
ENLARGING DIRECTED GRAPHS TO ENSURE
ALL NODES ARE CONTAINED IN CYCLES

by

JAN JOHANNES VAN DER LINDE

submitted in accordance with the requirements for the degree of

MASTER OF SCIENCE

in the subject

COMPUTING

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: PROF. IAN SANDERS

2015

Declaration

I declare that “Enlarging directed graphs to ensure all nodes are con-
tained in cycles” is my own work and that all the sources that I have used
or quoted have been indicated and acknowledged by means of complete
references.

I further declare that I have not previously submitted this work, or part of
it, for examination at Unisa for another qualification or at any other higher
education institution.

J. J. van der Linde December 2, 2015

Abstract

Graph augmentation concerns the addition of edges to a graph to satisfy
some connectivity property of a graph. Previous research in this field has
been preoccupied with edge augmentation; however the research in this
document focuses on the addition of vertices to a graph to satisfy a spe-
cific connectivity property: ensuring that all the nodes of the graph are
contained within cycles. A distinction is made between graph augmenta-
tion (edge addition), and graph enlargement (vertex addition).

This document expands on previous research into a graph matching prob-
lem known as the “shoe matching problem” and the role of a graph en-
largement algorithm in finding this solution. The aim of this research was
to develop new and efficient algorithms to solve the graph enlargement prob-
lem as applied to the shoe matching problem and to improve on the naïve
algorithm of Sanders.

Three new algorithms focusing on graph enlargement and the shoe match-
ing problem are presented, with positive results overall. The new enlarge-
ment algorithms: cost-optimised, matrix, and subgraph, succeeded in de-
riving the best result (least number of total nodes required) in 37%, 53%,
and 57% of cases respectively (measured across 120 cases). In contrast,
Sanders’s algorithm has a success rate of only 20%; thus the new algo-
rithms have a varying success rate of approximately 2 to 3 times that of
Sanders’s algorithm.

Acknowledgements

My gratitude and respect to my advisor, Prof. Ian Sanders, for his guid-
ance and patience during the writing of this dissertation. I am grateful for
the opportunity given to me to continue his research ideas in this field. It
has been a pleasure and a privilege to work with you, Professor.

Maheshini Govender for her love and support during the writing of this
dissertation, her regular proofreading of it, and also for her help in the
drawing of the graph structures present in this dissertation. To paraphrase
Carl Sagan, one of our mutual favourite scientists: “In the vastness of space
and the immensity of time, it is my joy to share a planet and an epoch with you.”

My brother, Ian, a fellow computer scientist, whose ideas, knowledge, and
remarks have always been a great help to me, as well as his proofreading
of this dissertation.

My parents, Jan and Zelda, for their support throughout my life.

I also wish to thank the Directorate of Student Funding at the University
of South Africa for the bursary awarded to me during the course of my
studies.

A man provided with paper, pencil, and
rubber, and subject to strict discipline, is in
effect a universal machine.

Alan M. Turing

Preface

Parts of this dissertation were compiled into an article and submitted to
the SAICSIT 2015 conference. The paper was accepted and published in
the conference proceedings. The theme of the conference was “Knowledge
Through Technology” and ran from 28-30 September 2015. The full paper, as
accepted for publication, can be found in Appendix C on p. 113.

Contents

1 Introduction 1

1.1 Background to the Problem 1

1.2 Aim, Methodology, and Results 4

1.3 Expected Contribution of the Dissertation 5

1.4 An Overview of the Remainder of the Dissertation 5

2 Background 7

2.1 Introduction . 7

2.2 Definitions and Terminology 8

2.2.1 Directed versus Undirected Graphs 9

2.3 Graph Algorithms and Computer Representations of Graphs 9

2.3.1 Graph Traversal Algorithms 10

2.3.2 Computer Representation of Graphs 12

2.4 Cycle Enumeration . 14

2.5 Cycle Picking . 20

2.5.1 Minimum Number of Cycles 21

2.5.2 All Small Cycles . 21

2.5.3 Minimum Total Cycle Length 23

2.5.4 Conjectured NP-completeness 23

2.6 Graph Augmentation and Enlargement 23

2.6.1 Sanders’s Graph Enlargement Algorithm 27

2.6.2 Sanders’s Algorithm - A Worked Example 27

2.6.3 Theoretical Runtime of Sanders’s Algorithm 30

2.7 Summary . 32

3 Methodology 33

i

3.1 Introduction . 33

3.2 Research Aim . 34

3.3 Overall Strategy . 34

3.4 Programming Language . 35

3.5 Finding Appropriate Data . 35

3.6 Generating Synthetic Data . 36

3.7 Cycle Enumeration . 36

3.8 Cycle Picking . 37

3.8.1 Minimum Number of Cycles Implementation 38

3.9 Enlarging Cycles . 39

3.10 Assessment Criteria . 39

3.11 Summary . 41

4 Experimental Work 42

4.1 Introduction . 42

4.2 Cost Optimisation . 43

4.2.1 Redefining Cost Distribution 43

4.2.2 Graphs Containing Only Strictly Isolated Nodes . . . 43

4.2.3 Avoiding Bridge Nodes 47

4.2.4 Rule-based Decision Making 48

4.2.5 Cycle Compression . 54

4.2.6 Implementation . 56

4.2.7 Interpretation of Results 64

4.3 Speed Optimisation . 67

4.3.1 Growth in the Number of Cycles and its Effect 67

4.3.2 Permutations and Permutation Matrices 67

4.3.3 Implementation . 70

4.3.4 Implementation on Larger Graphs 75

4.3.5 Interpretation of Results 75

4.4 Subgraph Algorithm . 81

4.4.1 Finding an Optimal Combination of Cycles 81

4.4.2 Implementation . 81

4.4.3 Interpretation of Results 84

4.5 Summary . 87

ii

5 Results 88

5.1 Introduction . 88

5.2 Cost-optimisation Results . 88

5.3 Speed-optimisation Results 89

5.4 Subgraph Algorithm Results 90

5.5 The Advantages of the Naïve Solution 90

5.6 Comparative Results Across All Algorithms 91

5.7 Summary . 94

6 Future Work 96

6.1 Introduction . 96

6.2 Ideas on New Algorithms And Improvements to Existing
Algorithms . 97

6.2.1 Involving Minimum Spanning Trees 97

6.2.2 Calculated Selection of Intermediate Nodes 98

6.2.3 Improvements to the Subgraph Algorithm 98

6.2.4 Divide and Conquer with Parallel Computing 98

6.3 NP-completeness . 99

6.4 Porting to an Alternative Language 99

6.5 Practical Implementation . 99

7 Conclusion 100

References 101

Appendices 105

A Additional Comparative Results Across Algorithms 106

B Ethical Clearance 111

C SAICSIT 2015 Submission 113

iii

List of Figures

1.1 An example of the shoe matching problem 2

1.2 An example of the shoe matching problem (Solution) 3

2.1 Cycle examples illustrated . 9

2.2 Two examples of undirected graphs 9

2.3 An example of a directed graph 10

2.4 Deriving an adjacency matrix from a graph 13

2.5 Illustrating the minimum number of cycles method (1) . . . 21

2.6 Illustrating the minimum number of cycles method (2) . . . 22

2.7 Illustrating the minimum number of cycles method (3) . . . 22

2.8 Common network topologies 25

2.9 Worked Example of Sanders’s Algorithm (1) 30

2.10 Worked Example of Sanders’s Algorithm (2) 31

3.1 A simple directed graph to illustrate cycle picking 38

3.2 Assessing node cost (1) . 40

3.3 Assessing node cost (1) . 40

4.1 Revising cost distribution (1) 44

4.2 Revising cost distribution (2) 45

4.3 Revising cost distribution (3) - an alternative 46

4.4 Sanders’s original example (1) 47

4.5 Sanders’s original example (2) 47

4.6 Sanders’s original example (3) - an alternative 48

4.7 Rule-based Algorithm Case 0 49

4.8 Rule-based Algorithm Case 0 Solution 49

4.9 Rule-based Algorithm Case 1 50

iv

4.10 Rule-based Algorithm Case 1 Solution 50

4.11 Rule-based Algorithm Case 2 50

4.12 Rule-based Algorithm Case 2 Solution 51

4.13 Rule-based Algorithm Case 3 51

4.14 Rule-based Algorithm Case 3 Solution 51

4.15 Rule-based Algorithm Case 4 52

4.16 Rule-based Algorithm Case 4 Solution 52

4.17 Rule-based Algorithm Case 5 52

4.18 Rule-based Algorithm Case 5 Solution 52

4.19 Rule-based Algorithm Case 6 53

4.20 Rule-based Algorithm Case 6 Solution 53

4.21 Rule-based Algorithm Case 7 54

4.22 Rule-based Algorithm Case 7 Solution 54

4.23 Repeated nodes (1) . 55

4.24 Repeated nodes (2) . 56

4.25 Repeated nodes (2) . 57

4.26 Application of cost optimisation (1) 60

4.27 Application of cost optimisation (2) 61

4.28 Application of cost optimisation (3) 62

4.29 Application of cost optimisation (4) 63

4.30 Growth in the number of cycles 68

4.31 Permutation Matrix Construction (1) 71

4.32 Permutation Matrix Construction (2) 74

4.33 Sanders’s original example (1) 75

4.34 Sanders’s original example and the speed-optimised algo-
rithm . 76

4.35 Matrix Enlargement on Larger Graphs (1) 77

4.36 Matrix Enlargement on Larger Graphs (2) 78

4.37 Subgraph Algorithm Example (1) 83

4.38 Subgraph Algorithm Example (2) 83

4.39 Subgraph Algorithm Example (3) 84

6.1 Spanning tree (1) . 97

6.2 Spanning tree (2) . 98

v

List of Tables

4.1 Detailed example: Sanders’s algorithm vs. the cost-optimised
algorithm . 63

4.2 Sanders’s algorithm vs. the cost-optimised algorithm (1) . . 65

4.3 Sanders’s algorithm vs. the cost-optimised algorithm (2) . . 65

4.4 Sanders’s algorithm vs. the cost-optimised algorithm (3) . . 66

4.5 Growth in the number of cycles 67

4.6 Sanders’s algorithm vs. the speed-optimised algorithm (1) . 79

4.7 Sanders’s algorithm vs. the speed-optimised algorithm (2) . 80

4.8 Sanders’s algorithm vs. the speed-optimised algorithm (3) . 80

4.9 Sanders’s algorithm vs. the subgraph algorithm (1) 85

4.10 Sanders’s algorithm vs. the subgraph algorithm (2) 85

4.11 Sanders’s algorithm vs. the subgraph algorithm (3) 86

5.1 Comparative results across all algorithms (total number of
nodes) . 92

5.2 Comparative results across all algorithms (unique number
of dummy nodes) . 93

5.3 Summarised comparative results across all algorithms (min-
imising the total number of nodes) 94

5.4 Summarised comparative results across all algorithms (min-
imising the unique number of dummy nodes) 94

A.1 Summarised additional comparative results across all algo-
rithms . 106

A.2 Additional comparative results across all algorithms (1) . . . 107

A.3 Additional comparative results across all algorithms (2) . . . 108

A.4 Additional comparative results across all algorithms (3) . . . 109

A.5 Additional comparative results across all algorithms (4) . . . 110

vi

List of Algorithms

1 Depth-first Search . 11
2 Breadth-first Search . 11
3 Connected Components Algorithm 12
4 Tiernan’s Algorithm (Part 1 of 2) 15
5 Tiernan’s Algorithm (Part 2 of 2) 16
6 Tarjan’s Algorithm . 17
7 Johnson’s Algorithm (Part 1 of 2) 18
8 Johnson’s Algorithm (Part 2 of 2) 19
9 Liu & Wang’s Algorithm . 20
10 Sanders’s Algorithm (Part 1 of 2) 28
11 Sanders’s Algorithm (Part 2 of 2) 29
12 Generating Synthetic Data and the Adjacency List 37
13 Cycle Picking: Minimum Number of Cycles 39
14 Longest Common Substring 58
15 Graph Enlargement: Cost-optimised Algorithm 59
16 Graph Enlargement: Subgraph Algorithm 82

vii

This page intentionally left blank.

Chapter 1

Introduction

Contents
1.1 Background to the Problem 1

1.2 Aim, Methodology, and Results 4

1.3 Expected Contribution of the Dissertation 5

1.4 An Overview of the Remainder of the Dissertation . . . 5

1.1 Background to the Problem

The shoe matching problem (Sanders, 2013a,b) involves people who re-
quire different sized shoes between their left and right feet. By cooperat-
ing with one another, and buying pairs of shoes as a group, they can save
money and satisfy everyone’s footwear needs. Instead of every person
buying two pairs of shoes, he/she simply needs to find one or more per-
sons to match up with. If, for example, one person needed a left shoe of
size 8 and a right shoe of size 10, the ideal match would be someone with
the opposite need. By cooperating, they need only buy a single pair of size
8’s and a single pair of size 10’s. However, in real life, the solution is rarely
as simple as that. Matchings might need to occur within a large group of
people to satisfy everyone’s needs and even then not everyone may find
a match. In such a case the group must buy extra pairs of shoes to ensure
that everyone benefits from the arrangement.

Thus, while a naïve (and fast) solution to the problem is to furnish every
participant with an extra pair of shoes, it would result in extra cost that
could potentially have been avoided. For most people with differently
sized feet, this costly solution is currently the norm. By forming groups
within communities, participants will be able to continue cooperating to
save money.

By abstracting the shoe matching problem as a graph theory problem (see

1

Section 2.6 on p. 23), one can utilise the techniques of graph theory, specif-
ically cycle picking, to make sure that everyone finds their match within
the group or, in the worst case scenario, make use of graph enlargement to
add dummy pairs of shoes, followed by cycle picking, to satisfy the needs
of all the group members.

Figure 1.1 illustrates an example of the shoe matching problem. The cur-
rent cycles in the graph are:

• (1: Monde) → (5: David) → (4: Kefentse) → (3: Hendrik)
→ (6: Yoosuf)

• (1: Monde)→ (5: David)→ (6: Yoosuf)

• (3: Hendrik)→ (4: Kefentse)

• (7: Kopano)→ (8: Mark)

All the nodes are contained within some cycle, except for node number 2:
John. This means everyone has a partner (or belongs to a group of partici-
pants) to swap shoes with, such that everyone finds a pair that fits, except
for John. One therefore needs to add a dummy node (an extra pair of
shoes), with the goal of enabling John to become part of one of the existing
cycles.

Figure 1.1: Sanders’s original example of the shoe matching problem

Graph enlargement, as described in this dissertation, refers to the problem
of enlarging a graph G, in which nearly all nodes are contained in cycles,
to produce an enlarged graph G′ in which all the nodes will be contained
within cycles. Figure 1.2 illustrates the graph after enlargement has been
applied. Note that John is now contained within a cycle, and the graph
has been enlarged with two dummy nodes, namely nodes 9 and 10. In
Chapter 4 it is shown that the problem above could have been solved by
adding only a single dummy node. The cycles in the graph are now as
follows:

2

• (1: Monde) → (5: David) → (2: John) → (9: Dummy)
→ (8: Mark)→ (10: Dummy)→ (3: Hendrik)→ (6: Yoosuf)

• (1: Monde) → (5: David) → (4: Kefentse) → (3: Hendrik)
→ (6: Yoosuf)

• (1: Monde)→ (5: David)→ (6: Yoosuf)

• (2: John) → (9: Dummy) → (8: Mark) → (10: Dummy)
→ (3: Hendrik)

• (3: Hendrik)→ (4: Kefentse)

• (7: Kopano)→ (8: Mark)

Figure 1.2: Sanders’s original example of the shoe matching problem, post-enlargement

In Section 2.6 (p. 23) it is shown that graph augmentation (enlarging the
graph by adding edges) is not a new concept. However, these previous
papers were mostly concerned with edge augmentation and the edge con-
nectivity of the graph. The research within this dissertation focuses on a
different property: to ensure the graph is a collection of cycles and that all
nodes are contained within these cycles, by adding vertices as required. A
distinction is thus made between graph augmentation (adding edges to
the graph) and graph enlargement (adding vertices and specific edges to
the graph).

It would not be possible to use the techniques of graph augmentation to
solve the shoe matching problem, since the problem cannot be solved
by adding only edges to the graph (edges are only created if a match-
ing is possible between two nodes). People are represented by nodes,
and matchings between people are indicated by edges. The addition of
dummy nodes (and accompanying matching edges) are necessary to solve
the problem.

3

Sanders (2013a) approached the shoe matching problem by generating in-
put data to construct a representative graph. A cycle enumeration algo-
rithm would assist in determining whether all the nodes of the graph
were contained within cycles. If not, Sanders’s graph enlargement algo-
rithm would add the required dummy nodes, and a cycle picking algo-
rithm would choose the optimal combination of cycles to minimise the
total cost.

Cycle picking is an optimisation problem; to minimise the number of cy-
cles, such that any node originally contained within a cyle(s) will be con-
tained within the fewest number of cycles possible. Sanders (2013a,b) pre-
sented applications of both cycle picking and graph enlargement. In the
example illustrated above, several nodes appear in multiple cycles. By
applying cycle picking, an optimal combination of cycles can be selected.
The number of nodes is minimised in this combination of cycles.

While the graph enlargement algorithm developed by Sanders (2013a,b)
does enlarge the graph correctly, by adding the required dummy nodes
and appropriate edges, the algorithm does not consider the properties of
the graph and makes no attempt to minimise the total node cost. Nodes
are more or less chosen at random, ideally any node with no incoming
edges will be connected to any node with no outgoing edges.

1.2 Aim, Methodology, and Results

The shoe matching problem is an example of a simple matching problem.
Solving the problem possibly requires the addition of extra dummy nodes
to ensure that all nodes are contained within cycles. The problem of effi-
ciently adding nodes to an existing graph necessitates the development
of a new algorithm. The existing algorithm by Sanders (2013a) provides a
good solution in most cases, but it is not always the most efficient in terms
of total node cost or running time.

The primary aim of this research was to develop new and efficient algo-
rithms to solve the graph enlargement problem. The main focus points for
improvement for these algorithms were the total node cost to participants
(in a scenario such as the shoe matching problem), and also the fastest
possible running time, respectively. It was also investigated whether en-
larging only a subgraph of the original graph, consisting of the nodes not
contained within cycles, results in improved performance.

The new algorithms were compared to the existing one by Sanders (2013a)
in terms of run-time and node-cost of the solution. Test data was randomly
generated for comparison purposes; the data was simulated subject to rea-
sonable assumptions (with regards to average shoe sizes and average dif-
ferences between shoe sizes), since no real world data could be found.

In this dissertation, it is shown that several improvements can be made

4

to the original algorithm, in terms of node-cost (number of nodes) and the
speed / running time of the algorithm. It is also shown that it is possible to
efficiently enlarge large graphs (1000 nodes, for example) within a matter
of seconds.

1.3 Expected Contribution of the Dissertation

This dissertation focuses on graph enlargement and its application to sim-
ple matching problems, specifically the shoe matching problem. Graph
enlargement is an unexplored topic within graph theory with a rich po-
tential of undiscovered applications. Three new algorithms are provided,
each with its own set of advantages and disadvantages, which can be ap-
plied by the reader to other matching problems.

It also extends the research done by Sanders (2013a,b) by providing faster
and more cost-effective (in terms of total node cost) solutions to the shoe
matching problem.

1.4 An Overview of the Remainder of the Dis-
sertation

Other researchers have, in previous years, focused on the problem of graph
augmentation by adding edges to a graph to satisfy certain properties. The
problem of enlarging a graph by adding vertices is a relatively new con-
cept. For the purposes of this dissertation and the shoe matching problem
several related concepts, such as cycle enumeration and cycle picking, are
also applied. These topics are examined in greater detail in the literature
review found in Chapter 2. Some basic background and terminology re-
lated to graph theory concepts are also explained, but the reader familiar
with these concepts may simply gloss over these sections.

Chapter 3 covers the research methodology followed in this dissertation.
The reasons for selecting specific cycle enumeration and cycle picking
methods, for example, are provided and substantiated. The generation of
input data due to a lack of availability of real-world data is also discussed.
Finally, the chapter covers the assessment criteria to determine whether
the research aim was achieved.

The experimental work involving new algorithms and their comparison to
Sanders’s algorithm are detailed and tabulated in Chapter 4. This chapter
also provides detailed pseudocode for the new algorithms and other ap-
plicable subroutines. The different optimisation techniques employed are
individually and thoroughly examined. An overview of the results and a
summary of the optimisation techniques are covered in Chapter 5.

5

Potential future research opportunities are presented in Chapter 6. The
possibility of parallelising the existing and new algorithms could greatly
enhance the performance of the graph enlargement process. One could
even port the existing work to a language designed for such a purpose,
such as Google’s new in-house developed language: Go. There is also an
opportunity to implement the algorithms in a practical manner, such as a
web interface allowing real people to register and participate in the shoe
matching problem.

Chapter 7 restates the results and conclusions drawn in this dissertation.

6

Chapter 2

Background

Contents
2.1 Introduction . 7

2.2 Definitions and Terminology 8

2.3 Graph Algorithms and Computer Representations of
Graphs . 9

2.4 Cycle Enumeration . 14

2.5 Cycle Picking . 20

2.6 Graph Augmentation and Enlargement 23

2.7 Summary . 32

2.1 Introduction

Sanders (2013a,b) originally abstracted the problem of people requiring
different size shoes (between their left and right feet) into a graph theory
problem, specifically the problem of cycle picking. Each node of the graph
represents a person who cooperates with other people (nodes) to exchange
a shoe of incompatible size for the correct size shoe. Cycles represent
groups of people who are able to work together to satisfy their footwear
needs. By employing cycle picking, an optimal combination of cycles can
be found to minimise the monetary cost to the participants. However, be-
fore cycle picking can occur, the existing cycles within the graph must be
enumerated.

Ideally one would hope for everyone to find a match without the need for
dummy pairs of shoes, but in the real world this is an often unrealised
ideal. Sanders (2013a,b) developed an algorithm to add dummy nodes as
required, to ensure that all the participants find a match; in other words,

7

ensuring that all the nodes are contained within cycles. For detailed infor-
mation on Sanders’s algorithm (including pseudocode), please see Section
2.6.1 (p. 27).

Sanders’s algorithm for adding nodes to an existing graph is essentially a
form of graph augmentation in principle. Eswaran and Tarjan (1976) orig-
inally defined graph augmentation as the problem of determining how
many edges must be added to a graph to satisfy a given connectivity prop-
erty C. The formal definition of graph augmentation is given in Section
2.6 (p. 23). This dissertation will look at graph “augmentation” (referred
to as graph enlargement to avoid ambiguity) differently: how many nodes
(their accompanying edges will follow automatically due to the problem defini-
tion) must be added to the graph to ensure that all the nodes within the graph are
contained within cycles?

The remainder of this chapter presents some basic definitions and termi-
nology related to graph theory and graph algorithms, and then moves on
to a more detailed study of existing graph algorithms, such as cycle enu-
meration and cycle picking algorithms, which are directly applicable to
the research problem. The reader already familiar with graph theory may
skip Sections 2.2 and 2.3.

2.2 Definitions and Terminology

Graphs are mathematical structures consisting of two sets, namely a vertex
set, V = {v1,v2, ...,vi}, as well as an edge set E = {e1,e2, ...,e j}. An edge joins
two vertices together, and two vertices are said to be adjacent when they
are joined by an edge. An edge e can also be represented by a concatena-
tion of the two vertices it joins, for example e = uv, where u,v ∈V . Vertices
are also called nodes, and will be referred to interchangeably throughout
this dissertation. The order of a graph G is the number of vertices, |V (G)|,
whilst the size of the graph is the number of edges, |E(G)|. The degree of
a vertex, degv refers to the number of vertices incident with v; the maxi-
mum degree of any vertex in a given graph G is denoted by ∆(G), while
the minimum degree is denoted by δ(G). Weighted graphs are graphs in
which the edges have been assigned weights. In general, pathfinding al-
gorithms and spanning tree algorithms would utilise the edges with the
least weight.

There are several notable graph structures which feature prominently in
graph theory. These include, but are not limited to: cycles, paths, stars,
bipartite graphs, complete graphs, trees, and planar graphs. Several text-
books are available for further reading on these families of graphs, such
as Chartrand et al. (2011) and Bondy and Murty (2008). This dissertation
focuses on cycles.

Paths and cycles are very closely related. Cycles, graphically speaking, are

8

indeed cyclical structures. Let G be a graph, with nodes v1,v2,v3, ...,vn−1,
vn and edges v1v2,v2v3, ...,vn−1vn,vnv1. Then the graph G is a cycle, and
is denoted by Cn. A path is simply a cycle with a disconnect between
the last and first node, that is to say it has nodes v1,v2,v3, ...,vn−1,vn and
edges v1v2,v2v3, ...,vn−1vn. Paths are normally denoted by Pn where n is the
number of nodes in P.

Figure 2.1: Three cycles illustrated, from left to right: C3,C4,C5

2.2.1 Directed versus Undirected Graphs

Graphs can be either directed or undirected. In an undirected graph the
edges do not possess direction, and one can move along any edge freely
and in any direction (see Figure 2.2).

However, directed graphs consist of directed edges and are the focus of
this dissertation. The edges of a directed graph do possess direction and
one cannot move against the direction indicated (see Figure 2.3). Directed
graphs are sometimes simply called digraphs, whilst directed edges can
also be called arcs, arrows, or simply, edges. In this dissertation we will
simply refer to digraphs and edges.

Figure 2.2: Two undirected graphs are illustrated above.

2.3 Graph Algorithms and Computer Represen-
tations of Graphs

Both graph theory and modern computer science are relatively new, but
well established fields. This section will cover some classic graph algo-

9

Figure 2.3: The cycle illustrated above is directed; the nodes must be traversed in a
clockwise manner, as indicated by the arrows.

rithms in computing, as well as the computer representation of graphs.

2.3.1 Graph Traversal Algorithms

Graph traversal algorithms play an important role in developing graph
enlargement algorithms, for example, to enumerate cycles and detect com-
ponents within a graph.

This section covers the following graph algorithms:

• Depth-first search

• Breadth-first search

• Connected components algorithm

Please note that cycle enumeration algorithms are covered in section 2.4
on p. 14.

2.3.1.1 Depth-first Search

Depth-first search (DFS) is a graph traversal algorithm that explores a
branch as far as possible before backtracking. Depth-first search has sev-
eral applications, including topological sorting and graph planarity test-
ing. Note that DFS makes use of a stack data structure, and every newly
discovered neighbour is pushed on top of the existing stack.

2.3.1.2 Breadth-first Search

Breadth-first search (BFS) is a graph traversal algorithm that inspects a
given vertex and all of its immediate neighbours before moving on to the
child nodes of neighbouring nodes. Note that BFS makes use of a queue
data structure, and every newly discovered neighbour is added to the end
of the queue.

10

Algorithm 1 Depth-first Search

1: procedure DFS(G,v)
2: S← empty stack
3: for all u ∈VG do
4: u.visited← false
5: end for
6: S.push(v) . add to top of stack
7: while S 6= /0 do
8: u = S.pop() . inspect first element
9: if u.visited = false then

10: u.visited = true
11: for all w as neighbours of u do
12: S.push(w) . add to top of stack
13: end for
14: end if
15: end while
16: end procedure

Algorithm 2 Breadth-first Search

1: procedure BFS(G,v)
2: Q← empty queue
3: for all u ∈VG do
4: u.visited← false
5: end for
6: Q.enqueue(v) . add to end of queue
7: while Q 6= /0 do
8: u = Q.dequeue() . inspect first element
9: if u.visited = false then

10: u.visited = true
11: for all w as neighbours of u do
12: Q.enqueue(w) . add to end of queue
13: end for
14: end if
15: end while
16: end procedure

2.3.1.3 Connected Components Algorithm (Hopcroft-Tarjan)

Hopcroft and Tarjan (1973) provide an algorithm to discover the connected
components (not necessarily strongly connected) of a graph. The logic be-
hind the algorithm is simple and straightforward: loop through all the
vertices of the graph, if the current vertex is still undiscovered use either
a depth-first or breadth-first search algorithm (see Algorithms 1 and 2)
to find all the nodes in the connected component containing the current
undiscovered vertex. The algorithm continues until there are no undis-

11

covered vertices.

Algorithm 3 is a pseudocode implementation of the connected compo-
nents algorithm employed for the purposes of this dissertation.

Algorithm 3 Connected Components Algorithm

1: procedure COMPONENTS(G)
2: components← /0

3: for all vi ∈V (G) do
4: temp← all nodes in DFS(vi)
5: if V(temp) ∩ V(any existing component) 6= /0 then
6: add all the vertices of temp to the existing component
7: else
8: create a new component based on temp
9: add the new component to components

10: end if
11: end for

12: return components
13: end procedure

2.3.2 Computer Representation of Graphs

It is important to understand how graphs can be represented digitally,
within a computer’s memory. This can either be done using matrices (i.e.
arrays) or by following an object oriented approach, where classes and
objects can be used to model the graph as a data structure. Even (2011) ex-
plains several methods to represent graphs by using arrays and lists; the
following subsections will cover adjacency matrices, adjacency lists, and
an object-oriented approach.

2.3.2.1 Adjacency Matrices

Directed and undirected graphs can be represented by an n× n matrix.
The matrix, say M, can indicate an edge between two vertices vi and v j
by letting Mi j = 1, whilst the absence of an edge can be indicated by let-
ting Mi j = 0. In an undirected graph, the matrix is symmetric, that is to
say that Mi j = M ji. This matrix M is called an adjacency matrix and can be
represented digitally by a 2-dimensional array.

An adjacency matrix requires O(n× n) memory, but allows the computer
to quickly check whether an edge exists or not. In a sparse graph, an adja-
cency matrix contains mostly zeroes and is an inefficient use of memory.

To make provision for digraphs we alter the matrix as follows:

12

• The i-th row represent the outgoing edges of vi and the sum of the
1’s in the i-th row gives dout(vi).

• The j-th column represent the incoming edges of v j and the sum of
the 1’s in the j-th column gives din(v j).

v1

v3 v2

v4

Figure 2.4: Deriving an adjacency matrix from a directed graph.

The adjacency matrix for the graph in Figure 2.4 is given by

M =



v1 v2 v3 v4

v1 0 1 0 1
v2 0 0 1 0
v3 1 0 0 0
v4 0 0 0 0



2.3.2.2 Adjacency Lists

An adjacency list is an alternative to the adjacency matrix. Adjacency lists
are more storage-efficient than adjacency matrices in the case of sparse
graphs. Adjacency lists are slower when checking for the existence of spe-
cific edges in the graph, though.

For the directed graph in Figure 2.4, the adjacency list can be represented
by linked lists as follows:

v1: v2 v4

v2: v3

v3: v1

v4:

The adjacency list need not make use of linked lists; simple arrays (and
dictionaries, if available) can also be used to represent the vertices and
their relationships.

13

2.3.2.3 Object-oriented Approach

An OO (object-oriented) solution can be approached in a variety of ways.
A Vertex class can be constructed which keeps lists of incoming and outgo-
ing adjacencies. These adjacent vertices are also of the Vertex class and in
turn have their own lists of adjacent vertices. An OO approach also allows
the easy addition of vertex properties, such as vertex colouring. Methods
can also be written to determine certain vertex properties, such as din and
dout, for example.

2.4 Cycle Enumeration

Cycle enumeration is the process of using a depth-first or breadth-first
search (DFS / BFS) to traverse all the possible cycles within a graph. The
number of cycles can increase very rapidly (even exponentially) as the
number of nodes in a graph increases.

In 1970, James Tiernan published an algorithm to find the elementary cir-
cuits of a graph. Tiernan’s paper focused on directed graphs, and he
deemed his algorithm efficient due to the fact that every circuit in the
graph was considered only once. The algorithm developed by Tiernan
is iterative and favours small circuits (Tiernan, 1970).

Tiernan (1970) defines an elementary circuit to be an elementary path (each
vertex is contained in the path at most once), except that the first and last
vertices are the same. The algorithm requires every node to be labeled
with some integer value from 1 to n where n is the order of the graph. The
order of the labelling is not important.

The algorithm makes use of two arrays: the first, P is one-dimensional and
is used to build the elementary path; the second, H, is a two-dimensional
array filled with zeroes to begin with and will keep track of all the vertices
“closed” (see below for clarification) to each vertex. The algorithm starts
at the vertex labelled 1, adding it to P, and tentatively extends to the next
vertex as long as the following conditions are met:

1. The new vertex may not already be contained within P.

2. The integer label of the new vertex must be larger than the first vertex
in P.

3. The new vertex cannot be closed to the last vertex in P.

Tiernan’s 3rd condition uses unorthodox terminology and can be clarified
as follows: once a cycle is obtained, or a dead end reached, the last vertex
added is removed from P and the second-to-last vertex becomes “closed”
to the last vertex. The algorithm will continue to trace back through the

14

vertices in P until another path is possible. Essentially this means the al-
gorithm will not repeatedly revisit the same vertices, and therefore won’t
continuously rediscover the same cycles. When all the possible cycles have
been discovered that contain the vertex labelled 1, the algorithm moves on
to the vertex labelled 2, and repeats the process; this continues until all N
vertices have been considered.

The algorithm’s parameters consist of G, the graph, and N, the order of
the graph. A pseudocode version of Tiernan’s algorithm is given below in
Algorithms 4 and 5. The program starts at procedure EC1; the rest of the
program flow is indicated by goto statements.

Algorithm 4 Tiernan’s Algorithm (Part 1 of 2)

1: procedure EC1: INITIALISATION(G,N)
2: Read N and G
3: P← 0 . 1-Dimensional array
4: H ← 0 . 2-Dimensional array
5: k← 1 . Start at vertex 1
6: P[1]← 1
7: go to EC2
8: end procedure

9: procedure EC2: PATH EXTENSION
10: Search G[P[k], j] for j = 1,2, ...,N such that G[P[k], j] satisfies the 3

conditions listed on p. 14.
11: if a value for j is found then
12: Extend the path
13: k← k+1
14: P[k]← G[P[k−1], j]
15: go to EC2
16: else
17: The path cannot be extended any further; either the circuit is

complete or it’s a dead end.
18: end if
19: end procedure

20: procedure EC3: CIRCUIT CONFIRMATION
21: if P[1] /∈ G[P[k], j], j = 1,2, ...,N then
22: No circuit has been formed.
23: go to EC4
24: else
25: Circuit has been formed.
26: Print P
27: end if
28: end procedure

15

Algorithm 5 Tiernan’s Algorithm (Part 2 of 2)

29: procedure EC4: VERTEX CLOSURE
30: if k = 1 then
31: All of the circuits containing the vertex P[1] have been consid-

ered.
32: go to EC5
33: else
34: H[P[k],m]← 0,∀m = 1,2, ...,N
35: for m where H[P[k−1],m] is the leftmost zero in row P[k−1] of

H do
36: H[P[k−1],m]← P[k]
37: P[k]← 0
38: k← k−1
39: go to EC2
40: end for
41: end if
42: end procedure

43: procedure EC5: ADVANCE INITIAL VERTEX
44: if P[1] = N then
45: go to EC6
46: else
47: P[1]← P[1]+1
48: k← 1
49: H← 0
50: go to EC2
51: end if
52: end procedure

53: procedure EC6: TERMINATION
54: Terminate the algorithm.
55: end procedure

Tarjan (1972) published a new, more efficient, algorithm to enumerate the
elementary cycles of a graph. Tarjan (1972, p. 2) also states that Tier-
nan’s algorithm “explores many more elementary paths than are necessary”.
Tarjan’s research expands on Herbert Weinblatt’s DFS (depth-first search)
approach. (Weinblatt, 1972)

Weinblatt’s algorithm will traverse each edge only once, whereas Tiernan’s
algorithm may traverse each edge several times. However, while Wein-
blatt’s algorithm is generally more efficient than Tiernan’s, it has an expo-
nential run time in the worst case scenario. Tarjan improves on Weinblatt’s
algorithm by adding a backtracking procedure, a similar approach to that
of Tiernan.

16

Algorithm 6 Tarjan’s Algorithm

1: for i = 1 to n do
2: mark(i)← false
3: end for
4: for s = 1 to n do
5: call Tarjan(s,f);
6: while marked stack 6= /0 do
7: u = top of marked stack
8: mark(u)← false
9: delete u from marked stack

10: end while
11: end for

12: procedure TARJAN(v, f)
13: g← boolean result
14: f ← false
15: add v to point stack
16: v.marked← true
17: add v to marked stack

18: for all w ∈ A(v) do
19: if w < s then
20: delete w from A(v)
21: else if w = s then
22: output circuit from s→ v→ s, given in p
23: f ← true
24: else if ¬mark(w) then
25: call Tarjan(w,g);
26: f ← f ∨g
27: end if
28: end for

29: if f = true then
30: while top of marked stack 6= v do
31: u = top of marked stack
32: delete u from marked stack
33: mark(u)← false
34: end while
35: delete v from marked stack
36: mark(v)← false
37: end if
38: delete v from point stack
39: end procedure

17

Tarjan’s algorithm requires that the graph’s vertices be numbered 1,2, ...,
n and that the graph be represented by adjacency lists (see section 2.3.2.2
on p. 13). The adjacency list of a vertex v is represented by A(v). The start
vertex of each path p is denoted by s and any vertex v can only be added
if v ≥ s. The pseudocode of Tarjan’s algorithm is given in Algorithm 6 on
p. 17. Tarjan’s algorithm is time bound by O((V +E)(C+1)).

Algorithm 7 Johnson’s Algorithm (Part 1 of 2)

1: An← new int array
2: Bn← new int array
3: blocked← new bool array
4: s← 1

5: while s < n do
6: A← adjacency structure of strong component K with least vertex

in subgraph G induced by s,s+1, ...,n
7: if Ak 6= /0 then
8: s← least vertex in VK
9: for i ∈VK do

10: blocked(i)← false
11: B(i)← /0

12: end for
13: dummy← Circuit(s)
14: s← s+1
15: else
16: s← n
17: end if
18: end while

19: procedure UNBLOCK(u)
20: blocked(u)← false
21: for w ∈ B(u) do
22: delete w from B(u)
23: if blocked(w) then
24: goto Unblock(w)
25: end if
26: end for
27: end procedure

Johnson (1975) provided an alternative algorithm to find the elementary
circuits of a graph. The running time of Johnson’s algorithm is faster in
the worst case than the algorithms of Tiernan (1970) and Tarjan (1972).

Johnson’s algorithm requires a graph G, with vertices labelled 1,2, ...,n.
(The vertices are represented by these integer values.) For each vertex
v ∈ V the adjacency list A(v) lists the vertices connected to v by an edge.
The elementary paths are constructed from a starting vertex, s, and stored

18

on a stack data structure. When a vertex, v, is appended to a path, it is pre-
vented from being used twice on the same path by “blocking” the vertex.
The pseudocode of Johnson’s algorithm is given in Algorithms 7 and 8.

Johnsons’s algorithm is also time bound by O((V +E)(C+1)), but executes
faster than the algorithms of Tiernan and Tarjan, due to it considering each
edge at most twice per circuit.

Algorithm 8 Johnson’s Algorithm (Part 2 of 2)

28: procedure CIRCUIT(v)
29: f ← false
30: push v on stack
31: blocked(v)← true
32: for w ∈ A(v) do
33: if w = s then . back at start vertex
34: output stack containing circuit
35: f ← true
36: else if ¬ blocked(w) then
37: if Circuit(w) = true then
38: f ← true
39: end if
40: end if
41: end for
42: if f = true then
43: goto Unblock(v)
44: else
45: for w ∈ A(v) do
46: if v /∈ B(w) then
47: stack v on B(w)
48: end if
49: end for
50: end if
51: unstack v
52: Circuit← f
53: end procedure

It is worth mentioning that Hawick and James (2008) extended the circuit
enumeration algorithm of Johnson (1975) to include graphs with directed
arcs, multiple arcs, and self arcs.

A possible drawback of the previous algorithms is their complexity to im-
plement. Liu and Wang (2006) provide a cycle enumeration algorithm
which is easy to implement, but not as efficient as that of Johnson (1975).
It is more efficient than the algorithm developed by Tiernan (1970). The
adjacency structure of the graph can be either an adjacency matrix or ad-
jacency list. The algorithm by Liu and Wang (2006, p. 2) starts off with an
open path (defined as “a simple path not in a cycle”), containing a head

19

(vh) and tail (vt) node. The head and tail nodes can be the same node for
self-loops. The path is then extended to vertices not already contained
within the path, and with a higher index value than the head node. In
terms of efficiency, Johnson’s algorithm is the fastest, with Tiernan’s being
the slowest.

Algorithm 9 Liu & Wang’s Algorithm

1: procedure LIUWANG(G)
2: Q← new queue
3: enqueue all vertices v1,v2, ...,vn to Q . each vertex identified by

unique number
4: while Q 6= /0 do
5: P← open path from Q with head vh and tail vt
6: k← length(P)
7: if e = 〈vt ,vh〉 exists then
8: output P+ e as cycle
9: end if

10: while not all the edges of vi have been handled do
11: if e = 〈vt ,vx〉 exists, where x > h and vx /∈ ei∀ei ∈ P then .

h, t,x represent the unique values of the vertices vh,vt ,vx
12: enqueue P+ e to Q
13: end if
14: end while
15: end while
16: end procedure

2.5 Cycle Picking

In the original paper by Sanders (2013a), cycle picking is defined as “an op-
timisation problem where cycles are chosen from a directed graph under
the constraint that any node that is in a cycle in the original directed graph
must be in at least one of the chosen cycles”. Sanders (2013a) showed
that while the cycle picking algorithms followed a greedy approach, their
heuristic solutions corresponded very closely to the exact solutions; in fact,
the heuristic solutions actually provided the exact solutions in most of the
cases investigated.

It must be emphasised that cycle picking is simply the optimisation of the
cycles in the graph. Redundant cycles are discarded, whilst ensuring that
any node previously in a cycle still remains in at least one cycle.

Three cycle picking methods were proposed by Sanders (2013a) and each
of these methods will be investigated in turn:

• Minimum number of cycles

20

• All small cycles

• Minimum total cycle length

2.5.1 Minimum Number of Cycles

The minimum number of cycles method produces the combination of cy-
cles containing all the nodes previously contained within cycles whilst also
minimising the number of cycles in the combination; that is to say that all
the possible combinations of cycles are generated by a cycle enumeration
algorithm, and the fewest number of cycles containing all the nodes previ-
ously contained within cycles is picked. This allows the maximum num-
ber of potential matches possible, but can be a time consuming process,
depending on the number of nodes. When all the possibilities have been
generated, the algorithm selects the minimum number of cycles with the
restriction that any node contained within a cycle(s) in the original graph,
must be contained in at least one cycle in the new graph.

Another application of graph matching to consider, which is in principle
related to the shoe matching problem, might be the problem of placing
dominoes perfectly such that all the dominoes are properly connected,
while you are not allowed to flip the dominoes horizontally (otherwise
the graph would not be directed). Figures 2.5 to 2.7 illustrate the minimum
number of cycles method, using a given set of dominoes.

Figure 2.5: Illustrating the minimum number of cycles method: Which cycle permuta-
tions are possible?

It is possible to generate several permutations of these cycles; two possi-
bilities are listed below in Figure 2.6.

Figure 2.7 is another permutation, which is also optimal since it makes use
of only a single cycle, the fewest number of cycles possible given these
dominoes.

2.5.2 All Small Cycles

An alternative method to the minimum number of cycles method, is the
all small cycles method. A drawback of the former method is the possi-

21

Figure 2.6: Illustrating the minimum number of cycles method: Some possible cycle per-
mutations are given.

Figure 2.7: Illustrating the minimum number of cycles method: The fewest number of
cycles necessary to contain every node.

bility of very long cycles. In the context of the shoe matching problem,
long cycles indicate a large group of people working together; this indi-
cates the possibility of extensive organisational overhead for the group of
participants. Using the all small cycles method of cycle picking, all of the
cycles should be less than some number, say L in length.

A solution to this version of the cycle picking problem is to iteratively con-
sider all the possible cycle lengths of 2,3, ...,L until each node is contained
within a chosen cycle. In other words, all combinations of cycles of length
2 will be considered. If it is not possible to include all the nodes within
cycle combinations of length 2, cycles of length 3 will also be considered,
and so forth.

22

2.5.3 Minimum Total Cycle Length

The last alternative proposed is to minimise the total length of the cycles
chosen. The smallest cycle containing the most previously unused nodes
is selected and added to the solution. Suppose we have nodes v1,v2, ...,vn.
The ideal solution to the minimum total cycle length method of cycle pick-
ing would be a combination of small, disjoint cycles (v1,v2)...(vn−1,vn).

Sanders (2013a) notes in his paper that this method of cycle picking is dif-
ficult to relate to the real world shoe matching problem. There is also the
possibility that this method will simply favour small cycles which is, in
itself, not an unreasonable approach.

2.5.4 Conjectured NP-completeness

Sanders (2013a) conjectured that cycle picking is an NP-complete prob-
lem, but provided no formal proof. No formal proof could be found from
an alternative source either. This dissertation chooses to assume that cy-
cle picking is NP-complete and that a combinatorial algorithm must be
used to evaluate each possible combination of cycles. For the purposes
of this dissertation, the r-combinations algorithm of Johnsonbaugh (2000)
was used.

2.6 Graph Augmentation and Enlargement

The foundations of graph augmentation are already established; common
problems in graph theory often involve determining how many edges or
vertices must be removed from a graph to satisfy some connectivity prop-
erty, for example, the property of biconnectedness. However, Eswaran
and Tarjan (1976) investigated the opposite: how many vertices or edges
should be added to a certain graph to satisfy a particular connectivity
property, say C. It is assumed that C is monotone increasing, but not
necessarily monotone decreasing (this is indeed the case for some com-
mon connectivity and planarity properties). Eswaran and Tarjan (1976)
applied a cost (weight) to all the edges of a graph, say G, by defining
a real-valued function f (v,w) for any edge (v,w) ∈ E(G). Furthermore,
ε0 = {(v,w)|v,w ∈G, f (v,w) = 0} and the initial state of the graph to be aug-
mented was given by G = (V,ε0). The augmentation problem, as defined
by Eswaran and Tarjan (1976) is thus about finding a set of edges, ε, such
that G = (V,ε0 ∪ ε) satisfies C, the connectivity property, whilst also min-
imising the cost function, ∑

(v,w)∈E(G)

f (v,w).

Eswaran (1973) investigated the problem of adding a minimal-cost set of
edges to a digraph, G, such that there is some cycle C ∈ G, which contains

23

all the edges of G; an efficient solution to the problem is also provided.
Goodman and Hedetniemi (1974); Goodman et al. (1975) investigated the
minimum number of additional edges necessary to transform a graph into
a Hamiltonian graph. They first provided an O(V 2) algorithm to solve the
problem, but later improved it to O(V). Goodman and Hedetniemi (1974)
defined hc(G), the Hamiltonian completion number of a connected graph, G,
as the minimum number of edges necessary to be added to G to ensure
that G is Hamiltonian. A Hamiltonian graph is a graph which contains
a Hamiltonian cycle: a cycle which visits each of the nodes in the graph
exactly once. It was proved that hc(G) = minTi∈S hc(Ti) where S is the set of
spanning trees of G, and T is an arbitrary tree in S.

Frank and Chou (1970) presented a solution to a more generalised aug-
mentation problem: given a V ×V symmetric matrix [ri j] with rii = 0 ∀i,
they ask for an undirected graph, G, with a minimal number of edges on
the vertex set V (G), such that there are at least ri j edge-disjoint paths be-
tween vertices i and j. A set of paths is defined to be edge-disjoint if no
edge is common between any two paths. Frank and Chou (1970) focuses
on the survivability of networks against enemy attacks by modelling the
network as an undirected graph with a minimum number of edges such
that the graph contains no parallel branches. Parallel or multiple edges
are two or more edges incident to the same vertices. In network construc-
tion, this means that multiple edges (network paths) will fail if one of the
incident nodes happens to fail. The algorithms of Frank and Chou (1970)
are complex but can be applied to graphs with hundreds of nodes. In
a nutshell, the algorithms focus on the rearrangement of edges (network
paths) to avoid cascading network failures. This is achieved by providing
redundant parallel edges between network nodes.

Graph augmentation algorithms have been used extensively to increase
the edge connectivity of graphs. Rosenthal and Goldner (1977) published
a linear-time algorithm to augment graphs in order to increase their con-
nectivity to biconnected. However, Sheng Hsu and Ramachandran (1993)
exposed a flaw in the original algorithm and published an updated algo-
rithm, running in O(log2 n) time. Naor et al. (1997) published an algorithm
to increase the edge connectivity of an undirected, unweighted graph from
its existing λ-connectedness to being δ-connected. The aforementioned re-
sults can be practically implemented in the fields of network synthesis
(Frank, 1990), for example. Networks are generally represented by undi-
rected graphs due to the full duplex (simultaneous bi-directional) flow of
information.

The addition of nodes to a graph model is common in network infrastruc-
ture to enhance redundancy. In Figure 2.8, the “Fully Connected” network
is the most redundant. The failure of a single node will not affect the other
nodes in the network. However, this level of redundancy is only avail-
able at the cost of additional cabling between all the different nodes. The
“Mesh” network model is also a fairly redundant model, while also being

24

more affordable than the “Fully Connected” model. The “Line”, “Ring”,
and some other topological models are very poor examples of redundancy.
The failure of a single node will at best split the network into different sec-
tions, unable to communicate with one another across this virtual gap.

Figure 2.8: Illustrating some common network topologies
(Image source: http://commons.wikimedia.org/wiki/File:NetworkTopologies.png)

By representing networks as undirected graphs, it is possible to increase
the redundancy (and thus the reliability) of a network by adding extra
nodes (access points) to the network. These redundant nodes do not serve
any purpose other than providing failover links when the primary nodes
fail. Egeland and Engelstad (2009) focused on increasing the redundancy
of a wireless mesh network whilst also taking the economic (monetary)
constraints of adding nodes into account. Mesh networks are considered
to be ad hoc networks and each node participates in the distribution and
routing of data. In addition, they note that the additional cost of adding re-
dundant nodes is easy to forecast, while the additional reliability provided
by the redundant nodes is not; this is mainly due to a lack of literature on
the subject. By considering a mesh network G, with distribution nodes
di ∈D = (d1,d2, ...,dk−1) and a single root node r (giving a total of k nodes),
the k-terminal reliability is given by the probability formula:

Pr,d1,d2,...,dk−1
c (G) = 1−

ε

∑
i=β

Cr,d1,d2,...,dk−1
i (p)i(1− p)ε−i

The k-terminal reliability formula is defined as the probability that a path
exists and connect k nodes in a given network. Cr,d1,d2,...,dk−1

i represents the
number of edge cutsets of cardinality i, whilst p denotes the probability
of a link being offline. p is later given as p = λ

µ+λ
where λ is the failure

rate parameter and µ the repair rate parameter. Egeland and Engelstad
(2009) advise network planners to use the k-terminal reliability formula

25

to analyse the reliability of their networks. The graphs for wireless mesh
networks like these are undirected, and the placement of redundant dis-
tribution nodes occur foremostly at the vulnerable points in the network.
While being a rare example of graph enlargement via vertex addition, the
network redundancy scenario is very different from the matching problem
faced in this dissertation.

Xulvi-Brunet and Sokolov (2007) explore a scenario very similar to that of
Egeland and Engelstad (2009): the enlargement of a network while taking
geographical constraints into account. These networks are generally re-
ferred to as spatial or geographical networks. Networks are often embed-
ded in physical space. Transport infrastructure, such as railways, or the
electricity grid are part of these types of networks in physical space. Even
computer networks, and especially wide area networks such as the inter-
net, are also subject to these constraints. The cost of establishing long dis-
tance connections between two distant locations is generally higher than
establishing shorter connections between closer connections. Long dis-
tance connections also tend to exist between the most highly connected
nodes in a network, for example long distance railways are normally built
between the largest cities. Large cities also serve as central transport hubs
for smaller cities and towns. Xulvi-Brunet and Sokolov (2007) go on to
simulate the growth of geographical networks with a probabilistic model,
mainly focusing on the unique and sometimes peculiar structures of real
world spatial networks, such as railway lines. This is again a rare example
of graph enlargement via vertex addition, but in a different scenario and
for a different purpose.

Due to the fact that previous research on graph augmentation mainly fo-
cuses on edge augmentation, most of the results are not directly applica-
ble to this dissertation, but instead demonstrate an opportunity to extend
the field of graph augmentation / enlargement; this dissertation therefore
focuses on graph enlargement via vertex addition.

Graph enlargement in this dissertation shall be defined as:

Instance: Given a digraph, G(V,E) such that each node, v ∈V is associated
with a pair of values (v1,v2) ∈ (Z+×Z+). There is an edge uv in E if and
only if u1 = v2.

Problem: Find a set of nodes V ′ and associated edges E ′, such that GE(VE ,EE)
satisfies the property P← all nodes in VE are contained within cycles. Here
VE = (V ∪V ′) and EE = (E∪E ′); any node, w ∈VE has a pair of values asso-
ciated with it (w1,w2) ∈ (Z+×Z+); and for any two nodes w,z ∈VE an edge
wz is in EE when w1 = z2).

The cost of the graph enlargement can be minimised by minimising the
total number of nodes required (all nodes have equal cost/weight).

In Chapter 4, the number of total nodes required has been reduced by re-
ducing the unique number of dummy nodes required, and utilising inno-

26

vative techniques such as cycle compression, to compress repeated nodes
within multiple cycles.

2.6.1 Sanders’s Graph Enlargement Algorithm

With regards to the shoe matching problem, Sanders (2013a) makes pro-
vision for an alternative solution in the event that a person cannot find a
partner (or a group) to cooperate and exchange shoes with. Abstracting
this situation, into one from a graph theory perspective, means that the
node (representing the aforementioned person) is not in a cycle. There are
four reasons for this:

• The node is completely isolated

• The node has only incoming edges

• The node has only outgoing edges

• The node only serves as a bridge between two other nodes

The graph can be enlarged with dummy nodes, which represent extra
pairs of shoes bought by the group to fulfill everyone’s needs. This al-
lows everyone to still save money overall, whilst also satisfying the foot-
wear needs of every member of the group. Sanders (2013a, see pp. 10-12)
provides a pair of algorithms to enlarge the graph. The first algorithm
handles cases 1, 2, and 3, while the second algorithm handles the last case.
See Algorithms 10 (p. 28) and 11 (p. 29) for the original pair of algorithms.

After the algorithms firstPass and secondPass have been applied to the graph,
every node (representing both real people and dummy pairs) will be con-
tained within a cycle.

Sanders’s cost distribution model places the cost burden of the dummy
nodes on the participants by cycle. In other words, a cycle of 5 participants
and a single pair of dummy shoes will cost each participant of that cycle
the value of 1+ 1

5 pairs of shoes. If there is a second cycle in the graph with
2 participants and 1 pair of dummy shoes, then each participant will pay
for 1+ 1

2 pairs of shoes. In Section 4.2.1, the cost distribution definition was
revisited to produce a cost distribution method which is fairer to smaller
cycles, without affecting larger cycles too negatively. In essence, the cost
is evenly distributed across all the participants in the graph, and not per
cycle.

2.6.2 Sanders’s Algorithm - A Worked Example

Suppose we have the graph G as illustrated in Figure 2.9.

The only cycle currently present in the graph is:

27

Algorithm 10 Sanders’s Algorithm (Part 1 of 2)

1: procedure FIRSTPASS(G,cycles)
2: Copy G to newGraph
3: dis← set of all isolated nodes
4: no_in← set of all nodes with no incoming edges
5: no_out← set of all nodes with no outgoing edges
6: use← set of all other nodes
7: while dis 6= /0∨no_in 6= /0∨no_out 6= /0 do
8: f irst← a node from no_out (undefined if none available)
9: last← a node from no_in (undefined if none available)

10: mid← a node from dis (undefined if none available)
11: if mid is defined then
12: if f irst is undefined then
13: f irst← any node /∈ no_out,no_in,dis
14: end if
15: if last is undefined then
16: last← any node /∈ no_out,no_in,dis
17: end if
18: create two new nodes: dummy1,dummy2
19: create path f irst → dummy1 → mid → dummy2 → last in

newGraph
20: else
21: if f irst is undefined then
22: f irst← any node /∈ no_out,no_in,dis
23: end if
24: if last is undefined then
25: last← any node /∈ no_out,no_in,dis
26: end if
27: create a new node: dummy3
28: create path f irst→ dummy3→ last in newGraph
29: end if
30: end while
31: return newGraph
32: end procedure

• (1: Adam)→ (4: David)→ (2: Bob)

The nodes with no incoming edges are:

• (7: George)

• (8: Harry)

All the nodes of the graph have outgoing edges. It follows, but can be
easily confirmed, that the graph contains no isolated nodes. In terms of

28

Algorithm 11 Sanders’s Algorithm (Part 2 of 2)

33: procedure SECONDPASS(G,cycles)
34: Copy G to newGraph
35: cycles← all nodes which are in cycles
36: nocycles← all nodes which are not in cycles
37: while nocycles /∈ /0 do
38: x← any node ∈ nocycles
39: B← x
40: while B ∈ nocycles do
41: new B← node at the other end of an edge originating from

B
42: end while
43: E← a node with an edge to x
44: while E ∈ nocycles do
45: new E← node at the other end of an edge terminating at E
46: end while
47: create a new dummy node: D
48: create path B→ D→ E in newGraph
49: update cycles,nocycles appropriately
50: end while
51: return newGraph
52: end procedure

the pseudocode for Sanders’s Algorithm we therefore have that no_in ←
{(7: George), (8: Harry)}, whilst both no_out← /0 and dis← /0.

After applying Sanders’s algorithm (there were no bridge nodes after the
completion of the firstPass process), we have the result illustrated in Figure
2.10.

The cycles now present in the graph are:

• (1: Adam)→ (4: David)→ (2: Bob)

• (1: Adam)→ (4: David)→ (2: Bob)→ (10: Dummy)→ (8: Harry)→
(6: Frank)→ (3: Carol)

• (1: Adam)→ (9: Dummy)→ (7: George)→ (5: Eddie)→ (2: Bob)

• (1: Adam)→ (9: Dummy)→ (7: George)→ (5: Eddie)→ (2: Bob)→
(10: Dummy)→ (8: Harry)→ (6: Frank)→ (3: Carol)

• (1: Adam)→ (9: Dummy)→ (7: George)→ (6: Frank)→ (3: Carol)

• (2: Bob)→ (10: Dummy)→ (8: Harry)→ (5: Eddie)

Note that every node within the graph now has both an incoming and
outgoing edge. After applying the minimum number of cycles method of

29

Figure 2.9: The graph G to which Sanders’s algorithm will be applied

cycle picking, we have the following solution to this specific instance of
the shoe matching problem:

• (1: Adam)→ (4: David)→ (2: Bob)→ (10: Dummy)→ (8: Harry)→
(6: Frank)→ (3: Carol)

• (1: Adam)→ (9: Dummy)→ (7: George)→ (5: Eddie)→ (2: Bob)

Cost distribution, as per Sanders’s definition, would be as follows: for
the first cycle each participant pays for 1+ 1

6 pairs of shoes, whilst each
participant in the second cycle pays for 1+ 1

4 pairs of shoes.

2.6.3 Theoretical Runtime of Sanders’s Algorithm

For a given algorithm, it is possible to calculate the asymptotic upper
bound of the running time, depending on the size of the input. This up-
per bound is expressed in O-notation and refers to the worst case running
time of the algorithm. (Cormen et al., 2009)

In the firstPass algorithm (p. 28) lines 7 to 30 are executed n times, given n
number of nodes in dis∪ no_in∪ no_out. The firstPass algorithm theoreti-
cally runs in O(n) time.

The secondPass algorithm runs in O(2n2), derived as follows:

30

Figure 2.10: The graph G after Sanders’s algorithm has been applied

• line 36: nocycles contains n nodes not contained within cycles

• line 37: outer while loop is executed n times in the worst case (only
one node is attached to a cycle per iteration)

• lines 40 - 42: inner while loop is executed n times in the worst case (B
iterates through all of the nodes in nocycles before finding a suitable
node)

• lines 44 - 46: inner while loop is executed n times in the worst case (E
iterates through all of the nodes in nocycles before finding a suitable
node)

The dominant terms for the running time of Sanders’s entire algorithm is
therefore T (n) ∈ O(n2)+O(n2)+O(n) =⇒ T (n) ∈ O(2n2).

31

2.7 Summary

In this chapter basic graph theory concepts were introduced, as well as
the more advanced topics of cycle enumeration, cycle picking, and graph
augmentation / enlargement.

The purpose and usage of these topics are clarified in Chapter 3, which ex-
pands on the research methodology and overall strategy employed for the
purposes of this dissertation. Cycle enumeration and cycle picking form
the backbone of the cost-optimised algorithm, which also builds on the
Hopcroft-Tarjan connected components algorithm and Sanders’s graph
enlargement algorithms. In the next chapter the specifics of these algo-
rithms, as utilised in this dissertation, are examined in greater detail.

Research papers on graph augmentation have been preoccupied with edge
augmentation, introducing an opportunity for this dissertation to focus on
vertex addition to graphs. Chapter 4 introduces some new enlargement
techniques to improve upon previous work done by Sanders (2013a), by
utilising (or improving) existing procedures, as covered in this chapter.

32

Chapter 3

Methodology

Contents
3.1 Introduction . 33

3.2 Research Aim . 34

3.3 Overall Strategy . 34

3.4 Programming Language 35

3.5 Finding Appropriate Data 35

3.6 Generating Synthetic Data 36

3.7 Cycle Enumeration . 36

3.8 Cycle Picking . 37

3.9 Enlarging Cycles . 39

3.10 Assessment Criteria . 39

3.11 Summary . 41

3.1 Introduction

This chapter presents the research aim and examines the auxiliary func-
tions necessary to proceed with graph enlargement. This includes the gen-
eration of synthetic data, cycle enumeration algorithms, and cycle pick-
ing algorithms. Pseudocode implementations of important auxiliary func-
tions are also presented, including that of cycle picking.

The abovementioned algorithms are all necessary to achieve the research
aim of developing an improved graph enlargement algorithm to the shoe
matching problem. The cycle enumeration algorithms determine which
nodes are not contained within cycles (and which are). The graph en-
largement algorithms include these orphaned nodes as part of the existing
cycles, and the cycle picking algorithm chooses an optimal combination of
cycles with regards to node-cost.

33

Furthermore, the overall research strategy, research aim, and justification
for important decisions made regarding the dissertation (such as the pro-
gramming language of choice and choice of cycle enumeration algorithm,
for example) are presented. Finally, the chapter examines the assessment
criteria necessary for determining whether or not the research aim was
achieved.

3.2 Research Aim

In section 2.6 (p. 23) Algorithms 10 & 11 were presented; originally de-
veloped by Sanders (2013a), for the purpose of graph enlargement. As
mentioned in Chapter 1 (p. 1), this algorithm is naïve, but it does enlarge
the graph correctly. The research aim is therefore:

To develop an improved algorithm(s) for the graph enlarge-
ment problem; in terms of:

• Faster run time and the capability to handle larger graphs

• Fewer total nodes required to enlarge the graph such that
all nodes are contained within cycles

The primary aim of this research, in essence, is an improvement to the
algorithm of Sanders (2013a).

3.3 Overall Strategy

It was vital to first understand the existing enlargement algorithms and
other ideas developed by Sanders (2013a), as described in Section 2.6.1 (p.
27). This also includes Sanders’s ideas on cycle picking, among others.
Sanders’s original algorithm was then implemented from the pseudocode
provided, in order to run comparative tests between the original algorithm
and the new algorithms.

It was not possible to source academic literature or data on shoe sizes, due
to a lack of literature on the subject. Sanders (2013a) encountered the same
difficulty and decided to generate synthetic data. The same decision was
taken for this dissertation, and more information on the generation of the
synthetic data is available in Section 3.5 (p. 35).

Experimental work and ideas were implemented after the previous steps
were completed. Experiments to test different optimisations, each with
its own advantages and disadvantages, were carried out. This was an
iterative process; new algorithms and subprocesses were devised and im-
plemented, and then compared to Sanders’s original algorithm. The com-

34

parisons were done using the exact same data sets to ensure scientific in-
tegrity and rigour. If the comparison between the original and new al-
gorithm was found to be in favour of the new algorithm, the new ideas
were documented and definitively implemented as part of the algorithm.
If the comparison was not favourable the ideas were either discarded or, if
possible and worthwhile, negative effects were negated by implementing
processes to counter their disadvantages (see Section 4.2.5, p. 54 on “Cycle
Compression”, for example). The steps described in this paragraph were
repeated as necessary to develop the new algorithms.

The results were assessed (see Section 3.10, p. 39 for more information on
the assessment criteria) according to predetermined criteria and reported
in detailed tabular format (see Sections 4.2, 4.3, and 4.4; Chapter 5; and
Appendix A).

3.4 Programming Language

The first major operational decision of the research involved choosing an
appropriate programming language to proceed with. Python 2.7 was cho-
sen for the following reasons:

• Python is easy to learn and use.

• Python code is robust, flexible, and easily legible.

• Python is open source and free.

• Python has built-in support to not only handle lists, but also mathe-
matical sets.

• The source code in this dissertation can be easily transferred to dif-
ferent operating systems and platforms, e.g. Linux on the Raspberry
Pi (powered by an ARM-architecture processor).

3.5 Finding Appropriate Data

Once the programming language was decided upon, data on shoe sizes
had to be researched, collected and generated. Due to a lack of academic
literature, synthetic data had to be generated from certain assumptions to
proceed with the research.

The following assumptions were made:

• Gender and style differences are not considered. A different graph
could be constructed for each gender and style combination.

35

• Average shoe sizes range from 9 to 11, with a standard deviation of
2. Shoe sizes therefore range between 7 to 13.

• Once the left shoe size is generated the right shoe size is derived from
it by adding a random value between -2 to 2 to the left shoe size.

Due to the lack of real-world data, synthetic data was generated on the
abovementioned assumptions.

3.6 Generating Synthetic Data

As mentioned in Section 3.5, no academic literature or real-world exam-
ples were available for use, and synthetic data had to be generated. Algo-
rithm 12 lists a pseudocode implementation of the synthetic data genera-
tor.

The synthetic data was randomly generated; however, a randomisation
seed could be set to keep the generated numbers constant. A list of shoe
size pairs were generated and then converted into an adjacency list (for
more on adjacency lists, see Section 2.3.2.2, p. 13). Nodes were consid-
ered adjacent (connected via an edge) if the left shoe size of the first pair
equaled the right shoe size of the next pair. That is to say, for any vertices
u,v∈G where any vertex v = (x,y) where x,y∈ Z+, the edge uv is automati-
cally created when ux = vy. Graph enlargement, in this dissertation, occurs
via adding vertices, instead of edge augmentation. (See Section 2.6 on p.
23 for further background.)

3.7 Cycle Enumeration

Cycle enumeration, or cycle detection as it is also known, was first at-
tempted using the algorithm of Tiernan (1970). However, Tiernan’s algo-
rithm was not efficient enough for the purposes of this research. Recur-
sion depth errors were common when the number of nodes in the graph
exceeded approximately 12 nodes. It was possible to increase the stack
recursion depth in the Python code, but this led to system instability in
return for virtually no improvement: the number of nodes in the graph
could be increased to about 14 before recursion depth errors occurred once
more. The algorithm of Tarjan (1972) was decided upon for use in this dis-
sertation; the recursion depth errors were no longer encountered and per-
formance was greatly improved. It would have been possible to further
improve the performance of the cycle detection function by using the algo-
rithm of Johnson (1975), but Tarjan (1972) already proved efficient enough
for the purposes of this dissertation and struck a good balance between
complexity and efficiency. Ultimately, the aim of this dissertation was to

36

Algorithm 12 Generating Synthetic Data and the Adjacency List

1: procedure SYNTHETICDATA(N)
2: seed← randomisation seed of your choice
3: shoes← /0 . Array of all shoe pairs
4: for i = 1 to N do
5: left← random value between [9, 11]
6: left← left + random deviation between [-2, 2]
7: right← left + random deviation between [-2, 2]
8: shoes.add([left, right])
9: end for

10: end procedure

11: procedure ADJACENCYLIST(seq)
12: seq← shoes . The sequence consists of the shoe pairs array
13: N← length(seq)
14: G← /0

15: for i = 1 to N do
16: for j = 1 to N do
17: if i 6= j and seq[i][1] = seq[j][2] then . left shoe matches a

different node’s right shoe
18: G[i].add(j) . j is an adacency to i
19: end if
20: end for
21: end for
22: end procedure

find an efficient graph enlargement algorithm and the cycle detection al-
gorithm is simply a means to an end. For more on Tiernan and Tarjan’s
cycle detection algorithms, see Section 2.4, p. 14.

3.8 Cycle Picking

Cycle picking (see Section 2.5 on p. 20) is an optimisation problem. A cycle
enumeration algorithm may return several cycles in which some node ap-
pears. The number of cycles can be optimised by selectively picking cycles
with the constraint that any node which was in a cycle (or cycles) before,
must remain in at least one cycle.

The cycle picking algorithms were derived from the original examples of
Sanders (2013a). The minimum number of cycles method of cycle pick-
ing was implemented for this dissertation. The process of cycle picking
is conjectured to be NP-complete (Sanders, 2013a) and therefore a combi-
natorial approach was followed to find the optimal arrangement of cycles
whilst keeping the number of cycles to a minimum. While this approach

37

does hamper performance, it ensures the efficacy of the cycle picking al-
gorithm.

Figure 3.1: A simple directed graph to illustrate cycle picking

In Figure 3.1 the following cycles can be found:

• Cycle 1: 0→ 1→ 2→ 0

• Cycle 2: 0→ 1→ 0

For example, if one applies the minimum number of cycles picking method
to the cycles in Figure 3.1, one can safely discard Cycle 2, since nodes 0 and
1 are already contained within Cycle 1.

3.8.1 Minimum Number of Cycles Implementation

The minimum number of cycles picking method produces an optimal com-
bination of cycles by selecting a minimal number of cycles, while also pre-
serving nodes already contained within cycles. The only input the algo-
rithm requires is a list of all the cycles detected by a cycle enumeration
algorithm, such as Tiernan (1970), Tarjan (1972), Johnson (1975), or Liu
and Wang (2006). The pseudocode for the minimum number of cycles im-
plementation is given in Algorithm 13.

Please see Section 2.5.1 (p. 21) for a background of the minimum number
of cycles method of cycle picking.

38

Algorithm 13 Cycle Picking: Minimum Number of Cycles

1: procedure MINIMUMNUMBEROFCYCLES(AllCycles)
2: r-combs← /0

3: for r ≤ len(AllCycles) do
4: Evaluate all r-combinations of AllCycles
5: if any r-combination contains all nodes currently in cycles then
6: add current r-combination to r-combs array
7: end if
8: end for

9: for all r-combinations ∈ r-combs do
10: select combination with least number of nodes . to lower the

total node cost
11: end for

12: return combination with least number of nodes
13: end procedure

3.9 Enlarging Cycles

The graph enlargement algorithms were first replicated from the pseu-
docode of Sanders (2013a) for extra insight into the problem and the pre-
vious solution. This also assisted in identifying possible shortcomings of
the original algorithm, as well as opportunities to recognise improvements
which could be applied the algorithm. Background information on cycle
enlargment is given in Section 2.6 (p. 23).

Experimentation with certain optimisations were undertaken, namely:

• Cost - reducing the number of dummy nodes. (see Section 4.2)

• Speed - reducing the running time necessary. (see Section 4.3)

• Input size - by enlarging a subgraph consisting of only nodes not
contained within cycles. (see Section 4.4)

3.10 Assessment Criteria

The assessment criteria for the efficiency of the algorithm could be consid-
ered subjective, depending on the needs of the person implementing the
algorithm. The algorithm could optimise either one of the following:

• Cost - fewer dummy nodes would mean less monetary cost to the
participants. Compare the solutions in Figures 3.2 and 3.3: the origi-
nal solution contained 2 dummy nodes, and 10 nodes in total, whilst

39

the cost-optimised solution contained 1 dummy node and 9 nodes in
total. The problem of repeated nodes, due to fewer unique dummy
nodes, was also encountered, but cycle compression proved to be an
efficient counter to this problem (see Section 4.2.5 on p. 54).

Figure 3.2: Sanders’s original solution to the shoe matching problem (2 dummy nodes, 10
nodes in total)

Figure 3.3: A cost-optimised solution (only 1 dummy node, 9 nodes in total)

• Speed - from a technical or academic perspective, one might be in-
terested in the fastest possible solution. A matrix-based graph en-
largement method is presented in Section 4.3 on p. 67, with greatly
improved running times over Sanders’s original algorithm.

• Input size - by enlarging only a subgraph of the original graph. If
most of the nodes within the graph are contained within cycles, can
we simply create and enlarge a subgraph of the nodes not contained
within cycles? (see Section 4.4 on p. 81).

40

In the case of the shoe matching problem, minimising the cost per par-
ticipant would be ideal, but in a situation where cost is an irrelevant or
abstract notion, the speed-optimised algorithm will be a better fit.

3.11 Summary

This chapter provided an overview of the research methodology and strat-
egy, with the aim of developing a new, efficient algorithm for the purposes
of graph enlargement.

The concepts regarding the implementation of several auxiliary functions
were also covered, including that of cycle enumeration and cycle picking.

The next chapter presents these strategies and concepts implemented ex-
perimentally; the algorithms are compared to Sanders’s original algorithm,
and detailed results are tabulated for comparison purposes.

41

Chapter 4

Experimental Work

Contents
4.1 Introduction . 42

4.2 Cost Optimisation . 43

4.3 Speed Optimisation . 67

4.4 Subgraph Algorithm . 81

4.5 Summary . 87

4.1 Introduction

The primary aim of this dissertation is an improvement on the original
graph enlargement algorithm of Sanders (2013a) to solve a specific graph
matching problem, namely the shoe matching problem.

Experimental research ideas and the results thereof are presented in this
chapter. The following optimisation methods are investigated, as previ-
ously detailed in Section 3.10:

• Cost - fewer dummy nodes would mean less monetary cost to the
participants.

• Speed - from a technical or academic perspective, one might be in-
terested in the fastest possible solution.

• Input size - by enlarging only a subgraph of the original graph. If
most of the nodes within the graph are contained within cycles, can
we simply create and enlarge a subgraph of the nodes not contained
within cycles?

42

4.2 Cost Optimisation

For the original shoe matching problem, the ideal solution would be to
provide everyone with a pair of shoes at the least possible cost. If dummy
pairs of shoes are necessary, the group would ideally want to purchase
as few extra pairs as possible. The following strategies were proposed to
help save on monetary cost:

• Redefining cost distribution

• Handling graphs with only strictly isolated nodes differently

• Avoiding bridge nodes

• Compressing repeated nodes, i.e. nodes that occur in multiple cycles

4.2.1 Redefining Cost Distribution

In the original graph enlargement example (Sanders, 2013a), the monetary
costs for the shoes were distributed per cycle, that is to say the cost of
adding dummy nodes to a particular cycle would be carried by the people
(nodes) who were already part of the cycle. This leads to the following
consequence:

Smaller cycles carry higher costs per node (person) than the average node,
if dummy nodes need to be added. Isolated nodes and small cycles are due
to certain people not being able to find matches, or simply finding fewer
matches. This could be due to a large difference in the size of their feet
(≥ 3 sizes), or simply because their shoe size is generally uncommon (e.g.
size 14 shoes). The original cost distribution method penalised people for
something outside of their control; a better method of cost distribution
would be if everyone involved split the cost of all the necessary pairs,
equally.

Sections 4.2.2 and 4.2.3 are dependent on the acceptance of this new defi-
nition for cost distribution.

4.2.2 Graphs Containing Only Strictly Isolated Nodes

In case the graph contains only strictly isolated nodes, but does not con-
tain any nodes that have only incoming or outgoing edges (see Figure 4.1),
it is unnecessarily expensive to add two dummy nodes (see Figure 4.2) for
the sake of integrating a few (or even only one) isolated nodes into an al-
ready existing cycle. It would be more cost effective to simply furnish the
isolated node (see Figure 4.3) with one extra pair of shoes.

43

It is important to note that the alternative presented in Figure 4.3 is only
applicable to situations where the graph contains only strictly isolated
nodes. If the graph does contain nodes that simply have no incoming or
outgoing edges, it would be better to use the isolated node as a midpoint
between a node with no incoming edge and a node with no outgoing edge
(Sanders’s original solution for all isolated nodes). This method also re-
lies on the proposed change to the distribution of costs (see Section 4.2.1),
otherwise one person would be paying for two pairs of shoes, which is
precisely the situation we are trying to avoid.

Sanders’s algorithm could therefore be modified as follows: if first and
last are undefined, then define mid as the isolated node and connect it
to a single dummy node. Since everyone involved shares the cost of all
the extra shoes purchased, the previously isolated person does not pay for
two pairs of shoes, instead the group as a whole carries the cost of buying
one extra pair of shoes. The average cost per person would still be less for
the solution in Figure 4.3 than for the solution in Figure 4.2, due to the fact
that only one extra pair of shoes is necessary.

Figure 4.1: Revising cost distribution - only one isolated node

44

Figure 4.2: Revising cost distribution - two dummy nodes added

45

Figure 4.3: Revising cost distribution - an alternative

46

4.2.3 Avoiding Bridge Nodes

In the original graph enlargement example (Sanders, 2013a), the algorithm
added a dummy node which created a bridge between two separate graph
components. (This situation is not guaranteed to occur for every imple-
mentation of Sanders’s algorithm, but it is the case with the original ex-
ample.) The addition of dummy node 9 (see Figure 4.5) connected the two
graph components, but caused both nodes 2 and 9 to not be contained
within cycles, requiring the addition of yet another dummy node (see Fig-
ure 4.5).

To counter this problem, one could consider enlarging the graph by only
using nodes that belong to the same component. By avoiding the cre-
ation of bridge nodes, the original graph could be enlarged using only one
unique dummy node (see Figure 4.6).

Figure 4.4: Sanders’s original example before graph enlargement; note that node 2: John
is not contained within a cycle

Figure 4.5: Sanders’s original example after graph enlargement; note the addition of
dummy nodes 9 and 10

47

Figure 4.6: An alternative to Sanders’s original example; only a single dummy node was
added (node 9)

To find the separate components of a graph, the Hopcroft-Tarjan algorithm
(Hopcroft and Tarjan, 1973) can be incorporated into the graph enlarge-
ment algorithm. Background information on the Hopcroft-Tarjan algo-
rithm is given in Section 2.3.1.3.

4.2.4 Rule-based Decision Making

A new idea is presented in this subsection: an update to the original algo-
rithm in which several cases of graphs and the optimal solution for each
case will be explored. The new part of the algorithm will first assess the
graph and the components within the graph, and then generate a “situ-
ation matrix” on the state of the graph. The algorithm will then use this
matrix to follow predefined rules in order to enlarge the graph success-
fully.

Let the situation matrix be given by the following two rows for any graph
G:

SM =

(C G I B
Graph 0 0 0 0
Component 0 0 0 0

)
The C,G, I,B rows indicates the presence of charity, greedy, isolated, and
bridge nodes in both the graph as a whole and the component the algo-
rithm is currently evaluating. Charity nodes have no incoming edges, only
outgoing. Greedy nodes are the opposite, with only incoming edges. Iso-
lated nodes can belong to any component. Bridge nodes have both incom-
ing and outgoing edges, but do not belong to a specific cycle. Any value
in the matrix can be either 0 or 1, i.e. a bit flip to indicate the presence of
specific cases within the graph.

48

As with Sanders’s algorithm, bridge nodes can be handled separately, and
only an exhaustive set of rules for the submatrix [C,G, I] needs to be con-
structed. The following 8 cases are possible within the graph and/or cur-
rently inspected component:

• Case 0, [C,G, I] = [0,0,0]
Possible handling of bridge nodes necessary within the graph, but no
charity, greedy, or isolated nodes within the component. Sanders’s
secondPass algorithm will be applied to handle the bridge nodes.

Figure 4.7: Illustrating case 0 of the rule-based algorithm

Figure 4.8: Illustrating case 0 of the rule-based algorithm (solution)

• Case 1, [C,G, I] = [0,0,1]
There exists an isolated node only.
Add a single dummy node as described in Section 4.2.2 (p. 43).

49

Figure 4.9: Illustrating case 1 of the rule-based algorithm

Figure 4.10: Illustrating case 1 of the rule-based algorithm (solution)

• Case 2, [C,G, I] = [0,1,0]
There exists a greedy node only.
Add a dummy node and link to greedy node to any different node
in the component via the dummy node.

Figure 4.11: Illustrating case 2 of the rule-based algorithm

50

Figure 4.12: Illustrating case 2 of the rule-based algorithm (solution)

• Case 3, [C,G, I] = [1,0,0]
There exists a charity node only.
Add a dummy node and link to charity node to any different node
in the component via the dummy node.

Figure 4.13: Illustrating case 3 of the rule-based algorithm

Figure 4.14: Illustrating case 3 of the rule-based algorithm (solution)

• Case 4, [C,G, I] = [0,1,1]
There exists both an isolated and a greedy node.
Add two dummy nodes and create the link: greedy→ dummy 1→
isolated→dummy 2→ some node in the component containing the greedy node.

51

Figure 4.15: Illustrating case 4 of the rule-based algorithm

Figure 4.16: Illustrating case 4 of the rule-based algorithm (solution)

• Case 5, [C,G, I] = [1,0,1]
There exists both an isolated and a charity node.
Add two dummy nodes and create the link: some node in the com-
ponent containing the charity node→dummy 1→ isolated→dummy 2→
charity.

Figure 4.17: Illustrating case 5 of the rule-based algorithm

Figure 4.18: Illustrating case 5 of the rule-based algorithm (solution)

52

• Case 6, [C,G, I] = [1,1,0]
There exists both a greedy and a charity node.
Add a single dummy node via which to link the greedy and charity
nodes.

Figure 4.19: Illustrating case 6 of the rule-based algorithm

Figure 4.20: Illustrating case 6 of the rule-based algorithm (solution)

• Case 7, [C,G, I] = [1,1,1]
The component contains greedy, charity, and isolated nodes.
Add two dummy nodes and create the link: greedy→ dummy 1→
isolated→ dummy 2→ charity.

53

Figure 4.21: Illustrating case 7 of the rule-based algorithm

Figure 4.22: Illustrating case 7 of the rule-based algorithm (solution)

4.2.5 Cycle Compression

The proposed cost-optimised algorithm generally requires fewer unique
dummy nodes than the solution provided by Sanders’s algorithm. How-
ever, it is necessary to note that fewer unique dummy nodes does not nec-
essarily imply fewer total nodes required; in fact, quite the opposite. The
fact that fewer dummy nodes are required means that there will be more
repeats of existing cycles and nodes.

To expand on this point, we illustrate using Figure 4.23. Note that even
though only a single unique dummy node is required, four cycles are cre-
ated (this would only happen if A, B, C, and D all have the same require-
ments):

• A→Dummy

• B→Dummy

• C→Dummy

54

• D→Dummy

Figure 4.23: Illustrating repeated nodes (1)

All four of these cycles are required to ensure that all nodes are contained
within cycles. This means that the dummy node, or dummy pair of shoes,
needs to be purchased 4 times. In larger graphs, these chains become even
larger and even more repeats are necessary, including repeats of individ-
ual, non-dummy nodes. For example, the graph illustrated in Figure 4.24
has the following cycles:

• A→ B→ C→D

• A→ B→ C→ E

Effectively, to accommodate nodes D and E, duplicates of nodes A, B, and
C must be purchased. To accommodate the needs of 5 nodes (people), a
total of 8 nodes (pairs of shoes) is required. However, we can observe that
we need not buy the shoes for nodes A,B,C again. We can compress these
3 nodes into a single node by adding a dummy node consisting of the left
shoe of C and the right shoe of A. The graph illustrated in Figure 4.25 has
the following cycles and requires only 6 nodes in total:

• A→ B→ C→D

• Dummy(Cle f t ,Aright)→ E

55

Figure 4.24: Illustrating repeated nodes (2)

4.2.5.1 Cycle Compression Implementation

At the heart of the cycle compression algorithm lies the functionality of
determining the common node sequences between cycles. The longest
common substring algorithm is perfectly applicable to this situation and
makes the cycle compression technique very simple to implement. Once
the common node sequences between cycles are found, they are sorted
by length (longest sequences are substituted first) and then substituted
with a single dummy node in the second cycle containing them. The first
cycle which contains these nodes must remain untouched otherwise cer-
tain node sequences would be removed from the graph completely. Algo-
rithm 14 contains the pseudocode for the longest common substring algo-
rithm, sourced from https://en.wikipedia.org/wiki/Longest_common_
substring_problem.

4.2.6 Implementation

A pseudocode implementation of the cost-optimised algorithm is given in
Algorithm 15. The parameter G refers to the adjacency list of the graph.
SMG and SMC refer to the situation matrices of the graph G and current
component C, respectively.

56

Figure 4.25: Illustrating repeated nodes (3)

57

Algorithm 14 Longest Common Substring

1: procedure LCS(S[1..m], T[1..n])
2: L← new array (1..m, 1..n)
3: ret← /0

4: z← 0
5: for i = 1 to m do
6: for j = 1 to n do
7: if S[i] == T[j] then
8: if i == 1 or j == 1 then
9: L[i,j] = 1

10: else
11: L[i,j] = L[i-1,j-1] + 1
12: end if

13: if L[i,j] > z then
14: z = L[i,j]
15: ret = {S[i-z+1..i]}
16: else if L[i,j] == z then
17: ret = ret ∪ {S[i-z+1..i]}
18: end if
19: else
20: L[i,j] = 0
21: end if
22: end for
23: end for

24: return ret
25: end procedure

58

Algorithm 15 Graph Enlargement: Cost-optimised Algorithm

1: procedure ENLARGE(G)
2: SMG← BuildMatrix(G)
3: while SMG 6= [0, 0, 0, 0] do . Evaluate [C,G,I,B]
4: matrix← SMG

5: for all component C ∈ G do
6: determine SMC
7: if SMC 6= [0,0,0] then . Only evaluate [C,G,I]
8: Solve using the rules defined on p. 49
9: end if

10: end for

11: if bridge nodes ∈ G then
12: Apply Sanders’s Second Pass Algorithm (p. 29)
13: end if
14: end while
15: end procedure

16: procedure BUILDMATRIX(G)
17: charity← nodes with no incoming edges
18: greedy← nodes with no outgoing edges
19: isolated← nodes which are isolated
20: bridges← nodes which are bridges
21: Initialise: C← 0,G← 0, I← 0,B← 0

22: if charity 6= /0 then
23: C = 1
24: end if
25: if greedy 6= /0 then
26: G = 1
27: end if
28: if isolated 6= /0 then
29: I = 1
30: end if
31: if bridges 6= /0 then
32: B = 1
33: end if

34: return [C,G,I,B]
35: end procedure

59

4.2.6.1 Example: Sanders’s Algorithm vs. the Cost-optimised Algo-
rithm

To illustrate the difference between the cost-optimised and Sanders’s al-
gorithms, suppose one slightly alters the original problem as follows (see
Figure 4.26): An extra node (no. 9) has been added to purposefully il-
lustrate the different ways the two algorithms would go about solving
this problem. In the solution generated by Sanders’s algorithm (see Fig-
ure 4.27), a dummy node (no. 10) first connects nodes 2 and 9. Node 10
therefore becomes a bridge node between the two separate components,
compounding the problem.

Figure 4.26: Altered version of the original problem

The creation of the bridge node requires a second pass of Sander’s algo-
rithm, leading to a solution which, in total, requires the addition of four
unique dummy nodes (see Figure 4.28).

By implementing the changes to the original algorithm as discussed in
this section, a solution which requires only two unique dummy nodes can
be reached (see Figure 4.29). Note that no bridge is created between the
separate components of the graph.

Table 4.1 outlines the main differences between the solutions provided by
the two algorithms. The cost-optimised algorithm requires fewer unique
dummy nodes, but with repeats of certain nodes. In this case 1→ 5 is
repeated in 2 cycles generated by the cost-optimised algorithm. A cycle
compression algorithm (see Section 4.2.5) can compress all but one of these

60

Figure 4.27: Solution generated by Sanders’s algorithm (first pass)

repeats into a single node, thereby reducing the final number of nodes
required.

61

Figure 4.28: Solution generated by Sanders’s algorithm (second pass)

62

Figure 4.29: A solution requiring fewer unique dummy nodes

Sanders’s Algorithm Cost-optimised Algorithm
Number of nodes 9 9
Unique dummy nodes 4 2

Cycles post-enlargement
(min. cycles picking method)

1→ 5→ 6
2→ 12→ 5→ 4→ 3
7→ 8
9→ 13→ 11→ 10

1→ 5→ 6
1→ 5→ 4→ 3→ 2→ 10
7→ 11→ 9→ 8

Total dummy nodes
with repeats 4 2

Total nodes with repeats 14 13
Repeated nodes Not implemented 1→ 5
Total nodes after compression Not implemented 12

Table 4.1: Detailed example: Sanders’s algorithm vs. the cost-optimised algorithm

63

4.2.7 Interpretation of Results

There are several limitations to both Sanders’s original algorithm as well
as the proposed cost-optimised algorithm:

• Both require multiple runs of a cycle enumeration algorithm (in this
case, Tarjan’s) - a very CPU-intensive operation since the growth in
the number of cycles is nearly exponential (see Section 4.3.1 on p.
67).

• To determine the repeated number of dummy nodes and total nodes
required, one needs to run a cycle picking algorithm which is also a
CPU-intensive operation. Due to the conjectured NP-completeness
of the cycle picking problem (Sanders, 2013a), a combinatorial algo-
rithm must be used to evaluate all the possible combinations in order
to find the most efficient combination. For the purposes of this dis-
sertation, the r-combinations algorithm of Johnsonbaugh (2000) was
used.

• The fact that fewer unique dummy nodes are required makes little
difference to the total number of nodes necessary in the final solu-
tion (see Section 4.2.5). This is due to repeats of certain nodes to ac-
commodate every individual node (person) belonging to the graph.
There is, in general, only a minor improvement on the total number
of nodes required.

• To counter the problem stated in the point above, we need to run a
cycle compression algorithm (see Section 4.2.5); also a CPU-intensive
operation.

For Tables 4.2, 4.3, and 4.4 please note the use of the following terminology
(as well as further use of this terminology in succeeding sections):

• Dummy Nodes (with repeats): the total number of Unique Dummy
Nodes once all their repeat occurrences in multiple cycles have been
added up.

• Total Nodes (with repeats): the total number of nodes (both dummy
and actual participant nodes), once all their repeat occurrences in
multiple cycles have been added up.

To summarise, it can be said that a relatively small number of unique
dummy nodes does not imply a cost-efficient graph and it follows that
decreasing the number of unique dummy nodes required does not neces-
sarily imply a decrease in the total number of nodes required; at least not
without the help of auxiliary functions, such as cycle picking and cycle
compression. The cost-optimised algorithm provides a minor improve-
ment on Sanders’s Algorithm, in general.

64

Seed:
123 789 456 Sanders’s Original Algorithm Cost-optimised Algorithm

Number
of Nodes

Unique
Dummy
Nodes

Dummy
Nodes
(with

repeats)

Total
Nodes
(with

repeats)

Unique
Dummy
Nodes

Dummy
Nodes
(with

repeats)

Total
Nodes
(with

repeats)
8 2 2 12 2 2 11
10 2 2 12 2 2 12
12 2 2 16 2 2 16
14 2 4 24 2 2 21
16 4 4 23 4 4 22
18 6 - (1) - 4 - -

1: the algorithm could not complete within a reasonable timeframe of approx. 1 hour

Table 4.2: Sanders’s algorithm vs. the cost-optimised algorithm (1)

Seed:
170 888 264 Sanders’s Original Algorithm Cost-optimised Algorithm

Number
of Nodes

Unique
Dummy
Nodes

Dummy
Nodes
(with

repeats)

Total
Nodes
(with

repeats)

Unique
Dummy
Nodes

Dummy
Nodes
(with

repeats)

Total
Nodes
(with

repeats)
8 3 3 13 3 3 13
10 6 7 22 5 6 20
12 8 8 24 4 5 25
14 12 12 31 8 8 27
16 6 9 33 4 4 32
18 7 - (2) - 5 - -

2: the algorithm could not complete within a reasonable timeframe of approx. 1 hour

Table 4.3: Sanders’s algorithm vs. the cost-optimised algorithm (2)

65

Seed:
923 462 908 Sanders’s Original Algorithm Cost-optimised Algorithm

Number
of Nodes

Unique
Dummy
Nodes

Dummy
Nodes
(with

repeats)

Total
Nodes
(with

repeats)

Unique
Dummy
Nodes

Dummy
Nodes
(with

repeats)

Total
Nodes
(with

repeats)
8 3 4 15 4 4 14
10 4 4 16 3 3 15
12 2 2 19 2 2 19
14 3 3 28 3 3 27
16 3 3 27 3 3 27
18 2 - (3) - 2 - -

3: the algorithm could not complete within a reasonable timeframe of approx. 1 hour

Table 4.4: Sanders’s algorithm vs. the cost-optimised algorithm (3)

66

4.3 Speed Optimisation

It is also worth investigating whether or not the current running time of
Sanders’s algorithm could be optimised. As part of this investigation, the
theoretical runtime of the current algorithm needs to be examined and
solutions need to be found to any bottlenecks.

4.3.1 Growth in the Number of Cycles and its Effect

The number of cycles in the graph increases dramatically, even exponen-
tially, in relation to the number of nodes in the graph. Table 4.5 reflects the
growth in the number of cycles and Figure 4.30 offers a graphical repre-
sentation of the data.

Seed Number of nodes enumerated Total number of cycles
123 789 456 26 * 446 164
170 888 264 30 263 258
923 462 908 30 111 516
482 367 498 30 35 113
532 499 987 30 648 297

*: the algorithm could not enumerate the number of cycles for 27 nodes within a
reasonable timeframe of approx. 24 hours

Table 4.5: Growth in the number of cycles

The growth in the number of cycles creates a problem for the cycle enu-
meration and cycle picking algorithms, slowing down the algorithm even
further. It would be ideal to have an algorithm which did not rely on cy-
cle enumeration and cycle picking to guarantee that all nodes are in cycles
when the algorithm completes.

4.3.2 Permutations and Permutation Matrices

The concept of adjacency matrices to represent graphs was previously ex-
plained in Section 2.3.2.1 (p. 12). This section and its subsections focus on
permutations and permutation matrices, as well as transforming an adja-
cency matrix into a permutation matrix.

Permutations and permutation matrices are important concepts in group
theory. Firstly, it is important to understand the definition of a permu-
tation as defined in group theory. Rotman (1994) defines a permutation
as:

“If X is a nonempty set, a permutation of X is a bijection α: X→X .”

A bijection is a function which is both one-to-one and onto. In essence, a

67

Figure 4.30: A graphical representation of the growth in the number of cycles; note the
exponential characteristic of the slopes.

permutation is a rearrangement of elements. Suppose we have permuta-
tions:

α =

(
1 2 3
3 2 1

)

β =

(
1 2 3
2 3 1

)
The permutation α(β(1)) =α(2) = 2 is an example of such a rearrangement
of elements.

Any permutation can be written as a union of disjoint cycles (Fraleigh,
2003, p. 89), for example:

α =

(
1 2 3 4 5 6 7 8
3 8 6 7 4 1 5 2

)
= (1,3,6)(2,8)(4,7,5)

Fraleigh (2003) provides the following proof that a permutation of a finite
set is a product of disjoint cycles:

68

Let B1,B2, ...,Br be the orbits of α and let µi be the cycle defined by

µi =

{
α(x) for x ∈ Bi
x otherwise.

It follows that α = µ1µ2...µr. Since the equivalence-class orbits
B1,B2, ...,Br, being distinct equivalence classes, are disjoint, the cy-
cles µ1µ2...µr are disjoint also.

The fact that a permutation consists solely of disjoint cycles is very impor-
tant and corresponds closely to the focus of this dissertation. It means that
every element of the permutation (and its corresponding permutation ma-
trix) will always be contained within a cycle, and there will be no repeats
of elements in the same cycle or different cycles. This provides us with the
following benefits:

• There will be no need for cycle enumeration.

• There will be no need for cycle picking.

• There will be no need to check for bridge nodes.

• There will be no need to check for repeated nodes. The number of
nodes contained within the graph at first glance is the number of
nodes necessary for every node to be contained within a unique cy-
cle.

4.3.2.1 Permutation Matrices

Permutation matrices are square matrices filled with ones and zeroes (row-
equivalent to the identity matrix), with the restriction that the ones may
only occur once in every row and column. Matrix A is a valid permutation
matrix:

A =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0



Whilst matrix B is not:

69

B =


0 1 0 0 0 0
1 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0



The permutation matrix represents a permutation of elements and the per-
mutation matrix can be multiplied with another matrix to permute the
elements of that matrix. Any permutation can be represented by a per-
mutation matrix. For this dissertation the matrix represents the adjacency
matrix of the graph, but instead of permuting the elements the focus is in-
stead on generating disjoint cycles by adding dummy elements and trans-
forming the graph’s adjacency matrix to a permutation matrix.

4.3.3 Implementation

Below follows the steps taken by the algorithm to enlarge the graph; pre-
sented as a more involved set of instructions rather than pseudocode.

The process of transforming an adjacency matrix to a permutation ma-
trix could be performed as per the following method. Suppose we have a
graph G as illustrated below in Figure 4.31, with adjacency matrix:

A =



v1 v2 v3 v4 v5 v6 Tr

v1 0 1 0 0 1 0 2
v2 0 0 1 0 0 0 1
v3 0 0 0 1 0 1 2
v4 1 0 0 0 0 0 1
v5 0 0 0 1 0 1 2
v6 0 0 0 0 0 0 0
Tc 1 1 1 2 1 2



Tr represents the sum of the ones in each row, while Tc represents the sum
of the ones in each column. In a permutation matrix, each row and each
column must add up to 1, only. That is to say, each row and each col-
umn may only contain a single entry of 1, the rest of the matrix must be
populated with zeroes.

In this matrix, three rows have Tr = 2 (thus 1 redundant outgoing edge for
each of the nodes v1,v3,v5) and two columns have Tc = 2 (thus 1 redundant
incoming edge for nodes v4,v6). Starting with Tr, work from bottom-to-top

70

Figure 4.31: A permutation matrix will be constructed from the adjacency matrix of this
graph

and right-to-left (the order is not important, the reader could also work
from top-to-bottom and/or left-to-right), and simply remove the redun-
dant entries of 1 and replace them with 0. Every value in Tr should now be
either 0 or 1. Refresh the count for Tc to check if any nodes have redundant
incoming edges.

A =



v1 v2 v3 v4 v5 v6 Tr

v1 0 1 0 0 0 0 1
v2 0 0 1 0 0 0 1
v3 0 0 0 1 0 0 1
v4 1 0 0 0 0 0 1
v5 0 0 0 1 0 0 1
v6 0 0 0 0 0 0 0
Tc 1 1 1 2 1 0



In this case, the removal of all redundant outgoing edges has not solved
the problem of redundant incoming edges. If any value for Tc > 1, again
work from bottom-to-top and right-to-left, removing the redundant ones
in each column.

71

A =



v1 v2 v3 v4 v5 v6 Tr

v1 0 1 0 0 0 0 1
v2 0 0 1 0 0 0 1
v3 0 0 0 1 0 0 1
v4 1 0 0 0 0 0 1
v5 0 0 0 0 0 0 0
v6 0 0 0 0 0 0 0
Tc 1 1 1 1 0 0



However, now note the number of zeroes in Tr and Tc (these two values
should be equal), say n, and enlarge the graph by n dummy nodes. In this
case n = 2 and we are left with the following adjacency matrix:

A =



v1 v2 v3 v4 v5 v6 v7 v8 Tr

v1 0 1 0 0 0 0 0 0 1
v2 0 0 1 0 0 0 0 0 1
v3 0 0 0 1 0 0 0 0 1
v4 1 0 0 0 0 0 0 0 1
v5 0 0 0 0 0 0 0 0 0
v6 0 0 0 0 0 0 0 0 0
v7 0 0 0 0 0 0 0 0 0
v8 0 0 0 0 0 0 0 0 0
Tc 1 1 1 1 0 0 0 0



It is essential to keep track of the dummy nodes (v7,v8) and the original
zero-row nodes (v5,v6 - from top to bottom) and zero-column nodes (v6,v5
- from right to left).

The graph is now ready to be enlarged. Pop the first zero-row node (v5) off
its stack, the first dummy node (v7), and the first zero-column node (v6).
Connect v5→ v7→ v6 only. Do not connect the last node in this sequence
to the first. The matrix is altered as follows:

• A[v5,v7] = 1

• A[v7,v6] = 1

72

A =



v1 v2 v3 v4 v5 v6 v7 v8 Tr

v1 0 1 0 0 0 0 0 0 1
v2 0 0 1 0 0 0 0 0 1
v3 0 0 0 1 0 0 0 0 1
v4 1 0 0 0 0 0 0 0 1
v5 0 0 0 0 0 0 1 0 1
v6 0 0 0 0 0 0 0 0 0
v7 0 0 0 0 0 1 0 0 1
v8 0 0 0 0 0 0 0 0 0
Tc 1 1 1 1 0 1 1 0



The next selection of nodes to be popped is v6→ v8→ v5 only.

• A[v6,v8] = 1

• A[v8,v5] = 1

A =



v1 v2 v3 v4 v5 v6 v7 v8 Tr

v1 0 1 0 0 0 0 0 0 1
v2 0 0 1 0 0 0 0 0 1
v3 0 0 0 1 0 0 0 0 1
v4 1 0 0 0 0 0 0 0 1
v5 0 0 0 0 0 0 1 0 1
v6 0 0 0 0 0 0 0 1 1
v7 0 0 0 0 0 1 0 0 1
v8 0 0 0 0 1 0 0 0 1
Tc 1 1 1 1 1 1 1 1



Since both Tr and Tc are filled with ones (exclusively), the enlargement is
complete (see Figure 4.32 on p. 74). The adjacency matrix has now been
transformed into a permutation matrix and inherits the properties of a
permutation; once again, of special interest to the focus of this dissertation
are the following:

• The permutation matrix is a union of disjoint cycles: every node is
contained within a cycle

• No node is ever repeated: every node appears exactly once, in ex-
actly one cycle

In Figure 4.32, (7: Dummy [10,10]) is a redundant dummy node. It is possi-
ble to remove this node and still have a complete cycle and viable solution.

73

Figure 4.32: The final graph produced by the permutation matrix

However, the addition of 2 dummy nodes is a failsafe to construct a per-
mutation matrix. Also note that cycle picking is redundant for this en-
largement method. When the algorithm destroys the redundant edges,
it is in essence performing a procedure very much like cycle picking on
itself. For example, technically an edge should be present (one of many)
between (3: Carol [10,8]) and (6: Frank [7,10]). The disjoint cycles property
of permutation matrices produces cycles which resemble “picked” cycles.

4.3.3.1 Example: Implementation on Sanders’s Original Shoe Match-
ing Problem

Recall Sanders’s original shoe matching problem as illustrated in Figure
4.33. Sanders’s original algorithm solved the problem by adding 2 dummy
nodes (see Section 4.2.3 on p. 47).

The speed optimised algorithm solves the problem as illustrated in Fig-
ure 4.34. Note that node (10: Dummy [10,10]) is again a redundant node,
but necessary to guarantee a permutation matrix. The redundant node
can simply be removed, and it could be argued that only a single dummy
node is necessary to solve the problem. This puts the speed-optimised al-
gorithm’s solution on par with the cost-optimised algorithm with regards
to node cost.

The removal of these redundant nodes are trivial. Simply discard any
node vx,y where x = y, in other words: any nodes where the left shoe size
equals the size of the right shoe. To illustrate the structure of the permu-

74

Figure 4.33: Sanders’s original example before graph enlargement; note that node 2: John
is not contained within a cycle

tation matrices (and the resulting graphs), these redundant nodes are not
removed from the figures for the purposes of this dissertation.

4.3.4 Implementation on Larger Graphs

As an illustrative example of how the matrix enlargement algorithm alters
larger graphs, consider the example in Figure 4.35.

The end result in Figure 4.36 illustrates clearly the impact of the transfor-
mation, from an adjacency matrix to a permutation matrix. Nodes are con-
tained in exactly one cycle, only once. The transformation does alter the
entire structure of the graph, but also ensures that each node is contained
within a cycle.

4.3.5 Interpretation of Results

This new method of enlargement provides several benefits and improve-
ments. The dramatic decrease in running time is a big improvement on
the original algorithm.

The final graph produced forces nodes into specific cycles, which means
nodes do not overlap between cycles. This, in turn, produces no repeated
nodes. No cycle picking, cycle enumeration, or cycle compression is there-
fore necessary.

This new method of graph enlargement may also be applicable in a situa-
tion where one would want to reduce the total number of cycles. Section
4.3.4 illustrates how the entire structure of the graph can be reduced into a
much simpler layout, with a drastic reduction in the number of cycles and
drawing complexity of the graph.

75

Figure 4.34: Sanders’s original example solved by the speed-optimised algorithm

76

Figure 4.35: An example of the structure of a larger graph pre-enlargement

77

Figure 4.36: An example of the structure of a larger graph post-enlargement

78

The matrix enlargement method has the following drawbacks:

• The bulk of the algorithm runs in O(n) time, but the function remov-
ing redundant incoming/outgoing edges runs in O(n3); thus theoret-
ically reducing the efficiency of the entire algorithm to O(n3).

• Memory usage could become intensive. Unfortunately a permuta-
tion matrix is a sparse matrix, and a graph of 1000 nodes would re-
quire a 1000×1000 element array of which only 1000 elements would
be used to indicate adjacency.

• The algorithm is often more efficient than Sanders’s algorithm, but
cost-efficiency (node-cost) over Sanders’s algorithm is not guaran-
teed. (The increase in total node cost is generally marginal.)

Note that for the following tabulated runtimes, redundant dummy nodes
(left shoe size equal to right shoe size) have been removed and the total
node count numbers reflect the result of this procedure.

Seed:
123 789 456 Sanders’s Original Algorithm Speed-optimised Algorithm

Number
of Nodes Time (s) Total Nodes

(with repeats) Time (s) Total
Nodes

8 0.00099 12 0.00099 12
10 0.03000 12 0.00099 16
12 0.01799 16 0.00099 20
14 0.565000 24 0.00099 22
16 3.34599 23 0.00099 27
18 - (4) - 0.00200 28
20 - - 0.00099 31
50 - - 0.00500 90
100 - - 0.01900 187
200 - - 0.08500 377
500 - - 0.79800 965
1000 - - 4.73500 1953

4: the algorithm could not complete within a reasonable timeframe of approx. 1 hour

Table 4.6: Sanders’s algorithm vs. the speed-optimised algorithm (1)

79

Seed:
170 888 264 Sanders’s Original Algorithm Speed-optimised Algorithm

Number
of Nodes Time (s) Total Nodes

(with repeats) Time (s) Total
Nodes

8 0.00099 13 0.00099 12
10 0.00699 22 0.00099 13
12 0.14499 24 0.00100 17
14 32.28099 31 0.00099 22
16 39.58400 33 0.00099 25
18 - (5) - 0.00099 29
20 - - 0.00099 33
50 - - 0.00499 89
100 - - 0.01999 185
200 - - 0.08800 388
500 - - 0.79600 972
1000 - - 4.60600 1944

5: the algorithm could not complete within a reasonable timeframe of approx. 1 hour

Table 4.7: Sanders’s algorithm vs. the speed-optimised algorithm (2)

Seed:
923 462 908 Sanders’s Original Algorithm Speed-optimised Algorithm

Number
of Nodes Time (s) Total Nodes

(with repeats) Time (s) Total
Nodes

8 0.00099 15 0.00100 12
10 0.00300 16 0.00099 16
12 0.00600 19 0.00099 18
14 0.08800 28 0.00100 22
16 1.19600 27 0.00099 24
18 - (6) - 0.00100 28
20 - - 0.00099 33
50 - - 0.00499 92
100 - - 0.01900 190
200 - - 0.08399 386
500 - - 0.76199 962
1000 - - 4.62000 1944

6: the algorithm could not complete within a reasonable timeframe of approx. 1 hour

Table 4.8: Sanders’s algorithm vs. the speed-optimised algorithm (3)

80

4.4 Subgraph Algorithm

Suppose a graph, G, exists, with cycles C = {c1,c2, ...,cn}, even though not
all nodes are contained within cycles. It is possible to find an optimal com-
bination of cycles such that the selected combination contains each node
exactly once. Thus, existing cycles without duplicates can be isolated and
set aside as completed and the remaining nodes will be used to construct a
subgraph H ⊆ G. An existing enlargement method, such as the proposed
cost-optimised algorithm, could then be used to enlarge H and ensure that
all nodes within H are contained within cycles.

4.4.1 Finding an Optimal Combination of Cycles

Should no existing cycles exist within the graph, the previously proposed
cost-optimised algorithm (see Section 4.2, on p. 43) proceeds as normal.
Otherwise, an r-combination algorithm could be implemented to find an
optimal combination of cycles, with regards to the number of nodes. A
combinatorial algorithm is used due to the conjectured NP-completeness
of the aforementioned optimisation. (Determining whether the optimisa-
tion problem is indeed NP-complete is outside the scope of this disserta-
tion.)

A drawback of the combinatorial method to find a maximal combination
is the extremely large number of possible combinations. This problem is
compounded by the dramatic growth in the number of cycles (see Sec-
tion 4.3.1, on p. 67). Assuming that 20 nodes could generate roughly 400
cycles, generating 2-combinations of these cycles would result in 79,800
unique combinations. Generating 2-combinations of 3000 cycles would
result in 4,498,500 unique combinations. Computer memory is currently
cheap, but not infinite, and it is possible for the computer and/or Python
interpreter to run out of allocated memory whilst generating these combi-
nations.

4.4.2 Implementation

A pseudocode implementation of the subgraph algorithm is given in Al-
gorithm 16.

4.4.2.1 Example: Sanders’s Algorithm vs. the Subgraph Algorithm

Suppose a graph G exists as illustrated in Figure 4.37 (p. 83). The complete
list of cycles present in the graph is as follows:

• (1: Adam)→ (2: Bob)

81

Algorithm 16 Graph Enlargement: Subgraph Algorithm

1: procedure ENLARGE(G)
2: C← all cycles c1,c2, ...,cn ∈ G
3: for r = 1 to len(cycles) do
4: Generate r-combinations of all cycles
5: end for

6: Keep the cycles containing each node at most once
7: Select the combination containing the maximum number of nodes
8: SC← selected cycle combination
9: SCv← all vertices ∈ SC

10: Construct H ⊆ G, where Hv = Gv−SCv
11: Enlarge H using the cost-optimised algorithm (see Section 4.2)
12: end procedure

• (1: Adam)→ (2: Bob)→ (7: George)→ (4: David)

• (1: Adam)→ (2: Bob)→ (7: George)→ (5: Eddie)

• (1: Adam)→ (6: Frank)→ (3: Carol)

• (1: Adam)→ (6: Frank)→ (3: Carol)→ (7: George)→ (4: David)

• (1: Adam)→ (6: Frank)→ (3: Carol)→ (7: George)→ (5: Eddie)

• (4: David)→ (7: George)

• (5: Eddie)→ (7: George)

• (9: Ike)→ (11: Kenny)

The combination of cycles with maximal length (and with each node ap-
pearing at most once in the combination) is:

• (1: Adam)→ (6: Frank)→ (3: Carol)

• (5: Eddie)→ (7: George)

• (9: Ike)→ (11: Kenny)

Therefore, the nodes not contained within cycles, and also the nodes that
H ⊆ G will be comprised of (see Figure 4.38 on p. 83), are:

• (2: Bob)

• (4: David)

82

Figure 4.37: An example of a graph for the subgraph algorithm

• (8: Harry)

• (10: Jim)

• (12: Larry)

Figure 4.38: The graph H ⊆ G

Once the previously proposed cost-optimised algorithm is applied to this
graph, H will be enlarged such that all nodes are contained within cycles.
The solution is illustrated by Figure 4.39 (p. 84); please note that the nodes
already contained within cycles before enlargement are not illustrated.

Note the cases followed by the cost-optimised algorithm. (1: Larry) is
a charity node, (3: David) is a greedy node, and (2: Bob) and (4: Jim)

83

Figure 4.39: The graph H, once enlargement using the subgraph algorithm is complete
(please note that the nodes which were contained within cycles pre-enlargement are not
illustrated here)

are both isolated nodes. The cost-optimised algorithm identifies a case
7 situation (greedy, charity, and isolated) and creates a cycle containing
nodes (1: Larry), (3: David), and (4: Jim). Only (2: Bob) is not contained
within a cycle now, and the cost-optimised algorithm identifies a case 2
solution. A dummy node is added to (2: Bob) exclusively to create a cycle.

4.4.3 Interpretation of Results

The running times of the subgraph algorithm as well as the total number of
nodes required are tabulated in Tables 4.9, 4.10, and 4.11. The advantages
of the subgraph algorithm are as follows:

• If H ⊂ G, then |V (H)| < |V (G)| and the graph H is faster to enlarge
than G. The computing power necessary to enumerate and pick the
cycles of H is potentially significantly less than for G.

• If the abovementioned holds true, it also implies that larger graphs
can be enlarged; that is to say, relatively larger than is usually possi-
ble with Sanders’s algorithm or the cost-optimised algorithm.

However, the algorithm also suffers from several disadvantages:

• Generating r-combinations on a large number of cycles is a memory-
intensive operation and the computer/interpreter runs the risk of
running out of allocated memory.

• The algorithm implements additional subroutines to solve problems
which are conjectured to be NP-complete.

84

Seed:
123 789 456 Sanders’s Original Algorithm Subgraph Algorithm

Number
of Nodes

Unique
Dummy
Nodes

Time (s)

Total
Nodes
(with

repeats)

Unique
Dummy
Nodes

Time (s)

Total
Nodes
(with

repeats)
8 2 0.03199 12 3 0.00100 11
10 2 0.01900 12 2 0.00199 12
12 2 0.03699 16 4 0.00900 20
14 2 0.46399 24 2 1.85100 28
16 4 3.01000 23 4 1.83899 26
18 6 - - - (7) - -

7: out of memory exception

Table 4.9: Sanders’s algorithm vs. the subgraph algorithm (1)

Seed:
170 888 264 Sanders’s Original Algorithm Subgraph Algorithm

Number
of Nodes

Unique
Dummy
Nodes

Time (s)

Total
Nodes
(with

repeats)

Unique
Dummy
Nodes

Time (s)

Total
Nodes
(with

repeats)
8 3 0.03299 13 4 0.00099 12
10 6 0.00900 22 3 0.00200 16
12 8 0.16500 24 6 0.00200 20
14 12 32.28800 31 7 0.00400 26
16 6 39.58400 33 9 0.00799 31
18 7 - (8) - 12 0.02399 42
20 - - - 10 30.24000 43
22 - - - 11 30.00999 47

8: the algorithm could not complete within a reasonable timeframe of approx. 1 hour

Table 4.10: Sanders’s algorithm vs. the subgraph algorithm (2)

85

Seed:
923 462 908 Sanders’s Original Algorithm Subgraph Algorithm

Number
of Nodes

Unique
Dummy
Nodes

Time (s)

Total
Nodes
(with

repeats)

Unique
Dummy
Nodes

Time (s)

Total
Nodes
(with

repeats)
8 3 0.00099 15 4 0.00099 14
10 4 0.00300 16 4 0.00200 17
12 2 0.00600 19 3 0.00199 15
14 3 0.08800 28 5 0.00499 19
16 3 1.19600 27 5 2.23600 21
18 2 - (9) - 5 2.83000 25
20 - - - - (10) - -
22 - - - - - -

9: the algorithm could not complete within a reasonable timeframe of approx. 1 hour
10: out of memory exception

Table 4.11: Sanders’s algorithm vs. the subgraph algorithm (3)

86

4.5 Summary

This chapter covered the experimental results of the proposed optimisa-
tions to Sanders’s algorithm.

The proposed cost-optimisation algorithm is generally slightly more ef-
ficient than Sanders’s, but it requires more complex subroutines without
achieving major improvements in cost efficiency when looking at the total
number of nodes in the graph. For an improvement in the unique number
of dummy nodes, the cost-optimised algorithm is more effective.

The proposed speed-optimised algorithm is much more efficient in terms
of speed over Sanders’s, but occasionally at marginally greater node cost.
This is not a common occurence, though. In many scenarios, it is on par
with the node cost of the other three algorithms, while sometimes even
being more cost-efficient.

The subgraph algorithm focused on first isolating an optimal combination
of cycles, before constructing and enlarging a subgraph consisting of the
nodes not contained within the selected combination. Overall, the sub-
graph algorithm displayed an improvement over Sanders’s algorithm.

Chapter 5 will provide a greater overview of these results, including sum-
marised results of a few more scenarios (different randomisation seeds).

87

Chapter 5

Results

Contents
5.1 Introduction . 88

5.2 Cost-optimisation Results 88

5.3 Speed-optimisation Results 89

5.4 Subgraph Algorithm Results 90

5.5 The Advantages of the Naïve Solution 90

5.6 Comparative Results Across All Algorithms 91

5.7 Summary . 94

5.1 Introduction

In Chapter 4 the results of new, experimental techniques were detailed and
tabulated. It was observed that improvements to the original algorithm by
Sanders (2013a) were indeed possible for the purpose of solving the shoe
matching problem.

This chapter summarises the results observed during the experimental
testing of the proposed improvements to Sanders’s algorithm. It also cov-
ers the advantages of Sanders’s original algorithm as a naïve, but efficient
solution.

5.2 Cost-optimisation Results

The primary focus of the cost-optimised algorithm was to reduce the total
number of nodes necessary to enlarge the graph, such that all nodes would
be contained within cycles.

88

The following methods were proposed and implemented to improve the
cost-efficiency of the algorithm:

• Redefining cost distribution (see Section 4.2.1 on page 43), such that
the cost of acquiring dummy nodes are shared between all the nodes
partaking. In other words, the cost of acquiring additional pairs of
shoes are not burdened on a particular individual or group of people
(cycle), but is instead shared by all who partake in the experiment.

• Graphs containing only isolated nodes (see Section 4.2.2 on page 43)
were enlarged such that the isolated nodes would not be joined to a
larger graph structure, unless it was optimal. In cases where it was
not optimal, the isolated node would be joined to a single dummy
node, to form a cycle of order 2.

• Bridge nodes were avoided as far as possible (see Section 4.2.3 on
page 47), by only enlarging graphs per individual component. Com-
ponents were never linked, preventing the creation of additional bridge
nodes and compounding the problem.

• Rule-based decision making (see Section 4.2.4 on page 48) was in-
troduced to the algorithm. The rules consisted of optimal solutions
depending on the current situation of the nodes in the graph.

• Cycle compression (see Section 4.2.5 on page 54) allowed repeated
sequences of nodes within cycles to be compressed, thereby saving
on node cost. The longest common substring algorithm played a
pivotal role in developing the cycle compression algorithm.

The results of these methods can be found in Section 4.2.7 on page 64.
In summary, the cost-optimised algorithm did save on node cost to some
extent, but the increased complexity of the new algorithm is a drawback.

5.3 Speed-optimisation Results

The primary focus of the speed-optimised algorithm was to dramatically
decrease the running time of the algorithm, and to allow large graphs
(1000+ nodes) to be enlarged.

The following methods were proposed and implemented to improve the
speed-efficiency of the algorithm:

• The dramatic growth in the number of cycles (see Section 4.3.1 on
page 67) was investigated and it was proposed that a solution should
be found which did not rely on cycle enumeration or cycle picking.
It was also proposed that cycle enumeration should not be necessary
to ensure that all nodes were indeed contained within cycles post-
enlargement.

89

• The benefits and background of permutation matrices (see Section
4.3.2 on page 67), and their applicability to this dissertation, were
investigated and presented.

• A new method to transform an adjacency matrix to a permutation
matrix (see Section 4.3.3 on page 70) was proposed. The permutation
matrix has several advantages:

– There is no need for cycle enumeration.

– There is no need for cycle picking.

– There is no need to check for bridge nodes.

– There is no need to check for repeated nodes.

The results of these methods can be found in Section 4.3.5 on page 75. In
summary, the speed-optimised algorithm is highly efficient, but is occa-
sionally marginally more expensive to implement in terms of node-cost
than Sanders’s algorithm. However, in plenty of scenarios, it has even
proved to be more cost-efficient than Sanders’s algorithm.

5.4 Subgraph Algorithm Results

The subgraph algorithm focused on first isolating an optimal combination
of cycles, before constructing and enlarging a subgraph consisting of the
nodes not contained within the selected combination.

The results of these methods can be found in Section 4.4.3 on page 84. In
summary, the subgraph algorithm showed positive results, being one of
the most efficient with regards to minimising the total number of nodes in
the graph, including repeated nodes across multiple cycles. Also see the
summarised performance of this algorithm applied to additional scenarios
in Section 5.6.

The subgraph algorithm required the addition of extra subroutines, mak-
ing it a possibly less attractive solution than the other proposed algo-
rithms.

5.5 The Advantages of the Naïve Solution

In essence, Sanders’s original algorithm still provides a good solution to
the shoe matching problem, albeit applicable to smaller graphs only. The
naïve solution of simply adding dummy nodes where necessary is accept-
ably cost-efficient, in general, and is easy to implement in code. The cost-
optimised and subgraph algorithms save on dummy nodes at the cost of
repeated cycles, requiring a cycle compression algorithm to counter the

90

aforementioned consequence. The minor savings on node-cost require
greater code complexity and additional subroutines, but it can be argued
that the main point of the shoe matching algorithm is to help the partici-
pants save on cost, making the proposed cost-optimised algorithm or the
subgraph algorithm the ideal solution. The speed optimised algorithm
is a better fit in the case of a large population of participants as neither
Sanders’s algorithm, the cost-optimised algorithm, nor the subgraph algo-
rithm are capable of handling such large graphs. The total node cost of
the speed-optimised algorithm is generally on par with Sanders’s original
algorithm.

5.6 Comparative Results Across All Algorithms

Table 5.1 provides an overview of the results (total number of nodes in
the graph, including repeated nodes in multiple cycles) across all four al-
gorithms. The most cost-efficient solution (not necessarily the fastest) is
indicated in bolded italics. The original algorithm, at best, ties with at
least one of the optimised algorithms.

Table 5.2 contains the number of unique dummy nodes (repeated nodes
across multiple cycles are not counted) across all four algorithms for the
different seed and size combination. The results are very interesting: whilst
the cost-optimised algorithm has the fewest number of unique dummy
nodes in 22 of 25 quantifiable cases (88%), it has the fewest number of to-
tal nodes in only 9 of 25 quantifiable cases (36%). It is clear that fewer
unique dummy nodes are not necessarily indicative of fewer total nodes
in the graph.

Tables 5.3 and 5.4 contain summarised success rates across all graph sizes
and seeds laid out in tables 5.1 and 5.2. The success rate is given as a per-
centage, and represents the ratio of optimal cases (least number of nodes,
either in the form of unique dummy nodes or total nodes) against all quan-
tifiable result cases for each algorithm. In the case of an OutOfMemory ex-
ception, the result is left blank and does not count towards the algorithms
success rate.

Please see Appendix A (p. 106) for additional comparative results be-
tween the four algorithms.

91

Seed Nodes

Sanders’s
Algorithm

(Total
Nodes)

Cost-
optimised
Algorithm

(Total
Nodes)

Speed-
optimised
Algorithm

(Total
Nodes)

Subgraph
Algorithm

(Total
Nodes)

123 789 456 8 12 11 12 11
10 12 12 16 12
12 16 16 20 20
14 24 21 22 28
16 23 22 27 26
18 28

170 888 264 8 13 13 12 12
10 22 20 13 16
12 24 25 17 20
14 31 27 22 26
16 33 32 25 31
18 29 42

923 462 908 8 15 14 12 14
10 16 15 16 17
12 19 19 18 15
14 28 27 22 19
16 27 27 24 21
18 28 25

482 367 498 8 12 12 13 12
10 18 19 15 19
12 21 25 19 19
14 22 26 22 19
16 37 30 26 25
18 35 30 27

532 499 987 8 14 15 13 13
10 17 16 16 15
12 19 19 19 18
14 20 20 22 21
16 25 25 25 25
18 29 28

Table 5.1: Comparative results across all algorithms (total number of nodes)

92

Seed Nodes

Sanders’s
Algorithm

(Unique
Dummies)

Cost-
optimised
Algorithm

(Unique
Dummies)

Speed-
optimised
Algorithm

(Unique
Dummies)

Subgraph
Algorithm

(Unique
Dummies)

123 789 456 8 2 2 4 3
10 2 2 6 2
12 2 2 8 4
14 2 2 8 2
16 4 4 11 4
18 10

170 888 264 8 3 3 4 4
10 6 5 3 3
12 8 4 5 6
14 12 8 8 7
16 6 4 9 9
18 11 12

923 462 908 8 3 4 4 4
10 4 3 6 4
12 2 2 6 3
14 3 3 8 5
16 3 3 8 5
18 10 5

482 367 498 8 4 4 5 4
10 4 4 5 4
12 5 5 7 5
14 5 5 8 5
16 3 3 10 6
18 3 12 6

532 499 987 8 4 4 5 5
10 4 3 6 5
12 3 3 7 6
14 3 3 8 5
16 4 4 9 7
18 11 7

Table 5.2: Comparative results across all algorithms (unique number of dummy nodes)

93

Sanders’s
Algorithm

(Total
Nodes

Success Rate %)

Cost-optimised
Algorithm

(Total
Nodes

Success Rate %)

Speed-optimised
Algorithm

(Total
Nodes

Success Rate %)

Subgraph
Algorithm

(Total
Nodes

Success Rate %)
19 36 40 59

Table 5.3: Summarised comparative results across all algorithms (minimising the total
number of nodes)

Sanders’s
Algorithm

(Unique
Dummies

Success Rate %)

Cost-optimised
Algorithm

(Unique
Dummies

Success Rate %)

Speed-optimised
Algorithm

(Unique
Dummies

Success Rate %)

Subgraph
Algorithm

(Unique
Dummies

Success Rate %)
77 88 7 34

Table 5.4: Summarised comparative results across all algorithms (minimising the unique
number of dummy nodes)

5.7 Summary

To summarise, the new algorithms were overall more efficient than Sanders’s
original algorithm. At best, Sanders’s original algorithm tied with one of
the three new algorithms.

The cost-optimised algorithm was successful in minimising the unique
number of dummy nodes necessary, but this led to an increase in repeated
nodes across multiple cycles. It is apparent that fewer unique dummy
nodes does not always imply that the total number of nodes required to
satisfy the shoe matching problem will decrease. However, it is by far the
most successful algorithm in achieving a fully cyclical graph whilst min-
imising the number of unique dummy nodes.

The speed-optimised algorithm greatly decreased the running times of the
algorithm, without incurring a major decrease in cost-efficiency (node-
cost). The speed-optimised algorithm is capable of handling large graphs
(1000+ nodes) and has no need of cycle enumeration, cycle picking, or
cycle compression algorithms. By discarding these CPU intensive opera-
tions, the algorithm is able to solve the shoe matching problem on graphs
with an order of 1000 nodes within a matter of seconds on a modern desk-
top computer.

The subgraph algorithm has shown promising results overall. In some

94

cases it is less efficient than Sanders’s algorithm, but across 5 unique sce-
narios (different randomisation seeds, see Section 5.6), it has the highest
success rate in terms of minimising the total node cost.

95

Chapter 6

Future Work

Contents
6.1 Introduction . 96

6.2 Ideas on New Algorithms And Improvements to Exist-
ing Algorithms . 97

6.3 NP-completeness . 99

6.4 Porting to an Alternative Language 99

6.5 Practical Implementation 99

6.1 Introduction

The work contained within this dissertation is largely theoretical: whilst
pseudocode is provided to reproduce the results, these specific algorithms
have not yet been implemented in a real-life scenario. In addition, several
topics related to the work contained within this dissertation were outside
the scope of this research endeavour. Below are listed some major topics
to look at in order to improve on the work done already:

• Ideas on Future Algorithms

• NP-completeness of the problem and algorithms

• Porting the code to a lower level language

• A practical implementation of the algorithm

The following sections examine each of these in greater detail, in turn.

96

6.2 Ideas on New Algorithms And Improvements
to Existing Algorithms

Listed below are some ideas to improve the algorithms covered in this
dissertation, as well as new ideas for future algorithm development.

6.2.1 Involving Minimum Spanning Trees

A possible future solution could involve the construction of a minimum
spanning tree (referred to as “MSP” hereafter). It would then be possible
to split the newly constructed MSP at any branching points. Whenever a
node, say n, branches into multiple nodes, break the redundant branches
to construct separate components, replacing node n with dummy nodes
where required. For example, if node n branched into 3 new nodes, 2 of
the edges (branches) need to be broken and n should be replaced with 2
repeats of n as dummy nodes for the new components this process creates.
It should then be simple to create a cycle from these separated components
(previously branches). See Figures 6.1 and 6.2 for an illustration of the
process.

Figure 6.1: An example of a graph for the spanning tree algorithm, pre-enlargement
(dotted lines indicate non-MSP branches that were originally present within the graph)

97

Figure 6.2: An example of a graph for the spanning tree algorithm, post-enlargement;
note the repeat of Adam’s node after breaking the branch

6.2.2 Calculated Selection of Intermediate Nodes

Currently whenever the cost-optimised algorithm or Sanders’s algorithm
requires “some node” as an intermediate step in enlarging the graph, a
node is arbitrarily selected. It is possible that vertices with lower degrees
may be a better choice, in order to reduce repeated nodes across multiple
cycles. It may also argued be that nodes with a higher degree are a bet-
ter choice since this allows more cycle combination choices for the cycle
picking processes.

6.2.3 Improvements to the Subgraph Algorithm

The subgraph algorithm currently makes use of the cost-optimised algo-
rithm to enlarge the subgraph H ⊆ G. It may be worth exploring whether
using the speed-optimised algorithm (or another enlargement algorithm)
instead will improve the node cost- and speed-efficiency of the subgraph
algorithm.

6.2.4 Divide and Conquer with Parallel Computing

Parallel computing refers to the method of computation wherein a prob-
lem is divided into smaller subproblems, and then each subproblem is
solved separately, in parallel, to produce a final, combined solution. In-
vestigating whether subroutines such as cycle enumeration and cycle pick-
ing could be parallelised, could potentially lead to great performance im-
provements.

In the case of component-wise enlargement, each component can be en-
larged in parallel. Parallelising the subroutines can also enable the algo-
rithms to be run on a computing cluster.

98

6.3 NP-completeness

Several problems related to graph enlargement are potentially NP-complete,
including:

• Cycle picking (see Section 2.5 on p. 20 and Section 3.8 on p. 37)

• Selecting the optimal combination of cycles with each node appear-
ing at most once (see Section 4.4.1 on p. 81)

Investigating the NP-completeness of these problems, and possibly opti-
mising the subroutines designed to solve them, should be undertaken in
future.

6.4 Porting to an Alternative Language

Python is a language which is logical to write and easy to implement, but
its performance is slower than that of lower level languages. Python is not
strongly typed and the Python interpreter needs to determine the type of
each object (integer, float, string, etc.) before it can manipulate the object.

The code could be ported to several other languages, including:

• Go: Google’s new language resembles Python in several ways, in-
cluding syntactically, but is optimised for parallel computing and
objects are cast into their respective types at compile time. This al-
lows the compiled binaries to be executed much faster than they
would have been interpreted by Python. The ease of parallelising
tasks could mean that certain algorithms, such as cycle enumeration,
could be processed at a much faster speed.

• C/C++: A lower level, strongly-typed language should provide much
better performance than the Python interpreter.

6.5 Practical Implementation

A good project for a third-year or honours level student might be to imple-
ment the algorithm in a practical manner, perhaps in the form of a website
with a database backend. An administrator could add specific shoe types
that people could express interest in. Users can register on the site and
select a shoe design of their choice. A graph would be constructed per
certain unique constraints such as shoe type, intended gender, etc. The
website should then automatically match people using the algorithms dis-
cussed in this dissertation. Similar work on the practical, real-life applica-
tion of the algorithm has been done by Sanders (2013b).

99

Chapter 7

Conclusion

This dissertation focused on graph enlargement from a different perspec-
tive: by adding vertices to a graph instead of focusing on edge augmen-
tation as originally defined by Eswaran and Tarjan (1976). Traditionally
graph augmentation had always been focused on edge augmentation. Graph
enlargement via the addition of vertices to the graph was thus seen as an
opportunity to extend the field. Sanders (2013a) had already done valu-
able work in this regard and laid the foundation for the content in this
dissertation.

The original research aim of this dissertation was to improve on the work
done by Sanders (2013a) and was stated as follows:

To develop an improved algorithm(s) for the graph enlarge-
ment problem; in terms of:

• Faster run time and the capability to handle larger graphs

• Fewer total nodes required to enlarge the graph such that
all nodes are contained within cycles

Multiple optimisations were proposed, split between cost-efficiency and
speed-efficiency, as well as lessening the input size (by enlarging only a
subgraph consisting of nodes not contained within cycles). The optimised
algorithms were effective and efficient overall, and it can be left up to the
user to decide which algorithm is ideally suited to their problem.

For the cost-optimisation algorithm, it was found that by restricting graph
enlargement to component-wise enlargement, the creation of bridge nodes
between components could be stifled. For strictly isolated nodes, instead
of adding two dummy nodes to incorporate it into a larger existing cy-
cle, it is more cost-efficient to add a single dummy node. This creates a
2-node cycle between the previously isolated node and the new dummy
node. Due to the decrease in unique number of dummy nodes, there was
a greater chance for some nodes to be more regularly repeated within cy-

100

cles. The addition of a cycle compression subroutine helped to minimise
the total number of nodes in the graph by compressing redundant repeats
of nodes. It can also be argued that the rule-based decision making tech-
niques of the cost-optimised algorithm add a semblance of intelligence to
the algorithm.

For the speed-optimised algorithm, the bottlenecks in the original algo-
rithm and the new cost-optimised algorithm had to be identified. Cycle
enumeration and cycle picking were found to have an extremely negative
impact on performance. The growth in the number of cycles can be close
to exponential in relation to the number of nodes in the graph. The pos-
sibility of cycle picking being an NP-complete problem required all the
possible combinations of cycles to be enumerated. By transforming the
adjacency matrix of the graph to a permutation matrix, it was possible to
mathematically ensure unique, disjoint cycles without the need for cycle
picking and cycle enumeration algorithms. The algorithm is occasionally
accompanied by marginally increased total node cost (only in some in-
stances), but the powerful increase in performance could outweigh this
drawback depending on the user’s need.

The results of the subgraph algorithm (see Section 5.4) were positive over-
all. The algorithm proceeded by creating a subgraph H ⊆G of the original
graph. H consisted of all the nodes not contained within an optimal combi-
nation (greatest number of nodes) of existing cycles. The graph H was then
augmented using the new cost-optimised algorithm. Experimental trials
of the algorithm showed better cost- and speed-efficiency than Sanders’s
algorithm across several scenarios.

Despite the efficiency of the optimisations, the original, naïve solution is
also still a good fit to the original shoe matching problem and possesses
several advantages (see Section 5.5, p. 90), notably a good compromise
between speed, implementation complexity, and efficiency, although due
to the exponential growth of the number of cycles in a graph (see Section
4.3.1), and the NP-completeness of certain problems (e.g. cycle picking), it
becomes impractical to implement on larger graphs. In this dissertation,
given the nature of the synthetic data (see Section 3.5), graph size was
capped at roughly 24 nodes, although sometimes even fewer. The matrix
enlargement method (the core of speed-optimised algorithm) takes care of
the enlargement of large graphs, with 1000+ nodes. The idea of transform-
ing an adjacency matrix to a permutation matrix for the purpose of graph
enlargement is a novel and innovative procedure.

Graph enlargement, is still a new concept with plenty of potential for fu-
ture research opportunities and possible applications to real life problems.

101

References

Bondy, J. A. and Murty, U. S. R. (2008), Graph Theory (Graduate Texts in
Mathematics), 1st edn, Springer, London, UK.

Chartrand, G., Lesniak, L. and Zhang, P. (2011), Graphs and Digraphs, 5th
edn, Chapman and Hall/CRC Press, Boca Raton, Florida.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. (2009), Introduc-
tion to Algorithms, Third Edition, 3rd edn, The MIT Press.

Egeland, G. and Engelstad, P. E. (2009), The economy of redundancy
in wireless multi-hop networks, in ‘Proceedings of the 2009 IEEE
Conference on Wireless Communications & Networking Conference’,
WCNC’09, IEEE Press, Piscataway, NJ, USA, pp. 3023–3028.
URL: http://dl.acm.org/citation.cfm?id=1688345.1688872

Eswaran, K. (1973), Representation of Graphs and Minimally Augmented Eule-
rian Graphs with Applications in Data Base Management, Research reports
// IBM, IBM Thomas J. Watson Research Division.
URL: http://books.google.co.za/books?id=41bJtgAACAAJ

Eswaran, K. P. and Tarjan, R. E. (1976), ‘Augmentation problems’, SIAM
Journal on Computing 5(4), 653–665.
URL: http://dx.doi.org/10.1137/0205044

Even, S. (2011), Graph Algorithms, 2nd edn, Cambridge University Press,
New York, NY, USA.

Fraleigh, J. B. (2003), A First Course In Abstract Algebra, 7th edn, Pearson
Education Inc.

Frank, A. (1990), Augmenting graphs to meet edge-connectivity require-
ments, in ‘FOCS’, IEEE Computer Society, pp. 708–718.

Frank, H. and Chou, W. (1970), ‘Connectivity considerations in the design
of survivable networks’, Circuit Theory, IEEE Transactions on 17(4), 486–
490.

Goodman, S. E., Hedetniemi, S. T. and Slater, P. J. (1975), ‘Advances on the
hamiltonian completion problem’, J. ACM 22(3), 352–360.
URL: http://doi.acm.org/10.1145/321892.321897

102

Goodman, S. and Hedetniemi, S. (1974), On the hamiltonian completion
problem, in R. A. Bari and F. Harary, eds, ‘Graphs and Combinatorics’,
Vol. 406 of Lecture Notes in Mathematics, Springer Berlin Heidelberg,
pp. 262–272.
URL: http://dx.doi.org/10.1007/BFb0066448

Hawick, K. A. and James, H. A. (2008), Enumerating Circuits and Loops in
Graphs with Self-Arcs and Multiple-Arcs, in ‘Proceedings of the 2008 In-
ternational Conference on Foundations of Computer Science’, CSREA,
Las Vegas, USA, pp. 14–20.

Hopcroft, J. and Tarjan, R. (1973), ‘Algorithm 447: Efficient algorithms for
graph manipulation’, Communications of the ACM 16(6), 372–378.
URL: http://doi.acm.org/10.1145/362248.362272

Johnson, D. B. (1975), ‘Finding All the Elementary Circuits of a Directed
Graph.’, SIAM Journal on Computing Comput. 4(1), 77–84.
URL: http://dblp.uni-trier.de/db/journals/siamcomp/siamcomp4.html#Johnson75

Johnsonbaugh, R. (2000), Discrete Mathematics, 5th edn, Prentice Hall PTR,
Upper Saddle River, NJ, USA.

Kruskal, J. (1956), ‘On the shortest spanning tree of a graph and the travel-
ling salesman problem’, Proceedings of the American Mathematical Society
7(1), 48–50.

Liu, H. and Wang, J. (2006), A New Way to Enumerate Cycles in Graph,
in ‘Proceedings of the Advanced International Conference on Telecom-
munications and International Conference on Internet and Web Appli-
cations and Services’, AICT-ICIW ’06, IEEE Computer Society, Washing-
ton, DC, USA, pp. 57–59.
URL: http://dl.acm.org/citation.cfm?id=1116162.1116223

Naor, D., Gusfield, D. and Martel, C. U. (1997), ‘A fast algorithm for op-
timally increasing the edge connectivity’, SIAM J. Comput. 26(4), 1139–
1165.

Prim, R. (1957), ‘Shortest connection networks and some generalizations’,
Bell System Technical Journal 36(6), 1389–1401.

Rosenthal, A. and Goldner, A. (1977), ‘Smallest augmentations to bicon-
nect a graph’, SIAM J. Comput. 6(1), 55–66.

Rotman, J. J. (1994), Graduate Texts in Mathematics: An Introduction to the
Theory of Groups, 4th edn, Springer.

Sanders, I. (2013a), Cooperating to buy shoes: An application of picking
cycles in directed graphs, in ‘Proceedings of the South African Institute
of Computer Scientists and Information Technologists (Theme: "A Con-
nected Society")’, East London, pp. 8–16.
URL: http://dl.acm.org/citation.cfm?id=2517086

103

Sanders, I. (2013b), Cooperating to buy shoes in the real world: online
cycle picking in directed graphs, in ‘Proceedings of the South African
Institute of Computer Scientists and Information Technologists (Theme:
"A Connected Society")’, East London, pp. 286–294.
URL: http://dl.acm.org/citation.cfm?id=2513474

Sheng Hsu, T. and Ramachandran, V. (1993), ‘Finding a smallest augmen-
tation to biconnect a graph’, SIAM J. Comput. 22(5), 889–912.

Tarjan, R. E. (1972), Enumeration of the Elementary Circuits of a Directed
Graph, Technical report, Ithaca, NY, USA.

Tiernan, J. C. (1970), ‘An Efficient Search Algorithm to Find the Elementary
Circuits of a Graph’, Communications of the ACM 13(12), 722–726.
URL: http://doi.acm.org/10.1145/362814.362819

Weinblatt, H. (1972), ‘A New Search Algorithm for Finding the Simple
Cycles of a Finite Directed Graph’, Journal of the ACM 19(I), 43–56.

Xulvi-Brunet, R. and Sokolov, I. M. (2007), ‘Growing networks under geo-
graphical constraints’, Phys. Rev. E 75, 046117.
URL: http://link.aps.org/doi/10.1103/PhysRevE.75.046117

104

Appendices

105

Appendix A

Additional Comparative Results
Across Algorithms

These appendices present additional shoe matching scenarios (different
randomisation seeds and graph sizes). The results of all four algorithms
are displayed side by side and compared to one another.

The algorithm(s) achieving the fewest number of total nodes for each sce-
nario has its result highlighted in bolded italics. In the case of an Out-
OfMemory exception, the result is left blank and does not count towards
the algorithms success rate.

Success rates are expressed as percentages and represent the following ra-
tio: the number of times the algorithm has solved the shoe matching prob-
lem with the fewest number of nodes (compared to its competitors), di-
vided by the total number of quantifiable results the algorithm produced.
The resulting percentage is then rounded to the nearest integer.

The rest of this chapter contains the results of 20 randomly picked seeds,
divided into subgroups of 5 seeds per page. Table A.1 contains a summary
of these results.

20 seeds,
6 graph sizes

per seed
=

120 scenarios

Sanders’s
Algorithm

(Total
Nodes)

Cost-
optimised
Algorithm

(Total
Nodes)

Speed-
optimised
Algorithm

(Total
Nodes)

Subgraph
Algorithm

(Total
Nodes)

Success
Rate %

(Minimising
Total Nodes)

20 37 53 57

Table A.1: Summarised additional comparative results across all algorithms

106

Seed Nodes

Sanders’s
Algorithm

(Total
Nodes)

Cost-
optimised
Algorithm

(Total
Nodes)

Speed-
optimised
Algorithm

(Total
Nodes)

Subgraph
Algorithm

(Total
Nodes)

586 015 916 8 17 14 14 14
10 16 16 16 16
12 19 19 20 20
14 22 26 23 22
16 26 26 27
18 31 31 31

273 100 389 8 22 15 14 15
10 26 17 18 17
12 23 23 21 20
14 23 22 23 22
16 26 26 27 26
18 31 30 31 30

513 577 387 8 25 14 14 14
10 27 18 16 18
12 35 24 20 24
14 38 28 23 28
16 37 30 26 30
18 45 35 30 38

912 644 420 8 10 10 13 10
10 17 15 17 15
12 25 20 20 20
14 25 21 22 25
16 25
18 29

422 223 344 8 12 13 10 13
10 18 15 15 15
12 25 20 19 20
14 29 25 23 29
16 30 25 22
18 29 37

Success
Rate %

(Minimising
Total Nodes)

26 54 63 54

Table A.2: Additional comparative results across all algorithms (1)

107

Seed Nodes

Sanders’s
Algorithm

(Total
Nodes)

Cost-
optimised
Algorithm

(Total
Nodes)

Speed-
optimised
Algorithm

(Total
Nodes)

Subgraph
Algorithm

(Total
Nodes)

550 095 080 8 15 11 13 11
10 15 15 15 13
12 21 18 18 16
14 24 20 22 27
16 26 23 27 21
18 30

444 662 587 8 15 14 13 14
10 14 15 17 17
12 19 20 21 22
14 25 23 24 23
16 29 26
18 30

664 788 481 8 13 13 13 13
10 16 16 15 15
12 21 19 19 19
14 25 23 23 23
16 28 26 28 30
18 30 28 44

461 731 130 8 11 11 12 12
10 12 12 14 14
12 13 13 17 13
14 21 20 21
16 24 22
18 23 29

735 161 101 8 14 13 11 17
10 22 21 15 14
12 31 23 19 19
14 27 24 22 20
16 24 26 23
18 29

Success
Rate %

(Minimising
Total Nodes)

25 48 43 61

Table A.3: Additional comparative results across all algorithms (2)

108

Seed Nodes

Sanders’s
Algorithm

(Total
Nodes)

Cost-
optimised
Algorithm

(Total
Nodes)

Speed-
optimised
Algorithm

(Total
Nodes)

Subgraph
Algorithm

(Total
Nodes)

475 887 106 8 27 12 11 11
10 31 15 15 14
12 33 29 19 22
14 30 23 22
16 25
18 28

664 469 990 8 14 13 12 11
10 14 14 14 13
12 17 17 17 16
14 23 22 21 19
16 25 26
18 28 39

965 309 708 8 14 15 12 12
10 23 21 15 16
12 27 25 19 20
14 27 24 23 22
16 21 23 26 21
18 30 30 30

456 777 039 8 18 13 12 13
10 13 13 14 13
12 22 18 18 18
14 19 19 22 20
16 22 21 26 21
18 27 27 29

222 892 396 8 12 12 10 10
10 19 16 15 14
12 28 24 18 23
14 34 24 22 23
16 36 26 27 30
18 29

Success
Rate %

(Minimising
Total Nodes)

21 25 53 62

Table A.4: Additional comparative results across all algorithms (3)

109

Seed Nodes

Sanders’s
Algorithm

(Total
Nodes)

Cost-
optimised
Algorithm

(Total
Nodes)

Speed-
optimised
Algorithm

(Total
Nodes)

Subgraph
Algorithm

(Total
Nodes)

809 723 839 8 14 15 13 15
10 17 18 17 18
12 26 22 19 19
14 28 23 23 23
16 31 28 25 24
18 34 30 26

508 456 853 8 13 12 13 12
10 18 15 16 17
12 20 19 19 18
14 26 22 24 22
16 31 27
18 34 29

393 236 722 8 14 14 12 14
10 15 15 14 13
12 21 21 17 18
14 19 19 18 17
16 21 21 25 19
18 29 28

568 828 692 8 13 14 13 12
10 18 18 16 19
12 23 20 19 19
14 24 21 23 22
16 24 27 25
18 31 29

346 854 015 8 18 14 12 14
10 24 18 16 18
12 27 23 18 19
14 28 31 22 24
16 37 46 26 29
18 30 34

Success
Rate %

(Minimising
Total Nodes)

8 21 53 50

Table A.5: Additional comparative results across all algorithms (4)

110

Appendix B

Ethical Clearance

Please see page 112 for the ethical clearance document.

111

112

Appendix C

SAICSIT 2015 Submission

A paper based on the work contained within this dissertation was ac-
cepted for the SAICSIT 2015 conference and published in the associated
proceedings. Please see the next page for the paper.

113

Enlarging Directed Graphs To Ensure All Nodes Are
Contained In Cycles

J. J. van der Linde
School of Computing

University of South Africa
UNISA Science Campus, Florida

janvdl@outlook.com

I. D. Sanders
School of Computing

University of South Africa
UNISA Science Campus, Florida

sandeid@unisa.ac.za

ABSTRACT
Many algorithms in graph theory add or remove either edges
or nodes (or both) to solve a given problem. Graph augmen-
tation typically concerns the addition of edges to a graph
to satisfy some connectivity property of the graph. This
paper focuses on the addition of vertices to a graph to sat-
isfy a specific connectivity property: ensuring that all the
nodes of the graph are contained within cycles. A distinc-
tion is made between graph augmentation (edge addition),
and graph enlargement (vertex addition).

The particular problem addressed here is the enlarging
of a digraph which is an abstraction defined in the “shoe
matching problem” and represents people who require dif-
ferent sizes of shoes. To be able to satisfy all of the partici-
pants, every node (person) in the digraph must be contained
in at least one cycle. This paper looks at ways to improve
on the original approach to graph enlargment. It redefines
the cost model used in the original work, presents three im-
provements to the original approach and shows that these
approaches do indeed offer benefits in terms of the number
of nodes needed to solve the problem and/or the speed of
enlargement.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Graph Theory—
Graph Algorithms

Keywords
directed graphs, graph enlargement, cycle picking

1. INTRODUCTION
Many problems in graph theory involve changing the struc-

ture of the graph by (implictly or explicitly) adding or re-
moving edges or nodes. For example, minimum spanning
tree algorithms discard some edges [1], biconnectedness can
be achieved by adding or removing edges [1], etc. In some
real world situations like computer networking nodes and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAICSIT ’15, September 28-30, 2015, Stellenbosch, South Africa
c© 2015 ACM. ISBN 978-1-4503-3683-3/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2815782.2815825

edges can be added to increase redundancy and hence reli-
ability [2, 14]. Graph augmentation, in general, relates to
finding the number of vertices or edges that should be added
to a certain graph to satisfy a particular connectivity prop-
erty [4, 3, 7, 11]. Graph augmentation has traditionally been
associated with the addition of edges to a graph [4], and thus
this paper refers to graph augmentation via the addition of
vertices and related edges as graph enlargement instead. The
particular graph enlargement problem addressed in this pa-
per stems from the shoe matching problem [10].

The shoe matching problem [10] involves people who re-
quire different sizes of shoes between their left and right feet.
Owing to the fact that shoes are sold as pairs, a person re-
quiring different sized shoes would have to buy 2 pairs of
shoes in order to satisfy their needs. By cooperating with
other individuals with a similar need, it would be possible
for participants to save money. If Adam requires shoes of
sizes (8L, 10R) and Bob requires shoes of sizes (10L, 8R), it
would be possible for Adam and Bob to team up. If Adam
buys one pair of size 10 shoes, and Bob buys a pair of size
8 shoes, they could each swap one of the shoes with each
other. This allows both Adam and Bob to satisfy their spe-
cific footwear needs at the cost of a single pair of shoes each.
If this straightforward one-to-one matching is not possible
then the problem becomes that of finding a “cycle” of people
such that enough pairs of shoes could be bought and every-
one’s needs would be satisfied. For example, if Tom’s re-
quirements are (10L, 8R), Fred’s requirements are (8L, 9R)
and Monde’s requirements are (9L, 10R) then buying three
pairs of shoes (sizes 8, 9 and 10) would satisfy all three par-
ties.

Sanders [10] abstracted the shoe matching problem to a
graph theory problem by treating people needing different
sized shoes as nodes, and creating directed edges when the
left shoe size of any participant was equal to the right shoe
size of any other participant. A cycle enumeration algo-
rithm (in the original work, that of Liu and Wang [8]) was
then applied to determine all of the cycles in the digraph.
The results of the cycle enumeration were then used to de-
termine whether all the nodes in the original graph were
contained in cycles. If there were nodes which were not in
cycles then Sanders applied a graph enlargement algorithm
to add dummy nodes and the required additional edges to
complete cycles and thus to ensure that all nodes in the orig-
inal graph were in cycles in the “enlarged” graph. A cycle
picking algorithm was then applied to produce an optimal
selection of cycles where each node in the original graph was
in at least one of the selected cycles.

Figure 1: Sanders’s original illustration of a shoe
matching problem, pre-enlargement [10]

The graph enlargement algorithm of Sanders is näıve and
does not always give a good solution. As an example, sup-
pose we have a graph as illustrated in Figure 1. The prob-
lematic node in this case is (2: John) – John is not in a cycle
and has no one to cooperate with in buying shoes. In the so-
lution (see Figure 2), two dummy nodes have been added. A
bridge node linked the two components and caused the com-
ponent consisting of nodes (7: Kopano) and (8: Mark) to be-
come part of the problem when it was initially a completed
cycle. Figure 3 presents an alternative solution requiring
only a single dummy node to satisfy everyone’s footwear
needs. In addition, the cost criterion presented by Sanders
had problems – it spread the cost of dummy nodes across
people in the same cycle as the dummy nodes which meant
that people in cycles without dummy nodes benefited un-
duly.

The aim of this research was to find an improvement to
the graph enlargement algorithm of Sanders [10]. The new
algorithms presented in this paper could be useful in other
circumstances where graphs must have their nodes contained
within cycles.

Figure 2: Sanders’s original illustration of a shoe
matching problem, post-enlargement [10]

Section 2 presents the problem in greater detail. The
research methodology is provided in Section 3. Section 4
presents an improvement on Sanders’s algorithm and Section
5 extends this approach by enlarging only a necessary sub-
graph of the original graph. Section 6 presents a novel way
of enlarging graphs by transforming the adjacency matrix of
the graph to a permutation matrix. Section 7 discusses the
results of these new algorithms in greater detail. Sections 8
and 9 cover possible future work and the conclusions drawn
respectively.

2. THE PROBLEM
The shoe matching problem attempts to satisfy the footwear

Figure 3: An alternative solution, post-enlargement,
requiring only a single dummy node

needs of people with differently-sized feet in a cost-saving
manner. The ideal solution would be that all the partici-
pants are able to cooperate with one another in such a way
that each participant only needs to buy one pair of shoes
(no dummy nodes required). In general, this is a very rare
occurrence and dummy nodes are usually required. The goal
is therefore to find a solution where each participant needs
to pay for less than two pairs of shoes.

The original graph enlargement algorithm for the shoe
matching problem [10] was based on the observation that
there are four cases which would result in a node not being
in a cycle.

1. The node is isolated from the rest of the graph (it has
neither incoming nor outgoing edges).

2. The node has only incoming edges.

3. The node has only outgoing edges.

4. The node is a “bridge” (it is on path between two other
nodes in the graph which are either in cycles or a case
2 or case 3 node).

The approach applied first deals with cases 1 to 3 and
then (if necessary) addresses bridge nodes. The first phase
of the algorithm uses the existing graph to create a set of
nodes that have no outgoing edges, a set of nodes that have
no incoming edges, a set of isolated nodes and a set of all the
other nodes in the graph. The approach is then to repeatedly
link nodes in the sets together to form a new path. There are
two cases here. In the first case, if there is still an isolated
node then a path is formed by connecting a node from the
set of nodes with no outgoing edges to an isolated node to a
node with no incoming edges by means of two new “dummy
nodes”. These dummy nodes are required in order to deal
with the abstraction of the real world situation that only
allows an edge between two nodes if the left shoe size of the
first node is equal to the right shoe size of the second node
and if both nodes have shoe sizes that are different. In the
second case, if there are no remaining isolated nodes then
a node with no outgoing edges is connected to a node with
no incoming edges using a single dummy node. Note that in
both cases, if there is no remaining node with no outgoing
edges or no remaining node with no incoming edges (or both)
then such nodes are replaced by an arbitrarily chosen node
from the original graph. There is no attempt made in the
algorithm to determine which nodes are the “best” to use at
any stage or even to try to determine the effect of choosing
a given node. Essentially the selection is random.

Dealing with cases 1, 2 and 3 using the approach outlined

above will connect those nodes to the graph and may result
in a cycle but may also lead to a case 4 situation. Or a case
4 could occur in the original graph. Dealing with a case
4 situation involves looking forward from the bridge node
along the path containing the bridge node until a node which
is not a bridge node is found, then similarly looking back
along the path including the bridge node until a non-bridge
node is found and then connecting those two nodes using a
dummy node to complete a cycle. This process results in a
node (or in some cases more than one node) which is not in
a cycle in the original graph now being included in a cycle.

The approach described above results in every node in the
original graph being in at least one cycle and each dummy
node that is added also being in a cycle.

The focus of this paper is on trying to improve the original
graph enlargement algorithm by making use of some knowl-
edge of the structure of possible graphs and also considering
more desirable outcomes.

Graph enlargement in this paper shall be defined as:
Instance: Given a digraph, G(V,E) such that any node v ∈
V has attributes (vx, vy) where vx, vy ∈ Z+, and for any two
nodes u, v ∈ V an edge uv is in E when ux = vy.
Problem: Find a set of nodes V ′ and associated edges E′,
such that GE(VE , EE) satisfies the property P ← all nodes
in VE are contained within cycles. Here VE = (V ∪ V ′) and
EE = (E ∪ E′); any node, w ∈ VE has attributes (wx, wy)
where wx, wy ∈ Z

+; and for any two nodes w, z ∈ VE an
edge w, z is in EE when wx = zy).

The cost of the graph enlargement can be minimised by
minimising the total number of nodes required (all nodes
have equal cost/weight).

Sanders’s cost distribution model places the cost burden
of the dummy nodes on the participants by cycle. In other
words, a cycle of 5 participants containing a single pair of
dummy shoes will cost each participant of that cycle the
value of 1 + 1

5
pairs of shoes. If there is a second cycle in

the graph with 2 participants containing 1 pair of dummy
shoes, then each participant will pay for 1+ 1

2
pairs of shoes.

In this model a person who appears in more than one cycle
is required to buy that many pairs of shoes. Thus someone
who is in many cycles would have to buy many pairs of shoes.

In this paper the cost distribution model is redefined. The
cost burden of all the dummy nodes is spread across all
the participants (nodes) in the graph. If the addition of
two dummy nodes are necessary to ensure all nodes are in
cycles then two unique dummy nodes are added. However,
these dummy nodes may be present in multiple cycles, and
to ensure that these cycles are always satisfied, the dummy
nodes are counted repeatedly across all cycles. If two dummy
nodes are required to ensure the existence of three unique
cycles, then in total six dummy nodes (pairs of shoes) are
required. The issue of a few people being forced to buy more
than one pair of shoes is also addressed in this work. This
is discussed in more detail later.

3. METHOD

3.1 Overview
The focus of this research was to improve on the graph

enlargement algorithm presented by Sanders. This meant
being able to compare any new algorithms to the original so
the overall approach was to:

1. Generate appropriate test data and represent this data
as a digraph.

2. Enumerate all of the cycles in the graph.

3. Determine whether graph enlargement was required
and apply a graph enlargement algorithm if necessary.

4. Pick the cycles in the graph to return a solution.

5. Evaluate the cost of enlarging the graph in terms of
the number of nodes required.

These steps are expanded on in the subsections below. Note
that the implementation in this study was done in Python
and this had some impact on the decisions made in terms of
the algorithms used.

3.2 Test data
Due to a lack of academic literature on the subject, shoe

size data for graph construction was randomly generated
(randomisation seeds could be set to ensure the generated
pairs were kept constant across multiple runs). The follow-
ing assumptions were made:

• Gender and style differences are not considered. A
different graph could be constructed for each gender
and style combination.

• Average shoe sizes range from 9 to 11, with a standard
deviation of 2 (a range from 7 to 13).

• Once the left shoe size is generated the right shoe size
is derived from it by adding a random value between
-2 to 2 to the left shoe size.

3.3 Cycle enumeration
Once the tested data had been generated, the graph was

represented as an adjacency list (in the case of the permu-
tation matrix method, it was represented by an adjacency
matrix) and Tarjan’s cycle enumeration algorithm [12] was
used to enumerate all the cycles within a graph. Tiernan’s
algorithm [13] was also evaluated but encountered regular re-
cursion depth errors when the number of nodes in the graph
exceeded 12 nodes.

3.4 Graph enlargement methods
The original algorithm [10] was implemented as were three

other approaches as listed below and described in more de-
tail in later sections of the paper. This paper presents the
following methods of graph enlargement:

• An improvement on the original approach which min-
imises the unique number of dummy nodes required
to enlarge the graph, in order to satisfy the connectiv-
ity property that all nodes must be contained within
cycles (see Section 4).

• Creating a subgraph H ⊆ G. H consists of all the
nodes in G that are not optimally contained in cycles.
H is then augmented separately (see Section 5).

• Transforming the adjacency matrix to a permutation
matrix (see Section 6).

Once the graph had been enlarged, it was necessary to
find a minimal solution in terms of the number of cycles
required to ensure that all nodes in the enlarged graph are
contained in at least one of the selected cycles. Cycle picking
is discussed below.

3.5 Cycle picking

Cycle picking is defined as“an optimisation problem where
cycles are chosen from a directed graph under the constraint
that any node that is in a cycle in the original directed graph
must be in at least one of the chosen cycles” [10].

Several methods of cycle picking were considered in the
original work: Minimum number of cycles; All small cycles;
and Minimum total cycle length.

This work focused on the minimum number of cycles method
of cycle picking. The minimum number of cycles method se-
lects an optimal combination of cycles, such that every node
which was contained within a cycle before is still contained
within at least one cycle, but whilst minimising the total
number of cycles necessary. A cycle enumeration algorithm
will enumerate all the cycles and r-combinations of cycles
will be evaluated. This allows the maximum number of po-
tential matches possible, but it can be a time consuming
process, depending on the number of nodes (and is possi-
bly NP-complete [10]). When all the possibilities have been
generated, the algorithm selects the minimum number of cy-
cles with the restriction that any node contained within a
cycle(s) in the original graph, must be contained in at least
one cycle in the new graph.

3.6 Evaluation
To evaluate the efficiency of the new algorithms, 60 shoe

matching problem scenarios were simulated across Sanders’s
algorithm and the three newly developed algorithms. The
algorithms were assigned a percentage score, which repre-
sents the following ratio: the number of times the algorithm
achieved the lowest number of total nodes required to solve
the shoe matching problem (compared to the other algo-
rithms), divided by the total number of quantifiable results
produced by the specific algorithm. It is possible for more
than one algorithm to produce the lowest number of total
nodes, the result then counts as a success for all the algo-
rithms with the most efficient result.

4. COST-OPTIMISED ENLARGEMENT
This approach attempts to minimise the unique number

of dummy nodes required to augment the graph. Initially, it
was developed to test whether minimising the unique num-
ber of dummy nodes would produce a more cost-efficient
solution, in terms of total node-cost. It was found that min-
imising the unique number of dummy nodes caused these
dummy nodes to occur repeatedly across multiple cycles, i.e.
fewer dummy nodes formed part of an increased number of
cycles to solve the shoe matching problem. In smaller graphs
this is generally not a problem and the solutions produced
are still an improvement on those produced by Sanders’s
original algorithm.

The cost-optimised algorithm follows the same enlarge-
ment logic as Sanders’s original algorithm [10], except for a
few changes, listed below.

The following methods generally reduce the unique num-
ber of dummy nodes required within the enlarged graph:

• Isolated nodes would not be joined to larger structures
unless it would be more optimal to do so. It is generally
more cost efficient to simply furnish the isolated node
with a dummy node and form a cycle of two nodes.

• Bridge nodes were avoided where possible. To avoid
bridge nodes, graphs were enlarged by component and
components were not linked.

• Some basic rules for enlargement and rule-based de-
cision making were introduced to ensure that optimal
solutions were generated for the current situation of
the graph.

• Compressing cycles to compress repeated sequences of
nodes within cycles.

This algorithm plays a pivotal role in the subgraph en-
largement algorithm described in Section 5 below.

5. SUBGRAPH ENLARGEMENT METHOD
Suppose G is a graph with cycles C = {c1, c2, ..., cn}, then

it is possible to find C′ ⊆ C such that C′ is maximal and any
node in a cycle in C′ appears exactly once. Thus, existing
cycles without duplicates can be isolated and set aside as
completed and the remaining nodes will be used to construct
a subgraph H ⊆ G.

The subgraph enlargement method makes use of the cost-
optimised enlargement algorithm, which minimises the num-
ber of unique dummy nodes required (see Section 4). The
cost-optimised algorithm is used to enlarge H and ensure
that all nodes within H are contained in cycles.

To ensure the selection of a subgraph H ⊆ G is optimal
and due to the NP-completeness of this procedure, we will
again use a combinatorial approach. The optimal solution is
defined as setting aside a combination of cycles containing
each node at most once, whilst also trying to maximise the
number of nodes contained within these cycles. This selec-
tion is then marked as completed and the remaining nodes
are used to construct the subgraph H.

Suppose we have a graph G as illustrated below in Figure
4.

Figure 4: The graph G to which the subgraph en-
largement algorithm will be applied

The complete list of cycles present in the graph are as
follows:

• (1: Adam) → (2: Bob)

• (1: Adam) → (2: Bob) → (7: George) → (4: David)

• (1: Adam) → (2: Bob) → (7: George) → (5: Eddie)

• (1: Adam) → (6: Frank) → (3: Carol)

• (1: Adam) → (6: Frank) → (3: Carol) → (7: George)
→ (4: David)

• (1: Adam) → (6: Frank) → (3: Carol) → (7: George)
→ (5: Eddie)

• (4: David) → (7: George)

• (5: Eddie) → (7: George)

• (9: Ike) → (11: Kenny)

The combination of cycles with maximal length (and with
each node appearing at most once in the combination) is:

• (1: Adam) → (6: Frank) → (3: Carol)

• (5: Eddie) → (7: George)

• (9: Ike) → (11: Kenny)

The nodes thus not contained within cycles, and also the
nodes that H ⊆ G will be comprised of (see Figure 5), are:

• (2: Bob)

• (4: David)

• (8: Harry)

• (10: Jim)

• (12: Larry)

Figure 5: The graph H ⊆ G

Once the cost-optimised algorithm (i.e., minimising unique
number of dummy nodes) is applied to this graph, H will
be enlarged such that all nodes are contained within cycles.
The solution is illustrated by Figure 6. Note that the nodes
already contained within cycles before enlargement are not
illustrated.

Figure 6: The graph H, once enlargement using the
subgraph algorithm is complete (please note that
the nodes which were contained within cycles pre-
enlargement are not illustrated here)

6. PERMUTATION MATRIX METHOD
Any directed graph, G, can be represented by an adja-

cency matrix, say A. Adjacency matrices are square matri-
ces. For any element in the matrix, say A[i, j], if the value

of the element is 1, it indicates an arc from node i → j. A
lack of adjacency between nodes is indicated by a zero [5].

Permutations and permutation matrices are important con-
cepts in group theory. A permutation can be defined as fol-
lows [9]: “If X is a nonempty set, a permutation of X
is a bijection α: X → X.”

A bijection is a function which is both one-to-one and
onto. In essence, a permutation is a rearrangement of ele-
ments. Suppose we have permutations:

α =

(
1 2 3
3 2 1

)

β =

(
1 2 3
2 3 1

)

The permutation α(β(1)) = α(2) = 2 is an example of
such a rearrangement of elements.

Any permutation can be written as a union of disjoint
cycles [6], for example:

α =

(
1 2 3 4 5 6 7 8
3 8 6 7 4 1 5 2

)
= (1, 3, 6)(2, 8)(4, 7, 5)

A permutation of a finite set is a product of disjoint cycles
as proven by [6, p. 89]:

Let B1, B2, ..., Br be the orbits of α and let µi be the cycle
defined by

µi =

{
α(x) for x ∈ Bi

x otherwise.

It follows that α = µ1µ2...µr. Since the equivalence-class
orbits B1, B2, ..., Br, being distinct equivalence classes, are
disjoint, the cycles µ1µ2...µr are disjoint also.

The fact that a permutation consists solely of disjoint
cycles is very important. It means that every element of
the permutation (and its corresponding permutation ma-
trix) will always be contained within a cycle, and there will
be no repeats of elements in the same cycle or different cy-
cles. This provides us with the following benefits:

• There will be no need for cycle enumeration.

• There will be no need for cycle picking.

• There will be no need to check for bridge nodes.

• There will be no need to check for repeated nodes.
The number of nodes contained within the graph at
first glance is the number of nodes necessary for every
node to be contained within a unique cycle.

The above processes, especially cycle enumeration and cy-
cle picking, hamper performance and cause Sanders’s orig-
inal algorithm to become a nonviable solution on larger
graphs (25+ nodes). The matrix enlargement method can
solve the shoe matching problem for graphs of 1000+ nodes
within seconds.

Permutation matrices are square matrices filled with ones
and zeroes (row-equivalent to the identity matrix), with the
restriction that the ones may only occur once in every row
and column. Matrix A is a valid permutation matrix:

Figure 7: A permutation matrix will be constructed
from the adjacency matrix of this graph

A =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0




Suppose we have a graph G as illustrated in Figure 7, with
adjacency matrix:

A =




v1 v2 v3 v4 v5 v6 Tr

v1 0 1 0 0 1 0 2
v2 0 0 1 0 0 0 1
v3 0 0 0 1 0 1 2
v4 1 0 0 0 0 0 1
v5 0 0 0 1 0 1 2
v6 0 0 0 0 0 0 0
Tc 1 1 1 2 1 2




Tr represents the sum of the ones in each row, while Tc

represents the sum of the ones in each column. In a permu-
tation matrix, each row and each column must add up to 1,
only. That is to say, each row and each column may only
contain a single entry of 1, the rest of the matrix must be
populated with zeroes.

In this matrix, three rows have Tr = 2 (thus 1 redun-
dant outgoing edges for each of the nodes v1, v3, v5) and two
columns have Tc = 2 (thus 1 redundant incoming edge for
nodes v4, v6). Starting with Tr, work from bottom-to-top
and right-to-left (the order is unimportant; this is the au-
thor’s preference), and simply remove the redundant entries
of 1 and replace them with 0. Every value in Tr should now
be either 0 or 1. Refresh the count for Tc to check if any
nodes have redundant incoming edges.

A =




v1 v2 v3 v4 v5 v6 Tr

v1 0 1 0 0 0 0 1
v2 0 0 1 0 0 0 1
v3 0 0 0 1 0 0 1
v4 1 0 0 0 0 0 1
v5 0 0 0 1 0 0 1
v6 0 0 0 0 0 0 0
Tc 1 1 1 2 1 0




In this case, the removal of all redundant outgoing edges
has not solved the problem of redundant incoming edges. If
any value for Tc > 1, again work from bottom-to-top and
right-to-left, removing the redundant ones in each column.

A =




v1 v2 v3 v4 v5 v6 Tr

v1 0 1 0 0 0 0 1
v2 0 0 1 0 0 0 1
v3 0 0 0 1 0 0 1
v4 1 0 0 0 0 0 1
v5 0 0 0 0 0 0 0
v6 0 0 0 0 0 0 0
Tc 1 1 1 1 0 0




However, now note the number of zeroes in Tr

and Tc (these two values should be equal), say n, and
enlarge the graph by n dummy nodes. In this case n = 2
and we are left with the following adjacency matrix:

A =




v1 v2 v3 v4 v5 v6 v7 v8 Tr

v1 0 1 0 0 0 0 0 0 1
v2 0 0 1 0 0 0 0 0 1
v3 0 0 0 1 0 0 0 0 1
v4 1 0 0 0 0 0 0 0 1
v5 0 0 0 0 0 0 0 0 0
v6 0 0 0 0 0 0 0 0 0
v7 0 0 0 0 0 0 0 0 0
v8 0 0 0 0 0 0 0 0 0
Tc 1 1 1 1 0 0 0 0




It is essential to keep track of the dummy nodes (v7, v8)
and the original zero-row nodes (v5, v6 - from top to bottom)
and zero-column nodes (v6, v5 - from right to left). These
nodes should be places on three separate stacks, namely the
dummy stack, zero-row node stack, and zero-column node
stack.

The graph is now ready to be enlarged. Pop the first zero-
row node (v5) off its stack, the first dummy node (v7), and
the first zero-column node (v6). Connect v5 → v7 → v6
only. Do not connect the last node in this sequence to the
first. The matrix is thus altered as follows:

• A[v5, v7] = 1

• A[v7, v6] = 1

A =




v1 v2 v3 v4 v5 v6 v7 v8 Tr

v1 0 1 0 0 0 0 0 0 1
v2 0 0 1 0 0 0 0 0 1
v3 0 0 0 1 0 0 0 0 1
v4 1 0 0 0 0 0 0 0 1
v5 0 0 0 0 0 0 1 0 1
v6 0 0 0 0 0 0 0 0 0
v7 0 0 0 0 0 1 0 0 1
v8 0 0 0 0 0 0 0 0 0
Tc 1 1 1 1 0 1 1 0




The next selection of nodes to be popped is v6 → v8 → v5
only.

• A[v6, v8] = 1

• A[v8, v5] = 1

Figure 8: The final graph produced by the permu-
tation matrix

A =




v1 v2 v3 v4 v5 v6 v7 v8 Tr

v1 0 1 0 0 0 0 0 0 1
v2 0 0 1 0 0 0 0 0 1
v3 0 0 0 1 0 0 0 0 1
v4 1 0 0 0 0 0 0 0 1
v5 0 0 0 0 0 0 1 0 1
v6 0 0 0 0 0 0 0 1 1
v7 0 0 0 0 0 1 0 0 1
v8 0 0 0 0 1 0 0 0 1
Tc 1 1 1 1 1 1 1 1




Since both Tr and Tc are filled with ones (exclusively),
the enlargement is complete (see Figure 8). The adjacency
matrix has now been transformed into a permutation matrix
and inherits the properties of a permutation; once again, of
special interest to the focus of this article are the following:

• The permutation matrix is a union of disjoint cycles:
every node is contained within a cycle (see [6, p. 89])

• No node is ever repeated: every node appears exactly
once, in exactly one cycle

In Figure 8, (7: Dummy [10,10]) is a redundant dummy
node. It is possible to remove this node and still have a
complete cycle and viable solution. However, the addition
of 2 dummy nodes is a failsafe to construct a permutation
matrix. Also note that cycle picking is redundant
for this enlargement method. When the algorithm
destroys the redundant edges, it is in essence per-
forming a procedure very much like cycle picking on
itself. For example, technically an edge should be present
(one of many) between (3: Carol [10,8]) and (6: Frank
[7,10]). The disjoint cycles property of permutation matrices
produces cycles which resemble ”picked” cycles.

7. RESULTS AND DISCUSSION
Both the matrix and subgraph enlargement methods have

favourable results overall. The results are displayed in Ta-
bles 1, 2, and 3. Tables 1 and 2 present the individual test
scenarios and their results for each algorithm, while Table 3
presents the success rates of the algorithms across the results
of Tables 1 and 2.

Each scenario is represented by a combination of a seed
and graph size (number of nodes). For each seed, as the

number of nodes increases, the graph simply expands on the
previous graph. In other words, for any specific seed, the
graph generated of size 8, for example, will be a subgraph
of the graph generated of size 10.

The algorithm(s) achieving the fewest number of total
nodes for each scenario has its result highlighted in bolded
italics. In the case of an OutOfMemory exception, the re-
sult is left blank and does not count towards the algorithm’s
success rate. Success rates are expressed as percentages and
represent the following ratio: the number of times the algo-
rithm has solved the shoe matching problem with the least
number of nodes (compared to its competitors), divided by
the total number of quantifiable results the algorithm pro-
duced. The resulting percentage is then rounded to the near-
est integer.

For the sake of completeness, the results of the cost-optimised
algorithm (i.e., minimising unique number of dummy nodes)
is also included, since it is the enlargement method used by
the subgraph enlargement algorithm.

The cost-optimised algorithm was successful in minimising
the unique number of dummy nodes necessary, but this led
to an increase in repeated nodes across multiple cycles. It
is apparent that fewer unique dummy nodes do not always
imply that the total number of nodes required to satisfy
the shoe matching problem will decrease. It is, however, by
far the most successful algorithm in achieving a graph of
the required form whilst minimising the number of unique
dummy nodes.

The permutation matrix algorithm greatly decreased the
running times of the algorithm, without incurring a ma-
jor decrease in cost-efficiency (node-cost). The permutation
matrix algorithm is capable of handling large graphs (1000+
nodes) and has no need of cycle enumeration, cycle picking,
or cycle compression algorithms. By discarding these CPU
intensive (and some NP-complete) operations, the algorithm
is able to solve the shoe matching problem on graphs with an
order of 1000 nodes within a matter of seconds on a modern
desktop computer.

The subgraph algorithm has shown promising results over-
all. In some cases it is less efficient than Sanders’s algorithm,
but overall it has the highest success rate in terms of min-
imising the total node cost across all the algorithms and is
the ideal solution for the shoe matching problem involving
graphs with order less than 30 nodes.

8. FUTURE WORK
The algorithms covered in this paper do meet the aim of

enlarging the existing digraph at generally reduced cost (in
terms of number of necessary nodes). This section presents
a few ideas for future work in the area.

8.1 Involving Minimum Spanning Trees
A possible future solution could involve the construction of

a minimum spanning tree (MST). It would then be possible
to split the newly constructed MST at any branching points.
Whenever a node, say n, branches into multiple nodes, break
the branches to construct separate components and replace
node n with dummy nodes as required. For example, if node
n branched into 3 new nodes, 2 of the edges (branches) need
to be broken and n should be replaced with 2 dummy nodes
for the new components this process creates. A cycle can
then be created from each of the separated components.

Seed Nodes

Sanders’s
Algorithm

(Total
Nodes)

Cost-
optimised
Algorithm

(Total
Nodes)

Permutation-
matrix

Algorithm
(Total
Nodes)

Subgraph
Algorithm

(Total
Nodes)

586 015 916 8 17 14 14 14
10 16 16 16 16
12 19 19 20 20
14 22 26 23 22
16 26 26 27
18 31 31 31

273 100 389 8 22 15 14 15
10 26 17 18 17
12 23 23 21 20
14 23 22 23 22
16 26 26 27 26
18 31 30 31 30

513 577 387 8 25 14 14 14
10 27 18 16 18
12 35 24 20 24
14 38 28 23 28
16 37 30 26 30
18 45 35 30 38

912 644 420 8 10 10 13 10
10 17 15 17 15
12 25 20 20 20
14 25 21 22 25
16 25
18 29

422 223 344 8 12 13 10 13
10 18 15 15 15
12 25 20 19 20
14 29 25 23 29
16 30 25 22
18 29 37

Table 1: Comparative results across all algorithms (1/2)

8.2 Calculated Selection of Intermediate Nodes
Currently whenever the cost-optimised or Sanders’s algo-

rithm requires “some node” as an intermediate step in en-
larging the graph, a node is arbitrarily selected. It is possible
that vertices with lower degrees may be a better choice, in or-
der to reduce repeated nodes across multiple cycles. It may
also argued be that nodes with a higher degree are a better
choice since this allows more cycle combination choices for
the cycle picking processes. Future work could explore this
idea.

8.3 Improvements to the Subgraph Algorithm
The subgraph algorithm currently makes use of the cost-

optimised algorithm to enlarge the subgraph H ⊆ G. It
may be worth exploring whether using the permuatation
matrix algorithm (or some other enlargement algorithm) in-
stead will improve the node cost- and speed-efficiency of the
subgraph algorithm.

8.4 Divide and Conquer with Parallel Com-
puting

Investigating whether subroutines such as cycle enumer-
ation and cycle picking could be parallelised, could poten-

tially lead to great performance improvements. In the case
of component-wise enlargement, each component can be en-
larged in parallel. Parallelising the subroutines can also en-
able the algorithms to be run on a computing cluster.

9. CONCLUSION
This paper has presented several improvements to Sanders’s

original graph enlargement algorithm. A fairer cost distri-
bution model has been presented, which does not penalise
participants of smaller cycles. The burden of cost is placed
equally across all the participants.

The subgraph algorithm provides better results overall
than Sanders’s original algorithm, by only enlarging a sub-
graph of nodes from the original graph. The subgraph en-
largement algorithm is indeed more cost-efficient (in terms
of node cost) than Sanders’s original algorithm.

A novel approach of graph enlargement, by transforming
the adjacency matrix representing the digraph to a permu-
tation matrix, was also presented. This new approach does
away with NP-complete procedures, and does not require
auxiliary functions, such as cycle enumeration or cycle pick-
ing. As such, this method of enlargement is much faster
than Sanders’s original enlargement algorithm, whilst often

Seed Nodes

Sanders’s
Algorithm

(Total
Nodes)

Cost-
optimised
Algorithm

(Total
Nodes)

Permuation-
matrix

Algorithm
(Total
Nodes)

Subgraph
Algorithm

(Total
Nodes)

475 887 106 8 27 12 11 11
10 31 15 15 14
12 33 29 19 22
14 30 23 22
16 25
18 28

664 469 990 8 14 13 12 11
10 14 14 14 13
12 17 17 17 16
14 23 22 21 19
16 25 26
18 28 39

965 309 708 8 14 15 12 12
10 23 21 15 16
12 27 25 19 20
14 27 24 23 22
16 21 23 26 21
18 30 30 30

456 777 039 8 18 13 12 13
10 13 13 14 13
12 22 18 18 18
14 19 19 22 20
16 22 21 26 21
18 27 27 29

222 892 396 8 12 12 10 10
10 19 16 15 14
12 28 24 18 23
14 34 24 22 23
16 36 26 27 30
18 29

Table 2: Comparative results across all algorithms (2/2)

being more cost-efficient as well.

10. REFERENCES
[1] G. Chartrand, L. Lesniak, and P. Zhang. Graphs and

Digraphs. Chapman and Hall/CRC Press, Boca
Raton, Florida, 5th edition, 2011.

[2] G. Egeland and P. E. Engelstad. The economy of
redundancy in wireless multi-hop networks. In
Proceedings of the 2009 IEEE Conference on Wireless
Communications & Networking Conference,
WCNC’09, pages 3023–3028, Piscataway, NJ, USA,
2009. IEEE Press.

[3] K. Eswaran. Representation of Graphs and Minimally
Augmented Eulerian Graphs with Applications in Data
Base Management. Research reports // IBM. IBM
Thomas J. Watson Research Division, 1973.

[4] K. P. Eswaran and R. E. Tarjan. Augmentation
problems. SIAM Journal on Computing, 5(4):653–665,
1976.

[5] S. Even. Graph Algorithms. Cambridge University
Press, New York, NY, USA, 2nd edition, 2011.

[6] J. B. Fraleigh. A First Course In Abstract Algebra.

Pearson Education Inc., 7th edition, 2003.

[7] H. Frank and W. Chou. Connectivity considerations in
the design of survivable networks. Circuit Theory,
IEEE Transactions on, 17(4):486–490, Nov 1970.

[8] H. Liu and J. Wang. A New Way to Enumerate Cycles
in Graph. In Proceedings of the Advanced International
Conference on Telecommunications and International
Conference on Internet and Web Applications and
Services, AICT-ICIW ’06, pages 57–59, Washington,
DC, USA, 2006. IEEE Computer Society.

[9] J. J. Rotman. Graduate Texts in Mathematics: An
Introduction to the Theory of Groups. Springer, 4th
edition, 1994.

[10] I. Sanders. Cooperating to buy shoes: An application
of picking cycles in directed graphs. In Proceedings of
the South African Institute of Computer Scientists and
Information Technologists (Theme: “A Connected
Society”), pages 8–16, East London, 2013.

[11] T. Sheng Hsu and V. Ramachandran. Finding a
smallest augmentation to biconnect a graph. SIAM J.
Comput., 22(5):889–912, 1993.

[12] R. E. Tarjan. Enumeration of the Elementary Circuits

Sanders’s
Algorithm

(Total
Nodes)

Cost-
optimised
Algorithm

(Total
Nodes)

Permuation-
matrix

Algorithm
(Total
Nodes)

Subgraph
Algorithm

(Total
Nodes)

Total
Number

of
Quantifiable

Scenarios

51 48 60 34

Scenarios
with Least
Number
of Total
Nodes

12 19 35 31

Number of
OutOfMemory

Scenarios
9 12 0 6

Success
Rate %

(Minimising
Total Nodes)

24 % 40 % 58 % 57 %

Table 3: Success rates across all algorithms

of a Directed Graph. Technical report, Ithaca, NY,
USA, 1972.

[13] J. C. Tiernan. An Efficient Search Algorithm to Find
the Elementary Circuits of a Graph. Communications
of the ACM, 13(12):722–726, Dec. 1970.

[14] R. Xulvi-Brunet and I. M. Sokolov. Growing networks
under geographical constraints. Phys. Rev. E,
75:046117, Apr 2007.

124

