background of Z and diagrams. 

The purpose of conducting the research was outlined as well as the questions that 

the research intended to answer. Furthermore, the previous chapter indicated the 

way in which the research had been structured.  

 

This chapter illustrates the use of various structures and operators in Z by using a 

case study to indicate how Z specifies the operations of a system. The Z notation 

and other formal specification techniques have been applied in a variety of 

application areas to provide clear and unambiguous specifications. The case study 

used throughout this chapter is from Barden, Stepney and Cooper‟s work of 1994 

called Z in practice. 

 

2.1 SPACEFLIGHT BOOKING SYSTEM 

 

Ventures Unlimited into Space (VENUS) is a company that provides flights into 

space. The flights are offered, using an improved TARDIS technology, which is used 

by space companies to reduce the time travelled to the space and as a result, the 

duration of the flight into space is less.  

 

VENUS is looking for an automated system that will enable the space company to 

add the details of a flight, such as ticket price, duration and size of the spacecraft 

online. Once flights are available, the travel agents will be able to make bookings on 

behalf of passengers. The system should also allow agents to enquire about the time 

of departure, arrival time, seat price and number of seats available on the flight. The 

space company must be able to add or cancel flights, enquire about the number of 

spare and booked seats as well as generate a report of the passenger list.  

 

The information below will be maintained in the system: 
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 The routes that the flights take to and from space  

 The launch and landing sites of the spacecraft 

 The dates on which flights are available 

 The number of seats available in each class of the flight 

 The type of spacecraft used for the flight 

 The local departure time of the flight 

 

The system should be able to determine the local arrival time, speed of the 

spacecraft and route details. The local and arrival times for each flight are in GMT 

(Galactic Mean Time). VENUS offers reduced price to children between two and 

twelve years old and free flights for infants. The system should allow modifying the 

booking and printing reports, such as passenger lists and the total number of seats 

booked. 

 

The specifications below follow the established strategy for modelling a system in Z.  

 

2.1.1 Given sets 

 

The travel agents, users and space companies access the system to enquire about 

flight numbers, places, prices of flights, departure and arrival times, days of travel, 

kinds of spacecraft and seat classes.  

 

Below are the given sets of the system: 

 

[AGENT, CLASS, CRAFT, DATE, DAY, PLACE, PRICE, SPACECO] 

 

 

The descriptions of the abovementioned sets are provided in the table below, 

synthesised by the researcher:  
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Table 2.1: The description of given sets of the flight system 

 

Given sets Description 

AGENT  Access the system and make bookings on behalf of 

clients 

CLASS Various kinds of seating on board the spacecraft 

CRAFT The type of spacecraft 

DATE The date on which flight takes place 

DAY Days of the week on which the craft operates 

PLACE Departure and destination points 

PRICE The ticket prices 

SPACECO Space companies that access the system 

 

 

2.1.2 Flight details 

 

The schema below denotes the details of the flight to support the descriptions of the 

operations in the system. Each flight describes a departure and arrival time, 

departure and arrival points, the number of seats and the model of the spacecraft. 

The invariant start ≠ dest states that the departure location is different from the 

arrival location.  

 

 Flight  

depart : GMT 

start, dest : PLACE 

seating : bag CLASS 

craft : CRAFT 
 

start ≠ dest 
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Flight schema uses bag function. The bag function is defined as follows: 

 

Bag X ==  X⇸ℕ1 

 

The definition of a bag function indicates the set of bags whose elements are drawn 

from the set X. The occurrences of an element in set X can only be a positive natural 

number.  

The sign of inequality (≠) used in the flight schema is defined below. The expression 

t1 and t2 are elements of set T, which is a subset of set X. The negation (¬) sign is 

used to represent the inverse of an expression. The definition states that t1 is not 

equal to t2. 

 

t1 ≠ t2 == ¬ (t1 = t2) 

 

2.1.3 Type of passengers 

 

There are three groups of passengers and their age has an impact on the price of 

their tickets. They are: 

 Infants (younger than two years) travel for free, but do not occupy a seat. 

 Juveniles receive a discount 

 Adults pay the full price 

 

The three groups of passengers are described as follows: 

 

[INFANT, JUVENILE, ADULT] 

 

PASSENGER:: = infant⟪INFANT⟫ 

|  juvenile⟪JUVENILE⟫ 

| adult⟪ADULT⟫ 

 

The ⟪…⟫ brackets are used to define the free types. The free types are used above 

to provide an easy description of the different groups of passengers. 

 



13 
 

 

 

2.1.4 Abstract state 

 

The state of the system is described by schedule, bookings and system users. 

 

2.1.4.1 Schedule 

 

The Schedule schema specifies only flights that have been scheduled by VENUS. 

The schema below uses the identifier FID to indicate unique flights. 

 

[FID] 

 

It also uses duration : FID ⇸ℤ,which denotes that the duration depends on a 

particular flight.ℤ is used to represent a set of integers, including positive, zero and 

negative numbers. The purpose of using ℤ instead if ℕ (which represents a set of 

strictly positive numbers) is to allow flights using TARDIS technology to have 

duration less than zero. The variable of price(defined byℙ(FID × bag CLASS) ⇸ 

PRICE)is calculated, using details of the route, the class of the ticket, and the kind of 

passenger. The predicate  

 

dom price ⊆ℙ {f : dom flight; b : bag CLASS | b ⊑(flight f).seating} 

 

denotes that the price is calculated from the number of seats booked on a flight.  

 

 Schedule  

flight : FID ⇸ FLIGHT 

duration : FID ⇸ℤ 

price : ℙ(FID × bag CLASS) ⇸PRICE 
 

dom duration = dom flight 

dom price ⊆ ℙ{f : dom flight; b : bag CLASS | b ⊑(flight f).seating} 
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Schedule uses partial function (⇸), bag, domain, sub-bag (⊑) and proper subset (⊆), 

power set (ℙ). The bag has already been defined in the Flight schema. 

 

 dom is the first set of elements in the binary relationship and it is defined as 

follows: 

 

domR = {𝑥 ∶X | (∃𝑦 : Y  ⦁𝑥↦𝑦∈R) } 

 

 

The above expression states that the some components of 𝑦 are related to set 

of𝑥components. 

 

 ran is the second set of elements in the binary relationship and can be 

represented as: 

  

ranR = {𝑦 ∶ Y | ( ∃𝑥 : X  ⦁𝑥↦𝑦∈  R ) }  

 

The definition of range is the inverse of domain, as it states that the set of 𝑦 

components are related to some 𝑥. 

 

 Partial function is represented by: 

 

X ⇸ Y == {f: X ↔ Y | (∀𝑥: dom f  ⦁(∃1y : Y ⦁𝑥f y ))} 

 

The partial function of X to Y shows that the domain of function does not contain the 

whole of X but it may. 

 

 Sub-bag is represented as follows: 

 

B1 ⊑ B2 == (∀ 𝑥: X ⦁ (B1♯ 𝑥)∮ ( B2 ♯ 𝑥) 

 

B1 is contained in B2, provided that the occurrences of each element in B1 are not 

more than the occurrences of elements in B2.  
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 A subset is defined as: 

  

S ⊆ T == (∀ 𝑥 : S ⦁𝑥∈T ) 

 

The above expression indicates that all elements of S are included in set T. 

 

 Power (ℙ) set is the set of all subset of S. 

 

The following schema specifies the Booking operation of VENUS flights.  

 

2.1.4.2 Bookings 

 

Booking keep track of seat reservations and uses the BID as the tracking identifier 

for booked seats.  

 

[BID] 

 

The booking ID identifies the passenger and the seat booked by the passenger on 

the particular flight. Passenger maps the booking identifier to the specific passenger. 

Seat also maps the booking identifier to the bag of seats booked on the flight and 

lastly onFlight maps the identifier to the relevant flight. The predicate part indicates 

that only seats available on the flight can be booked. The flight cannot be over 

booked. 

 

 Booking  

passenger : BID ⇸ PASSENGER 

seat : BID ⇸ bag CLASS 

onFlight : BID ⇸ FID 
 

dom passenger = dom seat = dom onFlight 
 

 

 



16 
 

 

 

2.1.4.3 Users of the booking system 

 

The system is accessed by travel agents and space companies. The state schema 

below specifies the users and types that define these users. 

 

 User  

agent : ℙAGENT 

spaceCo : SPACECO 
 

 

2.1.4.4 The complete state of the booking system 

 

The schema below is a complete abstract state of VENUS and it is built by 

combining individual states. The variable called alloc, returns a bag of seat allocated 

to a particular flight. 

 

 Venus  

Booking 

Schedule 

User 

alloc : FID ⇸ bag CLASS 
 

dom alloc = dom flight 

∀f : dom flight ⦁ alloc f = ⊎ ((dom(passenger ⩥ ran infant ) ∩  

onFlight∫⦇{ f }⦈)) ◁seat 

∧ alloc f  ⊑( flight f  ).seating 
 

 

The below predicate 

 

alloc f = ⊎ ((dom(passenger ⩥ ran infant ) ∩ onFlight∫⦇{ f }⦈ )) ◁ seat 
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indicates that, when the alloc function is applied, it returns the bag of seats occupied 

on the flight and excludes the infants, as they do not occupy seats. 

 

The ⦇…⦈ represents the relational image and it is defined by the expression below. It 

means that the relational image of R⦇ S⦈ of set S through a relational R is the set of 

all objects of y to which R relates to some member 𝑥 of S. 

 

R⦇ S⦈ = = { y : Y | (∃𝑥: S ⦁ 𝑥 R y ) } 

 

Only seats that have been allocated are available for booking. No overbooking is 

allowed; hence this predicate ∧ alloc f  ⊑( flight f  ).seating. 

 

The three symbols, bag union (⊎), range subtraction (⩥) and domain restriction (◁) 

used in the above schema can be illustrated as follows: 

 

 Bag (⊎) is the sum of two bags and can be defined as follows: 

 

( B1⊎B2) ♯ 𝑥 =( B1♯ 𝑥)  + ( B2 ♯ 𝑥) 

 

The expression above indicates that each element of the sum of two bags has the 

frequency, which is the sum of the frequencies of two bags.  

 

 Conversely, the bag difference presents the difference between two bags: 

 

( B1⩁  B2 ) ♯ 𝑥 =( B1♯ 𝑥)  - ( B2 ♯ 𝑥) 

 

This expression shows that the occurrences of each element in the bag appear, less 

the number of occurrences of the same element in another bag.  

 

 Range subtraction (⩥) is used to remove the range elements in the ordered 

pair. 
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R ⩥ T == R ▷ (Y \ T) 

 

The result of range subtraction is the R relation with members of T excluded from its 

range.  

 

 Domain subtraction (⩤) removes the domain elements in the ordered pairs.        

 

S ⩥ R ==  (X \ S) ◁ R 

 

Domain subtraction is the R relation with members of T excluded from its domain.  

 

 Domain restriction (◁) restricts the results to the elements in the domain. 

 

S ◁ R == {𝑥 : X ; y : Y | 𝑥∈ S∧𝑥 R y } 

 

The above definition denotes the R relation with members of S restricted to its 

domain. 

 

 Range restriction (▷) restricts the results to the elements in the range. 

 

S ▷ R == (𝑥 : X ; y : Y |𝑥 R y ∧ y ∈T) 

 

This expression denotes the R relation with its members restricted to T. 

 

2.1.5 Initial state 

 

The below schema specifies the initial state of the booking system. The initial state 

initialises the system and it represents state of the system before the first operation 

takes place. The schema below denotes that the system is empty during the 

initialisation. The predicates (passenger′ = ∅ and duration′  =  ∅) in the schema 

indicate that sets of passengers and durations are empty.  
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 InitVenus  

Venus′ 
 

passenger′  =  ∅ 

duration′  =  ∅ 
 

 

We have the obligation to prove that the initial state exists. The following theorem 

asserts the initial state of VENUS (Wordsworth, 1992): 

 

⊢∃ Venus′ ⦁ InitVenus 

 

2.1.6 Specification approach 

 

The successful operations of the system are modelled individually. The error 

message for each operation is modelled immediately after its operation. Below is a 

list of operations in a system. The first operations to be modelled will be the ones 

that do not change the state of the system. The operations that change the state of 

the system will follow later. 

 

Table 2.2: Operations of the booking system 

 

Type of operation Operation User 

Enquiry SeatPrice Agent 

Spare Agent, Space company 

DepTimes Agent 

ArrTimes Agent 

NumberBooked Agent, Space company 

PassengerList Space company 

Update AddBooking Agent 

DeleteBooking Agent 

AddFlight Space company 

DeleteFlight Space company 
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2.1.7 Operations of the booking system 

 

The operations of the booking system are modelled as follows: 

 

2.1.7.1 Finding flight details 

 

In order to obtain the details of a flight, it must be present in the domain of flights. 

The operation below queries the details of a flight. The variable f ? (decoration „?‟ 

indicates an input variable and „!‟ denotes an output variable) is used to identify 

unique flights and it belongs to type FID. The variable results! is be used throughout 

the specification to display the outcome of each operation to the user. 

 

 KnownFlightOK  

ΞVenus 

f ? : FID 

results ! : RESULT 
 

f ? ∈dom flight 

results ! = OK 
 

 

The predicate f ? ∈ dom flight denotes that the flight must exist in the domain of 

flights. If the flight is not present in the domain, it will not be a flight for VENUS. The 

schema below models UnkownFlight operation. 

 

 UnknownFlight  

ΞVenus 

f ? : FID 

results ! : RESULT 
 

f ? ∉dom flight 

results ! = unknownflight 
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The predicate f ?∉ dom flight indicates that the flight does not exist in the domain of 

flights, as a result the system return unknownflight error message.  

 

2.1.7.2 Finding the price details of a group of seats 

 

The price is determined by the flight and the seat class. In order to obtain the price of 

a flight, the input variable ticket? (represented by ticket? : ℙ (FID × bag 

CLASS),which is a set of flight identity numbers and the number of seats required, 

will be required. The system will return price ! as the output.  

 SeatPriceOK  

ΞVenus 

ticket? : ℙ (FID × bag CLASS) 

price! : PRICE 

results ! : RESULT 
 

ticket ? ∈dom price 

price !: price ticket? 

results ! =OK 
 

 

If the details on the ticket are not present in a system, the error message NoSeat will 

be displayed. 

 NoSeat  

ΞVenus 

ticket ? : ℙ (FID × bag CLASS) 

result ! : RESULT 

 

ticket ? ∉dom price 

result != NotSeat 
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2.1.7.3 Number of spare tickets 

 

The spare tickets represent the number of available seats on the flight. They can be 

identified by a bag difference of the total number of seats allocated for a flight and 

the bag of tickets that has already been booked. The schema below denotes 

SpareOK.  

 SpareOK  

ΞVenus 

f ? : FID 

spare ! : bag CLASS 

results ! : RESULT 
 

f ?∈dom flight 

spare ! = (flight f ?).seating ⩁ alloc f 

results ! = OK 
 

 

The predicate spare ! = (flight f ?).seating ⩁ alloc f in the above schema states that 

the spare seats is the number of seats remaining after subtracting a bag of allocated 

seats from the total number of seats on a particular flight.   

 

2.1.7.4 Departure time 

 

The users should be able to view the departure time of a flight from a particular 

departing location at a given date and time. The input variables of this operation are 

date ?, port ? and dep ?. The system will return the flight numbers and the departure 

time in local time for the spaceport for a particular flight. The θFlight =  flight f 

ensures that values bounded to variables in the flight schema are correct for the 

particular flight. 
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 DepTimes  

ΞVenus 

date ? : DATE 

port ? : PLACE 

dep ? : FID ⇸ minute 

results ! : RESULT 
 

dep ! = { f : dom flight ;  Flight | θFlight =  flight f   

      ∧ start = port ? 

∧localDate ( depart, start ) = date? ⦁ 

f ↦ localTime ( depart, port ? ) } 

results ! = OK 
 

 

2.1.7.5 Arrival time 

 

To determine the arrival time, the duration of the flight is added to the departure time. 

The arrival time is calculated in GMT on a particular date. The operation ArrTime 

receives date ? and port ? as input variables and returns arrival ! as the output.  

 

The predicate arr = depart + duration f denotes that the arrival time is calculated by 

adding the flight duration to the time of departure. The arrival time will be shown in 

local time, which is the GMT format. This is indicated by the f ↦ localTime (arr, port?) 

predicate. 
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 ArrTimes  

ΞVenus 

date ? : DATE 

port ? : PLACE 

arrival ! : FID ⇸ minute 

results ! : RESULT 
 

arrival! = { f : dom flight ;  Flight; arr : GMT |  

θ Flight = flight f 

     ∧ dest = Port ? 

    ∧arr = depart + duration f 

∧localDate ( arr, dest) = date? ⦁ 

f ↦ localTime ( arr, port ? ) } 

results!= OK 
 

 

2.1.7.6 Number of bookings in flight 

 

The NumberBookedOK schema specifies the operation to obtain a number of seats 

that have already been booked on a particular flight. To obtain the report of the 

numbers of seats booked on a flight, users must enter the flight ID, upon which the 

system returns the number of seats booked. The function sizebag in the predicate 

part of the schema is used to return the number of occurrences for each element in 

the bag. In this operation, the function will provide the number of seats booked in 

each class.  
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 NumberBookedOK  

ΞVenus 

f ? : FID 

n! : ℕ 

results ! : RESULT 
 

f ?∈dom flight 

n! = sizebag ( alloc f ) 

results ! = OK 
 

 

2.1.7.7 Passenger list 

 

The space company may require generating a passenger list. To obtain a list of 

passengers, the flightID is entered as an input variable and the onFlight function will 

determine the bookings on the flight. It returns the list of names of passengers who 

have booked the flight. The who ! = passenger ⦇dom(onFlight ▷ {f}) ⦈ predicate 

restricts the onFlight function to a flight ID that has been provided and yields the set 

of relevant booking IDs (BID). The b ? variable is defined in the AddBookingOK 

schema. The relational image of this set will generate the corresponding set of 

passengers.  

 

 PassengerListOK  

ΞVenus 

f ? : FID 

who ! : ℙPASSENGER 

results ! : RESULT 
 

who !=passenger ⦇dom (onFlight ▷ { f }) ⦈ 

results ! = OK 
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2.1.7.8 Flight bookings 

 

Booking a flight is allowed only if there are still spare seats on the flight. The travel 

agent can book a flight through the booking system, provided that there is still a bag 

of seats available.  

 

 AddBookingOK  

ΔVenusBooking 

c? : bag CLASS 

p? : PASSENGER 

f? : FID 

b! : BID 

results ! : RESULT 
 

b! ∉dom passenger 

passenger′= passenger ∪{b! ↦p ?} 

seat′= seat ∪{b! ↦c? } 

onFlight′= onFlight{ b! ↦ f ? } 

results ! = OK 
 

 

The AddBookingOK operation receives class, passenger and flight IDs as input 

variables and the booking ID is the output return by the system. The precondition of 

the operation is that the booking ID (b !) should not exist in the system; hence this 

predicate b ! ∉ dom passenger. The following predicates state that once the 

operation has been completed successfully, the post-conditions of the operation will 

be a set of passengers have a new booking ID assigned to a passenger. The seat in 

a certain class will be booked and onFlight will a have a new booking for a particular 

flight.  

 

In case the class is full, the system will display the error message classfull to the 

user. The schema below denotes the ClassFull error message. 

 



27 
 

 ClassFull  

ΞVenus 

f ? : FID 

c ? : bag CLASS 

results ! : RESULT 
 

¬ (c ? ⊑ (flight f  ? ).seating ⩁alloc f ?) 

results ! = classfull 
 

 

The ¬ (c ?⊑ (flight f  ? ).seating ⩁ alloc f ?) predicate states that classfull error 

message will be displayed by the system if the requested bag of seats is not a sub-

bag of unallocated seats. The system will not allow the travel agent to book a flight if 

the number of requested seats is not available.  

 

2.1.7.9 Delete booking 

 

The travel agent can cancel the booking if the passenger is no longer travelling on a 

flight. The booking ID should be provided as an input to the system and the system 

will generate an error if b ? is not present in the system. 

 

The DeleteBookingOK operation is defined by the schema below. 

 

 DeleteBookingOK  

Δ VenusBooking 

b? : BID 

results ! : RESULT 
 

b? ∈dom passenger 

passenger′= {b? } ⩤passenger  

seat′= {b? } ⩤seat 

onFlight′= {b? } ⩤onFlight  

results ! = OK 
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The b ? (bookingID) is the input variable in the DeleteBookingOK operation. The 

precondition indicates that b ? should be known to the system. After the successful 

completion of the operation, b ? will be removed from the set of passengers, the bag 

of seats and onFlight.   

 

If the booking ID does not exist on the system, an error message NotBooked will be 

displayed to the user. The error is modelled by the schema below. 

 

 notBooked  

ΞVenus 

b? : BID 

results ! : RESULT 
 

b? ∉dom passenger  

results ! =notbooked 
 

 

2.1.7.10 Adding a flight to the booking system 

 

The schema below models an operation to add a new flight in the booking system. 

We have the flt ? and f ? as input variables. The precondition of the operation is that 

the flight must not be present in the system. When adding a new flight in the system, 

the duration and the price of the flight will also be added; however, there will be no 

impact on the price and duration of the existing flights. 

 

The precondition of adding the flight is that the flight ID to be added should not be 

present in the system. If the precondition is met, the new flight will be added 

successfully in the system. The {f?} ⩤ duration′ = duration and (dom price ) ◁ price′ = 

price predicates denote that the duration and price of the new flight will not impact 

the duration and price of existing flights. 
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 AddFlightOK  

Δ VenusScedule 

flt ? : FLIGHT 

f ? : FID 

results ! : RESULT 
 

f? ∉dom  

flight ′= flight ∪ flight {  f ↦ flt } 

{ f?} ⩤duration′ = duration 

( dom price ) ◁price′= price 

∀ ticket : dom (price ′ ∖price ) ⦁f ? ∈dom ticket 

results !  = OK 
 

 

If the flight already exists, an error message FlightAlreadyExists will be displayed to 

the user. The schema below indicates the FlightAlreadyExists error message.  

 

 FlightAlreadyExists  

ΞVenus 

f ? : FID 

results : RESULT 
 

f ? ∈dom flight 

results ! = flightalreadyexists 
 

 

 

2.1.7.11 Deleting a flight to the booking system 

 

The flight may be cancelled if there are no reservations. The business rule is that no 

flights may be cancelled if reservations have already been made on the flight. To 

remove the flight from the schedule, the price and duration of the flight must also be 

removed. It will have no impact on the price and duration of other flights.  
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 DeleteFlightOK  

Δ VenusScedule 

f ? : FID 

results ! : RESULT 
 

f  ? ∉ran onFlight  

flight ′= { f ? } ⩤flight  

duration′ =  { f ?} ⩤duration 

price′= ( dom price′ ) ◁price 

∀ ticket : dom (price ∖price ′ ) ⦁f ? ∈dom ticket 

results ! = OK 
 

 

When VENUS staff members attempt to delete the flight that already has booked 

reservations, the error message hasbooking will be displayed to the user. 

HasBooking is modelled in the schema below.  

 

 HasBooking  

Δ VenusScedule 

f ? : FID 

result !: RESULTS 
 

f  ? ∈ran onFlight  

result ! = hasbooking 
 

 

2.1.7.12 Combining schemas 

 

The successful operations can be shown with an error in the same schema to 

specify the complete operation of the system. A schema calculus is used to combine 

two or more schemas. The disjunctive (∨) and conjunctive ( ∧ ) operations are used 

to join the predicates of the combined schemas.  
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The schema below denotes the seat price:   

 

SeatPrice  ∬ SeatPriceOK ∨  NotSeat. 

 

 SeatPrice  

ΞVenus 

ticket ? : ℙ (FID × bag CLASS) 

price ! : PRICE 

results ! : RESULT 
 

(ticket ? ∈dom price 

price !: price ticket ? 

results ! =OK) ∨ 

(ticket ? ∉dom price 

     result != notseat ) 
 

 

In order for travel agents to be able to book flights successfully, the flight must be 

present in the booking system and it must not be fully booked. The next schema 

entails a complete operation for booking a flight and it combines 

 

AddBooking  ∬ ( AddBookingOK∧KnownFlightOK ) ∨ ClassFull ∨ NotFlight. 
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 AddBooking  

ΔVenusBooking 

c? : bag CLASS  

p? : PASSENGER 

f? : FID  

r! : BID  

results ! : RESULT 
 

(b! ∉dom passenger 

passenger ′= passenger ∪ { b! ↦p ? } 

seat ′= seat ∪ { b! ↦c? } 

onFlight ′= onFlight { b !↦ f ? } 

 ∧( f ?∈dom flight) 

results ! = OK)  

∨ (f ?∉dom flight 

results ! = notflight ) 

∨ ( ¬ (c ? ⊑ (flight f ? ).seating ⩁ alloc f ?) 

results ! = classfull ) 
 

 

The schema below models the complete operation for cancelling the booking and it 

represents the  

 

DeleteBooking ∬ DeleteBooking ∨ NotBooked. 
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 DeleteBooking  

ΔVenusBooking 

b? : BID 

results ! : RESULT 
 

(b ? ∈dom passenger 

 passenger ′= { b ? } ⩤passenger  

 seat ′= { b ? } ⩤seat 

 onFlight ′= { b ? } ⩤onFlight   

 results ! = OK) 

∨(b ? ∉dom passenger 

 results ! = notbooked ) 
 

 

There are more operations of the booking system that can be modelled with errors to 

indicate the complete operation. Schemas that can be combined to denote complete 

operations are shown below: 

 

KnownFlight ∬ KnownFlightOK ∨ NotFlight 

Spare ∬ SpareOK ∨ NotFlight 

NumberBooked ∬ ( NumberBooked ∧ KnownFlight ) ∨NotFlight 

PassengerList ∬ ( PassengerListOK ∧ KnownFlightOK ) ∨NotFlight 

AddFlight ∬ AddFlightOK ∨ AlreadyExists 

 

 

2.1.7.13 Specification summary 

 

The below table, synthesised by the researcher, provides a specification summary 

operation of VENUS system thereby listing the operation and indicate the input and 

output variables and well as the precondition of each operation. It is customary in Z 

to show in a table like the below, only the partial operations. 
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Table 2.3: Summary of partial operations of VENUS 

 

Operation Variables Preconditions 

SeatPrice ticket ? : ℙ (FID × bag CLASS) 

price ! : PRICE 

ticket ?∈dom price 

Spare f ? : FID 

spare ! : bag CLASS 

f ?∈ dom flight 

DepTimes date ? : DATE 

port ? : PLACE 

dep!  : FID ⇸ minute 

true 

ArrTimes date ? : DATE 

port ? : PLACE 

dep!  : FID ⇸ minute 

true 

NumberBooked f ? : FID 

n ! : ℕ 

f ?∈ dom flight 

PassengerList f ? : FID 

who! : ℙPASSENGER 

f ?∈ dom flight 

AddBooking c? : bag CLASS  

p? : PASSENGER 

f ? : FID  

b ! : BID 

b !∉dom passenger   

 

DeleteBooking b ? : BID b ?∈dom passenger 

AddFlight flt ?: FLIGHT 

f ? : FID 

f ?∉dom 

DeleteFlight f ? : FID f ?∈dom 
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2.2  CHAPTER SUMMARY 

 

This chapter modelled a case study in Z and described the Z structures, operators 

and functions used in the specification. Z has been used successfully in a real-world 

environment to provide the specification of large systems where quality and safety 

are critical. A project, in which Z was used successfully, is IBM‟s customer 

information control system (CICS) (Wordsworth, 1992; Potter, Sinclair & Till, 1996). 

However, industries are still reluctant to use formal methods due to complex 

mathematical notations used in the language. Formal methods require rigorous 

training and experience before the full benefits can be attained. 

 

In formal specification, the system is specified by hiding the details of how the 

functions of the system are achieved and only models the important features. The 

system is decomposed into smaller pieces and each piece of the system is specified 

individually by the Z schema notation.  

 

Mathematical theorems are used to verify the specification and reduce errors. A 

theorem was used to indicate that the initial state of the VENUS system exists. 

Nevertheless, using Z in the specification does not guarantee that the end product 

software will not have defects. If Z is properly used, it can minimise the overall cost 

of the software project.  

 

The next chapter discusses various diagrams based on closed curves and set 

theory. Chapter 3 also illustrates the area where these diagrams can be used. The 

rules governing the modification of diagrams are outlined as well.  
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CHAPTER THREE 

 

3. DIAGRAMS BASED ON CLOSED CURVES AND SET THEORY 

Chapter 2 used an established strategy to model a case study in Z. Various functions 

and relations of Z were defined and indicated how they could be used to express the 

predicates. The previous chapter also indicated how schemas are used to represent 

the large specification in a well-structured manner.  

 

This chapter focuses on diagrams that are based on closed curves and used to 

express the logic and set-theoretical statements. The concepts are first introduced 

and defined later.  Euler, Venn, Spider and Pierce diagrams will be discussed, since 

they form part of this research.  

 

Euler diagrams were introduced in the 18th century by Leonard Euler and the 

language inherited the name from his last name. They form the basis of most visual 

languages based on closed curves. Other diagrams extended Euler diagrams by 

introducing additional semantics to represent set relations. Various UML diagrams 

are also discussed; however, it does not form part of the research.  

 

3.1 Overview of diagrams 

 

Diagrams play an important role in the visualisation of information. A diagram with no 

text or any explanation of captions or familiar symbolic devices may not be easy to 

interpret. Diagrams must be linked with language from other contexts and the real-

world to represent information properly. It has been emphasised that the essential 

way to denote diagrams to be meaningful is to use them in linguistic representations 

(Hammer, 1995).  

 

The use of mathematical symbols in proof can yield the required results without 

diagrams; therefore, diagrams are not essential parts of proof. Hammer (1995) has 

articulated that the use of diagrams in the real-world representation has grammatical 
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structure and meaning; however, if the grammar and semantics can be specified 

properly and rectified, the diagrams can yield a rigorous proof.  

 

Shin (1994) defined ten rules of inference to prove that diagrams can be sound and 

complete. Six rules were developed for Venn I and four other rules were developed 

for transforming Venn II diagrams. These transformation rules are discussed in 3.4.1 

and 3.4.2. 

 

3.2 EULER DIAGRAMS 

 

An Euler diagram is a well-known visual language, consisting of a collection of 

closed curves, which express information about containment, intersections or 

disjointedness in a simple way (Bottoni & Fish, 2011; Stapleton, 2005; Stapleton et 

al., 2011).  

 

Closed curves, also known as contours, are closed circles used to represent sets in 

a diagram (Fish & Stapleton, 2006; Fish & Flower, 2008; Stapleton et al., 2010). 

Each contour has a unique label. Contours divide a plane into zones. A zone 

(minimal region) is a region connected to a plane, which has no other region 

contained within it (Howse, Taylor & Stapleton, 2005). It is described by the set of 

contours enclosing it and the rest of other contours, which lie outside. For example, 

in Figure 3.1, the area that is inside EMPLOYEE but outside PILOT is a zone. 

 

PILOT

EMPLOYEE DEPENDENT

 

Figure 3.1: Example of an Euler diagram 
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The diagram in Figure 3.1 is an example of an Euler diagram containing three sets, 

namely EMPLOYEE, PILOT and DEPENDENT. The diagram indicates that PILOT is 

an EMPLOYEE, while DEPENDENT and EMPLOYEE are disjoint sets. 

 

Euler diagrams can be asserted in several ways to express logical and set-

theoretical statements. The examples below exemplify the subset of joint and disjoint 

Euler diagrams (Hammer, 2005).  

 

A

B

 

Figure 3.2: An Euler diagram with subset 

 

The above diagram specifies the subset in the Euler diagram. It contains two sets, 

namely A and B, as well as three zones, namely the region in both A and B, the 

region inside B but outside A, and also the region that is outside both A and B. Set A 

is inside B, which means that all elements that are in A also belong to B; as a result, 

A ⊂ B. There may be elements in B not belonging to A. 

 

An Euler diagram may contain a disjoint set. Below is the example of an Euler 

diagram with a disjoint set. 

 

A B

 

Figure 3.3: An Euler diagram with disjoint sets 

 

The diagram indicates two disjoint sets, namely A and B; which means nothing in A 

is in B. The elements can exist in either A or B, but not in both. In this diagram, A ∪ 

B, A – B and B – A are represented (Howse et al., 2005).    
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The diagram below represents joint sets. There are five zones and three sets 

asserted. It denotes that A is a proper subset of B and some elements are in both B 

and C (Hammer, 2005). 

 

A

B

C

 

Figure 3.4: An Euler diagram with joint sets 

 

Table 3.1 below indicates the zones asserted in the above diagram, synthesised by 

the researcher: 

 

Table 3.1: Zones of an Euler diagram with joint sets 

 

 

 

The above diagram specifies how a subset is represented by an Euler diagram. It 

contains three sets, namely A, B and C. The diagram asserts that there are four 

regions: A∪ B ∪ C, A ⊆ B, B ∩ C and B - C. An empty set is denoted by missing 

elements in a diagram (Stapleton et al., 2007); however in Euler diagrams, there 

may be elements even though they are not explicitly represented. As a result, Euler 

diagrams have limited expression in specifying that a set is empty (Hammer, 1995). 

 

The diagram may have any finite number of disjoint sets drawn in any arrangement 

whereby every object in the diagram is represented by one minimal region (Fish et 

Contours 

{∅}, {A, B, C} 

{C}, {A, B}), 

{B, C}, {A} 

{B}, {A, A} 

{B, C}, {A} 
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al., 2008). There are various specifications where diagrams have been used 

successfully as the basis for system specifications and reasoning, namely statistical 

data, database search queries, ontology representations, file system management 

and visualising genetic set relations (Howse et al., 2005, Fish & Stapleton, 2008; 

2009; Delaney & Stapleton, 2007; Stapleton et al., 2010).  

 

The examples of how diagrams were used successfully in different specification 

areas will be shown in the following sections of the chapter.   

 

As other visual languages like pie charts and graphs can be produced automatically, 

there are also tools used to draw an Euler diagram automatically (Stapleton et al., 

2010). These tools are classified as dual graph methods, inductive methods and 

methods using particular shapes. The diagrams are developed by starting with an 

abstract description and have an advantage of producing well-designed diagrams. 

 

The most common properties the desired Euler diagram should have are a unique 

label, simplicity and no concurrency (Stapleton et al., 2010). To achieve this goal, 

Hammer (1995)has developed the transformation rules for modifying Euler diagrams. 

 

 Rule of erasing a contour 

 

A contour can be removed to change the topology of a diagram. In Figure 

3.5Diagram D has sets A, B and C. Set B can be removed from Diagram D, resulting 

in a new diagram in D′(Hammer, 1995). If the diagram after erasure is obtainable 

from the diagram before, then D′ can be deduced from D. 

  

A

B

C

A

C

D D′  

Figure 3.5: Erasing a contour 
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 The rule of introduction of a new curve 

 

A new set can be introduced to enhance the expression of a diagram. When a new 

curve is added in a diagram, it should have a label and overlap each zone in a 

diagram. Diagram D in Figure 3.6 has three curves, namely A, B and C with five 

regions. Set A is a subset of B; some elements of C are present in B, while sets A 

and C are disjoint. The introduction of an E-curve results in Diagram D′.  

 

To avoid changing the semantics of a diagram, an E-curve should overlap each 

minimal region in the diagram. In essence, the minimal region in D′ should have the 

counterpart in D. For example, the minimal region B – A in D should have the 

corresponding B – A region existing in D′.  

 

 

A

B

C

A

B

E

C

D

D′                              
Figure 3.6: Introducing a contour 

 

 The rule of weakening 

 

Diagram D can result in D′ through weakening if the number of curves is equal in 

both diagrams and have the same labels. Each minimal region in D should also have 

a counterpart in D′. Initially in Diagram D, set C is a subset of B. However, through 

the rule of weakening, the diagram has a different meaning. Set C is not a subset of 

B in Diagram D′; it intersects B. 
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A B

C

D D′

A B

C

 

Figure 3.7: Rule of weakening 

 

3.3 Extended Euler diagrams 

 

Euler diagrams have been modified to form extended Euler diagrams (EEDs). 

According to the study, an EED has fewer minimal regions than a Venn diagram and 

also more readable topology. Due to topology constraints, some intersections are 

difficult to be represented by Euler diagrams if the number of closed curves exceeds 

four in a diagram. Hence, an extension of an Euler diagram is proposed to assert a 

diagram that may have a maximum of eight sets and any number of intersections. 

The diagram in Figure 3.8 is an example of an EED with four contours (Swoboda & 

Allwein, 2004).  

 

A

B

C

D

 

 

Figure 3.8: An extended Euler diagram 

An EED has the following properties (Verroust & Viaud, 2004):   
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 An intersection may be represented with more than two curves. 

 A region may be present in more than one curve. 

 Each non-empty intersection is associated with a unique minimal region. 

 Each set belongs to a set of minimal regions. 

 

The above properties facilitate to differentiate the extended Euler diagram from the 

normal Euler diagram.  

 

3.4 VENN DIAGRAMS 

 

In 1880, John Venn developed a visual language based on closed curves called 

Venn diagrams to presents logical statements and set relations (Howse et al., 1999; 

Howse, Molina & Taylor, 1999; Bottoni & Fish, 2011). Venn diagrams emerged from 

Euler diagrams; however, instead of using missing elements, shading is used to 

represent an empty set (Blackwell et al., 2004; Howse et al., 2005). Overlapping 

contours are used in Venn diagrams to represent all possible intersections (Flower et 

al., 2004; Mineshima et al., 2012; Wilkinson, 2012). A region where two or more 

contours overlap in a diagram represents the intersection of sets.    

 

Traditionally, Venn diagrams were presented with three curves intersecting one 

another. The diagram seemed to be cluttered when four or more curves were used, 

resulting in the diagram being difficult to draw and read. The study done by Verroust 

and Viaud (2004) indicated that more than three curves can be represented using 

ecliptic  shapes and rotational symmetric shapes called Adelaide to allow for the 

diagram to be more readable. 

 

Venn diagram is an expressive visual language used to specify constraints and 

relationships among sets. In a diagram, every subset of a closed curve has a 

minimal region where curves overlap. Projection can be used to reduce the cluttering 
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by presenting only regions that are important and exclude other regions that are not 

relevant. 

 

Projected contours are used to denote an intersection with the context and are 

represented by a dashed oval shape. The diagram in Figure 3.9below presents the 

following regions: A – B; B – A, A∩ B, and C ⊆ B (Howse et al., 2005). The region 

where A and B is shaded indicates that A and C are disjoint sets (A∩ C = ∅). 

A

C

B

 

Figure 3.9: A Venn diagram 

 

It has been indicated that Venn diagrams have been used in the industry to visualise 

statistical data. Figure 3.10 below depicts an example of visualising statistical data 

using a Venn diagram (Swoboda & Allwein, 2004; Thompson, 2011). 

 

 

 

Figure 3.10: A Venn diagram presenting statistical data 

Female 

(5000)

4148

102

146

604
567

183

1069

Visible Minority 

(1500)

CS Major 

(1500)
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The diagram indicates that there are 5000 females, 1500 visible minority and 1500 

CS major. Out of 5000 females, 102 females are CS major, 164 females are CS 

major and visible minority and 604 females are visible minority. There are neither 

4148 females that are nor CS major neither visible minority. There also 183 CS 

major that are visible minority. 

 

3.4.1 Venn I  

 

Venn I diagrams were developed by Shin (1994) to represent the set relations while 

shading was used to denote an empty set. The ⊗-sequences (pronounced X-

sequences) are used to represent the existence of elements. Lines are used to join 

the ⊗-sequences that belong to a particular diagram. The universal set is also 

introduced to enclose all the curves in a diagram (Howse et al., 2005). 

 

Venn I diagrams are perceived as less expressive than Venn diagrams. Shin 

developed transformation rules to prove the completeness of this notation (Shin, 

1994).  

 

Venn I diagrams have rules of transformation, which govern the modifications. These 

transformation rules are discussed below (Shin 1994; Howse et al., 2000; Molina, 

2001; Stapleton, 2005). 

 

3.4.1.1 Rule 1: Erasure of a diagrammatic object 

Any object in the diagrams, for instance x-sequence, shading or contours, may be 

deleted in a diagram. When the closed curve is erased, certain regions such as 

shading or an x-sequence will also disappear. If other regions are not modified after 

deleting a closed curve, it will result in a diagram that is not well-formed. Figure 

3.11indicates how D2 is derived from D1 after erasing the contour A. The diagram in 

D1 has sets A, B and C. In D2, set A is removed and as a result the x-sequence in A 

∩ B is also deleted to ensure that the diagram does not lose its semantics.  
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B

C

D2D1

A
B

C

 

Figure 3.11: Erasing a contour 

 

3.4.1.2 Rule 2: Erasing part of an ⊗-sequence (x-sequence) 

A part of x-sequence may be erased if it is placed in a shaded region. The diagrams 

below depict the transformation of D1 to D2 after deleting a part of the ⊗-sequence. 

The number of x-sequences does not increase in a diagram. This means, if ⊗ is in a 

shaded region at the end of the x-sequence, the -⊗ or ⊗- may be removed so that 

there is only one part of the x-sequence left. If the ⊗ is in a shaded region in the 

middle of the x-sequence, the ⊗ in the middle can be erased and the remaining part 

will be joined again with a line to form x-sequences.  

 

The diagram in Figure 3.12 indicates that ⊗ in set A∩ C has been deleted and as a 

result D2 diagram has been formed. 

 

B

C

D2D1

A
A

B

C

 

Figure 3.12: Erasing part of a⊗-sequence 
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3.4.1.3 Rule 3: Spreading the ⊗-sequence (x-sequence) 

 

The legs of the x-sequence may be extended and spread across other zones in the 

diagrams. The D1 and D2 in Figure 3.13 show the transformation of diagrams after 

the extensions of the x-sequence. The ⊗ is drawn in A ∩ C region and joined with 

another part to form one x-sequence.  

 

B

C

D2D1

A
A

B

C

 

Figure 3.13: Spreading the ⊗-sequence 

 

3.4.1.4 Rule 4: Introducing a basic region 

A contour or a boundary rectangle may be introduced in the diagram. The diagram 

can only have one boundary rectangle. So, it can only be drawn if the diagram has 

none. A closed curve can be introduced in a diagram if it is drawn in the interior of a 

rectangle and if there is an x-sequence in the original diagram. Then each ⊗of an x-

sequence is replaced by ⊗ - ⊗. 

 

The diagrams below indicate the introduction of a contour in a diagram. The ⊗ was 

also extended to form ⊗ - ⊗ in A ∩ B and a new x-sequence was also drawn from A 

∩ C to A – (B ∪ C). 
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B

C

D2D1

AB

C

 

Figure 3.14: Introducing a contour 

 

3.4.1.5 Rule 5: Rule of excluded middle 

 

If the ⊗-sequence is placed in the same regions with shading, the diagram can be 

transformed into any diagram. The transformation of D1 to D2 is illustrated in Figure 

3.15. The two ⊗‟s have been drawn in set A and joined with one part that existed 

before to form one x-sequence spread across the regions of the contour.  

 

B

C

D2D1

AB

C

A

 

Figure 3.15: Excluded middle 
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3.4.1.6 Rule 6: Unification of diagrams 

Diagrams D1 and D2 can be combined to form one diagram D if a given relation 

contained the ordered pair of the rectangle of both diagrams.  

The unification of D1 and D2 can be achieved if the following conditions are met: 

 The rectangle and closed curves of D1are copied to D2. 

 The closed curves of D2 do not stand in the given relation of closed curves of 

D1.  

 For any shaded region in D1 orD2, D should be shaded. 

 For any region with an x-sequence in D1 or D2, it should also be drawn in D. 

 

The diagram in Figure 3.16indicates Diagrams D1 and D2 may be combined to form 

Diagram D. The common contours are combined when merging D1 and D2 and 

unique contours A and B are imported. The x-sequence has been expanded to touch 

at least one region in each contour. 
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B

C

D2
D1

A

C

B

C

D

A

 

Figure 3.16: Unifying diagrams 

 

3.4.2 Venn II 

 

Due to limitations on Venn I diagrams, Shin (1994) developed Venn II diagrams. 

Venn II diagrams are equivalent to first predicate logic (without equality) with 

expressiveness. In recent times, Venn II diagrams have been extended to include 

the constants. 
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3.4.2.1 Rule 7: Splitting ⊗-sequences 

 

The x-sequence can be split into different diagrams. Diagram D in Figure 3.17 has 

an x-sequence with three ⊗’s. The x-sequence is split into diagrams D1 to D3.  

 

B

C

D

A B

C

A B

C

A
B

C

A

D3D2D1

Figure 3.17: Splitting ⊗-sequences 

 

3.4.2.2 Rule 8: Rule of excluded middle 

 

If Diagram D has a minimal region that is not shaded, it can be represented by two 

diagrams where one diagram has an extra ⊗-sequence. The diagram has split D 

into two diagrams and is represented by D1 and D2.  

 

B

C

D

A
B

C

A
A B

C

D1
D2

 

Figure 3.18: Rule of excluded middle 

 

3.4.2.3 Rule 9: Rule of connecting diagram 

 

An existing diagram can be connected to any diagram resulting in D to D – D1. See 

the example in Figure 3.19.Diagram D can be connected to another diagram D1. 

 



52 
 

B

C

D

A
B

C

A B

C

D1D

Figure 3.19: Connecting a diagram  

 

3.4.2.4 Rule 10: Rule of construction 

This rule allows multiple diagrams to be transformed into one diagram if each 

diagram is transformed, using some of the first nine rules discussed above (Shin, 

1994). Figure 3.18 indicates how D1, D2, D3, and D4 can be transformed into D.  

 

 

 

 

Figure 3.20: The construction rule 
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3.4.3 Venn/Euler diagrams 

 

A Venn/Euler diagram is the combined version of an Euler and a Venn diagram; 

however, they are more based on Euler diagrams. This diagrammatic notation uses 

disjoint curves to represent sets and constants to denote the existence of elements. 

As Venn diagrams, Venn/Euler diagrams use shading to indicate that a region is 

empty (Howse et al., 2011). 

 

students

TomTom

teachers

 

Figure 3.21: A Venn/Euler diagram 

 

The above diagram is an example of an Euler/Venn diagram. The diagram specifies 

that Tom is either a student or a teacher, but he cannot be both (Stapleton et al., 

2011).  

 

Basic components that constitute a Venn/Euler diagram are listed in the table below 

(Swoboda & Allwein, 2004, 2005): 

 

Table 3.2: Basic components and descriptions of a Venn/Euler diagram 

 

Basic components Description 

Rectangle Used to enclose the diagram 

Contour Represents sets in a diagram 

Shading Denotes that a shaded region is an empty set 

Constants Represent the existence of elements 

Lines Connect the named constants, which share a name 
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3.5 SPIDER DIAGRAMS 

 

Spider diagrams are a visual language, which consists of a boundary rectangle, a 

collection of closed curves, spiders, shaded and unshaded regions (Molina, 2001; 

Howse et al., 2011). This diagrammatic language extends Euler, Venn and Pierce 

diagrams to specify the properties and relationship between sets (Howse et al., 

2009;Howse, Molina & Taylor, 1999).They emerged from a diagrammatic language 

called “constraint diagrams”, which was based on object constraint language(OCL) 

(Stapleton et al., 2007; 2011; Stapleton, 2005). OCL is often used in conjunction with 

UML. Constraint diagrams and UML do not form part of our research; nonetheless, 

UML is discussed briefly in section3.7. 

 

Spider diagrams inherit the topology of shading from Venn diagrams, enclosure and 

disjoint curves from Euler diagrams and X-sequences from Pierce diagrams (Howse 

et al., 2004, 2009; Howse et al., 2005). However, spider diagrams are based more 

on Euler diagrams than they are on Venn diagrams. The topological properties of 

Spider diagrams emphasise that the curves should not be parallel to one another so 

that the diagram can be more clear and readable.  

 

The diagram below is an example of a spider diagram (Howse et al., 2011): 

 

   A B C

 

Figure 3.22: Spider diagrams 

 

The above diagram expresses that |A| = 3, |B| – |C| ≥ 2, |B| ∩ |C| ≥ 1 and |C| – |B| ≥ 

2. The use of shading in curve A, represent that there are exactly three elements in 

the set, placing the upper bound cardinalities in that region.  
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Spiders are used to represent the existence of elements, while distinct spiders 

represent the distinct elements in a diagram, allowing finite lower bound to be placed 

on cardinalities (Molina, 2001). In Venn diagrams, the diagram will result in 

contradiction if shading is placed in the same region as the element. Shading may be 

placed in the same region as with spiders in spider diagrams to place the finite upper 

bound on cardinalities (Fish & Flower, 2004; Molina, 2001). The use of shading in 

the diagram signifies that there are no elements other than the ones represented by 

spiders in the shaded region. Shading the region that is not touched by any spider 

denotes a region is empty. For example, in Figure 3.23 the region (A∩ C) –B is 

shaded with no spiders; therefore, that region is empty. 

 

3.5.1 Syntactic elements of spider diagrams 

 

A contour (closed curve) is a simple closed circle in a plane used to denote a set. A 

boundary rectangle is a rectangular shape used to enclose all contours of a spider 

diagram. A district (basic region) is the bounded set of points in a plane enclosed by 

a contour or boundary rectangle. A region is defined by the union, difference or 

intersections of two non-empty regions. A zone (minimal region) is a region, which 

does not contain any other region within it. Contours combined with regions denote a 

set.  

 

A spider is a tree with nodes (called feet) placed in different minimal regions 

connected with straight lines (called legs). Distinct spiders denote distinct elements 

in a diagram unless connected with a strand or tie. A tie (equal sign) is a double line 

used to denote two elements placed in the same zone are equal. The nest is the 

collection of connected spiders arranged in a sequence. A strand is the wavy line 

connecting two feet from different spiders placed in the same zone. Two spiders with 

a non-empty web are called friends(Flower et al., 2004; Howse et al., 1999). 

 

The interpretation of spider diagrams, including ensuring the following (Hammer & 

Danner, 1996): 
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 Distinct spiders denote distinct elements unless joined by a strand or a tie. 

 Each spider is enclosed within the sets denoted by minimal regions. 

 The element denoted by a spider belongs to the set, which the spider inhabits. 

 Shading is used to place upper finite bounds on cardinalities. 

 The boundary rectangle enclosed all contours and it represents a universal 

set. 

3.5.2 Spider diagrams 1 (SD1) 

 

SD1 is the first diagram to be found sound and complete. The syntax of spider 

diagrams can be classified as abstract/type syntax and concrete/token syntax. In this 

context an abstract syntax specifies mathematical properties and descriptions of 

diagrams, while concrete syntax captures the topological properties and formalises a 

diagram (Stapleton, 2005). 

 

In SD1, reasoning is captured at the abstract level and concrete level is only used for 

visualisation. Furthermore, diagrams can be asserted as unitary, which have 

disjunctive information. A compound diagram is a set of unitary diagrams, which 

contains conjunctive information and a multi-diagram is a set of compound diagrams. 

The diagram below indicates an example of an SD1 diagram (Stapleton, 2005).  

 

   A B

C

 

Figure 3.23: An SD1 diagram 
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The diagram in Figure 3.23, |A – (B ∪ C)| ≥ 3, |B| ≥ 6 and |C| has no fewer than three 

elements. Furthermore, A ∩ B ∩ C ≥ 2 and B ∩ C ≥ 1. 

 

3.5.3 Spider diagrams 2 (SD2) 

 

SD2 diagrams are based more on Euler diagrams than on Venn diagrams. Disjoint 

contours are used to represent sets and shading can be placed in the same region 

as spiders to allow upper finite bounds to be placed on cardinalities (Molina, 2001). 

 

In Figure 3.24, sets A and B are disjoint, given the underlying notation of Euler 

diagrams. Set |A| = 1 and |B| ≥ 2. There is one element, which is in either A or B 

(Stapleton, 2005).  

 

A B

 

Figure 3.24: An SD2 diagram 

 

 

3.5.4 Extended spider diagrams 2 (ESD2) 

 

The ESD2 extends the SD2 diagram by introducing the strand and tie. The strand is 

a wavy line used to indicate that the two spiders, placed in the same region, 

represent the same element. A tie is a double line used to connect the two equal 

spiders placed in the same region.   

 

The diagram below states (Fish & Flower 2005; Howse et. al., 1999;Molina, 2001): 

 

A – (B ∪ C) = {} 

|(B ∩ C) – A| ≤ 1 
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s∈ (B – C) ∪ (A ∩ C – B) 

t∈ (B – A ∩ B ∩ C) ∪ (A ∩ C – B) 

s, t ∈ A ∩ C – B ⇒ s = t, s, t ∈ A ∩ B – C ⇒ s ∭ t 

 

The parts of the spider diagram (such as strands or wavy lines and ties or equal 

signs) used in Figure 3.25 are defined in section 3.5.1.  

 

=

A

B

C

D

t

s

 

Figure 3.25:An ESD2 diagram 

 

 

3.5.5 Spider Diagrams 3 (SD3) 

 

An SD3 diagram is the first reasoning system to allow the use of „∧‟ (and) and „∨‟ (or) 

operators. The ability to change SD3 to logic statements indicates that a spider 

diagram is equivalent to the monadic first order predicate logic with equality (FOPL) 

(Stapleton, 2005). Figure 3.26 below indicates the conjunctions of a spider diagram 

(Howse et al., 2005).  

 

SD3 combines two or more diagrams to present the disjunctive and conjunctive 

information. There are four diagrams, which are combined to form one diagram. The 

diagram D1 is combined with D2 by a conjunction operator (∧) and D3 and D4 are also 
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combined with a conjunction operator. Furthermore, the rectangle enclosing all 

diagrams combined the diagrams with a disjunctive operator (∨).  

 

The meaning of the diagrams below is that 

 

(D1 ∧ D2) ∨ (D3 ∧ D4), 

 

which means (D1 andD2) or (D3 and D4.) 

 

A

B

   ∨

   ∧

   ∧

A
B

B
AA

d1 d2

d3 d4

 

 

Figure 3.26: SD3 diagram 

 

3.5.6 Transformation rules 

 

Spider diagrams also have transformation rules governing their assertion and 

modification. The rules below have been developed for SD2 to convert one diagram 

into another by adding, removing or modifying any part of the diagram (Howse et al., 

1999, 2000; Molina, 2001; Howse et al., 2011). 
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 Introduction of a contour 

 

A contour can be added inside the boundary rectangle overlapping each minimal 

region in a plane. The pair of feet will be connected to the foot of a spider and spread 

to each new zone. In Figure 3.27, a contour is introduced in Diagram D′ and it 

intersects with contours A and B. In addition, there is a pair of feet introduced in the 

new contour C and connected to the other pair of feet already existing in Diagram D. 

 

D′D

A
B

C

BA

 

Figure 3.27: A spider diagram – introducing a contour 

 

 Introduction of a strand 

 

A strand may be added to join the feet of any two spiders in the same minimal 

region. In Diagram D, the spiders s and t are equal in A – B; however they don‟t have 

to be equal after the introduction of a strand in Diagram D′. Placing the equal sign 

between s and t spiders in D′ will weaken the meaning of the diagram. As a result the 

equal is replaced with a strand.  

 

=

s

ut

s

t
u

D D′

B
A BA

 

Figure 3.28: A spider diagram – introducing a strand 
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 Removing a spider in a diagram 

 

The spider, which was placed in a non-shaded region, may be erased together with 

the strand or tie associated with it. If removing a spider disconnects any element in a 

zone, then the elements must be reconnected. 

 

When the spider u is erased, the strands connecting s to u and t to u will also be 

disconnected. However, in Diagram D′ spiders t and u are reconnected with a strand. 

 

D′D

A
B

u

t

s

A
B

t

s

 

Figure 3.29: A spider diagram – removing a spider diagram 

 

 Spreading the feet of a spider diagram 

 

If the diagram has a spider in a region that is not shaded, a new foot can be 

connected to it, provided that a new foot has a unique name. In Figure 3.30, the 

spider has been extended to the A ∩ B region; thus, indicating that there is an 

element in A or in (A ∩ B).  

 

D′

A
B

D

A B

 

Figure 3.30: A spider diagram – spreading the feet 
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 Removing shading 

 

Shading may be removed in the entire region from any shaded region, giving 

Diagram D′. Diagram D in Figure 3.31 denotes that there is exactly one element in A. 

After shading has been removed, the meaning of the diagram changes, Diagram D′ 

denotes that there is at least one element in A.  

 

A

D

A

D′
 

Figure 3.31: A spider diagram – removing shading 

 

 Rule of excluded middle 

 

If the diagram D has an unshaded region, the conjunction of D1 and D2 may replace 

D, except that B has an extra spider.  

 

 

A B

D

A B A B

D1 D2

  ∧

 

Figure 3.32: A spider diagram – excluded middle 

 

 Splitting a spider 

 

If Diagram D has a spider that inhabits various zones in the diagram, then the spider 

may be split into two diagrams, each foot touching the corresponding one in D2. 
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A B

D

A BA B

D1 D2  

Figure 3.33: A spider diagram – splitting a spider 

 

 Removing a contour 

 

If a contour is erased in a diagram, any shading in the remaining part of the diagram 

should be erased. If the spider has feet in the zone of the contour that will be erased, 

then these feet will be combined to form a single foot of the spider.    

 

D

C

BA

D′

BA

 

                     Figure 3.34: A spider diagram – removing a contour 

 

3.5.7 The use of spider diagrams 

 

Spider diagrams have been used to model the failures of the safety critical system 

(Clark, 2005) and the automatic parking systems (Bottoni & Fish, 2011). The 

example below indicates the use of spiders in the foresaid areas. 

 

The diagram in figure 3.35 (Clark, 2005; Howse et al., 2011) shows the heater 

control system. The heater control system has the power supply that provides AC 
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(alternating current) for the heating element, the microprocessor, which controls the 

temperature and the switch for turning the entire heating system on and off. The 

diagram indicates the four overlapping sets of spider diagrams. It denotes the ways 

in which the power supply of the heating system can fail during its operation.  

 

There are five ways in which the power supply can fail: 

 Normal operation  

 No power supply to the heating system 

 Supply AC but no DC to the diagrams 

 Supply DC but no AC 

 Incorrect voltage provided to the entire circuit  

 

BRIDGEFAILURE

POWEREDON

RESISTORFAILUREREGULATORFAILURE

normalOperation

incorrectVoltage

AC_ONLYmainSwitch

 

Figure 3.35: A heating system 

 

Diagram 3.36 below denotes the specification of an automatic parking system 

(Bottoni & Fish, 2011).  

 

All cars using the parking can be in the following states of mobility/immobility: 

 

 RUNNING which means a car is moving 

 FREEPARKING if a car is in a free parking zone 
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 TOLLPARKING when a car is parked in a toll parking zone 

 

The system uses car registration numbers to identify the cars entering the parking lot 

and the duration the cars were parked, to charge parking fees. The cars parked in a 

toll may be within the permitted time of parking or the time may have expired. The 

shaded area outside the set indicates that there are no other elements except for 

those elements that are represented in the sets. 

 

RUNNING

Car

FREEPARKING TOLLPARKING

WITHINTIME

Car

EXPIRED

 

Figure 3.36: Automated car parking 

 

3.6 PIERCE DIAGRAMS 

 

Pierce indicated that Venn diagrams are not able to represent the existence of 

elements and disjunctive information. Therefore, the diagrammatic language called 

Pierce diagrams or Venn-Pierce diagrams was introduced (Stapleton, 2005).  

 

Venn-Pierce diagrams use „x‟ to represent the existence of elements and „o‟ to 

indicate that a set is empty (Blackwell et al., 2004; Stapleton et al., 2011). The line 

used to connect „x‟ and „o‟ represents the disjunctive operation (or). Below is an 
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example of a Pierce diagram with three curves: A, B and C. The diagram asserts that 

B ∩ C = ∅ ∨ C - B ∭ ∅.  

 

0

x

C

B
A

 

Figure 3.37: An example of a Pierce diagram 

 

Pierce diagrams are often not visually effective. For example, if the two upper 

diagrams in Figure 3.38 can be represented in a single diagram, then the diagram 

will not be interpreted easily (Molina, 2001).  

 

0 x

B
A

B
A

0

B
A

0 x

0
0

x
0 x

x

A – B = ∅ ∧ 
A ∩ B ∭ ∅

A ∩ B = ∅ ∧ 
B – A ∭ ∅

(A - B = ∅ ∨ A ∩ B = ∅) ∧

(A - B = ∅ ∨ B – A ∭ ∅) ∧

(A ∩ B ∭ ∅ ∨ A ∩ B = ∅) ∧

(A ∩ B ∭ ∅ ∨ B – A ∭ ∅) 

x

 

Figure 3.38: Combing Pierce and Venn diagrams 
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However, the issue of readability presented by the above diagram can be resolved 

by enclosing the diagrams in a universal set. The diagram below represents the 

same information that the lower diagram presented above (Molina, 2001). 

 

0 x

B
A

0

B
A

x

 

Figure 3.39: Precise representation of combined diagrams 

 

The syntax of a Pierce diagram allows „x‟ and „o‟ to be connected; statement like A = 

∅∨ B ∭∅ can be represented in one diagram. Shin suggested that Pierce‟s 

transformation rules were not differentiating between syntax and semantics of visual 

languages. Pierce admitted to this, simplified the six transformation rules and omitted 

other rules (Molina 2001; Shin, 1994). 

 

Below are Pierce‟s transformation rules: 

 

1. Any entire sign of assertion can be removed. For example: „x‟, „o‟ or both 

connected to each other can be erased in a diagram. 

2. Any sign of assertion can receive accretion. A sign can be added in a 

diagram either „o‟, „x‟ or a straight line. 

3. Two different signs cannot be disconnected in the same zone. Both „o‟ 

and „x‟ cannot be asserted disjoined in the same minimal region. 

 

3.7 UNIFIED MODELLING LANGUAGES 

Unified modelling language (UML) is a graphical language used to specify, virtualise 

and document the properties of software (Tutorial point, 2015). The UML diagrams 

are used to model the business processes as well as the practical systems in the 
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real-world environment. UML uses diagrams to represent the specification and it is 

accessible to all users. 

 

It was introduced by Jim Rumbaugh, Ivar Jacobson and Grady Booch as a unifying 

language to specify software (IBM, 2003). The UML standard has been accepted by 

the object management group (OMG) (Williams, 2004). UML is widely used in 

modelling the object-oriented system (Tutorial point, 2015). There are various UML 

diagrams, namely class, object, component, deployment, use case, sequence, 

collaboration, state chart and activity diagrams (Stapleton et al, 2007). However, the 

scope of our research is based only on diagrams defined below.  

 

3.7.1 Use case diagram 

 

Use case diagram is used to provide a visual representation of functional 

requirements, to describe the relationship between actors and processes as well as 

the relationship among use case (IBM, 2003). The purpose of use case diagrams is 

to gather requirements, identify external and internal factors of the system, and 

indicate the interaction between requirements and use cases.  

 

Components of use case diagrams are the following: 

 

 Actors – represent anyone who interacts with the system. The actor may be a 

person or a system. The name of an actor must be a noun and describe the 

role played by an actor in the system. The actor is a stick person drawn on the 

side of a diagram.  

 Use case – is an oval shape containing the name in the centre and captures 

certain functionalities of the system.  

 Lines – indicates the relationship between actors and use cases.   
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CD Sales system

View sales for 

band‟s CD

View Billboard 

2000 report 

View sales for 

specific CD

Get latest 

Billboard 2000 

report 

Band manager

Record manager

Billboard reporting 

service  

Figure 3.40: A use case diagram 

 

The above diagram illustrates the system for selling CDs (IBM, 2003). The system 

allows the band manager to view the sales and billboard reports for the band‟s CD. 

The record manager can also view the reports for sales and the billboard for a 

specific CD. The system sends the billboard report to the external system called the 

billboard reporting service (IBM, 2003).   

 

3.7.2 Class diagram 

 

A class diagram is used to describe the static view of an application and construct 

the executable code for the software system. The diagram also describes the 

variables and methods of a class (Tutorial point, 2015). The class diagram is used in 

the analysis stage to describe the relation between classes as well as in the design 

stage to describe how the system will be developed (Williams, 2004). 

 

The aims of class diagrams are to: 

 Analyse and design the static view of a system 

 Specify the operations of a system 

 Forward and reverse engineering of the software application 
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Customer

name: String

location: String

sendOder()

reciveOder()

Order

date: Date

number: String

confrim()

close()

SpecialOrder

name: String

location: String

sendOder()

reciveOder()

dispatch()

NormalOrder

name: String

location: String

sendOder()

reciveOder()

dispatch()

receive()

1 n

 

Figure 3.41: An example of a class diagram 

Figure 3.41(Tutorial point, 2015) indicates the class diagram modelling the Order 

System. The diagram states that one customer can place many orders and one 

order can be placed by one customer. The Order class is a super class and has two 

subclasses, which are SpecialOrder and NormalOrder (Tutorial point, 2015).  

 

3.7.3 State chart 

 

A state chart diagram is used to describe all possible states an object can occupy 

and the way states are affected by external and internal entities (Tutorial point, 

2015). It also specifies the various states of an object in a system, the flow of the 

system from one state to another and the life time of an object from initiation to its 

termination (Tutorial point, 2015). The state chart diagram is mostly used in reactive 

systems. Reactive systems are affected by external and internal events (Tutorial 

point, 2015).  

 

The purposes of state diagrams are to: 

 Model dynamic aspects of the system 

 Specify the life time of an object in a reactive system 

 Define a state machine 
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Idle
Send order

 request

Select normal or

special order

Confirm order

Dispatch order

 

Figure 3.42: An example of a state chart diagram 

 

The example of a state chart diagram in Figure 3.42above (Tutorial point, 2015) 

illustrates the state of the order object. The process starts with an idle state; then the 

following states are sent a request, they confirm the request and dispatch the order. 

The order object occupies these states during the ordering processes (Tutorial point, 

2015).   

 

3.8 CHAPTER SUMMARY 

 

In this chapter, we have outlined various diagrams. Most of these diagrams use 

closed curves for representing the relationship between sets. Venn and Euler 

diagrams seem to be less expressive; however, Venn II and Euler/Venn diagrams, 

which extended these languages, made a significant contribution to facilitating the 

enhancement of semantics. Spider diagrams inherited its semantics from various 

languages. SD2 and SD3 are extended versions of spider diagrams that are more 

expressive in their reasoning.  

 

This research covered the basic features of diagrammatic languages. Euler 

diagrams form the basis of most diagrams discussed in this research.   

 

UML is one of the most widely used diagrammatic languages for software 

specification in the industry. However, it might be very interesting if diagrams that 

were based on closed curves could also receive such wide use in the industry for 
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specifying large critical software projects where reliability is the very essential 

requirement. An important goal of software specification is to have a notation that is 

able to yield a specification that is precise and accessible to all stakeholders. 

Unfortunately, UML will not form part of the research, as it is a high-level 

diagrammatic language. 

 

Diagrams are expressive and can yield good specification results in a software 

project. The next chapter investigates the extent to which diagrams can be used to 

capture the constructs of Z notation. The operations in Z schemas will be 

represented in a diagrammatic format.  
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CHAPTER FOUR 

 

4. TRANSFORMING Z CONSTRUCTS INTO DIAGRAMMATIC 

 NOTATIONS 

In the previous chapter, various diagrams based on closed curves and set theory 

were discussed. Most of the diagrams based on closed curves emerged from Euler 

diagrams. Diagrams also have transformation rules that manage modification of their 

parts or objects.  

 

This chapter is an extension of the paper published in the Lecturers Notes in 

Computer Science (LNCS) MEDI 2013 (Moremedi & van der Poll, 2013).It is aimed 

at investigating the extent to which diagrams can capture the structures and 

operations of discrete structures omnipresent in Z specifications.  

 

Translating semi-formal notations (e.g. UML)  to variants of Z have been done before 

(Soon-Kyeong, David & Carrington, 2000), but since UML may be viewed as being at 

a “higher” level than the core set-theoretic structures and operations on which a Z 

specification is based, our translations are based on closed-curve constructs, Euler-, 

Venn-, Spider- and Pierce diagrams. The set-theoretic structures and operations in Z 

have been identified and specified, using diagrams.  

 

4.1 SPECIFICATION STRUCTURES AND OPERATORS 

 

The Z notation operators and constructs are transformed into a diagram. The 

specifications shown stem mainly from Hayes (1992). The first operation considered 

is domain restriction, indicated by ◁ 

 

4.1.1 Domain restriction 

 

Below is an example specification showing two basic types, namely a state space 

(File) and one partial operation (SelectRecord) on the state. The example is 

modelled on specifications in Hayes (1992) and Van der Poll (2010).  
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The basic types are: 

 

[KEY, RECORD] 

 

The abstract state of the file system is shown below: 

 File  

file: KEY ⇸ RECORD 
 

 

The relationship between KEY and RECORD is defined by a partial function (⇸).  

 

Consider the above file system. Figure 4.1 below gives a diagrammatic 

representation of the state File. The „rectangles‟ containing the closed curves are 

used to indicate the basic types in the specification. It is a notation introduced by this 

research. Closed circles called contours, represent sets in the specification.  

 

It was stated in section 1.3 that the features of various diagrammatic languages will 

be combined to form one diagrammatic notation that will be used to capture the 

constructs of Z. Closed curves, also known as contours, are used by most diagrams 

based on Euler diagrams to represent sets. These diagrams based on Euler 

diagrams include Venn, Pierce and spider diagrams, discussed in Chapter 3.   

 

The curved arrow connecting two contours denotes a relation. Pierce and spider 

diagrams also use lines to connect elements in a set; however, lines used by these 

diagrams do not have arrows. In this diagrammatic notation, lines with arrows from 

one set to another represent a partial function (pf). The name of the relation (file) 

appears at the top of the curve and its type is labelled below the curve.  
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file

RECORDKEY

KEY RECORD

pf

File

dom(file)

 

 

Figure 4.1: The abstract state of a File system 

 

Next we consider an operation, SelectRecord, to restrict the file system to just one 

record for which a key (k?) is provided. 

 

The schema below specifies an operation on the state ΔFile. It specifies that the 

operation will change the state of the system. The operation receives the k? as input. 

Predicates are specified below the short dividing line in a schema, and further 

constrain the state components and any additional variables. The predicate k? ∈ 

dom file indicates that the key should be known to the system. The file system is 

changed to just the record matching k?. Note, in practice, one would define a 

variable for this purpose instead of removing all other records from the state. 

 SelectRecord  

ΔFile 

k? : KEY 
 

k? ∈dom file 

file′= {k?} ◁file 
 

 

Figure 4.2 shows how the above operation may be translated into a diagrammatic 

language. The top part of the diagram (called a before diagram) represents the 

precondition of the system. It indicates that the key k? should exist in the file domain. 
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The bottom diagram (called an after diagram) specifies that k? is the only key left in 

the file. The black dot • indicates that there is at least one element in the set.  

 

The syntax is a feature used in spider diagrams to present an element. As indicated 

in Chapter 3, spider diagrams use spiders to indicate the existence of elements in a 

set. It further states that distinct spiders represent elements unless joined by a strand 

or tie. Having restricted the domain of file to just {k?} leaves one record in the file. 

Any such key equals k?. 

 

KEY

SelectRecord

Any x = k?

Δ

k?

KEY RECORD

file

KEY RECORD

file′

RECORD

pf

pf

dom(file′)

dom(file)

File

 

Figure 4.2: Operation SelectRecord 

 

The diagram also has the list of the basic types on the top left. The syntax was 

introduced into the notation to indicate the types used in the operation. The 

rectangles indicate the set assigned to each type. The diagrammatic notation 

developed in this research also has the states of the system on the top right-hand 

side. This syntax was imported from Z notation so that it can be used to indicate 

whether the state of the system will change after the operation or not.  
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Note that the diagrammatic notation allows the researcher to abstract away from the 

set connotation {k?} specified in the schema, simply because he is working with a 

singleton, and the only element, such as a singleton, is explicitly instantiated.  

 

4.1.2 Overriding operator 

 

Consider a symbol table, which stores a set of symbols with associated values. SYM 

and VAL are basic types used to represent the set of symbols and values associated 

with symbols respectively. The state, ST, consists of one component, st, a partial 

function from SYM to VAL.  

 ST  

st: SYM ⇸VAL 
 

 

Figure 4.3 below gives a diagrammatic representation of the above state. Note that 

the denotation 'dom(st)' may be omitted, since it may be inferred from the diagram.  

 

st

VALSYM

SYM VAL

pf

ST

 

Figure 4.3: The abstract state of a symbol table 

 

The following operation associates a value v? with a symbol s?. The operation gives 

feedback to the user. The precondition of the operation is that the symbol to be 

replaced should exist in the system. The old value will be replaced if the precondition 

has been satisfied. The user will receive an OK response once the operation has 

been completed successfully.  
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 Replace  
Δst 

s? : SYM 

v? : VAL 

rep! : REPORT 
 

s? ∈ dom st 

st′=  st ⊕ {s? ↦ v?} 

rep! = OK 
 

The diagram in Figure 4.4 denotes the operation to update a symbol in the symbol 

table defined in the above schema. The top part of the diagram is the precondition of 

the system. The before diagram indicates that s? should exist in the symbol table, 

while v?, the input to the system, may either be in the range of st or not. The after 

diagram indicates that s? maps to v? and variable rep! has the value “OK” after the 

operation. 

 

The line used to connect variable v? with another element outside the set of values 

is a syntax used in spider and Pierce diagrams to represent „or‟. The dotted line with 

an arrow mapping s? to v? is another new syntax introduced in this notation to map 

one variable to another, thereby forming pairs, a domain and a range.  

rep! = Ok

st′

STΔVAL REPORTSYM

v?

dom(st)

SYM VAL

s?

REPORT

pf

Replace

rep!

st

v?

dom(st)

SYM VAL

s?

REPORT

pf

 

Figure 4.4: The Replace operation of symbol table 
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4.1.3 Domain subtraction 

 

Consider the next higher level of the above file system to model file identifiers 

mapped to files. Each file has a unique identifier. The schema below depicts the 

state of such a file storage system (SS). The abstract state denotes a partial 

function. 

 SS  

fstore: FID ⇸ FILE 
 

 

Figure 4.5 shows the abstract state of SS. It specifies fstore as a partial function. 

 

SS

FID FILE

fstore

pf

FILEFID

 

Figure 4.5: The abstract state of SS 

 

The schema below specifies the operation of deleting a file (Hayes, 1992). Only files 

that exist in the system can be deleted. 

 

 destroySS  

ΔSS 

fid? : FID 

fid? ∈ dom fstore 

fstore′ = {fid?} ⩤fstore 
 

 



80 
 

The domain subtraction operator „⩤‟ is used to remove fid?; the state of the system is 

changed, as indicated. After the operation, fid? no longer exists as a valid file 

identifier in the system. 

 

The diagram below captures operation destroySS. The before diagram specifies that 

the file to be deleted should exist in the system and the after diagram states that the 

file identifier has been removed from the set of valid file identifiers. A dashed line, 

also a new syntax introduced in this notation, indicates that the movement is used to 

denote the variable that is deleted from the system. It will move from outside into the 

contour if a new variable is added in the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: The destroySS operation of the file storage system 

 

4.1.4 Range subtraction 

 

A simplified banking system stores the details of customers with the corresponding 

branches to which they belong. A customer can be registered with only one branch. 

The state of the system is given by bankSystem. 

FILE

destroySS

fid?

Δ

fid?

FID FILE

fstore

FID FILE

fstore′

FID

pf

pf

dom fstore

dom fstore

SS
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 bankSystem  

bank : CUSTOMER ⇸ BRANCH 
 

 

The diagram below models the abstract state of the bankSystem. 

 

BRANCH

bankSystem

bank

pf

CUSTOMER BRANCH

CUSTOMER

 

Figure 4.7: Abstract state of the bankSystem 

 

An operation to delete an entire branch from the system is similar to the domain 

subtraction operation shown earlier, and is given by: 

 

 deleteBranch  

Δ bankSystem 

branch? : BRANCH 

 

branch? ∈ ran bank 

bank′= bank ⩥{branch?} 
 

 

To simplify the specification, one assumes that no customers are registered at the 

branch to be deleted. In practice, customers would have been moved to an 

alternative branch beforehand. The diagram follows below. 
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BRANCH

bank′

branch?

pf

bankSystemΔ

deleteBranch

CUSTOMER BRANCH

bank

branch?

pf

CUSTOMER BRANCH

CUSTOMER

 

Figure 4.7: The deleteBranch operation 

 

4.1.5 Range restriction 

 

The schema below indicates the operation of the bankSystem to view a report of 

customers that are registered with a specific branch. In this example, the assumption 

is that the branch has a set of customers. 

 

 viewCustomerReport  

ΞbankSystem 

name! : CUSTOMER 

branch? : BRANCH 
 

branch? ∈ ran(bank) 

name! = bank ▷{branch?} 
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The diagram in Figure 4.8 illustrates the viewCustomerReport operation. 

 

BRANCH

bank′

branch?

pf

bankSystem

viewCustomerReoprt

CUSTOMER BRANCH

bank

branch?

pf

CUSTOMER BRANCH

CUSTOMER Ξ

name!

name!

 

Figure 4.8: The viewCustomerReport operation 

 

4.1.6 Specifying non-singleton sets 

 

So far we have removed from a set or restricted the domains or ranges of relations 

to a set containing one element only. We were able to abstract away from the 

complexities of sets and showed in such cases a single item only instead of a 

singleton containing only that item. 

 

The following operation removes a set containing an unspecified number of items 

from a domain and also overrides the relation with one of the same type. The 

abstract state of the File system is given above and the operation is specified by 

FileUpdate below. 
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 FileUpdate  

Δ File 

d? : ℙKEY 

u? : KEY⇸ RECORD 
 

d? ⊆dom file 

d? ∩dom u? = {} 

file′= (d? ⩤ file) ⊕ u? 
 

 

The file f and the updated file f′ are modelled by partial functions from keys to 

records. The set of keys to be deleted is represented by d?; hence, modelled with 

ℙKEY. Only valid keys may be deleted. The variable u? is specified by a partial 

function from KEY to RECORD, and it is used to represents the set of updated keys 

and the corresponding new values. The preconditions d?⊆ dom file state that only 

keys in a file can be deleted. The predicate d?∩ dom u? = {} indicates the system 

does not allow a record to be deleted and updated simultaneously. The updated file 

is the result of a new file with deleted keys in d?, overridden by new records in u?. 

 

FileUpdate is modelled by the diagram in Figure 4.9. The diagram below contains 

overlapping contours, which is a syntax used in Venn diagrams as well as some of 

the spider diagrams. The overlapping contours indicate that the two sets share some 

of the elements. In this operation, a set of keys to be deleted as well as the set of 

keys to be updated are from the same file. Hence, the overlapping contours are 

used. The variables d? and u? are represented with contours instead of black dots 

(⦁). The reasoning for using the contours is that the variables also resent sets and 

not elements. 
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FileUpdate

d?

KEY RECORD

u?

pf

file′  

dom(u?)

dom (file′ )

RECORD

d?

KEY RECORD

u?

pf

file

dom(u?)

dom(file)
pf

pf

KEY

 

Figure 4.9: FileUpdate operation 

 

4.1.7 Bags 

 

An example of stock consisting of orders and products can be used to illustrate bags 

(Bowen, 2014). Basic types of the stock system are defined below. 

 

[ORDERID, PRODUCT] 

 

The number of occurrences should be recorded for each product in a stock. The 

schema below specifies the abstract state of the stock system using a bag. The 

declaration in this indicates that different products occurring multiple times in a bag 

constitute a stock.  

 Stock  

stock:bagPRODUCT 
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The diagram below specifies the abstract state of the stock system. It illustrates that 

the type PRODUCT is a bag and stock is a member of the type bag PRODUCT. 

Stock

PRODUCT

PRODUCT

bag

stock

 

Figure 4.10: Abstract state of Stock 

 

Figure 4.11 specifies the diagrammatic version of the abstract state of the stock 

system. It is an expanded version of a bag in terms of its underlying partial function 

definition.  

stock

N1KEY

PRODUCT N1

pf

Stock

dom(stock)

PRODUCT void

 

Figure 4.11: Expanded Bag PRODUCT definition 

 

Products may be ordered in case of shortage of stock or if the stock is depleted. 

However, it is not desirable to place an order when the stock is completely finished, 

as customers will be inconvenienced. The abstract state of order is modelled in the 

schema below. 
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 OrderInvoices  

orders : ORDERID ⇸ORDER 

orderStatus : ORDERID ⇸ ORDERSTATE 
 

dom orders = dom orderStatus 
 

 

The relationship of orders and orderStatus are partially dependent on ORDERID; 

hence, they are defined with a partial function (⇸). The orderState can have 

„pending’ and „invoiced’ value.  

 

The diagrams below capture the abstract state of OrderInvoices defined in the above 

schema. The two-sided arrow in the part of the diagram between orders and 

orderStatus indicates that all orders in the domain have status. 

 

orders

ORDERKEY

ORDERID
ORDER

pf

OrderInvoices

dom(stock)

ORDERID voidORDERSTATE

ORDERSTATEorderstate

pf

 

Figure 4.12: Abstract state of OrderInvoices 
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EnterStock operation is modelled in the schema below. 

 EnterStock  

ΔStock 

newstock? : bag PRODUCT 
 

stock′= stock ⊎ newstock? 

orders′= orders 

orderStatus′= orderStatus 
 

The operation above will change the state of the system once completed 

successfully. In this operation, newstock? is the input variable and it is defined by 

type bag PRODUCT. The bag union operator adds the new stock to the existing to 

form a new bag of stock′.  

 

The Enterstock operation is specified in the diagram below.  

ORDERPRODUCT

EnterStock

ORDERID StockΔ

ORDERID

ORDER

pf

orders

dom(orders)

ORDERSTATE

stock

newstock?

bag PRODUCT

dom(orderStatus) orderStatus

pf

ORDERPRODUCT ORDERID StockΔ

ORDERID

ORDER

pf

inv(orders’)

dom(orders’)

ORDERSTATE

stock’

newstock?

bag PRODUCT

dom(orderStatus’) inv(orderStatus’)

pf

 

Figure 4.13: The EnterStock operation 
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4.1.8 Combining operations 

 

The schema is the building blocks of Z specification; as a result, various operations 

will be combined to increase the expressiveness and form one comprehensive 

operation (intro to form). In this example, we will use the Delete operation from the 

symbol table. The Delete operation deletes a symbol and its associated value in the 

symbol table. The precondition of deleting the symbol in the system is that it should 

be present before it is deleted. If this condition is not met then the error message 

symbol_not_present will be displayed. The Delete operation and NotPresent error 

can be modelled individually; however, the two schemas have been combined to 

illustrate this example. The schemas are joined using the disjunction symbol (∨). The 

schema below models the STDelete, which combines the Delete and NotPresent 

schemas. 

 Delete  

ΔST 

s? : SYM 

rep! : REPORT 
 

( s? ∈ dom st 

st′ = {s?} ⩤st  

⋀rep! = OK ) 

∨ 

(s? ∉ dom st 

rep! = Symbol_not_present) 
 

 

The variable s? represents the symbol to be deleted and rep! will hold the value of 

the message that will be displayed when the operation is complete. In this operation, 

rep! can hold two values, OK if the operation is completed successfully and 

symbol_not_present if the precondition has not been met.  

 

rep ::= OK | symbol_not_present 
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The first predicate s?∈ dom st states that the symbol should be present in the 

system. Upon the successful completion of the operation, the symbol will be deleted 

on the system and the message OK will be displayed to the user. However, if the 

symbol is not present, no symbol will be deleted from the system. The error message 

symbol_not_present will be displayed to the customer. 

 

The diagram below has two sub-diagrams, which represent the operation in the 

schema above. It has preconditions, post-conditions as well as the results that will be 

returned after completion of the operation. The two sub-diagrams are joined by a 

disjunctive symbol, the same way as in the schema above. 
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rep! = 

Symbol_not

_present

REPORT

rep!

st
dom(st)

SYM VAL

s?

REPORT

pf

st′
dom(st)

SYM VAL

s?

pf

rep! = OK

st′

VAL REPORTSYM

dom(st)

SYM VAL

s?

REPORT

pf

STDelete

rep!

st
dom(st)

SYM VAL

s?

REPORT

pf

∨

Δ ST

 

Figure 4.14: The STDelete operation 
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4.2 CHAPTER SUMMARY 

 

This chapter considered the feasibility of translating Z constructs to the language of 

contoured diagrams. The formality of Z lends itself to precise specifications and it 

has been applied successfully to specify systems where the quality and reliability are 

critical (Woodcock, 1996). Z may also be used as a documentation tool to increase a 

specifier‟s understanding of system operations.  

 

A possible disadvantage of a formal notation is that specialist knowledge of the 

underlying mathematics is required before the real benefits of formal specification 

can be realised (Bowen, 2003). This steep learning curve is often the reason cited 

why formal notations are not used more widely in the software industry.  

 

Diagrams model a system by using contours to represent the relationships between 

mathematical structures. The use of diagrammatic languages is perceived as a way 

whereby software specifications are made more accessible to stakeholders and 

potential users of the system (Gil & Howse, 1999). In the past diagrams were often 

excluded as contenders of formality; however, the research done by Shin challenged 

the view that diagrams could not be used in the arena of formal specification work 

(Dau, 2004).  

 

Chapter 5 develops a specification in our diagrammatic notation to determine the 

feasibility of the notation developed in this chapter. The specification results of 

diagrammatic language will be compared to the Z specification and conclusions will 

be drawn, based on the results.  
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CHAPTER FIVE 

 

5. MODELLING Z CASE STUDY WITH DIAGRAMS 

In Chapter 4, Z constructs and operators were transformed into diagrams. The 

notations of spider, Pierce and Euler diagrams were combined to form one 

diagrammatic notation. The diagrams were used to represent the states and 

operations modelled in Z schemas. 

 

The purpose of this chapter is to determine the merits of diagrammatic notations with 

respect to the established techniques of formal specifications, in particular the Z 

specification language. Formal specification languages generally embody a fair 

amount of mathematics, requiring rigorous training and experience in order to 

comprehend the specification and gain the desired benefits. Our case study is the 

specification of a symbol table (Hayes, 1992) from the arena of compiler 

construction.   

 

5.1 SYMBOL TABLE 

 

A symbol table (ST) maintains a set of unique symbols, and each symbol is 

associated with a corresponding value.  

 

The usual operations performed on a symbol table are:  

 

 Adding a symbol with a corresponding value, provided that the symbol does 

not already exist in the ST 

 Looking up the value associated with a given symbol 

 Replacing the value of an existing symbol 

 Deleting a symbol from the table 
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The specification follows the established strategy for constructing a Z spec (Potter, 

Sinclair & Till, 1996), augmented by a set of enhanced principles (Van der Poll & 

Kotze, 2005) to model the operations of a system. Each schema representing the 

state and operations of the system is also modelled with a diagrammatic notation 

throughout the specification. 

 

Three basic types are defined for our specification:  

 

[SYM, VAL, REPORT] 

 

SYM represents the set of all symbols that may ever find their way into the symbol 

table; VAL specifies the set of all allowable values, and feedback to a user of the 

specification is indicated by REPORT.  

 

In line with a proposed design principle Van der Poll and Kotze (2005) stated that 

communication with the user of the specification ought to be maximised. 

Subsequently, feedback to the user is defined and consists of a data type definition: 

 

REPORT  ::= OK 

                      | Symbol_not_present 

                      | Symbol_present 

 

Further user communication may be defined but it is beyond the scope of this 

research. 

 

5.1.1 States and operations 

 

5.1.1.1 Abstract state 

 

The schema ST below denotes the abstract state of the system. The relationship 

between SYM and VAL is modelled by a partial function, st. 

 ST  

st : SYM⇸VAL 
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The diagram in Figure 5.1 below is a graphical representation of the above abstract 

state. The three basic types mentioned above are represented in the diagrams. 

Furthermore, the diagram indicates that SYM is mapped to VAL by partial function.  

st

VALSYM

SYM VAL

pf

ST

REPORT

 

 

Figure 5.1: The abstract state of ST 

 

5.1.1.2 Initial state 

 

The initial state, Init_ST, of the symbol table system appears below. Unless dictated 

otherwise (e.g. schema involving numeric components), it is customary to start with 

empty sets as indicated: st′ =∅.System components are included above the short 

dividing line and relationships among components are given below the line. 

 Init_ST  

ST 
 

st′ = ∅ 
 

 

Figure 5.2 captures Init_ST in a diagram. The shading of the closed curve is used to 

denote that the set is empty, which is in line with a particular version of the language 

of Venn diagrams (Chow & Ruskey, 2004). Our operation diagrams are divided into 

two parts. The top half of the larger box is called a before diagram, while the lower 

part is coined the after diagram.  

 

Notice a slight deviation from the information in schema Init_ST: In the formal 

notation we specify an empty function; in the diagram we explicitly show that the 

domain of st' is empty, leading to a proof obligation st′ = ∅ as far as the diagram is 

concerned. Shading is a feature taken from Venn and spider diagrams to indicate 
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that the set is empty. In spider diagrams, if shading is used in a region with no 

elements, it denotes an empty set. The Venn diagrams also use shading to indicate 

an empty set or region; however, if there are elements in a shaded region, then it is a 

contradicting diagram.  

 

VALSYM

Init_ST

st′
SYM VAL

pf
 

st
SYM VAL

pf

 

Figure 5.2: Initial state of the symbol table 

 

5.1.2 Operations on the symbol table 

 

The following schema specifies the operation to add a new symbol in the symbol 

table. A precondition is that the symbol to be added should not already be in the 

table. 

 Add  

ΔST 

s? : SYM 

v? : VAL 

rep! : REPORT 
 

s? ∉ dom st 

st′ = st ∪{ s? ↦ v? }  

⋀rep! = OK 
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The Add operation receives the inputs s? and v?, denoting the new symbol and its 

associated value respectively, to be added to the symbol table. Feedback to the user 

is indicated by rep!. For a correct Add operation, the new symbol ought not to be in 

the symbol table already – s? ∉ dom st. The after state contains the new symbol and 

its associated value. The user is informed of a successful addition to the table. 

 

The diagram in Figure 5.3 represents the above Add operation in appropriate before 

and after diagram notation. A possible state change is indicated in the top right-hand 

corner of the before diagram. 

 

rep! = OK

st′

STΔVAL REPORTSYM

v?

dom(st)

SYM VAL

s?

REPORT

pf

Add

rep!

st

v?

dom(st)

SYM VAL

s?

REPORT

pf

 

Figure 5.3: The Add operation of ST 

 

In the before diagram, s? represents an input variable that is not yet in the symbol 

table (indicated as being outside the circle, which represents the domain of st). 

Notice this deviation, giving more information in the diagram than what is available in 

the schema. The straight line, which joins the two dots in the before diagram 

indicates that it is immaterial whether v? is already a value in the symbol table or not. 

 

Strictly speaking, the component rep! of type REPORT does not exist in the before 

state (diagram); it only comes into „existence‟ as part of the post-condition of the 
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schema. However, looking ahead at refinement into executable code, variable rep! 

would presumably be a global variable in a programming language and would, 

therefore, be declared and exist in a program before an operation (like Add) would 

be invoked. Hence, we made it part of our before diagram. Note that the Z schema 

notation is not specifically clear about this aspect.  

 

The after diagram indicates that s? has „moved‟ to be part of the symbol table and is 

related to its value v?. Appropriate feedback is conveyed to the user of the 

specification. 

 

The LookUp operation is used to determine the current value associated with a 

symbol. ΞST indicates that the state of the system remains invariant. Input to the 

operation is represented by s?, and output is specified by v! and rep!.  

 LookUp  

ΞST 

s? : SYM 

v! : VAL 

rep! : REPORT 
 

s? ∈ dom st 

v! = st (s?)  

⋀rep! = OK 
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Figure 5.4 below is a diagrammatic representation of operation LookUp. 

 

VAL REPORTSYM

rep! = OK

st′

v!

dom(st)

SYM VAL

s?

REPORT

pf

ST

LookUp

rep!

st

v!

dom(st)

SYM VAL

s?

REPORT

pf

Ξ

 

Figure 5.4: The LookUp operation 

 

Variable s? ought to exist in the before diagram. Naturally it is related to a value 

(according to our Add operation), but such value is not known beforehand. The after 

diagram states that s? is linked to its value v!. Feedback to the user is specified 

accordingly. 

 

The schema below describes an operation to replace the value of a symbol already 

in the table. The Replace operation may also change the state of the system just like 

in operation Add. Hence, the notation ΔST. The precondition of the operation states 

that s? ∈ dom st indicates that the symbol of the value to be replaced should be 

present in the system. The post-condition st′ = st ⊕ {s?↦v?} denotes that st′ is st 

overwritten by the symbol associated with a new value. 
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 Replace  

ΔST 

s? : SYM 

v? : VAL 

rep! : REPORT 
 

s? ∈ dom st 

st′ =st ⊕{s? ↦ v?}  

⋀rep! = OK 
 

 

The diagram in Figure 5.5 models the above Replace operation.  

 

rep! = OK

st′

VAL REPORTSYM

v?

dom(st)

SYM VAL

s?

REPORT

pf

Replace

rep!

st

v?

dom(st)

SYM VAL

s?

REPORT

pf

STΔ

 

Figure 5.5: The Replace operation 

 

The symbol whose value is to be replaced ought to exist in the table. As before, it is 

immaterial whether the associated value is present in the range of the function or 

not. Afterwards, the value of s? is mapped to v?.  

 

A symbol may also be deleted from the symbol table. For a correct deletion, we 

would require the symbol to exist in the table beforehand. The following schema 
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specifies the operation to delete a symbol. A proof obligation of Delete is to show 

that s? does not exist in the after state of st. 

 

 Delete  

ΔST 

s? : SYM 

rep! : REPORT 
 

s? ∈ dom st 

st′ = {s?} ⩤st  

⋀rep! = OK 
 

 

The diagram below captures the operation for Delete. The after diagram indicates 

that s? is not in the domain of st′. For the sake of clarity, one could show that s? has 

been related to some value in its range and that such value may continue to exist or 

may not exist anymore (cf. the notation in figures 5.3 and 5.5) in the range of st′. But, 

since schema Delete is silent about such information, our diagram follows suit. One 

could argue that the indication of such tautological information would indeed 

strengthen the visual characteristics of the diagram. 

rep! = OK

st′

STΔREPORTSYM

dom(st)

SYM

s?

REPORT

pf

Delete

VAL

rep! 

st
dom(st)

SYM

s?

REPORT

pf

VAL

VAL

 

Figure 5.6: The Delete operation 
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So far in this research we showed partial and correct versions of our operations. If 

any of the preconditions are not satisfied, error conditions arise together with the 

appropriate feedback to the user. An example is NotPresent in conjunction with 

LookUp.  

 NotPresent  

ΞST 

s? : SYM 

rep! : REPORT 
 

s? ∉ dom st 

rep! = Symbol_not_present 
 

 

A diagrammatic specification of NotPresent is given in Figure 5.7. It shows that the 

symbol enquired about is not present in the table (outside dom(st)). The condition 

prevails in the after diagram; hence, there is no change in the system state. 

 

rep! = 

Symbol_not_

present

STREPORTSYM

REPORT

NotPresent

rep!

st
dom(st)

SYM VAL

s?

REPORT

pf

Ξ

st′
dom(st)

SYM VAL

s?

pf

VAL

 

Figure 5.7: A representation of NotPresent schema 
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The operation may also fail if the symbol to be added already exists in the system. 

The schema below models the error return when the symbol is present in the symbol 

table.  

 Present  

ΞST 

s? : SYM 

rep! : REPORT 
 

s? ∈ dom st 

rep! = Symbol_present 
 

 

The diagram in Figure 5.8 models the error of adding a symbol that already exists in 

ST. The post-condition diagram indicates that the state of the system did not change 

after the error had occurred.  

 

rep! = 

Symbol_present

STREPORTSYM

REPORT

Present

rep!

st
dom(st)

SYM VAL

s?

REPORT

pf

Ξ

st′
dom(st)

SYM VAL

s?

pf

VAL

 

Figure 5.8: The Present operation 
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Successful operations and errors can be presented in one schema. The robust 

operation can be modelled as: 

 

STAdd ∬ ( Add ∧ Success) ∨  Present 

STLookup ∬ ( Lookup ∧ Success ) ∨  NotPresent 

STReplace ∬ ( Replace ∧ Success ) ∨  NotPresent 

STDelete ∬ ( Delete ∧ Success ) ∨  NotPresent 

 

As illustration, we expand the operation STAdd: 

 STAdd  

ΔST 

s? : SYM 

v? : VAL 

rep! : REPORT 
 

(s? ∉ dom st 

st′ = st ∪{ s? ↦ v? } ∧ rep! = OK ) 

∨(s? ∈ dom st∧rep! = Symbol_present) 

 

 

The above schema models the Add operation combined with the Present error, 

which is displaced. The symbol that already exists is added on the system. The 

precondition of the Add operation is that the symbol to be added should not exist in 

the system. If the symbol is not present, the system will allow the user to add the 

symbol and the value associated with it. Otherwise, if the symbol already exists, the 

error message Symbol_present will be displayed to the user. 

 

The diagram below represents the STAdd operation. The operation is represented 

with two sub-diagrams joined by disjunction (∨). The operation will display the “OK” 

message upon the successful completion of the operation and the error message 

Symbol_present if the operation does not meet the precondition. 
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rep! = 

Symbol_present

REPORT

rep!

st
dom(st)

SYM VAL

s?

REPORT

pf

st′
dom(st)

SYM VAL

s?

pf

rep! = OK

st′

STVAL REPORTSYM

v?

dom(st)

SYM VAL

s?

REPORT

pf

STAdd

rep!

st

v?

dom(st)

SYM VAL

s?

REPORT

pf

∨Δ

∨

 

Figure 5.9: The STAdd operation 

 

The spider diagrams (SD3) have the capability of joining two or more diagrams with 

conjunction and disjunctive operators to make one diagram. The diagrams of the 

Add operation and Symbol_present error are presented in one diagram. The feature 

of joining the diagram in this way was taken from SD3 that has been discussed in 

Chapter 3. Other diagrams such as Pierce, Euler and spider diagrams are also able 

to combine two diagrams; however, this is achieved without using conjunction and 

disjunctive operators.  
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5.2 COMPARISONS 

 

A comparison of the differences and similarities between a formal notation, as 

embedded in Z, with diagrammatic notations introduced in this research appears in 

Table 5.1. 

 

Table 5.1: Comparison of formal and diagrammatic notations 

 

Attribute 
Specification Style 

Formal specification Diagrammatic 

Precision 

A formal specification is per 

definition precise and 

unambiguous. 

Diagrams may suffer from 

imprecision and ambiguity. 

Conciseness 
Formal specifications (e.g. 

Z) are generally concise. 

Diagrams tend to be verbose and 

time-consuming to construct. 

Clarity 

A formal specification is 

clear, but only to the 

mathematically literate. 

Diagrams are comprehensible to 

non-mathematicians owing to 

their visual character. 

Level of 

detail 

Schema Init_ST specifies st′ 

= ∅. Information about the 

domain and range is to be 

inferred indirectly. 

Figure 5.2, which represents 

schema  Init_ST, specifies the 

domain of st′ to be empty. This 

gives more detail than the 

schema predicate. 

Additional 

information 

Schemas leave tautological 

information up to the user to 

determine. 

Tautological information (e.g. v? 

∊ ran st or not) is shown explicitly 

(e.g. Figure 5.3). 

Variables in 

precondition 

Output variables in the 

header of a schema 

presumably exist as part of 

the precondition. 

Output variables are explicitly 

shown to exist in a before 

diagram. 
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5.3 CHAPTER SUMMARY 

 

In this chapter, a case study from the literature was used as the vehicle of 

comparison. Formal specifications are generally concise and precise, while the 

corresponding diagrammatic notation is more verbose and takes up more space 

than, for example, a Z schema.  

 

In some instances, however, a diagram may convey information more directly, e.g. 

when specifying the domain of a function to be empty instead of stating the function 

to be empty. Other aspects relate to specifying tautological information and the 

presence of output variables as part of the precondition of a schema or a before 

diagram. A diagram may also be more easily interpreted than the corresponding 

mathematical text.  

 

The proof of concept done in Chapter 4 appears to be useful for translating a Z 

specification into diagrams. The findings of this research as well as the extent to 

which the research has answered the research questions will be discussed in 

Chapter 6. Chapter 6 also concludes the research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



108 
 

CHAPTER SIX 

6. CONCLUSION 

 

The previous chapter modelled a Z case study with diagrams. Each operation of the 

case study was presented in both diagrams and Z notation. The comparison was 

done between Z and diagrams on how each notation model the system. 

 

This chapter concludes the research and analyses the findings. The summary 

contribution made by this research will be provided. The research questions stated in 

chapter 1 will be discussed and indicate the extent which the research answered the 

questions. The future work that can be done on this research will also be stated in 

the end.  

 

6.1 RESEARCH QUESTIONS AND FINDINGS 

 

This research had evaluated the extent that the Z specification can be presented by 

the diagrammatic notation. The aim is compare the specification results of both 

notations is to determine the specification that can provide the specification that can 

provide the precise and accessible specification to all stakeholders. Below is first 

question that was imposed: 

 

RQ1: Which diagrammatic languages can be combined to form a notation that could 

be compared to Z? 

 

Chapter 3 discussed various diagrams that are based on closed curves and set 

theory. The capabilities of each diagram are discussed and provide examples to 

illustrate how diagrams have been used in the reasoning domain. Euler diagrams 

form the basis of most of the diagrams discussed in this research. As a result, these 

diagrams have similar features. 

 



109 
 

The Pierce, Spider and Euler diagrams have been combined to form a notation used 

in Chapter 4 to represent the structures and operations in Z.  The features of these 

three diagrammatic notations were used to form a comprehensive notation that can 

transform the Z specification into the specification represented by diagrammatic 

language. ThereforeRQ1 has been answered through the work done in Chapters 3 

and 4. However the challenge is that not all Z constructs can be transformed into 

diagrammatic language. Hence the following question is asked: 

 

RQ2: To what extent can diagrammatic notation capture the ideas presented in a Z 

specification? 

 

In Chapter 4, the notation formed by three diagrams was used to transform Z 

constructs and operators into diagrammatic specification. The paper developed from 

Chapter 4 and presented to 3rd annual MEDI conference (Moremedi and van der 

Poll, 2013). A Z case study was modelled with diagrammatic notation in chapter 5 

and the paper was prepared and published in the IRED conference (Moremedi and 

van der Poll, 2014).  

 

The diagrammatic language is able to capture the operation and states of the system 

represented in Z schema. It can also assert the variables, sets and basic types. The 

diagrammatic language is able to illustrate the preconditions and postconditions of 

the operation.  

 

However there are other elements of Z that cannot be represented in diagrams. The 

arbitrary union ( ⋃ ), intersection ( ⋂) and power set (ℙ) operations have not been 

specified yet by diagrammatic notation. Some state notations in our diagrams need 

further work, e.g. the dynamic and static states (Δ and Ξ) are currently imported from 

the Z schema.  

 

RQ2 has therefore been answered.  

 

Our last question is: 
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RQ3: What are the differences between using Z and diagrammatic notations in the 

specification? This question aims to compare Z and diagrammatic notations based 

on the specification results that each notation generates. 

 

The Z constructs transformed to diagrammatic notations in Chapter 4 and in chapter 

5 a Z case study modelled in diagrams both provides an indication of how Z and 

diagrammatic notation represent the specification. The table 5.1 indicates the 

differences observed between two specifications. 

 

 The Z notation yields unambiguous specifications while diagrams produce the 

long specifications that consume a lot of time to develop. 

 Diagrams are widely used in specification work and can be understood by 

stakeholders; the Z notation, however, requires one to have a rigorous 

knowledge of (discrete) mathematics and formal logic to understand the set-

theoretic symbols used in the specification.  

 In diagrams preconditions are shown together with variables in the declaration 

part whereas in Z the precondition is narrated in the predicate part with 

postconditions. 

 The Z notation uses the schema to break a large specification into operations 

and represent it in smaller parts using smaller schemas. Diagrammatic 

languages represent the operation by enclosing the top and bottom parts of 

diagrams in a rectangular shape.  

 

6.2 ANALYSIS OF FINDINGS 

 

This research has enhanced the expressiveness of diagrams. The features of three 

diagrammatic languages (Euler, Spider and Pierce diagrams) were combined to form 

one diagrammatic notation. The diagrammatic notation was used in chapter 4 and 5 

to capture the constructs and operations of Z notation. 
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Chapter 4 and 5 has also indicated that the diagrams have the ability to representing 

the specification research in Z notation. The case study that was initially modelled in 

Z was transformed successfully from Z notation into a specification modelled with 

diagrams. The diagrammatic notation successfully presented the states and 

operations of the systems that were originally modelled in Z schemas.    

 

The research has also enlighten the differences between diagrammatic and Z 

notations. The diagrams provide the specification that is accessible to all 

stakeholders; however, it yields long specification and also it lack precision. The Z 

notation provides the precise and unambiguous specification but it can be interpreted 

by only mathematician experts due to formal methods used in the notation.  

 

As a result, this research has recommended a need to develop a comprehensive 

specification notation that will be able deliver the specification that is accurate and 

accessible to all stakeholders in the software development project. The specification 

can be developed by combining the Z notation and diagrammatic languages.  

 

6.3 FUTURE WORK 

 

The diagrammatic notation that we used in chapter 4 and 5 is able to capture the 

operation of a system presented in a Z schema; however, there are other complex Z 

structures that were not considered. We will discuss some of the structures that we 

would like to represent with the diagrammatic notation. 

 

6.3.1 Power set 

 

Let us consider the example of a company that issues credit cards to customers. For 

each customer, the company maintains information such as customer name, the 

credit card number issued to the customer and the current balance in the customer‟s 

account. The below schema denote the abstract state of the system. It states that 

the card numbers issued to each customer are unique (Alagar & Periyasamy, 1998).  
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 Company  

customer : ℙCUSTOMER 
 

∀c1,c2 : CUSTOMER | c1 ∈customers ∧ c2 ∈customers ⦁ 

c1 = c2 ⇔c1.cardnumber  =  c2.cardnumber 
 

 

The schema below specifies the addCustomer operation that adds new customer 

and ensures that the card number of the new customer is unique to any other card 

numbers that have already been issued. 

 addCustomer  

customers, customers′ : ℙCUSTOMER 

new_customer? : CUSTOMER 

message! : MESSAGE 
 

(∀cust : Customer | cust∈customers ⦁ 

cust.cardnumber ≠ new_customer?.cardnumber) 

customers = customers′∪{ new_customer } 

message! = customer_added 
 

 

Currently our diagrammatic notation may not be able to represent powerset notation 

in a schema. The aim is to enable the diagrammatic notation to capture any 

operation in a Z schema.  

 

6.3.2 Arbitrary union 

 

The below example is a telephone network system which provide connection 

between two telephones. PHONE is the basic type used to describe a set of phones. 

The below schema specifies the abstract state of the system. The schema indicates 

there a set of requests that are not terminated yet and connections that are currently 

active. It further states that only requested connections are active and no phone may 

engage in more than one connection (Hayes, 1992).  
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 TN  

reqs, cons : ℙ CON 
 

cons ⊆reqs 

cons ∈ disjoint 
 

 

The below schema is the state schema of telephone network system specifying that 

only available phones can be engaged in a connection.  

 

 TN  

reqs, cons : ℙ CON 

avail : : ℙ PHONE 
 

cons ⊆reqs 

cons ∈ disjoint 

(⋃cons) ⊆avail 
 

 

As part of future work, our notation will be applied to more complex operations and 

structures, e.g. distributed unions and intersections and possible state change (Δ 

and Ξ). The feasibility of reasoning about the properties of our diagrams has to be 

considered and the scalability of the notations has to be investigated. To this end, 

tools for industrial applications have to be further developed. We also plan to 

combine Z constructs with our diagrams to generate a comprehensive specification 

language to cater for clear specifications that may also be accessible to a wide range 

of users. Investigating the scalability of our approach and tool support are further 

items on the agenda. 
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