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Abstract

We study variants of P -frames and associated rings, which can be viewed as natural

generalizations of the classical variants of P -spaces and associated rings. To be more

precise, we define quasi m-rings to be those rings in which every prime d-ideal is either

maximal or minimal. For a completely regular frame L, if the ring RL of real-valued

continuous functions of L is a quasi m-ring, we say L is a quasi cozero complemented

frame. These frames are less restricted than the cozero complemented frames. Using

these frames we study some properties of what are called quasi m-spaces, and observe

that the property of being a quasi m-space is inherited by cozero subspaces, dense z-

embedded subspaces, and regular-closed subspaces among normal quasi m-space.

M. Henriksen, J. Mart́ınez and R. G. Woods have defined a Tychonoff space X to be a

quasi P -space in case every prime z-ideal of C(X) is either minimal or maximal. We call a

point I of βL a quasi P -point if every prime z-ideal of RL contained in the maximal ideal

associated with I is either maximal or minimal. If all points of βL are quasi P -points, we

say L is a quasi P -frame. This is a conservative definition in the sense that X is a quasi

P -space if and only if the frame OX is a quasi P -frame. We characterize these frames

in terms of cozero elements, and, among cozero complemented frames, give a sufficient

condition for a frame to be a quasi P -frame.

A Tychonoff space X is called a weak almost P -space if for every two zero-sets E and

F of X with IntE ⊆ IntF , there is a nowhere dense zero-set H of X such that E ⊆ F ∪H.

We present the pointfree version of weakly almost P -spaces. We define weakly regular

rings by a condition characterizing the rings C(X) for weak almost P -spaces X. We

show that a reduced f -ring is weakly regular if and only if every prime z-ideal in it which
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contains only zero-divisors is a d-ideal. We characterize the frames L for which the ring

RL of real-valued continuous functions on L is weakly regular.

We introduce the notions of boundary frames and boundary rings, and use them to

give another ring-theoretic characterization of boundary spaces. We show that X is a

boundary space if and only if C(X) is a boundary ring.

A Tychonoff space whose Stone-Čech compactification is a finite union of closed sub-

spaces each of which is an F -space is said to be finitely an F -space. Among normal spaces,

S. Larson gave a characterization of these spaces in terms of properties of function rings

C(X). By extending this notion to frames, we show that the normality restriction can

actually be dropped, even in spaces, and thus we sharpen Larson’s result.

keywords: P -frame, quasi P -frame, quasi cozero complemented frame, quasi m-space,

weak almost P -frame, weakly regular ring, boundary frame, boundary ring, finitely an

F -frame.
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Chapter 1

Introduction and preliminaries

1.1 A brief history on P -spaces and P -frames

A P -space is a topological space in which every countable intersection of open sets is open.

An equivalent condition is that countable unions of closed sets are closed. In other words,

Gδ sets are open and Fδ sets are closed. These spaces were introduced by L. Gilman and

M. Henriksen [38], and their various characterizations are documented in the classical text

Rings of Continuous Functions by Gillman and Jerison.

An extension of the study of P -spaces to pointfree topology was initiated by Ball and

Walter-Wayland in [4], who called a frame L a P -frame in case every cozero element in

L is complemented. It has recently been shown by Ball, Walters-Wayland and Zenk [5]

that, in stark contrast with P -spaces, there are P -frames with quotients which are not

P -frames. P -frames have been characterized in terms of ring-theoretic properties of the

ring of continuous real-valued functions on a frame L by Dube in [22], and also by Ball,

Walters-Wayland and Zenk in the aforementioned article. Dube defined the m-topology

on the ring RL of continuous real functions on a frame L and showed that if the frame

L belongs to a certain class of frames properly containing the spatial ones, then L is a

P -frame if and only if every ideal of RL is m-closed.
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1.2 Synopsis of the thesis

The thesis consists of six chapters, the first of which is a brief overview of the theory of

frames. It is the chapter in which we fix notation and provide the requisite background

needed to read the thesis. All spaces in the thesis are Tychonoff, all frames are completely

regular, and all rings are commutative with identity.

In Chapter 2 we look at some properties of quasi m-spaces from a ring-theoretic per-

spective. These spaces were defined by Azarpanah and Karavan [1] as those X for which

every prime d-ideal of C(X) is either a maximal ideal or a minimal prime ideal. We prove,

for instance, that among subspaces that inherit the property of being a quasi m-space

are cozero subspaces, dense z-embedded subspaces, and regular-closed subspaces among

the normal quasi m-spaces. The ring-theoretic approach that we take actually yields the

above results within the broader context of frames.

In Chapter 3 we study quasi P -frames. We define these frames by generalizing the

condition employed by Henriksen, J. Mart́ınez and Woods [40] to define quasi P -spaces.

The definition is “conservative”, which is to say a space is a quasi P -space if and only

if the frame of its open sets is a quasi P -frame. We give a localic characterization of

quasi P -frames. Among cozero complemented frames, we give a sufficient condition for a

frame to be a quasi P -frame. We show that a perfectly normal frame is a quasi P -frame

precisely when every nowhere dense quotient of it is closed.

A space X is called a weak almost P -space if for every two zero-sets E and F of X

with intE ⊆ intF , there is a nowhere dense zero-set H of X such that E ⊆ F ∪ H. In

Chapter 4 we present the pointfree version of weakly almost P -spaces. We define weakly

regular rings by a condition characterizing the rings C(X) for weak almost P -spaces X.

We show that a reduced f -ring is weakly regular if and only if every prime z-ideal in it

which contains only zero-divisors is a d-ideal. We characterize the frames L for which

the ring RL of real-valued continuous functions on L is weakly regular. We show that if

the coproduct of two Lindelöf frames is of this kind, then so is each summand. Also, a

continuous Lindelöf frame is of this kind if and only if its Stone-Čech compactification is

of this kind.
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A space X is called a boundary space if the boundary of every zero-set of X is contained

in a zero-set with empty interior. These spaces were characterized by Azarpanah and

Karavan [1] as precisely those X for which every prime ideal of C(X) that consists entirely

of zero-divisors is a d-ideal. In Chapter 5 we introduce the notions of boundary frames and

boundary rings. This is with the view to giving another ring-theoretic characterization of

boundary spaces. We show that X is a boundary space if and only if C(X) is a boundary

ring. We also show that if X×Y is z-embedded in βX×βY , then X and Y are boundary

spaces if X × Y is a boundary space. We also provide a frame version of this result.

A space whose Stone-Čech compactification is a finite union of closed subspaces each

of which is an F -space is said to be finitely an F -space. Larson [45] has shown that for

normal spaces X, the property of being finitely an F -space can be characterized in terms

of algebraic properties of the ring C(X). By extending this concept to frames in Chapter

6, we show that the normality restriction can actually be dropped, even in spaces, and

thus sharpen Larson’s result.

1.3 Frames and their homomorphisms

In this section we recall some definitions and results concerning frames that are needed

in the sequel. For general information on frames, we refer to [44] and [57].

A frame is a complete lattice L in which binary meets distribute over arbitrary joins,

that is,

a ∧
∨
i∈I

bi =
∨
i∈I

(a ∧ bi)

for every a ∈ L and {bi | i ∈ I} ⊆ L. We shall denote the bottom element of L by ⊥ or

0, and the top element by > or 1.

A σ-frame is a complete lattice L with top and bottom, which is countably satisfying

the distributive law

a ∧
∨
i∈I

bi =
∨
i∈I

(a ∧ bi)

for every a ∈ L and any countable {bi | i ∈ I} ⊆ L.
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A frame homomorphism is a map h : L → M between frames L and M preserving

finite meets and arbitrary joins, including the top element and the bottom element. The

frames and frame homomorphisms form a category Frm.

An important class of frames arises from topology. For any topological space X, the

lattice OX of open subsets of X is a frame, furthermore any continuous map f : X →

Y between topological spaces gives rise to a frame homomorphism Of : OY → OX.

The resulting correspondence from topological spaces to frames, and continuous maps to

frame homomorphisms, constitutes a contravariant functor between the category Top of

topological spaces and continuous maps and the category Frm.

Associated with any frame homomorphism h : L → M is a map h∗ : M → L, known

as the right adjoint of h, which is not necessarily a frame homomorphism, but preserves

arbitrary meets, and defined by

h∗(y) =
∨
{x ∈ L | h(x) ≤ y}.

The following property holds for every x ∈ L, and every y ∈M :

h(x) ≤ y ⇐⇒ x ≤ h∗(y)

A frame homomorphism h : L→M is dense if for every a ∈ L, h(a) = 0 implies a = 0.

This holds if and only if h∗(0) = 0. A frame homomorphism h : L→ M is codense if for

every a ∈ L, h(a) = 1 implies a = 1. A frame homomorphism h : L → M is onto if and

only if hh∗ = idM .

By a quotient M of a frame L we mean a homomorphic image of L, which we shall fre-

quently write as h : L→M in the category of frames where h is an onto homomorphism.

In such a case we shall refer to h as a quotient map. When we say a quotient h : L→M

has a property of frames we shall mean that M has that property. Likewise, to say a

quotient h : L→M has a property of homomorphisms means that h has that property.

Given a frame L. We call D ⊆ L a downset if x ∈ D and y ≤ x implies y ∈ D, and we

call U ⊆ L an upset if u ∈ U and u ≤ v implies v ∈ U . For any a ∈ L, we write

↓a = {x ∈ L | x ≤ a} which is a downset,
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and

↑a = {x ∈ L | a ≤ x} which is an upset.

We note hat ↓a is a frame whose bottom element is 0 ∈ L and top element is a, and ↑a

is a frame whose bottom element is a an top element 1 ∈ L. In fact these frames are

quotients of L via the maps L → ↓a and L → ↑a given, respectively, by x 7→ x ∧ a and

x 7→ x ∨ a. These quotients are known as the open quotients and closed quotients.

The pseudocomplement of an element x of L is the element

x∗ =
∨
{y ∈ L | x ∧ y = 0}.

We note that x ∧ x∗ = 0. However x ∨ x∗ = 1 does not hold in general.

(i) In the case where x ∨ x∗ = 1, we say x is complemented.

(ii) An element x ∈ L is dense if x∗ = 0; and it is regular if x = x∗∗. For every

x ∈ L, x ≤ x∗∗ always holds.

The Booleanization of a frame L is the Boolean algebra BL = {x∗∗ | x ∈ L} of its

regular elements with meet as in L and join
∨

BL S = (
∨
S)∗∗ for each S ⊆ BL. The map

L→ BL which sends each x ∈ L to x∗∗ is a dense onto frame homomorphism.

A result often used in frame theory is that every frame homomorphism h : L→M has

a dense-onto factorization

L
ϕ //

h

::↑h∗(0) h //M

where ϕ is the onto homomorphism x 7−→ x ∨ h∗(0) and h the dense homomorphism

mapping as h.

We say that x is rather below y or x is well inside y, written x ≺ y, if there is a

separating element u ∈ L such that x∧ u = 0 and y ∨ u = 1. We say a frame L is regular

if every x ∈ L is expressible as

x =
∨
{y ∈ L | y ≺ x}.
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By a scale in frame we mean a sequence {cq | q ∈ Q ∩ [0, 1]} = (cq) of elements in L

indexed by the rational numbers in [0, 1], such that whenever p < q, then cp ≺ cq. We

defined the completely below relation ≺≺ on L by: x ≺≺ y if there is a scale (cp) such that

x ≤ c0 and c1 ≤ y. We say L is completely regular if every x ∈ L is expressible as

x =
∨
{y ∈ L | y ≺≺ x}.

A frame L is normal if for any elements a, b ∈ L, such that a∨b = 1, there are elements

c, d ∈ L such that c ∧ d = 0 and a ∨ c = 1 = b ∨ d.

By a cover A of a frame L we mean a subset of L such that
∨
A = 1. We write Cov(L)

for the set of all covers of the frame. A frame L is compact if for any A ∈ Cov(L), there is

a finite F ⊆ A in Cov(L). A frame L is Lindelöf if every cover has a countable subcover.

By a compactification of a completely regular frame L we mean a dense onto frame

homomorphism h : M → L with M compact regular. The realization of βL we shall use

is the following. An ideal I of L is called completely regular if for any a ∈ I there exists

b ∈ L such that a ≺≺ b. The frame βL is the frame of all completely regular ideals of L.

We write jL : βL → L for the dense onto frame homomorphism jL(I) =
∨
I. Its right

adjoint will be denoted by rL. It is given by rL(a) = {x ∈ L | x ≺≺ a}. The Stone-Čech

compactification of L is denoted by βL→ L or simply βL.

An element c of a frame L is said to be compact if for any S ⊆ L, c ≤
∨
S implies

c ≤
∨
T , for some finite T ⊆ S.

By a point of a frame L we mean a prime element, that is, an element p < 1 such that

for any a and b in L, a ∧ b ≤ p implies a ≤ p or b ≤ p. We denote by Pt(L) the set

of all points of L. We remark that, subject to appropriate choice principles (which we

assume throughout), a compact regular frame has enough points, which means that every

element is a meet of points. Also, for regular frames, “point” and “maximal element” are

synonyms, where the latter is understood to mean maximal strictly below the top.

An ideal of a lattice is said to be a σ-ideal if it is closed under countable joins. A

nucleus on a frame L is a closure operator ` : L→ L such that `(a ∧ b) = `(a) ∧ `(b) for

6



all a, b ∈ L. The set

Fix(`) = {a ∈ L | `(a) = a}

is a frame with meet as in L and join given by∨
Fix(`)

S = `(
∨

S)

for every S ⊆ Fix(`).

1.4 Rings and f-rings

Throughout this thesis all rings considered are commutative with identity 1 and the term

“space” means a Tychonoff space. Let A be a ring. The annihilator of S ⊆ A is the ideal

Ann(S) = {a ∈ A | as = 0 for every s ∈ S}.

If S is a singleton, say S = {a}, we shall abbreviate Ann({a}) as Ann(a). The double

annihilator will be written as Ann2(S) or Ann2(a).

A ring is said to be reduced if it has no non-zero nilpotent elements. We shall write

Max(A) for the set of all maximal ideals of A. For an ideal I of A we write

M(I) = {M ∈ Max(A) |M ⊇ I},

and abbreviate M({a}) as M(a).

An f -ring is a lattice-ordered ring A in which the identity

(a ∧ b)c = (ac) ∧ (bc)

holds for all a, b, c ∈ A with c ≥ 0.

An f -ring A is said to have bounded inversion if any a ≥ 1 is a unit in A. The bounded

part of an f -ring A, denoted A∗, is the subring

A∗ = {a ∈ A | |a| ≤ n · 1 for some n ∈ N}.

It is not hard to show that, for any a ∈ A, a
1+|a| ∈ A

∗. A prime ideal P in a reduced ring

is minimal prime if and only if for every a ∈ P there is an a′ /∈ P such that aa′ = 0 (see

[39]). If the sum of positive elements in an f -ring is zero, then each summand is zero.

7



1.5 Function rings

Our approach to pointfree function rings is that of [8]. We give a brief description. The

frame of reals, L(R), is defined by generators which are pairs (p, q) of rationals, and the

relations (R1) through (R4) below:

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s),

(R2) (p, q) ∨ (r, s) = (p, s), whenever p ≤ r < q ≤ s,

(R3) (p, q) =
∨
{(r, s) | p < r < s < q},

(R4) 1L(R) =
∨
{(p, q) | p, q ∈ Q}.

A continuous real-valued function on L is a frame homomorphism L(R)→ L. The ring

RL has as its elements continuous real-valued functions on L, with operations determined

by the operations of Q viewed as a lattice-ordered ring as follows:

For � ∈ {+, ·,∧,∨} and α, β ∈ RL,

α � β(p, q) =
∨
{α(r, s) ∧ β(t, u) | 〈r, s〉 � 〈t, u〉 ⊆ 〈p, q〉},

where 〈·, ·〉 denotes the open interval in Q, and the given condition means that x�y ∈ 〈p, q〉

for any x ∈ 〈r, s〉 and y ∈ 〈t, u〉.

For any α ∈ RL and p, q ∈ Q,

(−α)(p, q) = α(−q,−p).

The ring RL is a reduced f -ring with identity, and for any Tychonoff space X, C(X)

is isomorphic to R(OX). Furthermore, RL has bounded inversion. The correspondence

L 7→ RL is functorial, where, for any frame homomorphism h : L → M , the ring ho-

momorphism Rh : RL → RM is given by Rh(α) = h · α – the centre dot designating

composition.

An element a of L is a cozero element if there is a sequence (an) in L such that an ≺≺ a

for each n and a =
∨
an. The cozero part of L, denoted by CozL, is the regular sub-σ-

frame consisting of all the cozero elements of L.

8



The cozero map, coz : RL→ L, is given by

cozϕ =
∨
{ϕ(p, 0) ∨ ϕ(0, q) | p, q ∈ Q}.

The association L 7→ RL is functorial, with Rh : RL → RM taking δ to h · δ, for any

h : L→M . Furthermore, coz(h · δ) = h(coz δ).

The following presents some of the properties of coz needed here, see [10].

Lemma 1.5.1. For any γ, δ ∈ RL,

(1) coz γ = coz |γ|,

(2) coz(γδ) = coz γ ∧ coz δ,

(3) coz(γ + δ) ≤ coz γ ∨ coz δ,

(4) ϕ ∈ RL is invertible if and only if cozϕ = 1,

(5) cozϕ = 0 if and only if ϕ = 0,

(6) coz(γ + δ) = coz γ ∨ coz δ if γ, δ ≥ 0.

The maximal ideals of RL are described in [24] as follows: For any I ∈ βL, the ideals

M I of RL are defined by

M I = {α ∈ RL | rL(cozα) ⊆ I}.

For any a ∈ L, we abbreviate M rL(a) as Ma, and remark that

Ma = {α ∈ RL | cozα ≤ a}.

The maximal ideals of RL are precisely the ideals M I , for I ∈ Pt(βL). Annihilator ideals

in RL are precisely the ideals Ma∗ , for a ∈ L [26, Lemma 3.1]. In particular, for any

α ∈ RL, Ann(α) = M(cozα)∗ . Recall that an element of a frame is dense if it has nonzero

meet with every nonzero element. Any α ∈ RL is a non-divisor of zero if and only if cozα

is dense [24, Corollary 4.2].

9



An ideal I of a ring A is called a d-ideal if Ann2(a) ⊆ I, for every a ∈ I. On the other

hand, I is called a z-ideal if whenever a ∈ I and b is an element of A contained in every

maximal ideal containing a, then b ∈ I.

In RL, z-ideals and d-ideals are characterized in terms of the cozero map as follows

(see [43]).

Lemma 1.5.2. The following are equivalent for an ideal Q of RL.

(a) Q is a z-ideal.

(b) For any α, β ∈ RL, if α ∈ Q and coz β ≤ cozα, then β ∈ Q.

(c) For any α, β ∈ RL, if α ∈ Q and coz β = cozα, then β ∈ Q.

Lemma 1.5.3. The following are equivalent for an ideal Q of RL.

(a) Q is a d-ideal.

(b) For any α, β ∈ RL, if α ∈ Q and (cozα)∗ = (coz β)∗, then β ∈ Q.

(c) For any α, β ∈ RL, if α ∈ Q and (cozα)∗ ≤ (coz β)∗, then β ∈ Q.

(d) For any α, β ∈ RL, if α ∈ Q and coz β ≤ (cozα)∗∗, then β ∈ Q.

1.6 The coreflections λL and υL

The regular Lindelöf coreflection of L, denoted λL, is the frame of σ-ideals of CozL

(see [48]). The join map λL : λL → L is a dense onto frame homomorphism, and is the

coreflection map to L from Lindelöf frames.

The map ηL : βL → λL given by ηL(I) = 〈I〉σ, where 〈.〉σ signifies σ-ideal generation

in CozL, is a dense onto frame homomorphism. In fact, ηL : βL → λL realizes the

Stone-Čech compactification of λL. To see this, recall that a frame homomorphism is

called coz-codense (or coz-faithful) if it is one-one on cozero elements. Now suppose

that jL : βL → L factorizes as βL
g−→ M

h−→ L with g onto and h coz-codense. Then
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g : βL→M is the Stone-Čech compactification of M. We use [4, Corollary 8.2.7] to prove

the following assertion. Let c1 ∨ c2 = 1 in CozM . Then h(c1) ∨ h(c2) = 1 in CozL. By

the result cited from [4], there are cozero elements d1, d2 of βL such that d1 ∨ d2 = 1βL

and jL(di) = h(ci) for i = 1, 2. Thus, h(g(di)) = h(ci), and hence g(di) = ci because

h is coz-codense. Thus, by [4, Corollary 8.2.7] again, h : βL → M is the Stone-Čech

compactification of M. Since λL → L is coz-codense and jL : βL → L factorizes as

βL
ηL−→ λL

λM−→ L, the claim is established.

Realcompact frames are coreflective in completely regular frames (CRFrm) (see, for

instance, [11] and [49] for details). The realcompact coreflection of L, denoted υL, is

constructed in the following manner. For any t ∈ L, let [[t]] = {x ∈ CozL | x ≤ t}; so that

if c ∈ CozL, then [[c]] is the principal ideal of CozL generated by c. The map ` : λL→ λL

given by

`(J) =
[[∨

J
]]
∧
∧
{P ∈ Pt(λL) | J ≤ P}

is a nucleus. The frame υL is defined to be Fix(`). The join map υL : υL→ L is a dense

onto frame homomorphism whose right adjoint is given by a 7→ [[a]]. It is the coreflection

map to L from realcompact frames.

1.7 Binary coproducts of frames

The coproduct L ⊕ M of two frames may be constructed in the following simple way.

First take the Cartesian product L×M with the usual partial order and consider

D(L×M) = {U ⊆ L×M | ↓U = U 6= ∅}.

Call a U ∈ D(L×M) saturated if

(1) for any subset A ⊆ L and any b ∈M , if A× {b} ⊆ U then (
∨
A, b) ∈ U , and

(2) for any a ∈ L and any subset B ⊆M , if {a} ×B ⊆ U then (a,
∨
B) ∈ U .

The set A (resp. B) can be void; hence, in particular, each saturated set contains the set
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O = {(0, b), (a, 0) | a ∈ L, b ∈M}. It is easy to see that for each (a, b) ∈ L×M ,

a⊕ b = ↓(a, b) ∪O is saturated.

To finish the construction take

L⊕M = {U ∈ D(L×M) | U is saturated}

with the coproduct injections

iL = (a 7→ a⊕ 1) : L→ L⊕M, iM = (b 7→ 1⊕ b) : M → L⊕M.

Note that one has for each saturated U ,∨
{a⊕ b | (a, b) ∈ U} =

⋃
{a⊕ b | (a, b) ∈ U},

and if a⊕ b ≤ c⊕ d and b 6= 0, then a ≤ c.

The results in the following lemma appear in [19].

Lemma 1.7.1. (1) 0L⊕M =↓ (1, 0)∪ ↓ (0, 1).

(2) a⊕ b = 0 ⇐⇒ a = 0 or b = 0, consequently, (a⊕ b)∗ = (a∗ ⊕ 1) ∨ (1⊕ b∗).

(3) a⊕ (
∨
i

bi) =
∨
i

(a⊕ bi) and (
∨
i

bi)⊕ a =
∨
i

(bi ⊕ a).

(4) a ≤ c and b ≤ d =⇒ a⊕ b ≤ c⊕ d.

(5) 0 6= a⊕ b ≤ c⊕ d =⇒ a ≤ c and b ≤ d.

Recall that if, for i = 1, 2, hi : Mi → Li are frame homomorphisms, then the map

h1 ⊕ h2 : M1 ⊕M2 → L1 ⊕ L2 given by

(h1 ⊕ h2)
(∨
α

(xα ⊕ yα)
)

=
∨
α

(
h1(xα)⊕ h2(yα)

)
is a frame homomorphism.
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Chapter 2

Quasi m-spaces and quasi cozero

complemented frames

2.1 Introduction

We denote the annihilator of a set S by Ann(S), and abbreviate Ann({a}) as Ann(a).

Double annihilators are written as Ann2(S). An ideal I of a ring A is called a d-ideal

if Ann2(a) ⊆ I, for every a ∈ I. On the other hand, I is called a z-ideal if whenever

a ∈ I and b is an element of A contained in every maximal ideal containing a, then b ∈ I.

The symbols Spec(A), Max(A) and Min(A) have their usual meaning; namely, the set

of prime, maximal and minimal prime ideals of A, respectively. We write Specd(A) and

Specz(A) for the set of prime d-ideals and prime z-ideals of A, respectively.

Consider the following conditions on a ring A:

(dMin) Specd(A) ⊆ Min(A)

(dMax) Specd(A) ⊆ Max(A)

(dMM) Specd(A) ⊆ Min(A) ∪Max(A)

(zMin) Specz(A) ⊆ Min(A)

(zMax) Specz(A) ⊆ Max(A)
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(zMM) Specz(A) ⊆ Min(A) ∪Max(A).

One of our goals is to characterize frames L such that, for each of these conditions, the ring

RL satisfies that condition. In the class of reduced rings, three of these are all equivalent,

and are equivalent to the property of being von Neumann regular (vNR). Precisely,

zMin ⇐⇒ zMax ⇐⇒ dMax ⇐⇒ vNR.

Indeed, (zMin) is equivalent to (vNR) because maximal ideals are z-ideals, and a reduced

ring is von Neumann regular if and only if every maximal ideal is minimal prime. Next,

(zMax) implies (dMax) because every d-ideal is a z-ideal([55, Proposition 2.12]); (dMax)

implies (vNR) because every minimal prime ideal is a d-ideal; and, finally, (vNR) implies

(zMax) because every prime ideal in a von Neumann regular ring is a maximal ideal.

Thus, RL satisfies any (and hence all) of these three if and only if L is a P -frame because

L is a P -frame if and only if RL is von Neumann regular [12].

We shall see that RL satisfies (dMin) precisely if L is cozero complemented. The more

substantive results concern those L for which RL satisfies (dMM).

2.2 Characterizations of quasi cozero complemented

frames

In this section we proceed to characterize frames L for which every prime d-ideal of RL is

either a maximal ideal or a minimal prime ideal. But first we start by justifying the claim

made in the introduction that every prime d-ideal of RL is minimal prime if and only if

L is cozero complemented. Let us recall the definition. A frame L is cozero complemented

if for every c ∈ CozL there is a d ∈ CozL such that c ∨ d is dense and c ∧ d = 0.

We recall that a ring R is said to have Property A if every finitely generated ideal

of R which consists entirely of zero-divisors has nonzero annihilator (see, for instance,

[42]). In [2, Proposition 1.26] the authors show, among other things, that if a ring R

has Property A, then every prime d-ideal of R is minimal prime if and only if for every
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a ∈ R there exists b ∈ R such that Ann(a) = Ann2(b). Proposition 1.1 in [32] shows that

L is cozero complemented if and only if for every α ∈ RL there is a β ∈ RL such that

Ann(α) = Ann2(β). Now let us show that RL has Property A.

Lemma 2.2.1. The ring RL has property A.

Proof. In fact, let Q = 〈α1, α2 · · ·αm〉 be a finitely generated ideal of RL consisting of

zero-divisors. Then α2
1 + α2

2 + · · ·+ α2
m ∈ Q and therefore a zero-divisor. Note that∨

{cozα | α ∈ Q} = coz(α2
1) + coz(α2

2) + · · ·+ coz(α2
m),

which is not dense because α2
1 +α2

2 + · · ·+α2
m is a zero divisor. Thus by [24, Lemma 4.3],

Ann(Q) 6= 0.

We therefore have the following proposition.

Proposition 2.2.2. Every prime d-ideal of RL is minimal prime if and only if L is

cozero complemented.

Remark 2.2.3. There is an alternative affirmation of this result. It is shown in [29,

Proposition 3.1] that the lattice Did(RL) of d-ideals of RL is a coherent frame, and, is in

fact, the frame of d-elements of Rad(RL), where the latter denotes the frame of radical

ideals of RL. Now, by [52], every prime d-ideal of RL is minimal prime if and only if

Did(RL) is regular. This in turn is equivalent to L being cozero complemented in light

of [29, proposition 5.5]. In fact an algebraic frame is regular if and only if every compact

element is complemented, and the compact elements of Did(RL) are precisely the ideals

Mc∗∗ , for c ∈ CozL ([29, Proposition 4.1]).

Now we investigate when every prime d-ideal in RL is either a maximal or a minimal

prime ideal. We first obtain a characterization for reduced f -rings. It will generalize the

equivalence of conditions (i) and (ii) in [1, Theorem 3.2]. We start with a lemma which

is itself an f-ring version of [1, Lemma 3.1]. Observe that a directed union of d-ideals is

a d-ideal.
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Lemma 2.2.4. Let A be a reduced f -ring. Then, for any a ∈ A, the set⋃
{Ann2(a2 + t2) | ta = 0}

is a d-ideal of A.

Proof. It suffices to show that the collection {Ann2(a2 + t2) | t ∈ Ann(a)} is directed. Let

u and v be in Ann(a). Then u2 + v2 ∈ Ann(a). We claim that

Ann2(a2 + u2) ⊆ Ann2(a2 + (u2 + v2)2).

We prove the claim by showing that Ann(a2 + u2) ⊇ Ann(a2 + (u2 + v2)2). Let x be in

the set on the right. Then

x2(a2 + u2 + p) = 0 where p = u2 + 2u2v2 + v4 ≥ 0.

Since squares are positive in any f -ring, and since whenever the sum of positive elements is

zero then each summand is zero, it follows that x2(a2 +u2) = 0, implying x2(a2 +u2)2 = 0,

whence x(a2 + u2) = 0 because A is reduced. Thus, x ∈ Ann(a2 + u2), and the claim

follows. Similarly, Ann2(a2 + v2) ⊆ Ann2(a2 + (u2 + v2)2), and hence the collection

{Ann2(a2 + t2) | t ∈ Ann(a)}

is directed. Therefore its union is a d-ideal.

In the upcoming proof we are going to use the fact that a prime ideal minimal over a

d-ideal is itself a d-ideal [55, Theorem 2.5]. We shall also have to keep in mind that a

prime ideal P in a reduced ring is minimal prime if and only if, for every a ∈ P , there

exists b /∈ P such that ab = 0 [39].

Proposition 2.2.5. The following are equivalent for a reduced f -ring A.

(1) Every prime d-ideal of A is either a maximal ideal or a minimal prime ideal.

(2) For every maximal ideal M of A and every pair a, b of elements in M, there exists

u ∈ Ann(a) and v /∈M such that Ann(a2 + u2) ⊆ Ann2(bv).
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Proof. (1)⇒ (2): Suppose (2) fails. Then there is a maximal ideal M of A and elements

a, b ∈ M such that for every u ∈ Ann(a) and v /∈ M , Ann(a2 + u2) * Ann(bv). Define

subsets I and S of A by

I =
⋃
{Ann2(a2 + t2) | ta = 0} and S = {bnr | r /∈M and n = 0, 1, . . .}.

It is easy to check that S is multiplicatively closed because M is a prime ideal. We claim

that S ∩ I = ∅. If not, then bnr ∈ I for some n and r /∈M , and hence bnr ∈ Ann2(a2 + t2)

for some t ∈ Ann(a). Thus, 〈bnr〉 ⊆ Ann2(a2 + t2), which implies

Ann(a2 + t2) = Ann(Ann2(a2 + t2)) ⊆ Ann(bnr) = Ann(br),

because A is reduced. But this violates the supposition. There is therefore a prime ideal

P which contains I and misses S. Without loss of generality, we may assume P is minimal

with this property. Then P is a d-ideal ([55, Theorem 2.5]). Clearly, ArM ⊆ S, so that, in

light of P ∩ S = ∅, we have P ⊆ M . Observe that a ∈ P because a ∈ Ann2(a) ⊆ I ⊆ P .

Also, Ann(a) ⊆ P because of the following. If ta = 0, then Ann2(a2 + t2) ⊆ I ⊆ P .

Consider any z ∈ A with z(a2 + t2) = 0. Then z2a2 = z2t2 = 0, whence tz = 0. Thus,

t ∈ Ann2(a2 +t2) ⊆ P . It follows therefore that P is not a minimal prime ideal. Then P is

a maximal ideal by (1), and hence P = M . But b ∈M ∩ S = P ∩ S = ∅, a contradiction.

(2) ⇒ (1): Let P be a prime d-ideal and M a maximal ideal with P ⊆ M . Suppose,

for contradiction, that P 6= M and P is not a minimal prime ideal. Since P is properly

contained in M , there exists b ∈ M r P . Because P is not a minimal prime ideal, there

is an a ∈ A such that a ∈ P and Ann(a) ⊆ P . By (2), there exist u ∈ Ann(a) and v /∈M

such that Ann(a2 + u2) ⊆ Ann(bv). Since a2 + u2 ∈ P and P is a d-ideal, it follows that

bv ∈ P . Since b /∈ P , this implies v ∈ P ⊆M , which is a contradiction.

Definition 2.2.6. A ring is a quasi m-ring if every prime d-ideal in it is either maximal

or minimal prime. If RL is a quasi m-ring, we shall say L is a quasi cozero complemented

frame.

Remark 2.2.7. A remark concerning this terminology is in order. In [1] the authors call

a Tychonoff space X an m-space if for every zero-set Z of X there is a zero-set Z ′ of X
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such that Z ∩ Z ′ is nowhere dense and Z ∪ Z ′ = X. They then say a space X is a quasi

m-space if C(X) is a quasi m-ring as we have defined it above. However, spaces with the

formerly stated property have come to be known as cozero complemented – a moniker

that has come to be commonly used.

In light of Proposition 2.2.2, every cozero complemented frame is a quasi cozero com-

plemented frame. We shall shortly give a frame-theoretic characterization of quasi cozero

complemented frames. Let us recall some facts from [26]. For any α ∈ RL,

Ann(α) = M(cozα)∗ .

Thus,

Ann(α) ⊆ Ann(β) ⇐⇒ M(cozα)∗ ⊆M(cozβ)∗

⇐⇒ (cozα)∗ ≤ (coz β)∗.

Proposition 2.2.8. The following are equivalent for a completely regular frame L.

(1) L is a quasi cozero complemented frame.

(2) λL is a quasi cozero complemented frame.

(3) υL is a quasi cozero complemented frame.

(4) For every I ∈ Pt(βL) and α, β ∈ M I , there exists γ ∈ Ann(α) and δ /∈ M I such

that Ann(α2 + γ2) ⊆ Ann(βδ).

(5) For every I ∈ Pt(βL) and c, d ∈ CozL with rL(c) ∨ rL(d) ≤ I, there exist u, v ∈

CozL with c ∧ v = 0, rL(u) ∨ I = 1βL and (c ∨ u)∗ ≤ (d ∧ v)∗.

Proof. The equivalence of (1), (2) and (3) follows from the fact that the rings RL,R(λL)

and R(υL) are all isomorphic. The equivalence of (1) and (4) follows from Proposi-

tion 2.2.5 because RL is a reduced f -ring. The discussion preceding the statement of the

proposition shows that (4) and (5) are equivalent.
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This proposition generalizes [1, Theorem 3.2], and includes a characterization which

does not exist for spaces. In [1], Azarpanah and Karavan mentioned that a Tychonoff

space is a quasi m-space if and only if its Stone-Čech compactification is a quasi m-space.

We do not know if this extends to frames.

2.3 Subspaces of quasi m-spaces

In this section, the results about certain subspaces inheriting the property of being a quasi

m-space will be corollaries of a ring-theoretic result which we now prepare to present. We

require some definitions concerning ring homomorphisms. We will show that these are

motivated by certain types of frame homomorphisms.

Definition 2.3.1. A ring homomorphism φ : A → B is weakly skeletal if, for any pair

of elements a1, a2 ∈ A, the containment Ann(a1) ⊆ Ann(a2) implies Ann(φ(a1)) ⊆

Ann(φ(a2)).

Let us show how this is motivated by certain types of frame homomorphisms. Recall

that a frame homomorphism h : M → L is said to be skeletal if it maps dense elements

to dense elements. As observe in [54], that h is skeletal if and only if, for any a, b ∈M ,

a∗ = b∗ =⇒ h(a)∗ = h(b)∗.

Now we can weaken this by requiring that the elements a, b be restricted to cozero ele-

ments. Let us therefore agree to say a frame homomorphism h : M → L is weakly skeletal

if, for any c, d ∈ CozM ,

c∗ = d∗ =⇒ h(c)∗ = h(d)∗.

In the proof that follows we shall use the facts that, for any α, β ∈ RM, Ann(α) =

M(cozα)∗ and Ann(α) = Ann(β) if and only if (cozα)∗ = (coz β)∗.

Lemma 2.3.2. A frame homomorphism h : M → L is weakly skeletal if and only if the

ring homomorphism Rh : RM → RL is weakly skeletal.
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Proof. (⇒) Let α, β ∈ RM be such that Ann(α) ⊆ Ann(β). For brevity, write a = cozα

and b = coz β. Then Ma∗ ⊆Mb∗ , which implies a∗ ≤ b∗. Consequently,

a∗ = a∗ ∧ b∗ = (a ∨ b)∗.

Since a ∨ b is a cozero element, the weak skeletality of h implies

h(a)∗ =
(
h(a ∨ b)

)∗
=
(
h(a) ∨ h(b)

)∗
= h(a)∗ ∧ h(b)∗,

whence h(a)∗ ≤ h(b)∗. Since h(cozα) = coz
(
Rh(α)

)
, we conclude that Ann(Rh(α)) ⊆

Ann(Rh(β)). Therefore Rh is weakly skeletal.

(⇐) Let a, b ∈ CozM be such that a∗ = b∗. For brevity, write a = cozα and b = coz β.

Then (cozα)∗ = (coz β)∗, which implies Ann(α) = Ann(β). The weak skeletality of Rh

implies

Ann(Rh(α)) = Ann(Rh(β)),

whence
(
coz(Rh(α))

)∗
=
(
coz(Rh(β))

)∗
. Since h(cozα) = coz

(
Rh(α)

)
, we conclude

that
(
h(cozα)

)∗
=
(
h(coz β)

)∗
, whence h(a)∗ = h(b)∗ Therefore h is weakly skeletal.

Remark 2.3.3. In light of the way we have defined weak skeletality for frame homo-

morphisms, one may wonder if we should rather not have defined a ring homomor-

phism φ : A → B to be weakly skeletal if, for any u, v ∈ A,Ann(u) = Ann(v) implies

Ann(φ(u)) = Ann(φ(v)). This latter definition would be formally weaker, as one readily

checks. But it does not seem to imply the first. However, if A and B are reduced f-rings,

then the two are equivalent. To see the nontrivial implication, let Ann(u) ⊆ Ann(v) for

u, v ∈ A. Then Ann(u) = Ann(u)∩Ann(v) ⊆ Ann(u2 + v2). Let r ∈ Ann(u2 + v2). Then

r2u2 + r2v2 = 0, which implies ru = rv = 0, showing that Ann(u2 + v2) ⊆ Ann(u), and

hence Ann(u) = Ann(u2 + v2). Then, as above,

Ann(φ(u)) = Ann(φ(u)2 + φ(v)2) = Ann(φ(u)) ∩ Ann(φ(v)),

so that Ann(φ(u)) ⊆ Ann(φ(v)) as required.

Next, we give an algebraic characterization of coz-onto frame homomorphisms, which we

will then use as basis for defining “coz-onto” ring homomorphisms. We will of course give
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them a different name because calling them coz-onto would be stretching nomenclature

too far. For a ring A and an element a ∈ A, denote by M(a) the set of all maximal ideals

of A which contain a.

Lemma 2.3.4. A frame homomorphism h : M → L is coz-onto if and only if for every

α ∈ RL there is a γ ∈ RM such that M(α) = M(Rh(γ)).

Proof. We need only observe that, in any frame N , for any τ, ρ ∈ RN , M(τ) = M(ρ) if

and only if cozα = coz β; and Mcoz τ =
⋂

M(τ), by the same argument as in the proof of

[31, Lemma 3.2].

Definition 2.3.5. We say a ring homomorphism φ : A→ B is M-full if, for every b ∈ B,

there is an a ∈ A such that M(b) = M(φ(a)).

An example of a M-full homomorphism is the inclusion A∗ → A, where A is an f -ring

with bounded inversion. For, if a ∈ A, then a
1+|a| is an element of A∗ with M(a) =

M( a
1+|a|).

Proposition 2.3.6. Let φ : A→ B be a M-full weakly skeletal homomorphism. If A is a

quasi m-ring, then B is also a quasi m-ring.

Proof. Let M be a maximal ideal of B and b1, b2 be elements of M . For each i = 1, 2, we

can find, by heaviness of φ, an element ai ∈ A such that M(bi) = M(φ(ai)). Let N be a

maximal ideal of A with φ−1[M ] ⊆ N . Then φ(ai) ∈M , which implies a1, a2 ∈ φ−1[M ] ⊆

N . Since A is a quasi m-ring, there are elements u, v ∈ A such that

u ∈ Ann(a1), v /∈ N, Ann(a2
1 + u2) ⊆ Ann(a2v).

We show that the elements φ(u) and φ(v) of B satisfy the requirements of Proposition

2.2.5 for a1 and a2. We have that φ(u) ∈ Ann(b1) because b1 = φ(a1). Also, φ(v) /∈ M ,

for otherwise v ∈ φ−1[M ] ⊆ N . Since φ is weakly skeletal and Ann(a2
1 + u2) ⊆ Ann(a2v),

it follows that

Ann
(
φ(a2

1 + u2)
)

= Ann
(
b2

1 + φ(u)2
)
⊆ Ann

(
φ(a2)φ(v)

)
= Ann

(
b2φ(v)

)
.

Therefore φ(u) and φ(v) do indeed satisfy the desired requirements.
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We observed above that, for a reduced f -ring A with bounded inversion, the inclusion

map A∗ → A is M-full. We now note that it is also weakly skeletal. Denote annihilation

in A∗ by Ann∗. Let a and b be elements of A∗ with Ann∗(a) ⊆ Ann∗(b). Let r ∈ Ann(a).

Then ar
1+|a| = 0, and therefore r

1+|r| ∈ Ann∗(a) ⊆ Ann∗(b). Thus rb = 0, which yields

the result. We therefore have the following corollary. Recall that R(βL) is isomorphic to

R∗L [12].

Corollary 2.3.7. Let A be a reduced f -ring with bounded inversion. If A∗ is a quasi

m-ring, then so is A. Consequently, if βL is a quasi cozero complemented frame, then L

is a quasi cozero complemented frame.

Since, as observed above, a frame homomorphism h : M → L is weakly skeletal (resp.,

coz-onto) precisely when the ring homomorphism RM → RL is weakly skeletal (resp.,

M-full), the following corollary is apparent.

Corollary 2.3.8. Let h : M → L be a coz-onto weakly skeletal frame homomorphism. If

M is a quasi cozero complemented frame, then L is also a quasi cozero complemented

frame.

We now apply this to identify certain subspaces of quasi m-spaces which inherit the

property of being a quasi m-space. Recall that a frame homomorphism h : M → L is

called nearly open [13] if h(a∗) = h(a)∗ for every a ∈ M . Nearly open homomorphisms

include dense onto homomorphisms (see [13, Lemma 2.1]), and they are skeletal. Other

skeletal homomorphisms are the following. An element r ∈M is called regular if r = r∗∗.

For a regular r ∈ M , denote the pseudocomplement in ↑r by ( )#. It is shown in [34,

Lemma 4.5] that, for any t ∈ ↑r, t# = (t∧ r∗)∗. In the proof that follows we shall use the

fact that, in any frame (u ∧ v)∗∗ = u∗∗ ∧ v∗∗ because the mapping x 7→ x∗∗ is a nucleus.

Lemma 2.3.9. For any regular r ∈M , the homomorphism κr : M → ↑r given by κr(a) =

r ∨ a is skeletal.
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Proof. Let a and b be elements of M with a∗ = b∗. Then

(r ∨ a)# =
(
(r ∨ a) ∧ r∗

)∗
= (a ∧ r∗)∗

= (a ∧ r∗)∗∗∗

= (a∗∗ ∧ r∗)∗ = (b∗∗ ∧ r∗)∗ = (r ∨ b)#,

which proves the claim.

For any frame L and c ∈ CozL, the open quotient map L→ ↓c is coz-onto [4, Corollary

3.2.11], and for any normal L and a ∈ L, the closed quotient map L→ ↑a is coz-onto [4,

Theorem 8.3.3]. Therefore the following corollary is apparent.

Corollary 2.3.10. The following statements hold for completely regular frames.

(1) If L is a quasi cozero complemented frame and c ∈ CozL, then ↓c is a quasi cozero

complemented frame.

(2) If L is a normal quasi cozero complemented frame and r is a regular element of L,

then ↑r is a quasi cozero complemented frame.

(3) A nearly open coz-quotient of a quasi cozero complemented frame is a quasi cozero

complemented frame. Hence, a dense coz-quotient of a quasi cozero complemented

frame is a quasi cozero complemented frame.

That L is a quasi cozero complemented frame whenever βL is could also be deduced

from the last statement in this corollary. Applied to spaces, this corollary tells us the

following. Recall that a subspace X of a space Y is nearly open in Y if every open set in

X is dense in some open set in Y . Dense subspaces are nearly open.

Corollary 2.3.11. For Tychonoff spaces we have the following results.

(1) A cozero subspace of a quasi m-space is a quasi m-space.

(2) A regular-closed subspace of a normal quasi m-space is an m-space.
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(3) A nearly open z-embedded subspace of a quasi m-space is a quasi m-space. Hence,

a dense z-embedded subspace of a quasi m-space is a quasi m-space.

We now say something about Oz-spaces. Recall from [15] that a subset S of a topological

space X is z-embedded in X in case each zero-set of S is the restriction to S of a zero-set

of X, (A zero-set is the set of zeros of a real-valued continuous function), a Tychonoff

space X is called an Oz-space if every open subspace of X is z-embedded. This notion

was extended to frames in [9].

Proposition 2.3.12. An Oz-space is a quasi m-space if and only if every open subspace

is a quasi m-space. An Oz-frame L is a quasi cozero complemented frame if and only if

↓a is a quasi cozero complemented frame for every a ∈ L.

In conclusion, we mentioned earlier that we have not been able to determine if the

Stone-Čech compactification of every quasi cozero complemented frame is a quasi cozero

complemented frame. We do however have a class of frames (not necessarily spatial) for

which this can be assert. Following [32], we say a point I of βL is sharp if, for any

c ∈ CozL, rL(c) ≤ L implies c ∈ I. We say it is almost sharp if, for any c ∈ CozL,

rL(c) ≤ I implies c is not dense. It is shown in [32] that L is a P -frame (resp. almost

P -frame) precisely when every point of βL is sharp (resp. almost sharp).

We aim to show that if βL has no almost sharp point, or if the join of every almost

sharp point is not the top, then βL is a quasi cozero complemented frame exactly when L

is a quasi cozero complemented frame. We need some background. Since jL : βL → L is

a C∗-quotient map, for every α ∈ R∗L there is an element α̂ ∈ RL such that the triangle

L(R)

α̂

}}

α

!!
βL

jL // L

commutes. As shown in [28, Lemma 3.8], maximal ideals of R∗L, are exactly the ideals

M∗I = {α ∈ R∗L | coz(α̂) ≤ I}
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for I ∈ Pt(βL). Below we shall use the fact, proved in [31, Lemma 3.8], that if A is a

reduced f -ring with bounded inversion, then the extension, Ie, of any d -ideal in A∗ is a d -

ideal in A, and the contraction, J c, of any d -ideal J of A is a d -ideal of A∗. Furthermore,

Iec = I and J ce = J . It is easy to show that we have a similar situation with “d -ideal”

replaced by “ minimal prime ideal”.

Proposition 2.3.13. Let L be a frame such that βL has no almost sharp point, or join

of every sharp point is not the top. Then βL is a quasi cozero complemented frame if and

only if L is a quasi cozero complemented frame.

Proof. Only the right-to-left implication needs verification, and for this it suffices to show

that R∗L is a quasi m-ring under the pertinent hypotheses. So let P be a prime d-ideal

of R∗L. Then P e is a prime d-ideal in RL, and so, in view of RL being a quasi m-ring,

P e ∈ Min(RL) or P e ∈ Max(RL).

Case (i): Suppose βL has no almost sharp point. Then P e cannot be a maximal ideal,

for if it were, then there would be a point I of βL such that P e = M I . But then since

P e is a d-ideal, every element of M I is a zero-divisor, implying that, for any γ ∈ RL, if

γ ∈M I , then coz γ is not dense. That is, if c ∈ CozL and rL(c) ≤ I then c is not dense.

This makes I an almost sharp point. Therefore P e is a minimal prime ideal, and hence

P ec is a minimal prime ideal, that is, P is a minimal prime ideal. Therefore R∗L (and

hence R(βL)) is a quasi m-ring.

Case (ii): Suppose βL has almost sharp points, and each has join unequal to the top.

Let P be a prime d-ideal in R∗L. As above, if P e ∈ Min(RL) we are done. So suppose

P e ∈ Max(RL). Take a point I in βL such that P e = M I . Then, as observed above,

I is almost sharp, and hence
∨
I < 1, by hypothesis. We claim that P = M∗I . Proving

this will complete the proof. To show this, it suffices to show that (M I)c = M∗I . By

[28, Proposition 4.2], we need only show that M∗I contains no unit of RL. Suppose, for

contradiction, that some α ∈M∗I is a unit of RL. Since α ∈M∗I , coz(α̂) ≤ I. Since α

is invertible in RL, we have

1 = cozα = coz(jL · α) =
∨

coz(α̂) ≤
∨
I,
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which yields the contradiction we seek.
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Chapter 3

Quasi P -frames

We will introduce quasi P -frames, and the definition we use is motivated by the defini-

tion of quasi P -spaces [40]. Although P -frames generalize P -spaces in the sense that a

Tychonoff space is a P -space precisely when the frame of its open sets is a P -frame, it has

recently been shown by Ball, Walters-Wayland and Zenk [5] that, in stark contrast with

P -spaces, there are P -frames with quotients which are not P -frames. In this chapter we

examine how far the theory of quasi P -frames parallels that of quasi P -spaces as defined

by Henriksen, Mart́ınez and Woods [40].

3.1 Characterizations of quasi P -frames

In this section we consider frames L for which RL satisfies condition (zMM). That is,

frames L such that every prime z-ideal of RL is minimal or maximal. It will turn out

that these are frame versions of what are called quasi P -spaces in [40]. That is why in the

definition that follows we use the term quasi P -point. Although in spaces quasi P -points

are points of X, we find it appropriate to use the same term for points of βL in frames.

Definition 3.1.1. A point I of βL is a quasi P-point if whenever Q is a prime z -ideal

of RL with Q ⊆ M I , then Q = M I or Q is a minimal prime ideal. We say L is quasi

P -frame if every point of βL is a quasi P -point.
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Since maximal ideals of RL are in one-one correspondence with the points of βL, it is

evident that L is a quasi P -frame precisely if RL satisfies the condition (zMM). In [50],

Mart́ınez defines the dimension of L, dim(L), to be the maximum of the lengths n of

chains of primes p0 < p1 < · · · < pn, if such a maximum exists, and infinity, otherwise. In

[53, Theorem 2.8] Mart́ınez and Zenk give a criterion, in terms of compact elements, for

determining an algebraic frame L and a nonnegative integer k when dim(L) ≤ k. Applied

to a coherent frame (so that the top is compact), and considering the case k = 1, this

yield the following characterization:

For a coherent frame L, dim(L) ≤ 1 if and only if for every pair a, b ∈ k(L),

there is a pair c, d ∈ k(L) such that

a ∧ c = 0, b ∨ d = 1L, b ∧ d ≤ a ∨ c.

Now, as shown in [31, Proposition 3.5], the lattice Zid(RL) of z -ideals of RL is a

coherent frame whose lattice of compact elements is

k
(
Zid(RL)

)
= {Mc | c ∈ CozL}.

Since maximal ideals are z -ideals, and the minimal prime elements of Zid(RL) are pre-

cisely the minimal prime ideals of RL, it follows that L is a quasi P -frame if and only if,

dim(Zid(RL)) ≤ 1. Thus, exactly as in the case of quasi P -spaces ([53, Remark 4.6(b)]),

we have the following characterization.

Proposition 3.1.2. L is a quasi P -frame if an only if for every pair a, b of cozero elements

of L, there is a pair c, d of cozero elements of L such that

a ∧ c = 0, b ∨ d = 1, b ∧ d ≤ a ∨ c.

This immediately shows that a Tychonoff space X is a quasi P -space if and only if

OX is a quasi P -frame. Of course this can also be shown directly from the definition. In

[40, Remark 2.9] it is demonstrated that any infinite P -space is a quasi P -space whose

Stone-Čech compactification is not a quasi P -space. Using the proposition above we show

that if L → M is a coz-onto homomorphism and L is a quasi P -frame, then M is also a
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quasi P -frame. Recall that a frame homomorphism h : L → M is coz-onto if for every

d ∈ CozM , there exists c ∈ CozL such that h(c) = d.

Lemma 3.1.3. Let h : L → M is a coz-onto homomorphism and L is a quasi P -frame,

then M is a quasi P -frame.

Proof. Let a, b ∈ CozM . Since h is coz-onto, there exist u, v ∈ CozL such that h(u) = a

and h(v) = b. Since L is quasi P -frame, there exist u′, v′ ∈ CozL such that u ∧ u′ =

0, v ∨ v′ = 1 and v ∧ v′ ≤ u ∨ u′. Now h(u) ∧ h(u′) = h(0), h(v) ∨ h(v′) = h(1) and

h(v)∧h(v′) ≤ h(u)∨h(u′) since frame homomorphisms preserve cozero elements. Further

a ∧ h(u′) = 0, b ∨ h(v′) = 1

and

b ∧ h(v′) ≤ a ∨ h(u′).

Therefore h(u′) and h(v′) are cozero elements in M , and hence M is quasi P -frame.

In [34] it is shown that for a frame surjection h : L → M , if M is Lindelöf and L is

completely regular, then h is coz-onto. Then we have the following.

Proposition 3.1.4. Let L be a quasi P -frame and h : L→M be a quotient of L with M

Lindelöf frame. Then M is quasi P -frame.

Corollary 3.1.5. Let L be a quasi P -frame, then ↓c is a quasi P -frame for every c ∈

CozL.

Thus in particular, from Lemma 3.1.3, we have

if βL is a quasi P -frame, then L is a quasi P -frame.

Since a frame L is pseudocompact exactly when βL is isomorphic to υL (see [11]), and

since RL is isomorphic to R(υL), it is easy to see that

a pseudocompact frame is quasi P -frame if and only if its Stone-Čech com-

pactification is a quasi P -frame.
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3.2 Some special quasi P -frames

Recall that a completely regular frame L is cozero complemented if for each u ∈ CozL,

there is a v ∈ CozL such that u ∧ v = 0 and u ∨ v is dense in L. In preparation for

the following result (which generalizes [40, Theorem 5.5]), we observe the following about

cozero complemented frames.

Lemma 3.2.1. If L is cozero complemented and Q is a prime ideal of RL which is not

minimal prime, then Q contains a non-divisor of zero.

Proof. For, there is a γ ∈ Q such that Ann(γ) ⊆ Q. Since L is cozero complemented,

there is a δ ∈ RL such that coz γ ∧ coz δ = 0 and coz γ ∨ coz δ is dense, and therefore

coz (γ2 + δ2) is dense. Then γ2 + δ2 is a non-divisor of zero, and since γδ = 0, δ ∈ Q,

whence γ2 + δ2 ∈ Q.

Proposition 3.2.2. Let L be a completely regular frame.

(a) If L is a quasi P -frame and I ⊆ CozL is a prime ideal in CozL containing a dense

cozero element, then I is a maximal ideal in CozL.

(b) If L is cozero complemented, and any prime ideal I ⊆ CozL containing a dense

cozero element is maximal, then L is a quasi P -frame.

Proof. (a) Let Q = {γ ∈ RL | coz γ ∈ I}. We claim that Q is a prime z-ideal. We show

first that Q is an ideal of RL. Consider any α, β ∈ Q, and any γ ∈ RL. Then cozα and

coz β are elements of I, which implies cozα∨ coz β ∈ I since I is an ideal in CozL. Since

coz(α + β) ≤ cozα ∨ coz β, it follows that coz(α + β) ∈ I since I is a downset. Thus,

α+ β ∈ Q. Similarly, from the relations coz(αγ) = cozα ∧ coz γ ≤ cozα, we deduce that

αγ ∈ Q. Therefore Q is an ideal in RL.

It is easy to see that Q is a z-ideal since cozα = coz β and β ∈ Q implies cozα ∈ I,

whence α ∈ Q. To see that Q is prime, consider any α, β ∈ RL such that αβ ∈ Q. Then

cozα ∧ coz β = coz(αβ) ∈ I, implying cozα ∈ I or coz β ∈ I since I is a prime ideal in

CozL. It follows therefore that α ∈ Q or β ∈ Q. Hence Q is prime.
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Now, being a prime ideal in RL, Q is contained in a maximal ideal M , say, and contains

a minimal prime ideal P , say. By hypothesis, there is a dense cozero element c in L which

is contained in I. Take γ ∈ RL such that coz γ = c. Then γ ∈ Q, and γ is a non-divisor

of zero since coz γ is dense. Thus, γ /∈ P because minimal prime ideals consist entirely of

zero-divisors. So Q 6= P , and therefore Q = M since L is a quasi P -frame.

We show from this that I is a maximal ideal in CozL. Consider any d ∈ CozL

with d /∈ I. We must show that 〈I, d〉, the ideal generated by I and d, is the whole of

CozL. Take γ ≥ 0 in RL with d = coz γ. Then γ /∈ Q. Since Q is a maximal ideal

in RL, the ideal 〈Q, γ〉 = RL, so 1 = q + δγ, for some q ∈ Q and δ ∈ RL. Thus,

1 = coz(q + δγ) ≤ coz q ∨ coz γ ∈ 〈I, d〉. Therefore 〈I, d〉 = CozL, showing that I is a

maximal ideal in CozL.

(b) Let Q be a prime z-ideal which is not minimal prime. Since L is cozero complemented,

Lemma 3.2.1 shows that Q contains some non-divisor of zero, say γ. Put I = {cozα | α ∈

Q}. It is easy to check that I is a prime ideal of CozL. Since γ is a non-divisor of zero,

coz γ is dense. But coz γ ∈ I; therefore I is a maximal in CozL, by hypothesis. Arguing

as above, we have that Q is a maximal ideal in RL. It follows therefore that L is a quasi

P -frame.

Recall that if u and v are cozero elements in L, then rL(u∨ v) = rL(u)∨ rL(v). For the

proof of the next proposition, we shall use the following fact: a frame L is a P -frame if

and only if for every a ∈ CozL, there exists b ∈ CozL such that a ∧ b = 0 and a ∨ b = 1.

Proposition 3.2.3. Let L be a cozero complemented frame such that, for every dense

c ∈ CozL, ↑c is a P -frame and κc : L→ ↑c is coz-onto. Then L is a quasi P -frame.

Proof. Let Q be a prime z-ideal of RL which is not minimal prime. Then Q contains

some non-divisor of zero, say γ. For brevity, write c = coz γ. Since c is dense, as γ is

a non-divisor of zero, the map κc : L → ↑c is coz-onto, and ↑c is a P -frame. Now, Q is

contained in some (unique) maximal ideal, say M I , for some I ∈ Pt(βL). We shall be

done if we can show that Q = M I . Let α ∈M I , and write a = cozα. Then rL(a) ≤ I.

Since c ∨ a ∈ Coz(↑c) and ↑c is a P -frame, by hypothesis, (c ∨ a)# ∨ (c ∨ a) = 1, where
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(c∨ a)# denotes the pseudocomplement of c∨ a in ↑c. Since (c∨ a)# is complemented in

↑c it is a cozero element in this frame, and hence, in light of κc being coz-onto, there is

an s ∈ CozL such that (c ∨ a)# = c ∨ s. Thus,

(c ∨ a) ∧ (c ∨ s) = c and (c ∨ a) ∨ (c ∨ s) = 1.

Since both α and γ are in M I , we have

rL(a ∨ c) = rL(a) ∨ rL(c) ≤ I,

which then quickly shows that rL(c ∨ s) � I, lest I be the top. Pick τ ∈ RL with

coz τ = c ∨ s. Then τ /∈M I , and hence τ /∈ Q. Since coz ((α2 + γ2)τ) = coz γ, and Q is

a z-ideal, it follows that (α2 + γ2)τ ∈ Q. Thus α2 + γ2 ∈ Q because Q is a prime ideal.

Consequently α ∈ Q because Q is a z-ideal. Therefore M I ⊆ Q, and hence equality.

The next result extends [40, Theorem 5.6]. The proof we give though is completely

different from that which could be modeled on the one given in [40]. We use Proposition

3.1.2.

Proposition 3.2.4. Let L be a quasi P -frame and c be a dense cozero element of L such

that κc : L→ ↑c is coz-onto. Then ↑c is a P -frame.

Proof. Let z ∈ Coz(↑c). Since κc is coz-onto, there is an a ∈ CozL such that z = c ∨ a.

Now c and a are cozero elements of the quasi P -frame L, so, by Proposition 3.1.2, there

are cozero elements u and v of L such that

c ∧ u = 0, a ∨ v = 1, a ∧ v ≤ c ∨ u.

Since c is dense, u = 0, and hence a ∧ v ≤ c. Now, c ∨ v is a cozero element of ↑c with

the property that

(c ∨ a) ∨ (c ∨ v) = 1, and (c ∨ a) ∧ (c ∨ v) = c ∨ (a ∧ v) = c = 0↑c.

This shows that z is complemented in Coz(↑c). Therefore ↑c is a P -frame.

From the previous two propositions we immediately deduce the following.
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Corollary 3.2.5. If L is a cozero complemented frame such that, for every dense c ∈

CozL, the map κc : L → ↑c is coz-onto, then L is a quasi P -frame if and only if ↑c is a

P -frame.

We have seen above that if h : M → L is coz-onto, then L is a quasi P -frame if

M is quasi P -frame. We shall now give an instance where the property of being quasi-

P is transferred by a homomorphism from the codomain to the domain. Recall that

for a frame homomorphism h : M → L is called closed if, for every a ∈ M and b ∈ L,

h∗(h(a)∨b) = a∨h∗(b). For regular frames, h : M → L is closed if and only if h(a)∨b = 1

implies a∨h∗(b) = 1. In the previous chapter we discussed what we called weakly skeletal

maps. Here we need a somewhat weaker condition.

Motivated by the fact that a frame homomorphism h : M → L is skeletal if it sends

dense elements to dense elements, we shall say h : M → L is coz-skeletal if it sends

dense cozero elements to dense cozero elements. We suggest that the reader see [40]

for comparison with the spatial case. Weak skeletality implies coz-skeletality because if

c ∈ CozM is dense, then c∗ = 1∗, and 1 ∈ CozM .

Proposition 3.2.6. Let h : M → L be an injective coz-skeletal closed map. Suppose M

and L are cozero complemented, and that, further, L is normal and quasi P -frame. Then

M is a quasi P -frame.

Proof. We show first that M is normal, whence closed quotients will be coz-quotients.

Let a∨ b = 1 in M . Then h(a)∨ h(b) = 1. Since L is normal, there are elements u, v ∈ L

such that

u ∧ v = 0 and h(a) ∨ u = 1 = h(b) ∨ v.

We show that h∗(u) and h∗(v) satisfy the normality requirements for a and b. To start,

h∗(u) ∧ h∗(v) = h∗(u ∧ v) = 0. Since h is a closed map,

a ∨ h∗(u) = 1 = b ∨ h∗(v).

Therefore M is normal. We now apply Corollary 3.2.5. Let c be a dense cozero element

of M . Then h(c) is a dense cozero element of L by the coz-skeletality of h. Thus, by
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Corollary 3.2.5, ↑h(c) is a P -frame. Let w ∈ Coz(↑c). Then h(w) ∈ Coz(↑h(c)), as one

checks easily. Note that, since h(c) ∈ CozL and κh(c) : L→ ↑h(c) is coz-onto, the cozero

elements of ↑h(c) are precisely the cozero elements of L which are above h(c). Since ↑h(c)

is P -frame, there is a t ∈ CozL above h(c) such that

h(w) ∨ t = 1 and h(w) ∧ t = h(c).

The equality on the left implies w ∨ h∗(t) = 1 since h is a closed map, and the one on

the right implies h
(
w ∧ h∗(t)

)
≤ h(c), so that w ∧ h∗(t) ≤ c because h is one-one. By

normality, there is a d ∈ CozM such that d ≤ h∗(t) and w ∨ d = 1. Therefore c ∨ d is a

cozero element of ↑c such that w ∨ (c ∨ d) = 1 and, in light of c ≤ h∗(t),

c ≤ w ∧ (c ∨ d) ≤ w ∧
(
c ∨ h∗(t)

)
= w ∧ h∗(t) ≤ c.

Therefore c ∨ d misses w in the frame ↑c and joins it at the top. This shows that ↑c is a

P -frame, and hence M is a quasi P -frame.

We end with a result which tells us, among other things, that in the class of metrizable

frames the quasi-P ones are precisely those whose nowhere dense quotients are closed.

In [20] a frame homomorphism h : M → M is called nowhere dense if for each nonzero

x ∈ M , there is a nonzero y ≤ x such that h(y) = 0. This is a conservative extension of

the topological concept of nowhere density because, as shown in [20, Proposition 3.9], a

subspace S of a topological space X is nowhere dense if and only if the frame homomor-

phism OX → OS, induced by the subspace inclusion S ↪→ X, is nowhere dense. It is

shown in [23, Lemma 3.2] that h is nowhere dense if and only if h∗(0) is a dense element.

Further, [20, Proposition 3.9] shows that h : M → L is nowhere dense precisely if, viewed

as locales, Fix(h∗h) has zero meet (in the co-frame of sublocales) with the smallest dense

sublocale of L. Thus, this notion of nowhere density agrees with that of Plewe [56].

Recall that a topological space is said to be a nodec space [18] if every nowhere dense

subspace is closed. We extend this to frames.

Definition 3.2.7. A frame L is nodec if, for every nowhere dense quotient map g : L→ N ,

the homomorphism ↑g∗(0)→ N , mapping as g, is an isomorphism.
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In localic terms this definition says a locale is nodec if every nowhere dense sublocale

is closed. We invite the reader to compare this with the notion of strongly submaximal

locales defined in [20] by decreeing that every complemented dense sublocale be open. As

remarked in [20], a locale is strongly submaximal if and only if its complemented nowhere

dense sublocales are closed. So, nodec frames are more restricted than the strongly

submaximal ones.

We remind the reader that a frame is called perfectly normal if it is normal and every

element is a cozero element. Within the category of completely regular frames it suffices

to define L to be perfectly normal if CozL = L because CozL is a normal lattice for

completely regular L. Observe that perfectly normal frames are cozero complemented

because c ∨ c∗ is always dense.

Proposition 3.2.8. A perfectly normal frame is quasi P -frame if and only if it is nodec.

Proof. (⇒) Let M be a perfectly normal quasi P -frame, and let M
q−→ N be a nowhere

dense quotient of M . Then q∗(0) is a dense cozero element of M and the quotient map

κq∗(0) : M → ↑q∗(0) is coz-onto. Therefore, by Corollary 3.2.5, ↑q∗(0) is a P -frame. We

show that the homomorphism ↑q∗(0)→M which maps as q is codense, which will imply

it is one-one and hence an isomorphism. Consider any a ∈ ↑q∗(0) with q(a) = 1. Since

a ∈ Coz(↑q∗(0)) there is a d ∈ Coz(↑q∗(0)) such that

a ∧ d = q∗(0) and a ∨ d = 1.

This implies q(a) ∧ q(d) = 0, so that q(d) = 0, hence d ≤ q∗(0), whence d = q∗(0). As a

consequence,

1 = a ∨ d = a ∨ q∗(0) = a.

Therefore M is a nodec frame.

(⇐) Suppose M is a perfectly normal nodec frame. Let c be a dense cozero element of

M . We aim to show that ↑c is a P -frame. We will actually prove that it is Boolean;

and for this it suffices to show that each of its quotients is closed. So let ↑c h−→ L be

a quotient of ↑c, and consider the composite M
κc−→ ↑c h−→ L, which is a quotient map

out of a nodec frame. We show that it is nowhere dense. Take any x ∈ L such that
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(hκc)∗(0) ∧ x = 0. Since (κc)∗ is the inclusion map ↑c → M , this implies h∗(0) ∧ x = 0,

whence x = 0 because h∗(0) is a dense element of M as it is above the dense element c.

Therefore the homomorphism ν : ↑h∗(0) → L, mapping as hκc, is an isomorphism. We

therefore have the following commutative diagram.

↑c
h∗(0)∨−

||

h

��
↑h∗(0) ν // L

This shows that L is (isomorphic to) a closed quotient of ↑c, and hence ↑c is Boolean,

and is therefore a P -frame. Thus, M is a quasi P -frame.

Remark 3.2.9. A localic proof that a sublocale S of a nowhere dense sublocale N of a

locale A is nowhere dense in A is immediate. Indeed, recall that a sublocale N of a locale

A is nowhere dense if N ∧ d(A) = O, where d(A) denotes the smallest dense sublocale of

A. So if S ≤ N , then S ∧ d(A) ≤ N ∧ d(A) = O, showing that S is nowhere dense. If we

had not sought to keep the algebraic flavour throughout, we would rather have used that.
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Chapter 4

Weak almost P -frames

4.1 Introduction

It is well known that, for any Tychonoff space X, the ring C(X) is regular in the sense of

Von Neumann precisely if X is a P -space (see [37]). This result also holds in the broader

context of frames [12]. Call a ring almost regular if each of its elements is either a zero-

divisor or a unit. Every regular ring is almost regular, but not conversely. The Tychonoff

spaces X for which C(X) is almost regular are exactly the almost P -spaces that were

introduced by Veksler in [61].

Less restricted than almost P -spaces are what Azarpanah and Karavan [1] call weak

almost P -spaces. These are spaces X such that for every two zero-sets E and F of X

with IntE ⊆ IntF , there is a nowhere dense zero-set H of X such that E ⊆ F ∪H. In [1]

the authors characterize these spaces as precisely those X for which every singular (i.e.

consisting entirely of zero-divisors) prime z-ideal of C(X) is a d-ideal. We will provide

another ring-theoretic characterization of these spaces.

In fact, defining a frame L to be a weak almost P -frame if it satisfies a property which is

a frame-theoretic enunciation of the definition of weak almost P -spaces, we will obtain a

ring-theoretic characterization of these frames which bears immediate resemblance to the

frame-theoretic definition. That characterization will then be the basis for our definition
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of weakly regular rings. It will turn out that an f -ring is weakly regular if and only if it

satisfies the prime z-ideal condition mentioned above which characterizes the rings C(X)

for X a weak almost P -space.

On the frame-theoretic side of things, we show that if βL is a weak almost P -frame

then so is L; and conversely if L is a continuous Lindelöf frame. Another result with

the Lindelöf condition concerns coproducts. It says if the coproduct L ⊕M of Lindelöf

frames is a weak almost P -frame then so is each summand. Applied to spaces, we deduce

from it that if X ×Y is a weak almost P -space where X and Y are Lindelöf with at least

one of them locally compact, then X and Y are weak almost P -spaces. The result about

coproducts hinges on the fact (established in the course of the proof of the proposition)

that every cozero element of the coproduct L⊕M of Lindelöf frames is a countable join

of “cozero rectangles” a⊕ b, for a and b cozero elements in L and M , respectively. It thus

seemed appropriate that we end this section with characterizations of when every cozero

element of a binary coproduct of frames is a countable join of cozero rectangles.

Every P -space is an almost P -space, and every almost P -space is a weak almost P -

space. For rings, regularity implies almost regularity quite easily. Less obvious is that

every almost regular f -ring is weakly regular. This we show in our last result which also

points out the position of weak regularity in relation to other variants of regularity.

4.2 Characterizations of weak almost P -frames

Azarpanah and Karavan [1] define a Tychonoff space X to be a weak almost P -space if

whenever E and F are zero-sets with IntE ⊆ IntF , then E ⊆ F ∪W for some nowhere

dense zero-set W of X. For any U ∈ OX, Int(X r U) = X r clU = U∗. Consequently,

the condition defining weak almost P -spaces is equivalent to saying whenever U and V

are cozero-sets in X with U∗ ⊆ V ∗, then V ∩W ⊆ U for some dense cozero-set W of X.

We thus formulate the following definition.

Definition 4.2.1. A completely regular frame L is a weak almost P -frame if whenever a

and b are cozero elements of L with a∗ ≤ b∗, then there is a dense cozero element c such
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that b ∧ c ≤ a.

It is immediate that a Tychonoff space X is a weak almost P -space if and only if OX

is a weak almost P -frame. Here are some examples.

Example 4.2.2. Recall that a frame L is called an almost P -frame if c = c∗∗ for every

c ∈ CozL. Every almost P -frame is a weak almost P -frame because a∗ ≤ b∗ for a, b ∈

CozL implies b = b∗∗ ≤ a∗∗ = a, so that we can take the top element of L as a witnessing

dense cozero element.

Example 4.2.3. A frame L is called cozero complemented if for every c ∈ CozL there is

a d ∈ CozL such that c ∧ d = 0 and c ∨ d is dense. Let L be cozero complemented and

a∗ ≤ b∗ for some a, b ∈ CozL. Pick c ∈ CozL such that a ∧ c = 0 and a ∨ c is dense.

Since c ≤ a∗ ≤ b∗, so that b ∧ (a ∨ c) = (b ∧ a) ∨ (b ∧ c) = b ∧ a ≤ a, it follows that every

cozero complemented frame is a weak almost P -frame.

We acknowledge one of the examiners for bringing to our attention a counterexample

which is needed in 4.2.2 and 4.2.3, i.e an example of the weak almost P -frame which

is neither almost P -frame nor cozero complemented. In the context of topology, X =

{0, 1, 2, · · · , 1
n
, · · · } as a subspace of reals is a weak almost P -space which is neither an

almost P -space nor cozero complemented.

We now seek a ring-theoretic characterization of these frames. Let us formulate the

following definition, which, as the calculations that follow will show, is motivated by the

frame-theoretic definition above.

Definition 4.2.4. A ring A is weakly regular if for any a, b ∈ A with Ann(a) ⊆ Ann(b),

there is a non-divisor of zero c ∈ A such that bc ∈M(a).

The terminology suggests a weakening of regularity. That is indeed the case for reduced

rings. To see this, recall that a reduced ring is regular if and only if Min(A) = Max(A).

Thus, if Ann(a) ⊆ Ann(b), then

b ∈ Ann2(b) ⊆ Ann2(a) =
⋂
{P ∈ Min(A) | a ∈ P} =

⋂
M(a) = M(a),

so that c = 1 is a non-divisor of zero with bc ∈M(a).
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Proposition 4.2.5. The following are equivalent for a completely regular frame L.

(1) L is a weak almost P -frame.

(2) For any a, b ∈ CozL with a∗ = b∗, there is a dense c ∈ CozL such that a∧ c = b∧ c.

(3) RL is a weakly regular ring.

Proof. (1) ⇒ (2): Suppose a and b are cozero elements with a∗ = b∗. Then there are

dense cozero elements u and v such that b ∧ u ≤ a and a ∧ v ≤ b. Now c = u ∧ v is a

dense cozero element with a ∧ c = b ∧ c because b ∧ u ≤ a implies b ∧ u ∧ v ≤ a ∧ u ∧ v,

and similarly for the other inequality.

(2) ⇒ (3): Let α, β ∈ RL be such that Ann(α) ⊆ Ann(β). Then M(cozα)∗ ⊆ M(cozβ)∗ ,

which implies (cozα)∗ ≤ (coz β)∗, and hence

(coz(α2 + β2))∗ = (cozα ∨ coz β)∗ = (cozα)∗ ∧ (coz β)∗ = (cozα)∗.

It therefore follows from (2) that there is a positive γ ∈ RL such that coz γ is dense and

cozα ∧ coz γ = coz γ ∧ coz(α2 + β2). Consequently,

coz(γβ) = coz(γβ2) ≤ coz(γα2 + γβ2) = cozα ∧ coz γ ≤ cozα.

Let Q be a maximal ideal of RL containing α. Pick I ∈ Pt(βL) such that Q = M I .

Then rL(cozα) ≤ I, which implies rL(coz(βγ)) ≤ I, so that βγ ∈ M I . Consequently,

βγ ∈ M(α). Now, γ is a non-divisor of zero because coz γ is dense, therefore RL is a

weakly regular ring.

(3) ⇒ (1): Suppose a, b ∈ CozL are such that a∗ ≤ b∗. Pick α, β ∈ RL with a = cozα

and b = coz β. Now a∗ ≤ b∗ implies Ann(α) ⊆ Ann(β), and hence, by (3), there is a

non-divisor of zero γ such that βγ ∈ M(α) = Mcozα. Thus, c = coz γ is a dense cozero

element of L such that b ∧ c ≤ a. Therefore L is a weak almost P -frame.

Corollary 4.2.6. The following are equivalent for a completely regular frame L.

(1) L is a weak almost P -frame.
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(2) υL is a weak almost P -frame.

(3) λL is a weak almost P -frame.

Since a completely regular frame L is pseudocompact precisely when υL is isomorphic

to βL – which also is the case for Tychonoff spaces – we deduce from the above that:

Corollary 4.2.7. A pseudocompact frame L is a weak almost P -frame if and only if βL

is a weak almost P -frame. Similarly, a pseudocompact space X is a weak almost P -space

if and only if βX is a weak almost P -space.

We recall from [7, Lemma 2] that if h : M → L is dense, then the ring homomorphism

Rh : RM → RL is one-one. Also, recall from [4] that a quotient map h : M → L is a C-

quotient map precisely when Rh : RM → RL is onto. This is however not the definition

used in [4].

Corollary 4.2.8. Let h : M → L be a dense C-quotient map. Then M is a weak almost

P -frame if and only if L is weak almost-P .

Interpreting this result for Tychonoff spaces we obtain the following.

Corollary 4.2.9. A dense C-embedded subspace of a Tychonoff space is a weak almost

P -space if and only if the containing space is a weak almost P -space.

In the less restricted case we have the following corollary. Let us recall that if h : M → L

is dense, then h(a) = h(b) implies a∗ = b∗ for very a, b ∈ L. This is so because

h(a∗ ∧ b) = h(a∗) ∧ h(b) ≤ h(a)∗ ∧ h(b) = h(b)∗ ∧ h(b) = 0,

so that a∗ ∧ b = 0 by density, and hence a∗ ≤ b∗, whence equality follows by symmetry.

Recall also that a dense onto frame homomorphism preserves pseudocomplements, hence

it preserves (and reflects) dense elements.

Corollary 4.2.10. Let h : M → L be a dense coz-onto frame homomorphism. If M is a

weak almost P -frame, then L is a weak almost P -frame. Hence, if βL is a weak almost

P -frame, then so is L.
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Proof. Suppose a∗ = b∗ for some a, b ∈ CozL. Since h is coz-onto, there exist u, v ∈ CozM

such that h(u) = a and h(v) = b. Then h(u∗) = h(v∗), from which we can deduce by

what we have observed above that u∗ = v∗. Since M is a weak almost-P , there is a dense

w ∈ CozM such that v∧w = u∧w. Thus, h(w) is a dense cozero element of L such that

b ∧ h(w) = a ∧ h(w). Therefore L is a weak almost-P .

In spaces this result yields the following.

Corollary 4.2.11. A dense z-embedded subspace of a weak almost P -space is a weak

almost P -space. Hence, X is a weak almost P -space if βX is a weak almost P -space.

We have not been able to determine if βL is always a weak almost P -frame whenever L

is. We do however have a case when this happens. Recall that the “well below” relation

� in a frame L is defined by

a� b ⇐⇒ b ≤
∨
S for some S ⊆ L implies a ≤

∨
T for some finite T ⊆ S.

The frame L is then called continuous if a =
∨
{x ∈ L | x � a} for every a ∈ L. In a

regular continuous frame,

a� b ⇐⇒ a ≺ b and ↑a∗ is compact,

a consequence of which is that, in a continuous regular frame, ai � bi for i = 1, 2 implies

a1 ∧ a2 � b1 ∧ b2. This in general is not the case, and the frames for which it holds are

called stably continuous.

In the proof that follows we shall use the fact that if I ≺≺ J in βL, then
∨
I ∈ J . For

verification see for instance the paragraph preceding Example 4 in [24].

Proposition 4.2.12. Let L be a continuous Lindelöf frame. Then βL is a weak almost

P -frame if and only if L is a weak almost P -frame.

Proof. Only the right-to-left implication needs proof. So assume L is a weak almost P -

frame, and let U, V ∈ Coz(βL) be such that U∗ ≤ V ∗. Pick cozero elements Un in βL

such that Un ≺≺ Un+1 and U =
∨
n

Un. For each n, put un =
∨
Un and observe that
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un ≺≺ un+1. Since Un ≤ rL(un) ≤ Un+1, it follows that U =
∨
n

rL(un). Similarly, there are

cozero elements vn in L such that V =
∨
n

rL(vn). Now let u and v be the cozero elements

of L given by u =
∨
un and v =

∨
vn. Since u = jL(Un) and v = jL(Vn), it follows from

U∗ ≤ V ∗ that u∗ ≤ v∗. Since L is a weak almost P -frame, there is a dense d ∈ CozL such

that v ∧ d ≤ u. Since L is a continuous frame and d ∈ CozL, so that, by [10, Corollary

4], d is a Lindelöf element in L, there are elements dn in L such that dn � d for every

n and d =
∨
dn. We may assume that each dn ∈ CozL because the well below relation

interpolates in a continuous frame. Now, in view of the fact that jL : βL→ L is coz-onto,

there exists, for each n, Dn ∈ Coz(βL) such that jL(Dn) = dn. The element D =
∨
n

Dn is

a cozero element in βL. Since

jL(D) = jL

(∨
n

Dn

)
=
∨
n

dn = d,

it follows that D is dense because d is dense. We claim that D ∧ V ≤ U . To see this,

observe first that Dn ≤ rL(dn) since jL(Dn) = dn, and hence

D ∧ V ≤
∨
n

rL(dn) ∧
∨
m

rL(vm) =
∨
n,m

rL(dn ∧ vm).

Now, for any pair of indices (n,m),

dn ∧ vm � d ∧ v ≤ u =
∨
un,

which, in view of the fact that the sequence (un) increases, implies there is an index k such

that dn ∧ vm ≤ uk ≺≺ uk+1, so that dn ∧ vm ∈ rL(uk+1) ⊆ U . Therefore rL(dn ∧ vm) ≤ U ,

and hence D ∧ V ≤ U . Thus, βL is a weak almost P -frame.

Corollary 4.2.13. A locally compact Lindelöf space is a weak almost P -space if and only

if its Stone-Čech compactification is a weak almost P -space.

In [24] it is shown that if the coproduct of two frames is an almost P -frame, then

each summand is an almost P -frame. We prove a similar result for Lindelöf weak almost

P -frames. Recall that if c ∈ CozL and d ∈ CozM , then c ⊕ d ∈ Coz(L ⊕M) because

c ⊕ d = iL(c) ∧ iM(d) for the coproduct injections L
iL−→ L ⊕M iM←− M . It is shown in

[13] that, for any x ∈ L and y ∈ M , (x ⊕ y)∗∗ = x∗∗ ⊕ y∗∗. Thus, if x ⊕ y is dense, then

both x and y are dense.
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Proposition 4.2.14. If the coproduct of two Lindelöf frames is a weak almost P -frame,

then each summand is a weak almost P -frame.

Proof. Let L and M be such frames. Suppose a∗ ≤ b∗ for some a, b ∈ CozL. Then a⊕ 1

and b⊕ 1 are cozero elements of L⊕M . Since b∗∗ ≤ a∗∗, we have

(b⊕ 1)∗∗ = b∗∗ ⊕ 1 ≤ a∗∗ ⊕ 1 = (a⊕ 1)∗∗,

which implies (a ⊕ 1)∗ ≤ (b ⊕ 1)∗. So, by hypothesis, there is a dense U ∈ Coz(L ⊕M)

such that

(b⊕ 1) ∧ U ≤ a⊕ 1. (#)

We claim that there are sequences (cn) and (dn) in CozL and CozM respectively such

that

U =
∞∨
n=1

(cn ⊕ dn).

To show this, we write U as a join of basic elements, say U =
∨
α

(aα ⊕ bα). By complete

regularity, for each α there are cozero elements {c(α)
i } in L and cozero elements {d(α)

j } in

M such that

aα =
∨
i

c
(α)
i and bα =

∨
j

d
(α)
j .

Consequently,

aα ⊕ bα =
∨
i

c
(α)
i ⊕

∨
j

d
(α)
j =

∨
i,j

(c
(α)
i ⊕ d

(α)
j ),

so that

U =
∨
α,i,j

(c
(α)
i ⊕ d

(α)
j ).

Since U is a cozero element in a Lindelöf frame, it is a Lindelöf element, and hence

we can find countably many cn ∈ CozL and countably many dn ∈ CozM such that

U =
∨
n

(cn ⊕ dn). Now

(b⊕ 1) ∧
∞∨
n=1

(cn ⊕ dn) =
∞∨
n=1

(
(b⊕ 1) ∧ (cn ⊕ dn)

)
=
∞∨
n=1

(
(b ∧ cn)⊕ dn

)
.
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Thus, the inequality in (#) implies
∞∨
n=1

(
(b∧cn)⊕dn

)
≤ a⊕1, whence (b∧cn)⊕dn ≤ a⊕1

for every n, and hence b ∧ cn ≤ a for every n, which implies b ∧
∨
n

cn ≤ a. To finish the

proof we show that the cozero element
∨
n

cn of L is dense. Since U is dense and

U =
∨
n

(cn ⊕ dn) ≤
(∨

n

cn

)
⊕
(∨

n

dn

)
,

it follows that
(∨
n

cn

)
⊕
(∨
n

dn

)
is dense, whence

∨
n

cn is dense. Therefore L is a weak

almost P -frame. Similarly, M is a weak almost P -frame.

Corollary 4.2.15. Let X and Y be Lindelöf spaces with one of them locally compact. If

X × Y is a weak almost P -space, then both X and Y are weak almost P -spaces.

Proof. By [44, Proposition II 13], O(X × Y ) is isomorphic to OX ⊕ OY . Therefore

OX ⊕ OY is a weak almost P -frame, and so OX and OY are weak almost P -frames,

which implies X and Y are weak almost P -spaces.

Remark 4.2.16. The fact that L ⊕M is Lindelöf was used only to enable us to write

the cozero element U as a join of countable many “cozero rectangles” cn⊕ bn. The result

therefore is true for any pair (L,M) of frames for which every cozero element of L ⊕M

is a join of countably many cozero rectangles. We end the section with a digression from

our main train of thought, and give characterizations of such pairs.

To start, we mention that the term “cozero rectangle” is borrowed from [16], and the

pointed analogues of the characterizations that follow are in that paper, excluding, of

course, the one about the Lindelöf coreflections.

Proposition 4.2.17. The following are equivalent for frames K,N,L and M .

(1) Every cozero element of L⊕M is a countable join of cozero rectangles.

(2) For any coz-onto homomorphisms h : K → L and g : N →M , the homomorphism

h⊕ g : K ⊕N → L⊕M is coz-onto.

(3) jL ⊕ jM : βL⊕ βM → L⊕M is coz-onto.
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(4) λL ⊕ λM : λL⊕ λM → L⊕M is coz-onto.

Proof. (1) ⇒ (2): Given a cozero element U =
∨
n

(an ⊕ bn) in L ⊕M , take, for each n,

cozero elements un in K and cozero elements vn in N such that h(un) = an and g(vn) = bn.

Then
∨
n

(un ⊕ vn) is a cozero element of K ⊕N mapped to U by h⊕ g.

(2)⇒ (3): This is trivial because the Stone-Čech maps are coz-onto.

(3)⇒ (1): Let U ∈ Coz(L⊕M). By (3), there is a V ∈ Coz(βL⊕ βM) such that

(jL ⊕ jM)(V ) = U . As we observed in the proof of Proposition 4.2.14, there are cozero

elements cn ∈ Coz(βL) and dn ∈ Coz(βM) such that V =
∨
n

(cn ⊕ dn) because βL⊕ βM

is Lindelöf. Thus,

U = (jL ⊕ jM)
(∨

n

(cn ⊕ dn)
)

=
∨
n

(
jL(cn)⊕ jM(dn)

)
,

which is a countable join of cozero rectangles.

(1) ⇔ (4): The same line of argument as the foregoing one shows this since λL⊕ λM is

Lindelöf.

4.3 More on weakly regular f-rings

The characterization in statement (2) of Proposition 4.2.5 suggests an analogous char-

acterization for weakly regular rings. For f -rings we indeed do have such. Recall that

a radical ideal is one which whenever it contains a power of an element, then it already

contains the element. For any a in a ring, M(a) is a radical ideal. Observe that if

M(x) ⊆ M(y), then M(xy) = M(y). The last implication in the following proof is

modeled on that of [1, Theorem 4.2 (ii)].

Proposition 4.3.1. The following properties of a reduced f -ring A are equivalent.

(1) A is weakly regular.

(2) For any a, b ∈ A, Ann(a) = Ann(b) implies there is a non-divisor of zero c such

that ac ∈M(b) and bc ∈M(a).
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(3) Every singular prime z-ideal in A is a d-ideal.

Proof. (1) ⇒ (2): Assume (1) and suppose that Ann(a) = Ann(b) for some a, b ∈ A.

Then there are non-divisor of zero u and v such that au ∈ M(b) and bv ∈ M(a). Hence

c = uv is a non-divisors of zero with ac ∈M(b) and bc ∈M(a).

(2) ⇒ (3): Let P be a singular prime z-ideal in A. Suppose that, for some a, b ∈ A,

Ann(a) = Ann(b) and a ∈ P . We must show that b ∈ P . By (2), there is a non-divisor of

zero c such that bc ∈M(a). Thus, M(a) ⊆M(bc), which implies M(bc) = M(abc). Since

abc ∈ P and P is a z-ideal, it follows that bc ∈ P , and hence b ∈ P because P is prime

and c /∈ P .

(3) ⇒ (1): Let Ann(a) ⊆ Ann(b) and suppose, by way of contradiction, that for any

non-divisor of zero c, bc /∈M(a). Define the set S ⊆ A by

S = {bnc | c is a non-divisor of zero and n = 0, 1, 2 . . .},

and note that S is multiplicatively closed. Also, M(a) ∩ S = ∅ because if bnc ∈M(a) for

some n and some non-divisor of zero c, then (bc)n ∈M(a), so that bc ∈M(a) since M(a)

is a radical ideal. Let P be a prime ideal minimal over M(a) and disjoint from S. Since

M(a) is a z-ideal, it follows from [55, Theorem 1.1] that P is a z-ideal. Since S contains all

non-divisor of zero, P is singular, and hence, by hypothesis, P is a d-ideal, and therefore

Ann2(a) ⊆ P as a ∈ P . Consequently, the relations b ∈ Ann2(b) ⊆ Ann2(a) ⊆ P imply

b ∈ P , which is a contradiction because b ∈ S. Therefore A is weakly regular.

Below we use the fact that if A is a reduced f -ring with bounded inversion and

S = {a ∈ A∗ | a is invertible in A},

then A = A∗[S−1] (see [29, Lemma 3.4]). That is, A is the ring of fractions of its bounded

part relative to the set S. A consequence of this is that ideals of A are exactly the ideal

Ie = {s−1u | s ∈ S and u ∈ I}

for I an ideal of A∗.
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Corollary 4.3.2. Let A be a reduced f -ring with bounded inversion.

(a) If A is weakly regular and every prime singular z-ideal of A∗ extends to a z-ideal in

A, then A∗ is weakly regular.

(b) If A∗ is weakly regular and every prime singular z-ideal of A contracts to a z-ideal

in A∗, then A is weakly regular.

Proof. (a) Let I be a singular prime z-ideal in A∗. Then of course Ie is a prime ideal in

A, and it consists entirely of zero-divisors. By hypothesis, Ie is a z-ideal, and hence it is

a d-ideal since A is weakly regular. By [29, Lemma 3.8], Iec is a d-ideal in A∗, and by [29,

Proposition 3.0], I = Iec. Therefore A∗ is weakly regular.

(b) The proof goes along the lines of that of (a).

Remark 4.3.3. In [43, Corollary 2.6.1], Ighedo shows that every z-ideal of any ring RL

contracts to a z-ideal of R∗L. Thus, the (b) part of the foregoing corollary gives another

reaffirmation of the fact that if βL is a weak almost P -frame, then so is L since R(βL) is

isomorphic to R∗L.

We conclude by examining the position of weak regularity for f -rings vis-à-vis other

weaker variants of regularity. First let us recall some terminology. Endo [35] calls a

ring quasi-regular if its classical ring of quotients is regular. In [36, Theorem 2.2], Evans

characterizes quasi-regular rings internally. He shows that A is quasi-regular if and only

if for every a ∈ A there exists b ∈ A such that Ann2(a) = Ann(b) if and only if for every

a ∈ A there exists a non-divisor of zero d ∈ A such that a2 = ad. At the beginning of

the paper we agreed to say a ring is almost regular if every non-divisor of zero in it is

invertible.

The proposition that we shall prove shortly is motivated by what happens in function

rings RL. Recall that in frames we have the following irreversible implications. We

use the abbreviations AP, WAP and CC for “almost P”, “weak almost P”, and “cozero

complemented”, respectively.

P =⇒ AP =⇒ WAP and P =⇒ CC =⇒ WAP

48



Furthermore,

CC + AP =⇒ P.

Frames L with any of these properties have ring-theoretic characterizations. We list them

below, giving reference where each characterization first appeared.

1. L is a P -frame if and only if RL is a regular ring [12].

2. L is an almost P -frame if and only if RL is an almost regular ring [24].

3. L is cozero complemented if and only if RL is a quasi-regular ring [32].

We now show that the ring analogues of the implications above hold for reduced f -rings.

Proposition 4.3.4. For reduced f -rings the following implications hold.

(1) Regularity =⇒ almost regularity =⇒ weak regularity.

(2) Regularity =⇒ quasi-regularity =⇒ weak regularity.

(3) Quasi-regularity + almost regularity =⇒ regularity.

Proof. (1) To show the first implication, suppose A is a regular ring, and let a ∈ A be a

non-divisor of zero. Pick b ∈ A such that a = a2b. Then a(1− ab) = 0, and hence ab = 1

since a is not a divisor of zero. Therefore a is invertible, and hence A is almost regular.

For the second implication, assume A is almost regular, and suppose Ann(a) ⊆ Ann(b)

for some a, b ∈ A. Let M be a maximal ideal of A containing a. Since M consists

entirely of zero-divisors, Ann2(u) is a proper ideal of A for every u ∈M . Indeed, if 1 were

in Ann2(u) we would have Ann(u) = 0, whence u would be a non-divisor of zero. Let

u, v ∈M , and suppose w ∈ Ann(u2 + v2). Then (wu)2 + (wv)2 = 0, and hence (wu)2 = 0,

which implies wu = 0 since A is reduced. Thus, Ann(u2 + v2) ⊆ Ann(u), which implies

Ann2(u) ⊆ Ann2(u2 + v2). Therefore the set

K =
⋃
{Ann2(x) | x ∈M}
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is a directed union of proper d-ideals of A, and is therefore a proper d-ideal with M ⊆ K,

and therefore M = K. Thus, M is a d-ideal. Since Ann(a) ⊆ Ann(b), we have Ann(a) =

Ann(a2 + b2), which implies a2 + b2 ∈M because a ∈M and M is a d-ideal. This implies

b2 ∈ M , and hence b ∈ M . Because M is an arbitrary maximal ideal containing a, it

follows that b ∈ M(a). So choosing c = 1, we have that c is a non-divisor of zero with

bc ∈M(a). Therefore A is weakly regular.

(2) Only the second implication need be shown. Assume that A is quasi-regular, and

suppose Ann(a) ⊆ Ann(b) for some a, b ∈ A. By [36, Theorem 2.2], there is a non-

divisor of zero c such that a2 = ac. Then a(a − c) = 0, so that b(a − c) = 0 since

a − c ∈ Ann(a) ⊆ Ann(b). So, bc = ba, and hence bc is in every ideal that contains a.

Therefore bc ∈M(a), showing that A is weakly regular.

(3) Let a ∈ A. Again by Evans’ result, a2 = ac for some non-divisor of zero c, which is

then invertible since A is almost regular. Thus a = a2c−1, and therefore A is regular.

We end with a result on direct products, and for that we need the following lemma.

Lemma 4.3.5. Let (Ai)i∈I be a family of weakly regular rings. For any a = (ai) ∈
∏
Ai

we have the following:

(a)
∏
M(ai) = M(a).

(b)
∏

Ann(ai) = Ann(a).

Proof. (a) Let (zi) ∈
∏
M(ai), and take any maximal ideal M of A containing a. There

exists i0 ∈ I such that M =
∏
Ji, where Ji0 ∈ Max(Ai0) and Ji = Ai for i 6= i0. Then

ai0 ∈ Ji0 , which implies zi0 ∈ Ji0 because zi0 ∈M(ai0), and consequently zi ∈M(ai) since

M is an arbitrary maximal ideal of A containing a. This establishes the containment∏
M(ai) ⊆ M(a). For the opposite inclusion, let x = (xi) ∈ M(a). We must show that

for any fixed index k, xk ∈ M(ak). Consider any maximal ideal N of Ak containing ak.

Let M be the maximal ideal of
∏
Ai defined by M =

∏
Ji with Jk = N and Ji = Ai for

i 6= k. Then a ∈ M, which implies x ∈ M, and hence xk ∈ N . Thus, xk ∈ M(ak), and
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it follows therefore that x ∈
∏
M(ai), establishing the desired inclusion. Consequently,∏

M(ai) = M(a).

(b) Let x = (xi) ∈
∏
Ai. Then,

x ∈
∏

Ann(ai) ⇐⇒ xi ∈ Ann(ai) for each i

⇐⇒ xiai = 0 for each i

⇐⇒ xa = 0

⇐⇒ x ∈ Ann(a).

Therefore
∏

Ann(ai) = Ann(a).

For use in the proof that follows, we recall that if (Xi) and (Yi) are families of nonempty

sets of some set S such that
∏
Xi ⊆

∏
Yi, then Xi ⊆ Yi for each index i.

Proposition 4.3.6. The direct product of any family of weakly regular rings is a weakly

regular ring if and only if each factor is a weakly regular ring.

Proof. (⇐) Let (Ai)i∈I be a family of weakly regular rings, and consider two elements

a = (ai) and b = (bi) of
∏
Ai such that Ann(a) ⊆ Ann(b). By the second part in the

foregoing lemma,
∏

Ann(ai) ⊆
∏

Ann(bi), which implies each Ann(ai) ⊆ Ann(bi) because

annihilator ideals are nonempty. For each i there is a non-divisor of zero, ci ∈ Ai, such

that bici ∈M(ai). The element c = (ci) is a non-divisor of zero in
∏
Ai. Now, by the first

part in the lemma above,

bc = (bi)(ci) ∈
∏

M(ai) ⊆M(a).

Therefore
∏
Ai is a weakly regular ring.

(⇒) Suppose
∏
Ai is a weakly regular ring. Fix an index k, and let x, y ∈ Ak be such that

Ann(x) ⊆ Ann(y). Let a = (ai) and b = (bi) be the elements of
∏
Ai such that ak = x,

bk = y, and for i 6= k, ai = 1 and bi = 1. Observe that, by construction of the elements

a and b and the fact that Ann(x) ⊆ Ann(y), we have Ann(a) ⊆ Ann(b). By the present

hypothesis, there is a non-divisor of zero, say d = (di), in
∏
Ai such that bd ∈M(a). Note

that dk is a non-divisor of zero in Ak, and bkdk ∈ M(ak) since M(a) =
∏
M(ai). Thus,

dky ∈M(x), which proves that Ak is a weakly regular ring.
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Chapter 5

Boundary frames

5.1 Introduction

In [1], the authors define a space X to be a boundary space (they write “∂-space”) if

the boundary of every zero-set is contained in a zero-set with empty interior. They then

prove that X is a boundary space if and only if every prime ideal of C(X) that consists

entirely of zero-divisors is a d-ideal (see the definition of a d-ideal below).

Coming from the pointfree topology vantage point, we are able to give another ring-

theoretic characterization of these spaces; one that bears close resemblance to the topo-

logical definition. Let us expatiate. For any a in a ring A, we write M(a) to designate

the intersection of all maximal ideals of A containing a. As usual, Ann(a) denotes the

annihilator of a. We say an ideal of A is a frontier ideal if it is of the form M(a)+Ann(a),

for some a ∈ A. We then call A a boundary ring if every frontier ideal of A contains

a non-divisor of zero. The characterization is then that a space X is a boundary space

if and only if C(X) is a boundary ring. When we work with frames and their rings of

real-valued continuous functions, it becomes apparent what motivates the definition of

boundary ring we have just mentioned.

As the reader has likely surmised from the previous paragraph, our approach will be

frame-theoretic in certain instances. We shall thus start by adapting the definition of
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a boundary space to frames in a conservative way, and call a frame with the defining

property a boundary frame. Then we will show that a frame L is a boundary frame if

and only if λL, the Lindelöf coreflection of L, is a boundary frame, if and only if υL, the

realcompact coreflection of L, is a boundary frame. Incidentally, in the process of doing

so we will bring to the fore what appears hitherto not to have been noticed regarding the

right adjoint of the coreflection map λL→ L. The main result is also proved using frame-

theoretic language. Here the main reason for such an approach is clarity and transparency

of the proof. There is not much we are able to say about products of boundary spaces.

We do though prove that if X and Y have the property that X × Y is z-embedded in

βX × βY , then a necessary condition that X × Y be a boundary space is that both X

and Y be boundary spaces.

We end with some purely ring-theoretic results about boundary rings. We show that

every reduced quasi-regular f -ring is a boundary ring. Following that, we show that for

any bounded ring A, the ideals of A which inherit the property of being a boundary ring

(when viewed as rings in their own right) are exactly those which contain “internal” non-

divisors of zero. We end by showing that the direct product of rings is a boundary ring if

and only if each factor is a boundary ring.

5.2 A ring theoretic characterization of boundary frames

We start by extending the notion of being a boundary space to frames. Let us write

bd(S) for the boundary of a subset S of a Tychonoff space X. If Z is a zero-set of X,

then Xrbd(Z) = (XrZ)∪ (XrZ)∗, where (∗) denotes pseudocomplement in the frame

OX. Observe that a zero-set (in fact, any closed set) W has empty interior precisely when

its complement X rW is dense. Thus, X is a boundary space if and only if for every

cozero-set C of X, there exists a dense cozero-set D of X such that D ⊆ C ∪ (X r C).

Since C∗ in the frame OX is X r C, this motivates the following definition.

Definition 5.2.1. A completely regular frame L is a boundary frame if for every c ∈ CozL

there exists a dense d ∈ CozL such that d ≤ c ∨ c∗.

53



It is evident that a Tychonoff space X is a boundary space if and only if the frame OX

is a boundary frame. Before we proceed, let us compare these frames with others of a

similar kind.

Example 5.2.2. Here are comparisons of boundary frames with the ones mentioned

above.

(a) Every cozero complemented frame (and hence every P -frame) is a boundary frame.

Indeed, if c ∈ CozL, where L is cozero complemented, and d ∈ CozL is such that

c ∧ d = 0 and c ∨ d is dense, then d ≤ c∗, so that c ∨ d is a dense cozero element

below c ∨ c∗.

(b) Every boundary frame is a weak almost P -frame. Indeed, suppose a∗ ≤ b∗ for some

a, b ∈ CozL. Take a dense c ∈ CozL with c ≤ a ∨ a∗. Then b ∧ c ≤ a. Finally, it

is immediate that a frame is a P -frame if and only if it is both an almost P -frame

and a boundary frame.

We shall now prove frame-theoretically that L is a boundary frame if and only if λL

is a boundary frame if and only if υL is a boundary frame. A little later we will have a

ring-theoretic reaffirmation of this result, coming about as a corollary of our main result.

The merit in frame-theoretic proof is that not only is the result deducible directly from

the definition, it also brings to the fore what appears hitherto not to have been noticed

regarding the right adjoint of the map λL→ L. We start with the following lemma.

Lemma 5.2.3. If h : M → L is a dense coz-onto frame homomorphism, and M is a

boundary frame, then L is a boundary frame.

Proof. Let c ∈ CozL. Since h is coz-onto, there exists a ∈ CozM such that h(a) = c.

Since M is boundary frame, there exists a dense b ∈ CozM such that b ≤ a ∨ a∗. Then

h(b) is a dense cozero element in L with h(b) ≤ h(a) ∨ h(a∗) = h(a) ∨ h(a)∗ = c ∨ c∗.

Therefore L is a boundary frame.

Applied to spaces, this yields the following. Recall that a subspace S of a Tychonoff

space X is z-embedded in case every zero-set of S is a trace on S of some zero-set of X.
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Corollary 5.2.4. A dense z-embedded subspace of a boundary space is a boundary space.

Let us recall from [3, Corollary to Lemma 1.9] that if a ∧ b = 0 in a frame L, then

rL(a ∨ b) = rL(a) ∨ rL(b). We will use this in the proof of the lemma that follows. Recall

also that for any normal frame M , rM(a∨ b) = rM(a)∨ rM(b) for all a, b ∈M . Note that

the composite βL
ηL−→ λL

λM−→ L is the map βL
jL−→ L, so that (ηL)∗ · (λL)∗ = rL. That

is, (ηL)∗([[a]]) = rL(a) for every a ∈ L.

Lemma 5.2.5. If a ∧ b = 0 in a completely regular frame L, then [[a ∨ b]] =[[a]] ∨ [[b]].

Proof. Since λL is a normal frame and ηL : βL → λL is (isomorphic to) the Stone-Čech

compactification of λL,

(ηL)∗([[a]] ∨ [[b]]) = (ηL)∗([[a]]) ∨ (ηL)∗([[b]]) = rL(a) ∨ rL(b).

On the other hand,

(ηL)∗([[a]] ∨ [[b]]) = rL(a ∨ b) = rL(a) ∨ rL(b),

since a∧b = 0. Consequently, (ηL)∗([[a]]∨[[b]]) = (ηL)∗([[a]])∨(ηL)∗([[b]]), which, on applying

the map ηL, yields [[a ∨ b]] = [[a]] ∨ [[b]].

Let us note the following regarding dense frame homomorphisms. If h : M → L is a

dense frame homomorphism, then h∗h(a∗) = a∗ for every a ∈ M . Indeed, the equality

h (h∗h(a∗) ∧ a) = 0 implies h∗h(a∗)∧a = 0 by density of h, whence h∗h(a∗) ≤ a∗ and hence

we claimed equality. In particular, let I ∈ λL, and put a =
∨
I. Then in view of the fact

that the right adjoint of a dense onto frame homomorphism preserves pseudocomplements,

I∗ = [[a∗]] = [[a]]∗. Recall also that if h : M → L is dense onto, then h∗(z) is dense in M

whenever z is dense in L.

Proposition 5.2.6. The following are equivalent for a completely regular frame L.

(1) L is a boundary frame.

(2) λL is a boundary frame.
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(3) υL is a boundary frame.

Proof. (1) ⇒ (2) Assume I ∈ Coz(λL). There exists c ∈ CozL such that I = [[c]]. Since

L is a boundary frame, there exists a dense cozero element d such that d ≤ c ∨ c∗. The

cozero element [[d]] of λL is dense and satisfies

[[d]] ≤ [[c ∨ c∗]] = [[c]] ∨ [[c∗]] = I ∨ I∗,

in light of the foregoing lemma since c ∧ c∗ = 0. Therefore λL is a boundary frame.

(2) ⇒ (3) ⇒ (1). These implications follow from Lemma 5.2.3 since each of these maps

lL : λL→ υL and υL : υL→ L is dense coz-onto.

Remark 5.2.7. We can deduce from this result that a Tychonoff space X is a boundary

space if and only if υX is a boundary space. Of course this also follows from [1, Theorem

4.4] because the rings C(X) and C(υX) are isomorphic.

We shall now give a characterization of boundary frames L in terms of properties of the

ring RL. The characterization of boundary space X in terms of C(X) will then follows as

a corollary in view of the fact that X is a boundary space if and only if OX is a boundary

frame, and C(X) is isomorphic to R(OX). We start with a definition.

Definition 5.2.8. An ideal of a ring A is a frontier ideal if it is of the form M(a)+Ann(a)

for some a ∈ A. We say A is a boundary ring if every frontier ideal in A contains a non-

divisor of zero.

Example 5.2.9. Here are some easy examples.

(a) Every von Neumann regular ring with 1 6= 0 is a boundary ring. To see this, let

a ∈ A, and take b ∈ A such that a = a2b. Then a(1−ab) = 0, so that 1−ab ∈ Ann(a).

Since ab ∈ M(a), it follows that 1 ∈ M(a) + Ann(a). Since 1 is a non-divisor of

zero, A is a boundary ring.

(b) Every integral domain is a boundary ring.

In order to prove the main result, we shall need the following lemma which was proved

in [30]. We include the proof for the sake of completeness.
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Lemma 5.2.10. For any α ∈ RL,M(α) = Mcozα.

Proof. It is shown in the proof of [29, Lemma 3.2] that, for any I ∈ βL,

M I =
⋂
{M J | J ∈ Pt(βL) and I ⊆ J}.

Since for any J ∈ Pt(βL) we have α ∈M J if and only if rL(cozα) ⊆ J , it follows that

Mcozα = M rL(cozα) =
⋂
{M J | J ∈ Pt(βL) and rL(cozα) ⊆ J}

=
⋂
{M J | J ∈ Pt(βL) andα ∈M J}

= M(α),

which proves the result.

Recall from [37, Lemma 14.8] that the sum of any two z-ideals in C(X) is a z-ideal.

The proof in [37] uses propierties of βX. Rudd [58] gives an elementary proof which uses

no properties of βX.

Theorem 5.2.11. A Tychonoff space X is a boundary space if and only if C(X) is a

boundary ring.

Proof. (⇒) Assume X is a boundary space, and let L = OX. Then L is a boundary

frame. Let I be a frontier ideal of RL. Pick α such that

I = M(α) + Ann(α) = Mcozα + M(cozα)∗ .

For brevity, write a = cozα. We claim that Ma + Ma∗ = Ma∨a∗ . The containment

Ma + Ma∗ ⊆ Ma∨a∗ is immediate. For the other inclusion, let γ ∈ Ma∨a∗ , and write

c = coz γ. Then c ≤ a ∨ a∗. Find a sequence (cn) in CozL such that cn ≺≺ c for each n,

and c =
∨
cn. Then, for each n, cn ≺≺ a ∨ a∗. By [3, Lemma 1], cn ∧ a∗ ≺≺ a∗. Pick

dn ∈ CozL with cn ∧ c∗ ≺≺ dn ≺≺ a∗. Put d =
∨
dn, and pick a positive δ ∈ RL such

that coz δ = d. Since d ≤ a∗, δ ∈Ma∗ . Observe that c ∧ a∗ ≤ d and consequently,

coz γ = c = (c ∧ a) ∨ (c ∧ a∗)

≤ (c ∧ a) ∨ d

= coz(γ2α2) ∨ coz δ

= coz(γ2α2 + δ).
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Since γ2α2 ∈Ma and δ ∈Ma∗ , τ = γ2α2 + δ is an element of the z-ideal Ma + Ma∗ with

coz γ ≤ coz τ , it follows that τ ∈ Ma + Ma∗ . Thus Ma∨a∗ ⊆ Ma + Ma∗ , and hence the

claimed equality. Now, since L is a boundary frame, there exists a dense cozero element

u with u ≤ a ∨ a∗. For any µ ∈ RL with cozµ = u, we have that µ is non-divisor of zero

belonging to I. Therefore RL is a boundary ring. Since RL = R(OX) is isomorphic to

C(X), it follows that C(X) is a boundary ring.

(⇐) Suppose C(X) is a boundary ring, so RL is a boundary ring as well, where, as before,

L = OX. Let c ∈ CozL, and take γ ∈ RL with coz γ = c. Then there is a non-divisor

of zero δ ∈M(γ) + Ann(γ) = Mc∨c∗ . Therefore coz δ is a dense cozero element of L such

that coz δ ≤ c ∨ c∗, which shows that L is a boundary frame. Thus, X is a boundary

space. This completes the proof.

Remark 5.2.12. The foregoing proof hinges on the fact that the sum of two z-ideals

in C(X) is a z-ideal. The statement of the theorem can thus be broadened as follows:

If L is a completely regular frame such that the sum of two z-ideals in RL is a z-ideal,

then L is a boundary frame if and only if RL is a boundary ring. Now we do not know

if the sum of two z-ideals of RL is a z-ideal for every completely regular frame L. This

question was actually asked by Ighedo [43] in her thesis. There are however non-spatial

frames in whose rings of real-valued continuous functions the sum of two z-ideals is a

z-ideal. Indeed, as observed in [27], if m is an uncountable cardinal, and L = O(Rm),

then λL is an example of non-spatial frame whose ring of real-valued continuous functions

is isomorphic to a C(X).

We end this section with an alternative proof of 5.2.11 which has been pointed out to

us by one of the examiners. It is a purely C(X) proof.

Proof. First we let C(X) be a boundary ring. Let f ∈ C(X). By definition, there

is a non-divisor of zero r ∈ C(X) such that r ∈ M(f) + Ann(f). Hence f = g + h,

where g ∈ M(f) and h ∈ Ann(f), i.e, Z(f) ⊆ Z(g) and clX(X r Z(f)) ⊆ Z(h). Thus

bd
(
Z(f)

)
= Z(f)∩clX(XrZ(f)) ⊆ Z(g)∩Z(h) ⊆ Z(g+h) = Z(r). Next, suppose that

X is a boundary space and f ∈ C(X). Hence bd
(
Z(f)

)
= Z(f)∩ clX(X rZ(f)) ⊆ Z(r),

for some non-divisor of zero r ∈ C(X). Now consider the following functions:
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h(t) =

r(t) if t ∈ clX(X r Z(f))

0 if t ∈ Z(f)

k(t) =

0 if t ∈ clX(X r Z(f))

r(t) if t ∈ Z(f).

Clearly h, k are well defined for bd
(
Z(f)

)
= Z(f) ∩ clX(X r Z(f)) ⊆ Z(r), and h, k ∈

C(X), by pasting lemma, h ∈ M(f) for, Z(f) ⊆ Z(h) and k ∈ Ann(f) since clX(X r

Z(f)) ⊆ Z(k). But r = h+ k, so r ∈M + Ann(f).

5.3 On product of boundary spaces

The result we present is a necessary condition for certain products of spaces to be a

boundary space. It is reminiscent of Curtis’ [17] result that if a product X × Y is an

F -space, then both X and Y are F -spaces, and more.

In [16], Blair and Hager prove that, for a pair X and Y of Tychonoff spaces, the product

X × Y is z-embedded in βX × βY if and only if every cozero-set of X × Y is of the form
∞⋃
n=1

(Cn ×Dn), for some sequences (Cn) and (Dn) of cozero-sets of X and Y , respectively.

In what follows we shall at times not denote the closure of a set U in a space S by U ,

but rather by clS(U). Where we use the over-line it will be clear from the context where

the closure is contemplated.

Theorem 5.3.1. If X×Y is a boundary space that is z-embedded in βX×βY , then both

X and Y are boundary spaces.

Proof. We prove that X is a boundary space. Let C be a cozero-set of X. Then C ×Y is

a cozero-set of X ×Y because C ×Y = π−1
X [C], for the projection map πX : X ×Y → X.

Since X × Y is a boundary space, there is a dense cozero-set C of X × Y such that

C ⊆ (C×Y )∪
(
(X × Y )r C × Y

)
. Since X×Y is z-embedded in βX×βY , by hypothesis,

there are sequences (Un) and (Vn) of cozero-sets of X and Y , respectively, such that

C =
∞⋃
n=1

(Un × Vn). We may assume, without loss of generality, that each Un and each Vn

is non-empty. Define U =
∞⋃
n=1

Un, and note that U is a cozero-set of X. We show that it
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is dense in X. Indeed,

X × Y = clX×Y (C) = clX×Y

(
∞⋃
n=1

(Un × Vn)

)

⊆ clX×Y

(
∞⋃
n=1

Un ×
∞⋃
n=1

Vn

)

= clX

(
∞⋃
n=1

Un

)
× clY

(
∞⋃
n=1

Vn

)
.

Thus, U = X, showing that U is dense in X. Now observe that

C ⊆ (C × Y ) ∪
(
(X × Y )r C × Y

)
= (C × Y ) ∪

(
(X × Y )r (C × Y )

)
= (C × Y ) ∪

(
(X r C)× Y

)
=

(
C ∪ (X r C)

)
× Y.

We claim that U ⊆ C ∪ (X rC). Let x ∈ U . Pick an index k with x ∈ Uk. Since Vk 6= ∅,

take any y ∈ Vk. Then

(x, y) ∈ Uk × Vk ⊆ C ⊆
(
C ∪ (X r C)

)
× Y,

which implies x ∈
(
C ∪ (X r C)

)
, thus proving that U ⊆

(
C ∪ (X r C)

)
. Therefore X

is a boundary space. A similar argument shows that Y is a boundary space.

Remark 5.3.2. We can also prove that if L and M are frames such that every cozero

element of L⊕M is of the form
∞∨
n=1

(an ⊕ bn), for some sequences (an) and (bn) in CozL

and CozM , respectively, then L and M are boundary frames if L⊕M is boundary frame.

Such a proof however would not yield the topological result above because, in general,

the frames O(X × Y ) and OX ⊕OY are not isomorphic.

Proposition 5.3.3. Let L and M be frames such that every cozero element of L⊕M is of

the form
∞∨
n=1

(an⊕bn), for some sequences (an) and (bn) in CozL and CozM , respectively.

If L⊕M is boundary frame, then L and M are boundary frames.

Proof. Let x ∈ CozL. Then x ⊕ 1 ∈ Coz(L ⊕ M). By hypothesis, there is a dense

U =
∞∨
n=1

(an ⊕ bn) ∈ Coz(L ⊕M), for some sequences (an) and (bn) of non-zero cozero
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elements of L and M , respectively such that U ≤ (x⊕ 1) ∨ (x⊕ 1)∗. Now

∞∨
n=1

(an ⊕ bn) ≤ (x⊕ 1) ∨ (x⊕ 1)∗

≤ (x⊕ 1) ∨ ((x∗ ⊕ 1) ∨ (1⊕ 1∗))

≤ (x⊕ 1) ∨ (x∗ ⊕ 1)

≤ (x ∨ x∗)⊕ 1.

Hence (an⊕ bn) ≤ (x∨ x∗)⊕ 1 for every n, whence an ≤ x∨ x∗ for every n, which implies∨
n

an ≤ x∨x∗. We claim that the cozero element
∨
n

an of L is dense. Since U is dense and

U =
∨
n

(an ⊕ bn) ≤
(∨

n

an

)
⊕
(∨

n

bn

)
,

it follows that
(∨
n

an

)
⊕
(∨
n

bn

)
is dense, whence

∨
n

an is dense. Therefore L is a boundary

frame. Similarly, M is a boundary frame.

5.4 Some comments on boundary rings

We observed in Example 5.2.2 that every cozero complemented space (there we used

frames) is a boundary space. Now, X is cozero complemented if and only if for every

f ∈ C(X) there exists g ∈ C(X) such that Ann(f) = Ann2(g). Rings with this property

are called quasi-regular. See [36] for some other properties of quasi-regular rings. Thus, if

C(X) is quasi-regular, then it is a boundary ring. We show that, in fact, this is the case

for all reduced f -rings.

Proposition 5.4.1. Every reduced quasi-regular f -ring is a boundary ring.

Proof. Let I be a frontier ideal in a reduced quasi-regular f -ring A. Pick a ∈ A such that

I = M(a) + Ann(a). Since A is quasi-regular, there exists b ∈ A such that Ann(a) =

Ann2(b). Thus, I = M(a) + Ann2(b). Observe that the element d = a2 + b2 belongs to

I. We claim that d is a non-divisor of zero. Consider any r ∈ A with r(a2 + b2) = 0.

Since squares are positive in f -rings, this implies r2a2 = 0 = r2b2, whence ra = 0 = rb

because A is reduced. But now ra = 0 implies r ∈ Ann(a) = Ann2(b). Consequently,
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r2 = 0, implying r = 0. Therefore d is a non-divisor of zero belonging to I, and so A is a

boundary ring.

We show next that some ideals of a boundary ring, when viewed as rings in their own

right, are themselves boundary rings. Not every ideal of a boundary ring inherits this

property, as the following example bears testimony.

Example 5.4.2. The ring Z4 = {0, 1, 2, 3} is a boundary ring. One can verify this directly

by brute force, or one can peek ahead to Theorem 5.4.4 where it is shown that direct

products of boundary rings are boundary rings; so that the isomorphism Z4
∼= Z2 × Z2

proves the claim since Z2 is a field, and hence a boundary ring. Now the ideal J = {0, 2}

is not a boundary ring because there is no non-divisor of zero in J .

Recall from [59, Corollary 3.6] that if A is a ring that is a Q-algebra (for instance an

f -ring) and J is an ideal in A, then the set of maximal ideals of J is

Max(J) = {M ∩ J |M ∈ Max(A) andM + J}.

In what follows we shall write MJ(a) and AnnJ(a) to indicate that the stated ideal is

contemplated in the ring J . Without a subscript, the ideals M(a) and Ann(a) will be

taken as ideals in A. It will also be helpful to write Ndz(A) and Ndz(J) for the sets of

non-divisors of zero of A and J , respectively, with J viewed as a ring.

Theorem 5.4.3. Let A be a boundary ring that is a Q-algebra. A necessary and sufficient

condition that an ideal J of A be a boundary ring is that Ndz(J) be nonempty.

Proof. The condition is clearly necessary. To prove sufficiency, let a ∈ J . Since A is a

boundary ring, the frontier ideal M(a) + Ann(a) contains an element d which belongs

to Ndz(A). So there exist u ∈ M(a) and v ∈ Ann(a) such that d = u + v. Take any

c ∈ Ndz(J), and observe that cd ∈ Ndz(J). Now, we shall be done if we can show that

cu ∈MJ(a) and cv ∈ AnnJ(a). The latter is immediate. To prove the former, we consider

two cases. First, if there is no maximal ideal in J containing a (for instance, if A is a local

ring and J its unique maximal ideal), then MJ(a) = J . Next, suppose I is a maximal
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ideal of J containing a. Pick N ∈ Max(A) with I = N ∩ J . Then a ∈ N , and therefore

u ∈ N because u belongs to every maximal ideal of A containing a. Since J is an ideal in

A, and c ∈ J , it follows that cu ∈ N ∩ J = I. In consequence, cu ∈MJ(a), and the result

follows.

We end with a purely ring-theoretic result. Recall that an ideal I of a direct product∏
Ai of family (Ai)i∈I of rings is a maximal ideal if and only if it is of the form I =

∏
Ji,

where there exists i0 ∈ I such that Ji0 ∈ Max(Ai0) and Ji = Ai for all i ∈ I r {i0}. We

shall not decorate the notations M(a) and Ann(a) in what follows; the element a will

make it clear where the ideal in question resides.

Theorem 5.4.4. The direct product of any family of boundary rings is a boundary ring

if and only if each factor is a boundary ring.

Proof. (⇐) Let (Ai)i∈I be a family of boundary rings. Let (ai) ∈
∏
Ai. For brevity, we

write a = (ai) and A =
∏
Ai. Consider the boundary ideal M(a) + Ann(a) of A. For

each i ∈ I there exists a non-divisor of zero di ∈ M(ai) + Ann(ai). Pick ui ∈ M(ai) and

vi ∈ Ann(ai) such that di = ui + vi . Let d = (di). One checks routinely that d is a

non-divisor of zero in A. We claim that∏
i∈I

M(ai) ⊆M(a) and
∏
i∈I

Ann(ai) ⊆ Ann(a).

The latter is easy to check, and, in fact, the containment is equality. To prove the former,

let (zi) ∈
∏
M(ai), and take any maximal idealM of A containing a. There exists i0 ∈ I

such that M =
∏
Ji, where Ji0 ∈ Max(Ai0) and Ji = Ai for i 6= i0. Then ai0 ∈ Ji0 ,

which implies zi0 ∈ Ji0 because zi0 ∈ M(ai0), and consequently zi ∈ M(ai) since M is

an arbitrary maximal ideal of A containing a. This establishes the claimed containment.

Now

d = (ui) + (vi) ∈
∏
i∈I

M(ai) +
∏
i∈I

Ann(ai) ⊆M(a) + Ann(a),

which shows that A is a boundary ring.

(⇒) Suppose
∏
Ai is a boundary ring. Fix any index k. Let x ∈ Ak, and let a = (ai) be

the element of
∏
Ai such that ai = 1 if i 6= k, and ak = x. We claim that M(a) =

∏
Ji,

where
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Ji =

Ai if i 6= k

M(x) if i = k.

To see this, let I be a maximal ideal of
∏
Ai containing a. Then I must be of the form∏

Ji, with each Ji = Ai for i 6= k, and Jk ∈ Max(Ak). The claim follows easily from this

observation. By hypothesis, there is a non-divisor of zero d = (di) ∈ A such that

d ∈M(a) + Ann(a) = M(a) +
∏
i∈I

Ann(ai).

Now, dk is a non-divisor of zero in Ak, for if z were a non-zero element of Ak with zdk = 0,

then the element b = (bi) of
∏
Ai for which

bi =

0 if i 6= k

z if i = k

would be a non-zero element of
∏
Ai with bd = 0. Pick element u = (ui) ∈ M(a) and

v = (vi) ∈
∏

Ann(ai) such that d = u + v. Then uk ∈ M(x) and vk ∈ Ann(x), which

shows that the non-divisor of zero dk ∈ M(x) + Ann(x). Therefore Ak is a boundary

ring.
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Chapter 6

Frames that are finitely an F -frame

6.1 Introduction

There are various topological properties of a space X which can be characterized in terms

of algebraic properties of the ring C(X) of continuous real-valued functions on X. For

instance, X is a P -space (meaning that every Gδ-set is open) precisely when C(X) is von

Neumann regular, and X is an F -space (meaning that every cozero-set is C∗-embedded)

if and only if every finitely generated ideal in C(X) is principal. See [37] for other such

properties.

A space X is finitely an F -space if βX can be written as a union K1 ∪ · · · ∪Kn, where

each Ki is a closed set in βX and is an F -space in the subspace topology. These spaces

were first considered in [41], and have since been studied by Larson in a series of papers,

including [46] and [47]. In the former paper she gives a characterization, among normal

spaces, in terms of an algebraic condition on the ring C(X). In fact, she shows that the

condition is sufficient for X to be finitely an F -space with no normality assumed, and

necessary if X is normal. Thus, for normal spaces there is an algebraic characterization.

Our goal in this chapter is to unshackle the characterization from normality. This we

achieve by working with frames instead of spaces. We thus have to define, in a conservative

way, what it means to say a frame is finitely an F -frame. By “conservative” we mean
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that a space must be finitely an F -space if and only if the frame of its open sets is finitely

an F -frame.

We shall then exploit the presence of the Lindelöf coreflection, λL, of a frame L, the

normality of the frame λL, and the fact that the rings RL and R(λL) are isomorphic.

Loosely speaking, one can say the normality that one needs to assume in spaces is already

present (albeit at a higher level) if we work frames.

To some extent our pattern of proofs will be modeled on that of Larson. Indeed, in one

instance we will piggyback on her proof of the corresponding implication in spaces.

C∗-quotients

Our approach to the ring RL follows that [8], so that RL is the f -ring whose members are

the frame homomorphisms L(R) → L, where L(R) is the frame of reals. Recall from [4]

that a quotient map h : L → M is called a C∗-quotient map, and we then say M is a

C∗-quotient of L, in case for every bounded α ∈ RM there exists some ᾱ ∈ RL such that

the triangle below commutes.

L(R)

ᾱ

}}

α

!!
L h //M

A C-quotient map is defined similarly but without the restriction that α be bounded.

There are several characterizations of C∗-quotient maps in [4], and we shall have occasion

to use one of the characterizations in [4, Theorem 7.1.1].

f-Rings that are finitely 1-convex

We refer the reader to [60] for concepts regarding f -rings. Our f -rings are commutative

with identity element. An f -ring A is 1-convex if whenever 0 ≤ a ≤ b in A, then a = bc

for some c ∈ A. A ring A is called a Bézout ring if every finitely generated ideal of A is

66



principal. In [51, Theorem 1] it is shown that a reduced f -ring with bounded inversion is

Bézout if and only if it is 1-convex.

We follow [46] in defining fibre products and f -rings that are finitely 1-convex. Let

A1, A2, B be f -rings and φi : Ai → B, for i = 1, 2, be surjective `-ring homomorphisms.

The fibre product of A1 and A2 relative to the pair (φ1, φ2) is the ring A1 ×B A2 that

equalizes φ1π1 and φ2π2 in the (pullback) square below.

A1 ×B A2

π1

��

π2 // A2

φ2

��
A1

φ1 // B

Explicitly,

A1 ×B A2 = {(a1, a2) ∈ A1 × A2 | φ1(a1) = φ2(a2)}.

An f -ring is a finite fibre product of the f -rings A1, A2, . . . , An if it can be constructed

in a finite number of steps, where every step consists of taking the fibre product of two

f -rings, each satisfying either the property that it is one of the Ai not used in a previous

step, or it is a fibre product obtained in an earlier step of the construction. A finitely

1-convex f -ring is one that is either 1-convex, or can be written as a finite fibre product

of 1-convex f -rings.

6.2 Ring theoretic characterization

Let us recall from [4] that a completely regular frame L is called an F -frame if, for

each c ∈ CozL, the quotient map L 7→ ↓c is a C∗-quotient map. There are several

characterizations which we shall use freely. In particular, L is an F -frame if and only if

RL is a Bézout ring ([25, Proposition 3.2]).

Proposition 6.2.1. The following are equivalent for a completely regular frame L.

(1) L is an F -frame.
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(2) RL is 1-convex.

(3) For any a, b ∈ CozL with a∧ b = 0, there exist c, d ∈ CozL such that c∨ d = 1 and

a ∧ c = 0 = b ∧ d.

We shall need to know that the homomorphic image of an F -frame under a coz-onto

homomorphism is an F -frame. For the proof we shall use [34, Proposition 3.3] which,

paraphrased, states the following:

A frame homomorphism h : L → M is coz-onto if and only if for all a, b ∈

CozM with a ∧ b = 0, there exist c, d ∈ CozL such that c ∧ d = 0, h(c) = a,

and h(d) = b.

Lemma 6.2.2. If h : L → M is a coz-onto frame homomorphism and L is an F -frame,

then M is an F -frame.

Proof. Let a ∧ b = 0 in CozM . By the result cited above, there exist c, d ∈ CozL with

c ∧ d = 0 and h(c) = a, h(d) = b. Since L is an F -frame, the second characterization in

Proposition 6.2.1 yields u, v ∈ CozL such that u ∨ v = 1 and u ∧ c = v ∧ d = 0. Then

h(u) and h(v) are cozero elements of M with the desired property.

A special case that we shall apply in the proof of the main theorem is the following

corollary.

Corollary 6.2.3. A closed quotient of a normal F -frame is an F -frame.

We want to define the property of being finitely an F -frame in a conservative way. It

is convenient to use localic language. Consider the following property that a topological

space X, or a locale L can have:

(fin-F) The space X (resp. the locale L ) is a union (resp. join ) of finitely many closed

subspaces (resp. sublocales) each of which is an F -space (resp. F -frame).

In frame language, L has property fin-F if and only if there are finitely many elements

a1, . . . , an in L such that a1 ∧ · · · ∧ an = 0, and each ↑ai is an F -frame. If K is a
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closed subspace of X, then U = X rK is an element of the frame OX such that ↑U is

isomorphic to OK. Thus, X has property fin-F if and only if OX has property fin-F.

Also, if h : L→M is a frame isomorphism, then, for any a ∈ L, the mapping ↑a→ ↑h(a),

effected by h, is easily checked to be a frame isomorphism. Consequently, L has property

fin-F if and only if M has the property.

Definition 6.2.4. A frame L is finitely an F -frame if βL has property fin-F.

It is clear that an F -frame is finitely an F -frame. Equally clear is that L is finitely an

F -frame if and only if βL is finitely an F -frame. Since β(λL) is isomorphic to βL, and

β(λL) is isomorphic to β(υL) it follows that:

Proposition 6.2.5. The following are equivalent for L.

(1) L is finitely an F -frame.

(2) βL is finitely an F -frame.

(3) λL is finitely an F -frame.

(4) υL is finitely an F -frame.

Proposition 6.2.6. A Tychonoff space X is finitely an F -space if and only if OX is

finitely an F -frame.

Proof. Recall that the frames β(OX) and O(βX) are isomorphic. Now,

X is finitely an F -space ⇐⇒ βX has property fin-F

⇐⇒ O(βX) has property fin-F

⇐⇒ β(OX) has property fin-F

⇐⇒ OX is finitely an F -frame,

which proves the proposition.

In [46] Larson shows that if C(X) is finitely 1-convex, then X is finitely an F -space, and

conversely if X is normal. We sharpen this result by showing that normality is actually
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not needed. This will be a consequence of a result in frames. Recall from [46] that if an

f -ring A is finitely 1-convex, then so is its bounded part A∗.

We remind the reader that a ring A is a subdirect product of the rings {Bi | i ∈ I} if

there is an injective ring homomorphism φ : A→
∏

iBi such that the composite

A
φ //

∏
i

Bi

πj // Bj

is surjective for each j ∈ I, where πj is the jth canonical projection. For use in the

upcoming proof we recite the following result from [47]. Here we paraphrase it somewhat.

Lemma 6.2.7. If A is a subdirect product of the rings A1 and A2, then A is isomorphic

to some fibre product of A1 and A2

Let L be a frame, a ∈ L, and f ∈ RL. In the lemma that follows we shall write f|c(a)

for the element of R(↑a) given by the composite L(R)
f−→ L

κa−→ ↑a. The notation is

chosen to reflect that we think of f|c(a) as the restriction of f to the closed sublocale c(a).

Lemma 6.2.8. Let L be a normal frame and let a and b be elements of L with a∧ b = 0.

Then RL is isomorphic to some fibre product R(↑a)×B R(↑b).

Proof. We shall show that RL is a subdirect product of R(↑a) and R(↑b), whence the

result will follow from Lemma 6.2.7. Denote by πa and πb, respectively, the canonical

projection maps

R(↑a) R(↑a)×R(↑b)πaoo πb //R(↑b).

We need to produce an injective `-ring homomorphism φ : RL → R(↑a) × R(↑b) such

that the composites πaφ and πbφ are surjective. Define φ by setting

φ(f) = (f|c(a), f|c(b)).

Since each of the mappings f 7→ f|c(a) and f 7→ f|c(b) is an `-ring homomorphism, it is clear

that φ is an `-ring homomorphism. To show that it is injective, consider any f, g ∈ RL
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with (f|c(a), f|c(b)) = (g|c(a), g|c(b)). For any p ∈ Q we have

f(p,−) = f(p,−) ∨ (a ∧ b)

=
(
f(p,−) ∨ a

)
∧
(
f(p,−) ∨ b

)
= f|c(a)(p,−) ∧ f|c(b)(p,−)

= g|c(a)(p,−) ∧ g|c(b)(p,−)

=
(
g(p,−) ∨ a

)
∧
(
g(p,−) ∨ b

)
= g(p,−) ∨ (a ∧ b)

= g(p,−)

which shows that f = g. Therefore φ is injective. To see that the composite πaφ is

surjective, let g ∈ R(↑a). Since κa : L → ↑a is a C-quotient map, there exists a ḡ ∈ RL

such that the triangle

L(R)

ḡ

~~

g

!!
L

κa // ↑a

commutes. Therefore

πaφ(ḡ) = πa(ḡ|c(a), ḡ|c(b)) = πa(κaḡ, κbḡ) = κaḡ = g,

which proves that πaφ is surjective. Similarly, πbφ is surjective. Thus, RL is a subdirect

product of R(↑a) and R(↑a), as desired.

Let us recall from [21, Proposition 2.1] the following result, which we paraphrase and

state less generally than in [21].

Lemma 6.2.9. If h : L→M is a C∗-quotient map, then ↑rLh∗(0)→M is the Stone-Čech

compactification of M .

We are now sufficiently equipped to prove the main localic result from which the spatial

one we desire will follow as a corollary.
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Theorem 6.2.10. A completely regular frame L is finitely an F -frame if and only if RL

is finitely 1-convex.

Proof. (⇐) Suppose that RL is finitely 1-convex. Then R∗L is finitely 1-convex, and

hence R(βL) is finitely 1-convex since R(βL) is isomorphic to R∗L. Since βL is spatial,

there is a space X such that βL is isomorphic to OX. Hence C(X) is isomorphic to

R(βL), so that C(X) is finitely 1-convex, which means X is finitely an F -space, and

therefore OX is finitely an F -frame. Consequently, βL is finitely an F -frame, and thus

L is finitely an F -frame.

(⇒) Suppose that L is finitely an F -frame. We shall first look at the case when L is

normal, and from there deduce the general case. So assume, for a moment, that L is

normal. Consider any I ∈ βL for which ↑I is an F -frame. Put a =
∨
I. We claim that

R(↑a) is 1-convex. To prove the claim it suffices to show that ↑a is an F -frame. Observe

that I ≤ rL(a) since rL is the right adjoint of the join map βL → L, hence rL(a) is

a closed quotient of the normal F -frame ↑I. Of course ↑I is normal by Corollary 6.2.3

since it is a closed quotient of the normal frame βL. So ↑rL(a) is a closed quotient of

the normal F -frame ↑I, which implies that ↑rL(a) is an F -frame by Corollary 6.2.3. But

now the right adjoint of the map κa : L → ↑a is the inclusion map, and the zero of ↑a is

a, hence ↑rL(a) is isomorphic to β(↑a), by Lemma 6.2.9, as κa : L→ ↑a is a C∗-quotient

map because L is normal. It follows therefore that ↑a is an F -frame, whence R(↑a) is

1-convex, as claimed.

Now, since L is finitely an F -frame, there are elements I1, . . . , In in βL such that

I1 ∧ · · · ∧ In = 0 and each frame ↑Ik is an F -frame. For each k = 1, . . . , n put ak =
∨
Ik,

and observe that a1 ∧ · · · ∧ an = 0. As just observed, each R(↑ak) is a 1-convex f -ring.

A simple induction using Lemma 6.2.8 shows that RL is (isomorphic to) a finite fibre

product of the 1-convex f -rings R(↑a1), . . . ,R(↑an). That is, RL is finitely 1-convex.

We now relax the normality condition. So assume L is finitely an F -frame. Then λL is

finitely an F -frame, and since λL is normal, we have that R(λL) is finitely 1-convex. But

the ring R(λL) is isomorphic to RL, so RL is also finitely 1-convex.
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Since the rings C(X) and R(OX) are isomorphic for any Tychonoff space X, the

following characterization follows from Proposition 6.2.6 and Theorem 6.2.10.

Corollary 6.2.11. A Tychonoff space X is finitely an F -space if and only if C(X) is

finitely 1-convex.

6.3 Inheritance by quotients

It is not always the case that if a topological property is inherited by subspaces, then

the corresponding frame property is inherited by quotients. A famous (or should that

be “infamous”) example is that, whereas subspaces of P -spaces are P -spaces, not every

quotient of a P -frame is a P -frame [5]. In [45], Larson shows that cozero-sets inherit the

property of being finitely an F -space, as do C∗-embedded subspaces [46]. We show that

similar inheritances occur for frames. We start with the easier of the two.

Theorem 6.3.1. A C∗-quotient of a frame that is finitely an F -frame is itself finitely an

F -frame.

Proof. Let h : L→M be a C∗-quotient map with L finitely an F -frame. By the preceding

lemma, ↑rLh∗(0) is (isomorphic to) βM . Since L is finitely an F -frame, there exist

I1, . . . , In in βL such that I1 ∧ · · · ∧ In = 0, and ↑Ik is an F -frame for each k = 1, . . . , n.

Then (
rL(h∗(0)) ∨ I1

)
∧ · · · ∧

(
rL(h∗(0)) ∨ In

)
= 0↑rL(h∗(0)).

For each k, ↑Ik is a normal frame, being a closed quotient of the normal frame βL. But

↑(rL(h∗(0)) ∨ Ik) is a closed quotient of ↑Ik, so ↑(rL(h∗(0)) ∨ Ik) is a C∗-quotient of the

normal F -frame ↑Ik, and is therefore itself an F -frame by Corollary 6.2.3. Thus βM has

the fin-F property, which says M is finitely an F -frame.

Remark 6.3.2. We could also have argued as follows. We claim that a Lindelöf quotient

of a frame with property fin-F has property fin-F. To see this, let φ : A→ B be a quotient

map with B Lindelöf and A having property fin-F. Pick a1, . . . , an in A with a1∧· · ·∧an = 0

and such that each ↑ai is an F -frame. For any i ∈ {1, . . . , n}, the map ↑ai → ↑φ(ai),
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mapping as φ, is a surjective frame homomorphism. It is therefore coz-onto because ↑φ(ai)

is Lindelöf as it is a closed quotient of a Lindelöf frame, and any surjective homomorphism

with a Lindelöf codomain is coz-onto by [34, Proposition 3.2]. Thus, ↑φ(ai) is an F -frame

by Lemma 6.2.2. The theorem would then follow by [21, Proposition 2.1] which ensures

that if h : L→M is a C∗-quotient map, then βM is a quotient of βL.

We now move to cozero quotients. That is, we aim to show that if L is finitely an

F -frame and c ∈ CozL, then ↓c is finitely an F -frame. We remind the reader that if

L is a Lindelöf frame, then an element a ∈ L is a cozero element if and only if ↓a is

Lindelöf [10, Corollary 4]. We need a preliminary result.

Let h : M → L be a surjective frame homomorphism, a ∈ L, and b ∈ M such that

h(b) = a. The map ↓b→ ↓a effected by h is a surjective frame homomorphism. We shall

say it is induced by h, and write h : ↓b→ ↓a.

Lemma 6.3.3. Let L be a completely regular frame and c ∈ CozL. Then there exists

C ∈ Coz(βL) such that
∨
C = c, and the induced map jL : ↓C → ↓c is a C∗-quotient map.

Proof. Since c ∈ CozL, there is a sequence (cn) in L such that cn ≺≺ cn+1 for every n,

and c =
∨
cn. Put C =

∨
{rL(cn) | n ∈ N} in βL, and observe that C ∈ Coz(βL) since

rL(cn) ≺≺ rL(cn+1) for each n. Also,∨
C = jL(C) = jL

(∨
{rL(cn) | n ∈ N}

)
=

∨
{jLrL(cn) | n ∈ N}

=
∨
n

cn = c.

To show that the induced map ↓C → ↓c is a C∗-quotient map we use [4, Theorem 7.2.7].

So let u, v ∈ Coz(↓c) with u ∨ v = 1↓c = c. We must produce U, V ∈ Coz(↓C) with

U ∨ V = C,
∨
U ≤ u, and

∨
V ≤ v. By [4, Proposition 3.2.10], u, v ∈ CozL, hence

rL(u ∨ v) = rL(u) ∨ rL(v). Since c1 ≺≺ c = u ∨ v, we have c1 ∈ rL(u ∨ v) = rL(u) ∨ rL(v).

This enables us to find s1 ≺≺ u and t1 ≺≺ v such that c1 = s1 ∨ t1. Similarly, we can find

w2 ≺≺ u and z2 ≺≺ v such that c2 = w2 ∨ z2. It will soon be apparent why we write w2

and z2 instead of s2 and t2. Observe that s1 ∨ w2 ≺≺ u and t1 ∨ z2 ≺≺ v. Thus we can
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pick s2 and t2 with s1 ∨ w2 ≺≺ s2 ≺≺ u and t1 ∨ z2 ≺≺ t2 ≺≺ v, so that s1 ≺≺ s2, t1 ≺≺ t2,

and c2 ≤ s2 ∨ t2. Continuing this way we can construct sequences (sn) and (tn) in L such

that, for each n,

sn ≺≺ sn+1, tn ≺≺ tn+1, cn ≤ sn ∨ tn.

Let S and T be the cozero elements of βL given by S =
∨
rL(sn) and T =

∨
rL(tn). Then

U = C ∧ S and V = C ∧ T are cozero elements of ↓C, with S ≤ rL(u) and T ≤ rL(v).

Therefore ∨
U = jL(C ∧ S) =

∨
C ∧

∨
S ≤ c ∧ u = u,

and similarly
∨
V ≤ v. It thus remains to show that U ∨ V = C. Since for any n we have

cn ≤ sn ∨ tn ∈ S ∨ T , it follows that C ≤ S ∨ T , whence C = C ∧ (S ∨ T ) = U ∨ V . This

completes the proof.

We need to do some ground-clearing in preparation for the proof of the following re-

sult. We shall use both the concepts of nuclei and sublocales. The background is in our

references [44] and [57]. Recall that nuclei are compared pointwise. That is, if j and k

are nuclei on a frame L, then j ≤ k if and only if j(a) ≤ k(a) for every a ∈ L. Fur-

ther, if j ≤ k, then the map Fix(j) → Fix(k) given by x 7→ k(x) is a surjective frame

homomorphism whose right adjoint is the inclusion.

For a frame L and a ∈ L, we let νa : L→ L be the nucleus defined by

νa(x) = a→ x =
∨
{z ∈ L | a ∧ z ≤ x}

where the arrow signifies the Heyting implication. Recall that a ∧ (a→ x) = a ∧ x. The

map νa : ↓a → Fix(νa) is an isomorphism of frames whose inverse (and therefore right

adjoint) is the map â : Fix(νa) → ↓a given by â(x) = a ∧ x. Recall that when viewed as

a map κa : L → L, κa is a nucleus with Fix(κa) = ↑a. It is shown in [14] that if j is a

nucleus on L and a ∈ L, then the join j∨κa is the composite jκa, so that we have a frame

homomorphism jκa : Fix(j)→ Fix(jκa) the bottom of which is j(a).

By a cozero-sublocale of a frame L we mean any open sublocale of the form o(c), for

some c ∈ CozL. Observe that if L is a frame, C a cozero sublocale of L, and S any

sublocale of L, then S ∩ C is a cozero-sublocale of S.
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Theorem 6.3.4. If L is finitely an F -frame and c ∈ CozL, then ↓c is also finitely an

F -frame.

Proof. By Lemma 6.3.3 there is a C ∈ Coz(βL) such that the map ↓C → ↓c given by join

is a C∗-quotient map. Since this map is clearly dense, it follows from [21, Corollary 2.2]

that β(↓c) is isomorphic to β(↓C). We shall therefore be done if we can show that β(↓C)

has the fin-F property. Since L is finitely an F -frame, there are elements I1, . . . , In in βL

such that each ↑Ii is an F -frame and I1 ∧ · · · ∧ In = 0. Then in the frame ↓C we have

that (C ∧ I1) ∧ · · · ∧ (C ∧ In) = 0. The right adjoint r↓C preserves meets, so

r↓C(C ∧ I1) ∧ · · · ∧ r↓C(C ∧ In) = 0.

We aim to show that each of the closed quotients ↑r↓C(C ∧ Ii) of β(↓C) is an F -frame.

This we do by showing that each is the Stone-Čech compactification of some F -frame.

Let I ∈ {I1, . . . , In}, and consider the composite

β(↓C) Ĉ // ↓C νC // Fix(νC)
νCκI // Fix(νCκI).

Since νCκI is the join in the assembly of βL of the nuclei νC and κI , the frame Fix(νCκI) is

the meet o(C)∩c(I) in the coframe S̀ (βL) of the sublocales of βL, and is therefore a closed

sublocale of o(C). Since βL is Lindelöf and C ∈ Coz(βL), we have that o(C) is Lindelöf,

and therefore normal. Consequently, the homomorphism νCκI : Fix(νC) → Fix(νCκI) is

a C∗-quotient map because a closed quotient of a normal frame is a C∗-quotient. For

brevity, write ` : ↓C → Fix(νCκI) for the composite

↓C νC // Fix(νC)
νCκI // Fix(νCκI).

Since νC : ↓C → Fix(νC) is an isomorphism, it follows that ` is a C∗-quotient map, and

hence, by Lemma 6.2.9,

β(Fix(νCκI)) = ↑r↓C(`∗(νC(I))) = ↑r↓C(`∗(C → I))
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since the bottom of Fix(νCκI) is νC(I) = C → I. Now

`∗(C → I) = (νC)∗(νCκI)∗(C → I)

= (νC)∗(C → I) since (νCκI)∗ is inclusion

= C ∧ (C → I)

= C ∧ I.

Consequently, β(Fix(νCκI)) = ↑r↓C(C∧I). We show that Fix(νCκI) is an F -frame. Since

Fix(κI) is an F -frame and Fix(νCκI) = Fix(κI) ∩ Fix(νC), it follows that Fix(νCκI) is a

cozero sublocale of Fix(κI), and hence, by Lemma 6.2.2, Fix(νCκI) is an F -frame. We

are done.

Corollary 6.3.5. If L is normal and finitely an F -frame, then ↑a is finitely an F -frame,

for any a ∈ L.

Proof. We first show that the Stone-Čech compactification of ↑a can be realized as a

some closed quotient of βL. Consider the composite βL
jL−→ L

κa−→ ↑a, and the closure

g : ↑rL(a) → ↑a of ↑a in βL, where g maps as κajL. We claim that g : ↑rL(a) → ↑a

is (isomorphic to) the Stone-Čech compactification of ↑a. We apply Theorem 7.1.1 and

Corollary 8.2.7 of [4]. So let u∨v = 1 in Coz(↑a). Since L is normal, the map κa : L→ ↑a

is a C∗-quotient map, by [4, Theorem 8.3.3], there exist c, d ∈ CozL with c ∨ d = 1 such

that u = a ∨ c and v = a ∨ d. Since jL : βL → L is a C∗-quotient map, there exist

s, t ∈ Coz(βL) with s ∨ t = 1 such that jL(s) = c and jL(t) = d. Thus, g(s) = u and

g(t) = v, showing that g : ↑rL(a)→ ↑a is the Stone-Čech compactification of ↑a.

Now, since L is finitely an F -frame, there exist I1, . . . , In in βL such that I1∧· · ·∧In = ⊥,

and ↑Ik is an F -frame for each k = 1, . . . , n. Then(
rL(a) ∨ I1

)
∧ · · · ∧

(
rL(a) ∨ In

)
= 0↑rL(a).

For each k, ↑Ik is a normal frame, being a closed quotient of the normal frame βL. But

↑(rL(a) ∨ Ik) is a closed quotient of ↑Ik, so ↑(rL(a) ∨ Ik) is a C∗-quotient of the normal

F -frame ↑Ik, and is therefore itself an F -frame by what we observed earlier. Thus β(↑a)

has the fin-F property, that is ↑a is finitely an F -frame.
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