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ABSTRACT 

 

The advent of agile methodologies has brought about an illuminating debate in Software 

Engineering, particularly with regard to software quality. Some studies have reported that agile 

methodologies do improve software quality when compared to traditional methodologies; other 

studies have been inconclusive or contradictory, while others have argued that empirical 

evidence is limited. This study sought to investigate the correlation between agile 

methodologies when compared to traditional methodologies for selected software quality 

parameters. The research design was causal comparative, as well as correlational. The 

approach was quantitative, using a survey as the data collection method. SPSS was used to 

conduct descriptive and correlational analysis for 106 responses received. 

The main findings were that there was a statistically significant relation between traditional 

methodology use and ease of system testing (p=0.014); a statistically significant relation 

between traditional methodology use and timeliness (p=0.02); a statistically significant relation 

between software quality standards used and ease of system testing (p=0.017); a statistically 

significant relation between active stakeholder participation on projects and ease of system 

interactivity (p=0.047); and a statistically significant relation between mandatory workshop 

attendance or training and ease of system navigation (p=0.031).Claims that agile methodology 

use leads to improved software quality for selected quality parameters could not be empirically 

validated. The association between most of the selected software quality criteria in relation to 

methodology use in general was not apparent. Agile methodologies are suitable in small 

environments. Scrum was the most widely used agile methodology by far. The popularity and 

adoption state of XP showed a significantly decreasing trend. Traditional and agile 

methodologies combined are being used (47%) more than any other methodology. Agile 

methodology use (28%) surpassed traditional methodology use (19%). A suitable consensus 

definition for agile methodologies did not emerge from the data collected. The most suitable 

project life cycle model was evolutionary, incremental and iterative. ‘Other’ methodologies, 

meaning customised agile or SDLC, are suitable, as the environment becomes increasingly 

large and complex. Only 13% of organisations surveyed have an agile experience of six years 

and beyond. Based on these findings and gaps in the literature, implications and 

recommendations for further research areas are proposed, where the findings and contributions 

of this study are found to be relevant to practice for application and to academia for further 

research. 
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CHAPTER 1: BACKGROUND AND INTRODUCTION 

1.1 Background 

Information systems are conventionally developed using a life cycle called the systems 

development life cycle (SDLC), or the Waterfall Model. An information system is an array of 

people, data, processes and information technology that interact to collect, store and disseminate 

the information required to support an organisation or individual (Whitten and Bentley,2007). 

The approach just mentioned emerged in the 1970s, and since then, many variants have come 

into existence (Avison and Fitzgerald, 2006; Schach, 2010; Zhang, Hu, Dai and Li, 2010). In its 

classic form, the SDLC is made up of the following sequential phases: feasibility study; systems 

investigation; systems analysis; systems design; implementation; review; and maintenance 

(Avison and Fitzgerald, 2006). In other words, the aforesaid phases constitute what is referred 

to as a system development methodology. It was the traditional or conventional way to engineer 

information systems prior to the advent of more contemporary methodologies. A system 

development methodology is a disciplined and systematic process that is followed in developing 

an information system (Pressman, 2010). It consists of methods, techniques and tools, as well 

as an underlying philosophy (Avison and Fitzgerald, 2006). For the purpose of this study, system 

development methodology and methods are used interchangeably and mean the same thing.  

The SDLC is a tried and tested methodology that has stood the test of time (Avison and 

Fitzgerald, 2006). It is more manageable than other methodologies, and enforces discipline in 

the development process with the use of checkpoints. However, the greatest weakness of the 

Waterfall Model is its inflexibility and failure to respond to change (Huo, Verner, Zhu and Barbar, 

2004; Avison and Fitzgerald, 2006; Sommerville, 2007; Barlow et al., 2011; Kendall, Sue and 

Kendall, 2010; Leau, Loo, Tham and Tan, 2012). As a complement to the SDLC or Waterfall 

model, the Rational Unified Process (RUP), the Spiral Model, the V-Model and other 

methodologies have since emerged to address some, but not all, the weaknesses of the Waterfall 

Model (Schach, 2010). 

All the foregoing methodologies are called traditional or conventional software development 

methodologies, and are classified into the category of heavyweight methodologies, due to the 

fact that they make use of enormous amounts of documentation (Nikiforova, Nikulsins and 

Sukovskis, 2009). 

In 2001, a new and somewhat controversial paradigm to software development, called agile, 

emerged (Cunningham, 2001; Huo, Verner, Zhu and Barbar, 2004; Schach, 2010). This 
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approach emerged as a response to the weaknesses and limitations of conventional methods 

(Avison and Fitzgerald, 2006; Abrahamsson, Conboy and Wang, 2009; Rao, Naidu and Chakka, 

2011; Barlow et al. 2011; Kendall, Sue and Kendall, 2010). 

A group of experienced software engineering practitioners came together in 2001 and created 

the Agile Manifesto. The manifesto stated that agile development should focus on the following 

core values (Cunningham, 2001):  

 Individuals and interactions, over processes and tools; 

 Working software, over comprehensive documentation; 

 Customer collaboration, over contract negotiation; and 

 Responding to change, over following a plan. 

They argued that even though practices they suggest deemphasising are also important, they 

are not as highly valued (see italicised words in bulleted paragraph above). Based on this 

manifesto, they proceeded to formulate the following twelve principles that define criteria for the 

agile software development process (Cunningham, 2001). 

1. Our highest priority is to satisfy the customer through early and continuous delivery of 

valuable software.  

2. Welcome changing requirements, even late in development. Agile processes harness 

change for the customer's competitive advantage.  

3. Deliver working software frequently, from a couple of weeks to a couple of months, with 

a preference to the shorter timescale.  

4. Business people and developers must work together daily throughout the project.  

5. Build projects around motivated individuals. Give them the environment and support they 

need, and trust them to get the job done.  

6. The most efficient and effective method of conveying information to and within a 

development team is face-to-face conversation.  

7. Working software is the primary measure of progress.  

8. Agile processes promote sustainable development. The sponsors, developers, and users 

should be able to maintain a constant pace indefinitely.  

http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
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9. Continuous attention to technical excellence and good design enhances agility.  

10. Simplicity. The art of maximising the amount of work not done is essential.  

11. The best architectures, requirements, and designs emerge from self-organising teams. 

12. At regular intervals, the team reflects on how to become more effective, then tunes and 

adjusts its behaviour accordingly.  

Since the inception, articulation and promulgation of the Agile Manifesto in 2001, different 

researchers have, over the years, distinguished between agile and traditional methods using 

different perspectives. These differences are summarised in table 1. 

 Perspective Traditional 
 

Agile Reference 

1.  Development life 

cycle. 

Tends to be fairly 

linear. 

Iterative and 

evolutionary. 

Charvat, 2003; Nerur, 

Mahapatra, and 

Mangalaraj, 2005. 

2.  Business 

Requirements. 

Fairly stable, clear, 

concise and 

documented. 

Emergent, 

discovered 

progressively. 

Boehm and Turner, 

2004. 

3.  Software 

Architecture. 

Designed for current 

and the future. 

Design for what is 

presently essential. 

Boehm, 2002; 

Wysocki, 2011. 

4.  Management 

approach. 

Process centric, 

command and control. 

People centric, 

leadership and 

collaboration. 

Boehm and Turner, 

2005; Vinekar, 

Slinkman and Nerur, 

2006. 

5.  Extent of 

documentation. 

Enormous and heavily 

dependent on explicit 

knowledge. 

Light documentation 

and mostly 

dependent on tacit 

knowledge. 

Boehm and Turner, 

2005. 

6.  Goal. Predictability and 

optimisation. 

Exploration and 

adaptation. 

Dyba and Dingsoyr, 

2009. 

7.  Change. Tend to resist change. Embrace change. Boehm and Turner, 

2003. 

8.  Team members. Distributed teams of 

specialists; Plan-

oriented, adequate 

skills access to 

external knowledge. 

Agile, 

knowledgeable, 

collocated and 

collaborative; Co-

location of generalist 

senior technical 

staff. 

Boehm, 2002; 

Sherehiy, Karwowski 

and Layer, 2007. 

9.  Team 

organisation. 

Teams are pre-

structured. 

Self-organising 

teams. 

Leffingwell, 2007. 

10.  Client 

involvement. 

Client involvement is 

mostly low and 

passive. 

Client is mostly 

onsite, active and 

proactive. 

Highsmith and 

Cockburn, 2001. 
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11.  Organisational 

culture. 

Culture is mostly 

command and control. 

Leadership and 

collaborative. 

Highsmith, 2002; 

Nerur, Mahapatra and 

Mangalaraj, 2005. 

12.  Development 

process. 

Anticipatory, 

predictability and high 

assurance. 

Adaptive and flexible Salo, and 

Abrahamsson, 2007; 

Leffingwell, 2007. 

Table 1 : Traditional and agile perspectives on software development. 

As table 1 depicts, agile is a paradigm that deviates from the conventional, plan based 

approaches to software development (Highsmith, 2002; Dyba and Dingsoyr 2008a; Bhasin, 

2012). Agile methods contrast with traditional methods, which are dependent on a set of pre-

planned processes and on-going documentation, written progressively to guide further 

development (Sommerville, 2007; Nikiforova et al., 2009; Rao, Naidu and Chakka, 2011). They 

therefore represent a major transition from conventional plan-based methodologies to more 

customer-centric approaches (Boehm and Turner, 2005; Vinekar, Slinkman and Nerur, 2006; 

Bhasin, 2012). They emerged as a response to formal, heavy, less efficient and bureaucratic 

software development practices (Boehm and Turner, 2005; Kendall, Sue and Kendall, 2010). 

1.2 Problem statement  

Like any new methodology, agile proponents assert that agile methodologies are a superior 

paradigm used to develop systems when compared with their predecessors. Among some of the 

strengths forwarded are: improved software quality (Santos, Bermejo, Oliveira and Tonelli, 2011; 

Rao, Naidu, and Chakka, 2011); focus on customer needs; adaptability to changing 

requirements; faster development times (Barlow et al., 2011); and flexibility (Austin and Devin, 

2009). 

However, despite the reported benefits, several studies have found that there are many problems 

and difficulties encountered with agile adoption, as well as noting the difficulties of putting the 

proposed benefits into practice (Barlow et al., 2011; Leau, Loo, Tham and Tan, 2012; Prause 

and Durdik, 2012; Asnawi, Gravell, and Wills, 2012; Pathak and Saha, 2013; Twidale and 

Nichols, 2013). This pre-existent deadlock then raises questions as to whether the claimed 

benefits of agile are purely theoretical, or also pragmatic. Some organisations adopt them to gain 

a competitive advantage, while others are still sceptical as to whether agile development is 

beneficial (Barlow et al., 2011) or whether the benefits of agile outweigh the cost (Ambler, 2008; 

Selic, 2009). 

In addition, the benefits of agile methods and their impact have not been overwhelmingly 

convincing. Some studies have reported that they do improve product quality, other studies have 
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been inconclusive, and yet others have been contradictory. Abrahamsson, Oza and Siponen 

(2010) argue that empirical evidence after ten years of application remains quite limited. 

Rodríguez, Yague, Alarcon and Garbajosa (2009) noted that several studies have described 

success stories using agile methods but that these studies do not provide enough contextual 

information, or function merely as a type of ‘lessons learnt’ report. Based on study design, study 

quality, consistency and directness, Dyba and Dingsoyr (2008b) uncovered that the strength of 

evidence on the benefits and limitations of agile methods is very low. 

Hummel (2014) conducted a systematic literature review in the field of agile information system 

development, encompassing 482 papers. Building and extending on previous reviews, he found 

that most of the research methods employed where qualitative, and recommended that more 

confirmatory quantitative studies are needed to corroborate previous or initial findings. He also 

uncovered that the theoretical underpinnings of agile methodologies are lacking. 

The forgone arguments clearly illustrate that there is not yet consensus regarding the claimed 

benefits of agile development. Much has been said and written about the agile development 

process, but there is a dearth of literature when it comes to what happens after agile development 

Adoption (Abrahamsson, Conboy and Wang, 2009).  

Several studies have been published on the adoption of agile methods, but research particularly 

in the area of agile quality assurance has been lagging behind (Bhasin, 2012).  

There is therefore a need for a better understanding of agile methods beyond the adoption stage 

(Abrahamsson, Conboy and Wang, 2009). The preceding commentary is compelling enough to 

warrant an empirical investigation of agile methods, post adoption, because their merits are not 

yet clear, and shades of grey still exist. 

An empirical study is a test that compares what we believe or claim, to what we observe (Perry, 

Porter and Votta, 2000). Empirical research seeks to study phenomenon and draw meaningful 

conclusions in a way that predictions can be made (Sjoberg, Dyba and Jorgensen, 2007). 

Therefore, the purpose of this study is to conduct a practical investigation of the impact of agile 

when compared to traditional methods on selected software quality parameters.  

To be more elaborate, the study aims to investigate their impact on some system and information 

quality criteria in organisations that have used conventional methodologies in the past, and later 

transitioned to the agile methodology of software development or in situations where both 

traditional and agile methods are being used. 

http://scholar.google.co.za/citations?user=kX3qrzEAAAAJ&hl=en&oi=sra
http://scholar.google.co.za/citations?user=PmHlkQ4AAAAJ&hl=en&oi=sra
http://scholar.google.co.za/citations?user=kX3qrzEAAAAJ&hl=en&oi=sra
http://scholar.google.co.za/citations?user=PmHlkQ4AAAAJ&hl=en&oi=sra
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1.3 Research question  

What is the impact of the use of agile methodologies on software quality criteria compared to 

traditional methodologies? 

By seeking to determine the above impact or association, the study will also implicitly or indirectly 

ascertain whether or not selected software quality criteria can be linked to methodology use in 

general. 

The main research question articulated above is then disintegrated into the following two sub-

questions, which in turn, have sub-questions as well: 

Sub-question 1 

What is the impact of the use of agile methodologies on system quality criteria compared to 
traditional methodologies? 

This first sub-question is further broken down into the following sub-questions, seeking to 

understand impact of the use of agile methodologies compared to traditional methodologies, 

on: 

1.3.1 Ease of system maintenance; 

1.3.2 System testing;  

1.3.3 Ease of system training;  

1.3.4 Ease of system learning; 

1.3.5 System architecture; 

1.3.6 Portability;  

1.3.7 Meeting usability needs; 

1.3.8 Ease of system customisation; 

1.3.9 Ease of system navigation;  

1.3.10 Ease system interactivity; 

1.3.11 System correctness; 

1.3.12 Timeliness; and 

1.3.13 Completeness of system features.  

Sub-question 2 

What is the impact of the use of agile methodologies on information quality criteria compared to 
traditional methodologies? 

This second sub-question is further broken down into the following sub-questions, seeking to 

understand impact of the use of agile methodologies compared to traditional methodologies, 

on: 
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1.3.14 Error message comprehensibility; and  

1.3.15 System help facilities 

1.4 Research objectives 

The objective of this study is to investigate if a positive correlation exists between system and 

information quality criteria when agile methodologies are used compared to traditional 

methodologies.  

Similar to the just stated research question, the main objective will be broken down into two sub-

objectives, which in turn have their own sub-objectives. 

Sub objective 1 

To ascertain whether a positive correlation exist between the following system quality criteria 

when agile methodologies are used compared to traditional methodologies: 

1.4.1. Ease of system maintenance; 

1.4.2. Ease of system testing; 

1.4.3. Ease of system training; 

1.4.4. Ease of system learning; 

1.4.5. Robustness of system architecture; 

1.4.6. Portability; 

1.4.7. Meet usability needs; 

1.4.8. Ease of system customisation; 

1.4.9. Ease of system navigation; 

1.4.10. Ease of system interactivity; 

1.4.11. System correctness; 

1.4.12. Timeliness; and 

1.4.13. Completeness of system features. 

Sub-objective 2 

To ascertain if a positive correlation exists between the following information quality criteria 

when agile methodologies are used compared to traditional methodologies: 

1.4.14. Error messages comprehensibility; and 

1.4.15. System help facilities 
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1.5 Research motivation and relevance 

A review of the research literature on agile methodologies and software engineering in general 

reveals that most of the studies concentrate on the development process, rather than the product. 

Research activities in software engineering and information technology (IT) are twofold; build and 

evaluate. Build refers to the construction of the product to demonstrate that it can be built, and 

evaluate means the development of criteria to assess the performance of the product in its 

context of application (March and Smith, 1995).  

A number of system development methodologies have been proposed since the inception of the 

computing discipline, but there is no methodology that integrates empirical evaluation or 

assessment of the methodology itself, as well as the computer-based artefact that it instantiates 

in its context of use, so that we can compare beliefs or claims with what we see. Evidence on 

this was uncovered by Perry et al. (2000), who emphasises the need for empirical assessment 

of computer systems. Similarly, Zhang et al. (2010) call for more empirical studies on agile 

methods, as more organisations continue to adopt and use them. Dyba and Dingsoyr (2008a) 

conducted a systematic review on agile software development, where they found that out of 1996 

studies, only 36 were identified as empirical. A paradigm shift is needed to not only concentrate 

on the agile development process, but also to direct research efforts towards evaluating artefacts 

constructed using agile methodologies (Abrahamsson, Conboy and Wang, 2009; Bhasin, 2012).  

Therefore, considering the fact that research in this domain cannot be left to speculations and 

secondly, considering the utmost importance, indispensable and strategic role played by 

information systems in contemporary society, the researcher can rightfully assert that this study 

and the dissemination of its findings will be relevant to scholars, researchers and practitioners 

alike. 

1.6 Research design and methodology 

This research is based on positivism, which posits that the world exists externally, and can be 

objectively measured (Knox, 2004). It is associated with the Scientific method, which assumes 

that firstly, the world is structured, regular and not random, and secondly, that the world can be 

investigated objectively (Oates, 2006). 

The chosen research strategy for this study was a survey. The idea behind a survey is to collect 

the same kind of data in a standardised and systematic way, from a representative sample of the 

population, and thereafter, to look for patterns and trends to draw conclusions and make 

generalisations that extend to the wider population (Oates, 2006). Surveys are very useful in 

collecting data about behavioural aspects that are difficult to observe (Abbas et al., 2010). They 

http://scholar.google.co.za/citations?user=kX3qrzEAAAAJ&hl=en&oi=sra
http://scholar.google.co.za/citations?user=PmHlkQ4AAAAJ&hl=en&oi=sra
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are one of the main research strategies used in IS research. This strategy was chosen because 

it is cost effective, can lead to generalisations, the data can be replicated to some extent, surveys 

lend themselves to quantitative data analysis, and finally, because the research questions can 

conveniently or appropriately be answered with a survey (Oates, 2006). 

Data was collected by designing a structured questionnaire that addresses the variables to be 

investigated. The sample frame was IT practitioners, comprising mainly, but not exclusively, 

project managers, business analysts, system analysts, architects, developers, product 

managers, software test analysts, consultants and business stakeholders, who have worked in 

both agile and traditional environments. 

The type of statistical analysis undertaken was descriptive and correlational. Descriptive statistics 

techniques are normally used to describe and compare variables numerically, while correlational 

analysis techniques are employed to find relationships between variables (Saunders et al., 2009). 

In addition, graphical models were also used perform categorical analysis. They are normally 

used to visually represent data and show comparisons between categorical data or to represent 

the number of observations in a given category. 

1.7 Definition of Key terms and concepts 

The purpose of this section is to define, clarify and operationalise key terminology and research 

variables under investigation. 

1.7.1 Definition of agility 

Agility refers to the eradication of much of the bureaucracy that characterises traditional 

approaches to software development. Agility strives to promote quick responses to the dynamic 

environment, to welcome changes in user requirements, and to speed up project timelines 

(Erickson, Lyytinen and Siau, 2005). It can thus be inferred that agile methodologies embrace 

and reiterate speed and flexibility in the development process, as opposed to following a rigid 

plan. They focus on iterative and incremental development, so as to deliver value to the customer 

as quickly as possible. In other words, agile development methodologies make use of iterative 

development, frequent collaboration with the customer, small frequent releases, and code that 

has undergone rigorous testing (Cao, Mohan, Xu and Ramesh, 2009). In addition to these 

definitions, the working definition of agility for this study will be the core values, principles and 

underlying philosophy as per Agile Manifesto.  
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1.7.2 System and information quality definition  

Quality means different things to different people. Juran, who is widely considered to be a quality 

guru, defined quality as fitness for a given purpose, accompanied by customer satisfaction 

(Juran, 1992). Weinberg defines quality as the value something has to a given set of people 

(Weinberg, 1992). As alluded to in (Godbole, 2004) ISO 9126 defines software quality as the 

features of a product that have the ability to satisfy certain needs. 

Taking cognisance of the different and diverse criteria for software quality, Delone and McLean 

(1992) fleshed out a dichotomy from the word software quality into system and information 

quality, in their influential and empirically validated information system (IS) success model 

(Delone and McLean, 2003). The splitting is depicted in Figure 1.  

 

Figure 1 : Software quality dichotomy model. 

System quality refers to measures of the information processing system itself (Delone and 

McLean, 1992; 2003). This refers to a collection of features that attempt to measure the system 

itself, and typically consist of ease of use aspects and performance characteristics of the system 

under evaluation (Urbach and Müller, 2012). 

Information quality refers to measures of the information system output (Delone and McLean, 

1992; 2003). This focuses on measures related to the quality of the information that the system 

produces, and their usefulness to the user (Urbach and Müller, 2012). 

From the above, it is apparent that quality is therefore an elusive concept, and proves difficult to 

define. A consensus and all-encompassing definition is difficult to arrive at, because different 

authors define it differently.  

This therefore means there are numerous and multiple subjective measures of quality. However, 

there are some common quality parameters that can be deduced from most definitions. This 

study will thus base itself on relevant system and information quality criteria set out by other 

researchers. 

Software quality
System quality

Information quality
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1.7.3 Scope and software quality criteria  

1.7.3.1 System quality criteria 

Several measures of system quality exist. It is therefore not possible to examine all of them in 

this study, due to time constraints and research scope. The scope will be limited to System and 

Information quality criteria identified in Tables 2 and 3. Most of them are exemplary measures 

that have been validated (Urbach and Müller, 2012). 

# Criteria Definition  Reference 

1.  Ease of system 
maintenance. 

Ease of modifying the system to correct 
defects or new functionality to meet new 
requirements. 

Mnkandla and Dwolatzky 
(2006). 

2.  Ease of testing. Refers to ease of testing system 
functionality to uncover defects. 

 

3.  Ease of system 
training. 

Ability to easily train prospective system 
users. 

 

4.  Ease of system 
learning. 

Ability to easily learn the system by 
prospective system users. 

Gable et al. (2008), 
Sedera and Gable 
(2004b). 

5.  Robustness of the 
system 
architecture. 

Ability of the system to act appropriately 
under abnormal conditions as well the 
ability for the system to withstand 
extensions with the addition of other 
components without failing. 

Mnkandla and Dwolatzky 
(2006). 

6.  Portability. Refers to ability of the software to be 
easily installed on different hardware and 
software platforms. 

Mnkandla and Dwolatzky 
(2006). 

7.  Meet usability 
needs. 

This refers to how easily the system can 
be used by users of different backgrounds. 

Gable, Sedera and 
Chan, (2008); Mnkandla 
and Dwolatzky (2006). 

8.  System 
correctness. 

Ability of the system to function according 
to the specification or how the client 
wants. 

Sedera and Gable 
(2004b). 

9.  Ease of 
customization. 

Ease with which the system can easily be 
adapted to suit one’s personal approach 
and preferences. 

Gable et al. (2008), 
Sedera and Gable 
(2004b). 

10.  Ease of system 
navigation. 

Ease of moving around the system from 
one page or functionality to another. 

McKinney et al. (2002). 

11.  Ease of system 
interactivity. 

The degree of interactivity of the system 
i.e. the extent of reciprocal actions 
between the user and the system. 

McKinney, Kanghyu and 
Zahedi (2002). 
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Table 2 : Exemplary system quality criteria. 

1.7.3.2 Information quality criteria 

Table 3 : Exemplary Information quality criteria. 

1.8 Outline of dissertation chapters 

This dissertation is demarcated into five chapters, namely: an introduction and background, 

literature review, research design and methodology, data analysis and interpretation of results 

and culminates in a conclusion chapter. 

Chapter 1. Introduction and background: This chapter contextualises the study by presenting 

a general background. It also succinctly articulates the problem statement, the research 

questions and objectives, motivation and rationale for the research, a brief study design and 

methodology that was employed, a definition of key terms and concepts, and finally, the 

dissertation structure. 

Chapter 2. Literature review: This chapter deploys a critical commentary and extensive 

literature review relevant to the study, with the objective of identifying a gap, weaknesses or flaws 

in the already existing body of knowledge on agile methodologies, from a software quality 

enhancing perspective. 

Chapter 3. Research design and methodology: This chapter articulates and justifies the 

research design and methodology that was employed. It elaborates on the tools or instruments 

that were utilised and procedures that were followed. 

12.  Timeliness. Refers to timely delivery of software to the 
market or client. 

Mnkandla and Dwolatzky 
(2006). 

13.  Completeness of 
system features. 

Refers to whether a system is delivered 
with all appropriate parts or components. 

 

# Criteria Definition  Reference 

14.  Error messages  

Comprehensibility. 

Refers to the ease of understanding error 
messages. 

 

15.  System help 
facilities. 

Refers to a subset of the software 
component that acts as documentation for 
the software package. Its main purpose is 
to explain program function, toolbar option, 
or other key elements with the user 
interface. 
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Chapter 4. Data analysis and interpretation of results: This chapter is an articulation of data 

analysis methods and techniques employed; it also unpacks and interprets results of the study 

and finally discusses and disseminates findings. 

Chapter 5. Conclusion: This chapter is a synopsis of previous chapters as well as research 

findings. It highlights with evidence that the research question was answered and objectives met. 

It also articulates the research significance and contributions. Like any other research, limitations 

are acknowledged. Finally, based on research findings and gaps in the existing literature, 

recommendations for future research areas are proposed. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction  

The purpose of this chapter is to review relevant literature on the topic under research. It will not 

only extend the conceptual foundations already laid in Chapter one, but will also help to guide 

the research process, as well as provide a theoretical framework for analysis and interpretation 

of findings. The first section is an overview of traditional methodologies and current trends. The 

second section is an overview of agile methodologies, an in-depth discussion of current trends, 

and a brief articulation of the theoretical underpinnings of agile methodologies from two 

contradictory perspectives. The third section is a critical review on related work, done by other 

researchers. The fourth section is a high level review of software quality models or standards. 

General trends and observations identified from literature, with a particular focus on the adoption 

of agile methods are unpacked in the fifth section. Concluding remarks are then made. 

2.2 An overview of traditional methodologies  

Traditional methodologies of software development are discipline and systematic (Nerur, 

Mahapatra, Mangalaraj, 2005; Jiang and Eberlein, 2009; Saxena and Kaushik, 2013). They are 

based on a series of sequential phases, from feasibility study, requirement elicitation, through to 

design, coding and testing to solution deployment and maintenance. In addition, they also make 

use of enormous amounts of documentation, and are therefore classified as heavy-weight 

methodologies (Nikiforova, Nikulsins and Sukovskis, 2009; Mohammad, Alwada’n, Ababneh and 

Jordan, 2013). As a complement to the forgone definition, traditional methodologies for the 

purpose of this research also refers to any methodology that has been used by the Software 

engineering community prior to the advent or emergence of agile methodologies in 2001. 

2.2.1 Traditional methodologies summary matrix 

There has been a tremendous increase or proliferation of software development methodologies 

since the inception of the computing discipline (Jayaratna, 1994). The proliferation of these 

methodologies has led to confusion in selecting an appropriate methodology for a given situation 

in a non-subjective way (Siau and Rossi, 1998; Avison and Fitzgerald, 2006). According to 

Jayaratna (1994), about 1000 methodologies exist. The approximate number must have 

increased by now. However, this section is not intended to present an exhaustive and 

comprehensive coverage of all of these, but rather to review the ones that have been dominant 

and commonly-used in the Software development process over the years. Dominance and 

popularity amongst software professionals and industry were used as criteria for selection. The 

Waterfall Model, the Spiral Model, the V-Model and the Rationale Unified Process are some of 
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the most common and dominant traditional methodologies (Zhang et al., 2010; Leau, Loo, Tham 

and Tan, 2012) and will be reviewed at a high level in Table 4. A review of these methodologies 

serves two main purposes; firstly, it further clarifies the context of this study, and secondly serves 

as an indispensable reference and theoretical framework for the comprehension of future 

chapters and this study in general. 

# Traditional 

methodology 

Description Reference 

 

1. 

 

The Waterfall 

Model. 

 

 

 

 

 

This is one of the oldest software engineering 

methods postulated by Royce in 1970. It is 

document-driven and made up of sequential 

phases from analysis, design, coding, testing 

and implementation. It has well-defined 

boundaries, and is thoroughly documented, 

with documents generated in previous 

phases serving as input to the next phase. 

 

Royce 1970; 

Sommerville 2007; 

Schach 2010. 

 

 

 

 

2. 

 

The Spiral Model. 

 

Originally postulated in1986 and refined in 

1988 by Barry Boehm. Risk is inherent in any 

development initiative, therefore the Spiral 

Model is an iterative risk-based approach that 

makes use of a proof of concept prototype to 

test feasibility and mitigate risk during each 

phase of the project. The model is spiral in 

nature, with the radial dimensions 

representing cumulative cost and angular 

dimensions representing progress. 

 

Boehm 1988; 

Schach 2010. 

 

 

 

 

 

 

 

 

 

3. 

 

The V-Model. 

 

This model is similar to the waterfall model. 

The process steps do not flow down in a 

linear fashion but bent upward to form a 

typical V. The Model depicts the relationships 

between each phase of the development life 

cycle and its corresponding phase of testing. 

 

Sommerville 2007; 

Zhang et al., 2010. 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Software_testing
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Table 4 : Traditional methodology summary matrix. 

2.2.2 Current state of traditional methodologies  

The key characteristics of traditional methodologies were briefly articulated in Chapter one, 

however, the main overarching feature inherent in traditional methodologies is that they are plan-

based, rigid, and focus on detailed documentation (Sommerville 2007; Khan, Qurashi and Khan, 

2011; Saxena and Kaushik, 2013).The current literature shows these still to be the dominant 

methodologies in use, even though some organisations have started to changeover to agile 

methods (Zhang et al., 2010; Kendall, Kong and Kendall 2012; Moniruzzaman and Hossain, 

2013). 

Several literature sources assert that the dynamics of each development project is unique, where 

no methodology proves itself to be a panacea for all software development problems (Schach, 

2010). Moreover, there are certain projects where traditional methodologies are found to be most 

suitable, whereas agile methods are most suitable in others. For example, traditional 

methodologies are suitable in circumstances where requirements are largely known and fairly 

stable, whereas agile methodologies are suitable in situations where requirements are largely 

emergent and frequently change (Boehm and Turner, 2004; Schach, 2010; Aitken and Ilango, 

2013; Kumar and Bhatia, 2014). Given the uniqueness of software development projects, several 

authors have therefore recommended that it makes sense to identify and incorporate the best 

features of each methodology in any particular software development context (Khan, Qurashi 

and Khan, 2011; Aitken and Ilango, 2013; Saxena and Kaushik, 2013 Kumar and Bhatia, 2014). 

From the above-mentioned review, one can then infer and predict that traditional methodologies 

still have an indefinite life span for the time being and also for the foreseeable future. 

 

4. 

 

The rationale 

unified process 

(RUP). 

 

This is an object-oriented methodology 

originated by Rational Software and now 

owned by IBM. Unlike the Waterfall Model 

which is one-dimensional, it is a two-

dimensional model, with the vertical 

dimension representing the workflows, 

beginning with the requirements workflow, 

through to the implementation workflow, and 

the horizontal dimension representing the 

phases starting from inception, elaboration, 

construction and transition.  

 

 

Schach 2010. 
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2.3 An overview of agile methodologies 

Agile methodologies were created and promulgated in 2001 by a group of experience software 

professionals. They asserted that their methodologies are a better way to develop software 

(Cunningham, 2001). They went further to create a manifesto that details the precise emphasis 

of agile development. Explicitly articulated in the agile manifesto was the view that individuals, 

interactions, working software, customer collaboration, and responding to change, which are all 

agile values, are more valued than processes, tools, comprehensive documentation, contract 

negotiation and following a plan, which are all traditional values. Twelve principles were then 

formulated out of the above-mentioned agile values to form the basis and philosophy of agile 

development (Cunningham, 2001). The following four main factors underpin agile development: 

early customer involvement; iterative development; self-organising teams; and adaptation to 

change (Cunningham, 2001; Saxena and Kaushik, 2013). 

Agile methodologies are therefore based on the idea of developing software in an incremental 

and iterative fashion, whereby phases of the life cycle are revisited over and over using customer 

feedback to ultimately deliver the solution (Szalvay 2004; Sommerville, 2007; Saxena and 

Kaushik, 2013). The rationale behind agile methods is to develop high quality software in a cost-

effective and timely way, while simultaneously meeting changing customer needs (Zhang et al., 

2010).  

2.3.1 Agile methodologies summary matrix 

Unlike traditional methodologies, agile methodologies are relatively new and emerged at the 

beginning of the current millennium (Cunningham, 2001). This section is not intended to give an 

exhaustive and comprehensive coverage of all them, but rather to review the ones that have 

been dominant and have been commonly used in the software development process since the 

inception and promulgation of the Agile Manifesto in 2001. Similar to traditional methodology 

selection in section 2.2.1, dominance and popularity amongst software professionals and 

industry were used as criteria for selection. Extreme programming, Scrum, Lean Development, 

Feature-Driven Development, Dynamic Software Development Method, Crystal Methodologies 

and Adaptive Software Development are some of the most commonly used and dominant of the 

agile methodologies (Dyba and. Dingsoyr, 2008; Rao, Naidu and Chakka, 2011; Pathak and 

Saha, 2013) and will be reviewed at a high level in Table 5.  
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# Agile 

methodology 

Description Reference 

 

1. 

 

Extreme 

Programming 

(XP). 

 

XP is one of the first agile methods proposed 

by Kent Beck. Its main emphasis is on best 

practices of software development that, when 

put together, will form a successful practice. 

The following twelve principles define XP: the 

planning game, small releases, metaphor, 

simple design, testing, refactoring, pair 

programming, collective ownership, continuous 

integration, a forty hour week, on-site 

customers, and coding standards. 

 

Beck 2000; 2003. 

 

2. 

 

Scrum. 

 

Focuses on small teams working together to 

develop software, with an emphasis on 

feedback mechanisms. Releases software 

incrementally, called sprints. Scrum is 

governed by three primary roles, called 

product owners, development teams and 

Scrum master. 

 

 

Schwaber and Beedle, 

2001. 

 

3. 

 

Lean 

Development. 

 

This methodology originated from the 

manufacturing industry and has been adapted 

to accommodate software development. It has 

seven core principles: the elimination of waste, 

the amplification of learning, decide as late as 

possible, delivering as fast as possible, 

empowering the team, building integrity, and 

perceiving the whole.  

 

Poppendieck and 

Poppendieck, 2003. 

 

4. 

 

Feature-Driven 

Development. 

 

Commences by designing an overall model 

and delivers software by features. Claims to be 

suitable for critical projects. Its life cycle 

consists of the following phases: developing 

the overall model; building a list of features; 

 

Palmer and Felsing, 2002. 
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Table 5 : Agile methodology summary matrix. 

 

planning by feature; designing by feature; and 

building by feature. 

 

 

5. 

 

Dynamic 

Software 

Development 

Method (DSDM). 

 

Partitions a project in three phases: pre-

project, project life-cycle, and post project. The 

method is underpinned by the following nine 

principles: active user involvement, 

empowering the project team to make 

decisions, focusing on frequent delivery, 

addressing current business needs, iterative 

and incremental development, allowing for 

reversing changes, high-level scope being 

fixed before project starts, testing throughout 

the lifecycle, and efficient and effective 

communication. 

 

Stapleton, 2003. 

 

6. 

 

Crystal 

Methodologies. 

 

It is a family of human-powered, adaptive, 

software development methodologies. The 

following seven principles underlie the method: 

Frequent delivery, reflective improvement, 

close or osmotic communication, personal 

safety, focus, easy access to expert users, 

technical environment with automated tests, 

configuration management, and frequent 

integration. 

 

Cockburn, 2004.  

 

7. 

 

Adaptive 

Software 

Development. 

 

An adaptive methodology underpinned by the 

following five principles: adaptive culture, 

adaptive frameworks, adaptive collaboration, 

adaptive scale, and adaptive management. It 

is a method that views and accepts continuous 

change as normative. 

 

Highsmith, 2004. 
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2.3.2 Current state of agile methodology adoption 

Agile methodologies represent a major deviation from conventional, plan-based approaches to 

software development (Highsmith, 2002; Dyba and Dingsoyr, 2008a; Bhasin, 2012). They all 

emphasise the idea of flexible, speedy, incremental and iterative development (Larman and 

Basili, 2003; Larman, 2004; Zhang et al., 2010; Rao, Naidu and Chakka, 2011; Saxena and 

Kaushik, 2013). 

 
The current literature shows that agile methods are increasingly becoming more popular as the 

number of organisations shifting to agile methods increases (Schwaber, Leganza and D’Silva, 

2007; Salo and Abrahamsson, 2008; Zhang et al., 2010; Esfahani, Yu, and Annosi, 2010; Laanti, 

Salo and Abrahamsson, 2011). 

Despite the growing number of organisations shifting to agile, several studies have found that 

there are many problems, impediments and difficulties encountered with agile adoption as well 

as putting the proposed benefits into practice (Barlow et al., 2011; Leau, Loo, Tham and Tan, 

2012; Prause and Durdik, 2012; Asnawi, Gravell and Wills, 2012; Pathak and Saha, 2013; 

Twidale and Nichols, 2013). Some organisations adopt these methodologies to gain a 

competitive advantage, while others are still sceptical as to whether agile development is 

beneficial (Barlow et al., 2011), or as to whether the benefits of agile outweigh the cost (Ambler, 

2008; Selic, 2009). 

 

The just discussed contradictory perspectives about agile adoption are an interesting trend that 

remains to be monitored. From the researcher’s viewpoint the complete phasing out of traditional 

methods by agile ones seems unlikely. One can only predict with some degree of certainty a 

compromise situation, where the two methods will complement one another. 

2.3.3 Theoretical underpinnings of agile methodologies 

Several authors have attempted to trace the roots of agile methods, with some asserting that 

their principles and practices have been in software development since the 1960s (Merisalo-

Rantanen, Tuure and Matti, 2005). Similarly, Meso and Jain, (2006) also found that agile 

practices have been previously employed in complex adaptive systems.  

Conboy and Fitzgerald (2004) described agility as comparable to flexibility and leanness in other 

disciplines, by referring to agile manufacturing and Lean development as examples. Jian and 

Eberlein (2009) have asserted that the idea of incremental development and delivery employed 

by most agile methods can be traced back to the 1930s, when a quality expert used such a 

method at Bell labs to enhance product quality (Larman and Basili, 2003). Gladden and Gilb had 
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long proposed the practice of delivering working software early, to address the late delivery 

phenomenon that leaves the customer dissatisfied (Gladden, 1982; Gilb, 1985).  

Jian and Eberlein (2009) conducted a study on the historical links of traditional and agile 

methodologies from three perspectives, namely; practices, principles and technological contexts. 

They concluded that there is significant evidence that practices used in both traditional and agile 

methodologies have historical links and that many practices in both methodologies have roots in 

other disciplines, as well as in traditional engineering. 

However, despite the forgone commentary, sceptics argue that the Agile Manifesto principles are 

insufficiently grounded in theory (Conboy and Fitzgerald, 2004), particularly management theory 

and philosophy. Furthermore, they assert that a universally accepted definition of agility is non-

existent and that given such vagueness and diverse interpretations, it becomes a daunting task 

trying to draw meaningful conclusions from their use. Hummel (2014) conducted a systematic 

review on agile methodologies and concurred with the view that an agreed upon definition of 

agility is not readily observable. Aitken and Ilango (2013) also agree that there is no clear or 

agreed upon definition of the agile paradigm. Hummel (2014) further advised that research based 

definitions should be used in order to enable better comparison of studies, instead of referring to 

the Agile Manifesto (as most authors do), which consists of untested principles and practices 

with no solid theoretical basis. Dingsoyr, Nerur, Balijepally and Moe (2012) also concluded after 

their study on agile methodologies that they lack theoretical underpinnings, adding that not 

enough attention is being paid to the theoretical foundations of agile when investigating them. 

They then urged agile researchers to embrace a theory-based approach in their research 

agendas. They argued that theory-driven research helps to separate true innovations from 

reinventions and remixes of old approaches.  

2.4 Related work and critical review 

Some related studies have reported that agile methodologies do improve product quality, 

although some studies have been inconclusive, and others have been contradictory (Dyba and 

Dingsoyr, 2008). With this contradiction of viewpoints, controversy, turmoil and speculation 

regarding the perceived benefits of agile development, a case to further research agile 

methodologies is built because their creation and adoption has largely been driven by consultants 

and practitioners. (Abrahamsson, Conboy and Wang, 2009; Hummel, 2014).  

A comparative analysis between the Waterfall model and Agile methodologies by Huo, Verner, 

Zhu and Babar (2004) concluded that firstly, agile methods do have quality assurance (QA) 

capabilities built into the development process, and secondly, that the frequency with which these 

http://scholar.google.co.za/citations?user=_XdPL8oAAAAJ&hl=en&oi=sra
http://scholar.google.co.za/citations?user=S0Zh5nMAAAAJ&hl=en&oi=sra
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QA activities occur are more frequent than in the Waterfall Model, and lastly, that these activities 

do occur very early in the development cycle. This was merely an analysis and subjective opinion 

of the authors, and was never an empirical study. 

Bhasin (2012) undertook a study seeking to understand the relation between agile methods and 

software quality, in terms of the development factors of code quality, technical debt, defect level, 

stability; and the customer factors of cycle time, defect density, outage reduction and customer 

satisfaction index. At the end of the paper, a conclusion was drawn that agile methods have built-

in quality management capabilities. It was not apparent how this conclusion was arrived at, or 

what it was based on, because the study did not provide any data. Secondly, there was no 

mention of the quality factors that the study sought to investigate. 

Mnkandla and Dwolatzky (2006) also conducted a similar study, introducing an innovative 

technique in order to determine which factors of software quality are improved by the use of agile 

methods. They identified certain agile activities and linked them to be responsible for specific 

software quality attributes. The tool was validated using Extreme Programming and Lean 

development as agile methods. Their findings suggested that agile methodologies do improve 

software quality with respect to the following parameters: compatibility, cost-effectiveness, ease 

of use, correctness, efficiency, extendibility, integrity, maintainability, portability, reusability, 

robustness, timeliness, verification and validation. This study was merely an expert analysis, 

evaluation and contribution. Generalisations cannot be made, because no rigorous research 

method was employed. 

Ahmed, Ahmad, Ehsan, Mirza and Sarwar (2010) concluded after a quantitative study that 

knowledge sharing, active stakeholder participation, self-organising teams, reduced 

documentation, responding to change, team size, flexible designs and training are some of the 

key attributes of agile methods that impact positively on productivity and the quality of the finished 

product. They turn around and argued that enough documentation should be available for future 

maintenance purposes. This is a counter argument for one of the core values of agile advocates, 

who argue that the creation of documentation should be minimised. Furthermore, the study did 

not acknowledge the limitations of the research, and particularly, did not address how they 

attempted to isolate or mitigate other factors that might have distorted the study outcome. 

Moreover, the specific quality criteria of software that were improved also remained 

unmentioned. In addition, the inclusion of ‘training’ of professionals as an agile attribute in the 

study is both surprising and concerning, because it is not exclusively an agile construct. It is a 
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well-known fact that training of professionals always has a positive correlation with productivity 

and quality. 

In an agile conference research paper by Abbas, Gravell and Wills (2010), the authors concluded 

that organisations with more agile experience are doing better with regards to project success 

and code quality. This suggests that benefits are only realised when organisations have gained 

enough maturity using agile methods. Moreover, the definition of project success was never 

provided. It was left for the respondents and the reader to interpret what constitutes project 

success, making the outcome of the research doubtful. 

From a code quality perspective, the above study by Abbas et al. (2010) is similar to a quantitative 

study undertaken by Santos et al. (2011), who concluded that agile methods can contribute to 

quality in three aspects: greater staff involvement; agile management of requirements proposed; 

and the code developed. Further to this, Rao et al. (2011) noted that developers stressed the 

following reasons for adopting agile methods: adaptability to change, short time frame of 

releases, continuous feedback from customer, high quality and fault free software.  

The forgone two studies (Abbas et al; 2010; Santos et al, 2011) concluded that code quality can 

improve with the use of agile methods. Code quality is only one software quality attribute, and 

does not necessarily translate to overall software quality. Software quality is a multifaceted 

concept that needs to be dissected (Delone and McLean, 1992). 

Other studies have produced different results. An empirical study by Bonner, Teng and Nerur 

(2010) confirmed the proposal that agile development leads developers to believe that they are 

less complex, much more compatible, and lead to increased benefits. These are the beliefs that 

influence them to likely accept agile methodologies. This study contrasts with a review of 17 

companies, where developer fear of skill deficiency exposure was proposed as one of the 

difficulties faced when implementing agile methodologies (Pathak and Saha, 2013). 

Sfetsos and Stameos (2010) carried out a systematic literature review on 46 empirical studies 

on agile methodologies. One of their main research objectives was to ascertain the current 

knowledge on quality issues in agile practices. Their main finding was that pair programming 

improves code and design quality. A misalignment is observable in their study between the study 

objectives and findings, because the study objective was to study quality issues in agile methods 

in general. Conspicuously, the study only concentrated on Pair Programming and Test-Driven 

Development, which are both XP practices (Beck, 2003). In addition, the specific criteria that was 

used to ascertain that design quality is improved was never disclosed. ‘Improved design quality’ 

http://scholar.google.co.za/citations?user=_XdPL8oAAAAJ&hl=en&oi=sra
http://scholar.google.co.za/citations?user=_XdPL8oAAAAJ&hl=en&oi=sra
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is so vague an assertion. Moreover, construct validity also comes under the spotlight here, 

construct validity is concern with whether the researcher is measuring the right variables under 

study via the questions in the questionnaire or is the study measuring what the researcher thinks 

it is measuring (Oates, 2006). The fact that the study was supposed to measure agile practices 

in general in relation to quality but only focused on XP practices means construct validity issues 

were not well addressed.  

Kendall, Kong and Kendall (2012) carried out a study on the impact of agile methodologies on 

information system (IS) quality, they constructed a conceptual model adapted from Delone and 

McLean’s model of IS success (2003). They disintegrated software quality into system and 

information quality (Delone and McLean, 1992). The authors found that the use of agile 

methodologies firstly affects internal performance, and indirectly affected the quality of the 

software product. Finally; they did not conclude explicitly and concisely that the use of agile 

methodologies improved system and information quality. This was obscured from their 

conclusion. 

Schmidt, Srinivasa and Heymann (2014) conducted an empirical investigation seeking to 

understand the perceived benefits of agile software engineering practices. From the research 

context, two case studies from SAP were used as the research strategy. As with most studies, 

they also concentrated on pair programming and tested automation as agile practices. Software 

quality was categorised into external and internal quality (ISO/IEC 9126, 2001). External quality 

was measured firstly by quality in general and second by reported defects. Internal quality was 

measured by application programming interface (API) quality, modularity and understandability. 

They went further to survey about 200 software professionals, mainly developers. They 

concluded that agile software practices have a positive effect on quality and efficiency of 

development teams. This study was only carried out on SAP, which is an enterprise resource 

planning (ERP) system. It was not also carried out on in-house developed systems, or a complex 

system from scratch, and therefore, generalisations cannot be made. Conspicuously, same as 

several studies, it only concentrated on XP practices. Furthermore, developer’s responses were 

based on subjective self-assessments of their code, which introduces bias and potentially distort 

the results. Moreover, most of the variables used in the study, for example, quality in general, 

API quality, modularity and understandability were not defined, leaving room for ambiguous 

interpretations. 

Dyba and Dingsoyr (2008a) conducted a systematic review of 36 empirical studies on agile 

software development. Some of the results relating to the quality of the product when agile 
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methods are used were contradictory. They also found that some of the studies reported an 

increase in code quality when agile methodologies are used, but concluded that none of the 

studies had an appropriate recruitment strategy to ensure the comparison was not biased. Still, 

on the systematic review undertaken by Dyba and Dingsoyr (2008a) on empirical studies of agile 

software development, they frequently found that methods were not well or properly described, 

validity, reliability and bias issues were not always addressed, data collection methods and 

analysis were not explained well. None of the studies got a full score on the assessment criteria 

just stated. 

Hummel (2014) conducted a systematic literature review in the field of agile information system 

development, encompassing 482 papers. Building and extending on previous reviews, the author 

found that most of the research methods employed where qualitative and recommended that 

more confirmatory quantitative studies are needed to corroborate previous or initial findings. He 

also uncovered that the theoretical underpinnings of agile methodologies are lacking. 

With this study, the researcher did everything possible to employ a structured and rigorous 

research methodology. Validity, reliability and bias issues have been addressed to the best ability 

of the researcher, though it is not practically possible to address all of them. The data collection 

methods and analysis have been explained in a way that the reader can audit the process for 

transparency, objectivity and credibility.  

While acknowledging and paying credit to previous related research, the following shortcomings, 

or gaps were summarily identified in the current literature; firstly, empirical studies that concluded 

that the use of agile methodologies leads to improved product quality did not explicitly state which 

software quality metrics were used. Secondly, the reviewed studies were mostly carried out in 

small isolated settings, and no global study was found at the time of writing this dissertation. 

Thirdly, the software quality attributes that this study has employed as the dependent variables 

have not been used before with agile and traditional methodologies as the independent variables. 

Dependent and independent variables in this research are mathematically defined by the 

following equation: 

Agile or traditional methodologies (Independent variables) = Software quality parameters     
                                                                                                      (Dependent variables).              
 
This study has focused on the above discussed gaps and limitations with previous studies in the 

following ways: firstly, the software quality metrics that have been used to investigate their 

relation with agile and traditional methodologies have been identified and defined. Secondly, it 
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has been carried out on a local and global scale, and lastly, at the time of writing this dissertation, 

no prior study of this nature was found.  

2.5 High-level review of software quality models 

Since this study is about software quality, the researcher saw it worthwhile or necessary to 

include a brief high level review on software quality models and standards. The proliferation of 

software quality models or measures has been ubiquitous. All these models broadly fall into one 

of the main categories discussed in the next paragraphs even though hybrid variants exist 

(Ferenc, Hegedus and Gyimothy, 2014). 

2.5.1 Software process quality models 

This category focuses on the development process rather than the product. The rationale behind 

these models is to measure and improve the software development process with a goal of 

ultimately improving the quality of the product (Schach 2010; Ferenc et al.,2014). Typical and 

popular examples include Capability Maturity Model (Chrissis, Konrad and Shrum, 2003), Project 

Management Maturity Model (Farrokh and Mansur 2013) and ISO 9000 series (Schach,2010).  

These models have the following shortcomings; firstly, most maturity models are staged models 

in the sense that their adopters will need to progress from one maturity stage to another 

satisfactorily in order to reach an optimal maturity level. This takes time and does not happen 

overnight (Schach 2010, Farrokh and Mansur 2013). Secondly, most of the models have definite 

key performance indicators(KPIs) that organisations need to improve upon. This makes them not 

flexible or scalable enough for organisations that wish to improve only a subset of their processes 

(Farrokh and Mansur 2013). 

2.5.2 Software product quality models  

This category of models focuses on the product. These class of models measure the software 

product itself. Early examples of this kind of models include the McCall’s quality model (McCall, 

Richards and Walters,1977) Boehm’s quality model (Boehm, Brown, Kaspar and Lipow,1978) 

and Dromey’s quality model (Dromey 1995). The main challenge with these models was that 

there were too theoretical by design and complicated to practically apply (Ferenc et al., 2014). 

 

The next subset of models focusing on the product are called Metrics-based Empirical Prediction 

models. These sub-class of models are much more practical relative to the McCall, Boehm and 

Dromey’s early quality models and use software metrics as quality predictors (Ferenc et al., 

2014). Typical examples include the Univariate Linear Regression Analysis model (Zhou and Xu 
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,2008) and the Bayesian Network model (Koten and Gray,2006). One major drawback with these 

models is that they only focus and use maintainability as a quality predictor (Ferenc et al., 2014). 

The final subcategory of models focusing on the product are called Practical quality models. 

These are models that are directly applicable for evaluating the quality of software systems 

(Ferenc et al., 2014). 

Typical examples include the Quamoco quality model (Wagner et al., 2012) and the SQUALE 

quality model (Mordal, Anquetil, and Laval, 2013). 

The major weakness identified with all the quality models reviewed in this section is that their 

correctness and accuracy has not been validated (Singh and Kannojia,2013; Ferenc et al., 2014). 

Further research is therefore needed in this area. 

2.6 Trends and observations identified from literature 

From the prior review, there is ample evidence that there is still a great deal of pandemonium, 

scepticism and contradiction regarding the perceived benefits after the adoption of agile 

methodologies. Most studies have reported that agile methods work very well in small 

environments or projects (Dyba and Dingsoyr, 2008a; Barlow et al., 2011; Saxena and Kaushik, 

2013), but empirical evidence of their success in general and in large environments remains 

scarce (Abrahamsson, Oza and Siponen, 2010; Barlow et al., 2011). Furthermore, it was also 

observed that most of the studies are carried out in small, isolated settings, in the form of case 

studies or surveys (Barlow et al., 2011). Very few studies have been carried on a large scale 

(Barlow et al., 2011), and no global study was found at the time of writing this review raising 

questions as to the external validity of results. Another glaring observation was that studies 

focusing on software quality tend not to explicitly state the quality criteria used or use different 

quality criteria, making comparisons difficult. This is understandable, given the implicit ambiguity 

of the concept of quality. Another trend identified was that most of the studies tend to focus on 

few familiar agile methods, which are Extreme programming and Scrum (Dyba and Dingsoyr, 

2008a; Dingsoyr et al., 2012; Hummel, 2014) and at the end all-encompassing and broad 

conclusions are made (Laanti, Salo and Abrahamsson, 2011). In addition, evidence from 

literature showed that existing software quality models have not been validated for correctness 

and accuracy. Lastly, some of the conclusions are unclear and end up not saying anything 

concrete, or use obscurant or arcane language, making it difficult for the reader to actually discern 

the research outcome.  
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2.7 Conclusion 

This chapter reviewed relevant literature on traditional and agile methodologies, highlighting 

current trends. The theoretical foundations of agile methods were also briefly reviewed, from two 

conflicting views. Limitations, flaws, gaps and shortcomings in prior related work were uncovered. 

The gap that this study will close, or how it will fit to what has already been done, was also 

articulated. Current trends and observations showed that most quality-related studies 

concentrated on three XP practices, namely pair programming, refactoring, and test-driven 

development (Sfetsos and Stameos, 2010; Dingsoyr et al., 2012; Schmidt, Srinivasa and 

Heymann, 2014). Secondly, quality criteria used in several studies are not explicitly stated, and 

lastly, most studies are carried out in small isolated settings. From a quality enhancing 

perspective on agile methodologies, it was apparent that conflicting views still exist, with no 

apparent consensus having yet emerged. To this end, there is sufficient premise to further 

research on agile methods. 
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CHAPTER 3: RESEARCH DESIGN AND METHODOLOGY 

3.1 Introduction  

Research design and methodology is a systematic blueprint of how the research process will 

unfold. It encompasses the plan, methods and strategies of inquiry and underlying assumptions 

that underpin the research process, as well as dissemination of findings. This chapter is made 

up of four sections. Section one briefly articulates the main research paradigms, purpose, modes 

of reasoning and approaches. It justifies the rationale for the use of positivism, explanatory 

research, quantitative approach and deductive mode of reasoning in this study. Section two 

unpacks the research strategy and data collection method. Section three explicates succinctly 

how data analysis and interpretation was done. Section four addresses validity issues and ethical 

considerations followed by concluding remarks.  

3.2 Philosophical paradigm  

This research is based on positivism, which posits that the world exists externally and can be 

objectively measured (Knox, 2004). It is associated with the Scientific method, which assumes 

that firstly, the world is structured, regular and not random, and secondly, that the world can be 

investigated objectively (Oates, 2006). Therefore, the idea behind this study is to try as much as 

possible to objectively measure the impact of agile methods when compared to traditional 

methods on selected software quality parameters. Paradoxically, quality is such an elusive, 

subjective concept, and difficult to define as already alluded in Chapter one. 

A research approach can either be quantitative, qualitative or mixed (Creswell, 2003). With 

regards to broad research approaches, Newman and Benz (1998) have asserted that current 

discourse places less emphasis on the distinction between qualitative and qualitative 

methodologies, but is rather concerned with the way in which studies tend to lie somewhere in a 

continuum between the two. The authors contend that quantitative and qualitative methods 

represent an interactive continuum, rather than a dichotomy or bipolar opposites, arguing that 

the distinction between quantitative and qualitative approaches is an illusion, and can be 

misleading (Newman and Benz, 1998).  

Onwuegbuzie and Leech (2005) also contend that quantitative methods are not necessarily 

positivist, nor are qualitative methods necessarily hermeneutic (Sieber, 1973; Cook and 

Reichardt, 1979; Daft, 1983; Miller and Fredericks, 1991). 

As alluded to by Creswell (2003), Phillips and Burbules (2000) define a quantitative study as that 

which develops true and relevant propositions that serve to explain a situation or phenomenon 



  
 

30 
 

of concern by making use of variables. In quantitative studies, the researcher postulates 

relationships between variables in the form of a research question or hypothesis, and either 

refutes or confirms them after collecting and analysing the data. This study fits the quantitative 

paradigm perfectly and is therefore quantitative in nature. 

However, on the other hand, the qualitative approach involves the study of information systems 

in a social context, where the unpredictability of human beings comes to bear, meaning that there 

is an element of interpretivism (another contrasting philosophical paradigm) implicit in such 

studies. Interprevitism in IS research seeks to investigate the social context of information 

systems i.e. the social processes involved in their development, how they influence people, and 

how people in turn influence social processes in their social setting (Oates, 2006). Interpretivist 

researchers argue that there is no such thing as an objective, real world, or a single truth, and 

argue that there are multiple subjective realities and that everything in the world including 

positivism itself is a social construction engineered by researchers over time (Oates, 2006). 

Interpretivist researchers therefore argue that reality is subjective, and that people perceive it 

differently.  

Positivism thus postulates that reality is given, while interpretivism argues that reality is a social 

construction. Despite the forgone controversial and contradictory philosophical perspectives, this 

research adopted the approach of philosophical singularism, namely positivism. 

3.2.1 Research purpose 

Saunders, Lewis and Thornhill (2009) asserted that the way a research question is framed will 

lead to descriptive, exploratory or explanatory answers (research). Exploratory research seeks 

to determine what is unfolding; trying to find new insights and ask questions to evaluate a 

phenomenon from a new perspective (Robson, 2002). It proves to be a particularly useful means 

of clarifying ones understanding of a problem. Descriptive research seeks to articulate an 

accurate profile of persons, events or situations (Robson, 2002). Explanatory research, as 

another apex of the triangle, seeks to establish relationships between variables. It concentrates 

on the study of a problem, situation or phenomenon, with the goal of explaining the relationships 

between variables (Saunders, Lewis and Thornhill, 2009). This research aims to comparatively 

investigate the impact of agile and traditional methodologies on software quality parameters, and 

is therefore explanatory in nature. 
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3.2.2 Research approach 

As introduced, two broad research approaches exist, namely quantitative and qualitative. 

Quantitative research, also known as empirical research strives to answer questions about 

relationships between independent and dependent variables (Saunders, Lewis and Thornhill, 

2009) and is used to collect and analyse data, from which statistical analysis can be performed 

to interpret the data and draw conclusions (Oates, 2006). Qualitative research, on the other hand, 

collects data that is analysed using interpretive methods (Saunders, Lewis and Thornhill, 2009). 

A distinction between the two types of approaches is summarised in Table 6. 

# Quantitative Qualitative 

 

1. 

Based on meanings derived from 

numbers. 

Based on meanings expressed through words. 

2. Numerical and standardised data is 

collected. 

Non-standardised data is collected requiring 

classification into categories and themes. 

3. Statistics and models are used for 

analysis of data. 

Conceptualisation is used for analysis of data. 
 

Sources:  Adapted from Dey (1993); Healey and Rawlinson (1994). 

Table 6 : Distinction between quantitative and qualitative research. 

This study leans more towards the quantitative end of the interactive continuum between these 

methods (Newman and Benz, 1998) and was chosen for the following advantages (Oates, 2006): 

 Analysis of quantitative data is based on well-established scientific and 

mathematical techniques. 

 Quantitative data can easily be analysed using software applications. 

 Quantitative research is suited to generalisations. 

 Using standard approaches, quantitative studies can be replicated longitudinally 

over time to produce comparable findings. 

 In addition to the strengths highlighted above, the researcher found it much more 

convenient and relevant to employ a quantitative approach for this study because of 

the nature of the research question. 

 

On the contrary, quantitative research presents the following limitations (Oates, 2006): 

 There is a tendency to perform more sophisticated statistical analysis on the data 

using personal computers, without understanding them properly, and at the expense 

of the original research question. 

 The analysis can only be as good as the data initially collected. 
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 By focusing too much on numbers, non-quantitative aspects of the research may be 

missed. 

 The data is self-reported, and many decisions taken by the researcher can influence 

the research outcome in a negative way. 

3.2.3 Modes of reasoning 

Conventionally, two modes of reasoning exist. Deductive and inductive (Mouton, 2005). 

Deduction, which is associated with the Scientific method, is a form of logic that draws 

conclusions from other premises or statements that follow from such premises. Simply stated, it 

draws conclusions from a particular case based on the general, i.e. using a top-down approach 

(Mouton, 2005). Induction is a form of reasoning that works from the specific to the general, i.e. 

using a bottom-up approach. With inductive reasoning, conclusions are drawn based on an 

observation (Mouton, 2005). The mode of reasoning and reasoning assumption or logic 

underpinning this research is deduction. 

3.3 Research strategy 

The nature of the research question for this study dictated a correlational as well as a causal 

comparative design, which could easily be answered with a questionnaire and survey, to meet 

research objectives. Both correlational and causal research seek to study relationships among 

variables, but neither allows for the actual manipulations of the variables (Gay, Mills and Airasian, 

2009). The key difference between the two is that correlational involves the researcher trying to 

establish relationships among variables in one group, while causal comparative research needs 

at least two or more groups (Gay et al., 2009). Causal comparative research is a kind of non-

experimental set of methods that seeks to understand cause and effect between different groups 

(Fraenkel and Wallen,1993), and “involves selecting two or more groups that differ on a particular 

variable of interest and comparing them on another variable or variables” (Fraenkel and Wallen, 

p.321).  

These distinctions are summarised in Table 7. 

# Correlational design Causal comparative design 
 

1. Does not involve an attempt to 
understand cause and effect. 

Attempts to infer causation. 

 
2. 

 
Two or more variables. 

 
At least one independent variable. 
 

 
3. 

 
One group. 

 
Two or more groups. 
 

Table 7 : Correlational vs Causal comparative design matrix. Adapted from Gay, Mills and Airasian (2009). 
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This study seeks to comparatively study the impact of agile and conventional methodologies on 

selected software quality parameters, and is therefore correlational, as well as causal-

comparative in nature, because two groups are involved. These comparison groups (traditional 

and agile) are, according to Gay et al. (2009), selected because they differ in some aspect, 

characteristic or experience (i.e. software quality), or the two groups differ in the amount of 

Characteristic that they share. Furthermore, these groups are already in existence before the 

researcher arrives, when the alleged cause and effect have already occurred (Gay et al., 2009). 

 

As already mentioned to earlier, a structured questionnaire was developed and the target 

audience surveyed. Questionnaires are mostly associated with the quantitative approach. The 

survey strategy is inextricably linked to the philosophical paradigm of positivism (Oates, 2006).  

Surveys are noted as being particularly useful in collecting data about behavioural aspects that 

are difficult to observe (Abbas et al., 2010). They are one of the main research strategies used 

in IS research. The survey strategy was selected for this study because surveys have the 

following strengths (Oates, 2006): 

 Generalisations are likely to be made because a representative sample of the 

population was employed. 

 The researcher found them to be cost effective, making it easy to collect data 

relative to other strategies. 

 The data collected was easily analysed, using statistical computer applications. 

 Survey research like this one can be subjected for further testing, leading to 

corroboration or refutation of findings. 

 The nature of the research question dictated a correlational as well as a causal 

comparative design which could easily be answered with a survey. 

 

Despite these advantages, the following limitations of surveys must be acknowledged (Oates, 

2006): 

 They tend to focus only on numbers therefore ignoring important non-qualitative 

data. 

 They are weak at establishing the causal relation as experiments do, but 

nonetheless show associations or correlations. 

 Surveys only provide a static picture at a particular point in time, and do not 

examine on-going dynamic processes. 
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 With non-self-administered surveys as in the case of this study, the researcher 

cannot judge the accuracy of the audience responses by observing their body 

language. 

 With online-administered surveys such as this one, the researcher has no 

opportunity to probe or ask follow up questions to gain new insight. 

3.3.1 Data collection method and sampling frame 

Data was collected by designing a structured questionnaire that addresses the variables to be 

investigated. The sample frame was IT practitioners, comprising mainly, but not exclusively, 

project managers, business analyst, system analyst, architects, developers, product managers, 

software test analysts, consultants and business stakeholders, who have worked in both agile 

and traditional environments. Two data collection strategies were employed namely, online 

placement of questionnaire via a link and distribution via email. 

3.3.1.1 First data collection strategy 

After seeking permission from the group managers, the survey was firstly placed online via a link, 

courtesy of SurveyMonkey for a period of three months to three online professional groups.  

The first group was an IT business analyst professional community within LinkedIn, a 

professional networking site. The group has a global presence, with a membership of 65546 

members at the time of this study. It is an open community of Business Analysts including other 

IT professionals from different specialist areas.  

The second group was an Agile business analyst professional community within LinkedIn, which 

is a professional networking site. The agile group has a global presence, with a membership of 

24,663 at the time of writing this dissertation. It is open to anyone practicing agile methods, or 

interested to know what is going on in the agile space, and is made up of IT practitioners and 

business managers in different specialist areas. 

The third group was a Project management office (PMO) group, also within LinkedIn. This group 

is mostly made up of project managers. It has a global presence with a membership of 72,670 at 

the time of writing this dissertation.  
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3.3.1.2 Second data collection strategy 

The second data collection strategy was realised by distributing the questionnaire link via email 

to a group of between 150-200 IT practitioners in South African organisations, comprising mainly 

but not exclusively, project managers, business analysts, system analysts, architects, 

developers, product managers, consultants, business stakeholders and software test analysts. 

3.3.1.3 Sampling frame 

The sampling type used with both data collection strategies was clustered sampling, which uses 

the fact that instances of the research population of interest might naturally occur together in 

clusters (Oates, 2006). The first cluster group was the global online IT/Agile business analyst 

and PMO group. The second cluster group was the IT practitioners in South African organisations 

that were surveyed.  

3.3.2 Questionnaire design 

As already mentioned in the prior section, a structured questionnaire was developed and 

administered to the target audience. The questionnaire was made up of two sections. Section A 

was meant to capture background information about respondents. Section B was meant to 

capture data about System and Information quality of a software product.  

3.3.3 Key agile and traditional methodologies group characteristics  

In causal comparative designs, the groups are selected because they differ in the characteristics 

they share, or the two groups differ in the characteristics they share to different extents (Fraenkel 

and Wallen, 1993; Gay et al., 2009; Gall, Gall, and Borg, 2007).This design “involves selecting 

two or more groups that differ on a particular variable of interest and comparing them on another 

variable or variables” (Fraenkel and Wallen, p.321).The assertion just stated is analogous to the 

situation of this study. Agile and traditional methodologies already differ with respect to software 

quality, and are being compared in this case with respect to other variables (documentation size, 

system architecture design, customer involvement extent, nature of requirements and project life 

cycle model).The key distinctions in Table 8 between agile and traditional methodologies, were 

postulated by leading, prominent and pioneer agile advocates (Highsmith and Cockburn, 2001; 

Boehm, 2002; Boehm and Turner, 2005; Wysocki, 2009, 2011). 
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# Project 
characteristic 

Traditional 
 

Agile Reference Applicable 
Question 

1. Documentation 
size. 

Enormous and 
detailed 
documentation 
produced. 

Minimal 
documentation 
produced. 

(Boehm and 
Turner, 2005; 
Pathak and Saha 
2013) 

15, 16, 17 
and 18. 

2. System 
architecture 
design. 

Design for current 
and future 
requirements. 

Design for only 
what is presently 
essential. 

(Boehm, 2002; 
Wysocki, 2009; 
2011) 

19 and 20. 

3. Customer 
involvement 
extent. 

Customer 
involvement is low 
and passive. 

Customer is 
onsite, and 
considered to be 
team member. 
Customer 
involvement is 
active and 
proactive. 

(Highsmith and 
Cockburn, 2001; 
Pathak and Saha 
2013) 

21,22,23,24
,25 and 26 

4. Nature of 
requirements. 

Knowable early, 
largely stable, 
clearly defined 
and documented. 

Emergent, rapid 
change, unknown 
and discovered 
during the project. 

(Boehm, 2002;  
Boehm and Turner, 
2004) 

27. 

5. Project life cycle 
model. 

Linear/sequential 
model. 

Evolutionary, 
incremental and 
iterative model. 

(Charvat, 2003;  
Nerur,Mahapatra, 
and Mangalaraj, 
2005) 

28 and 29. 

Table 8 : Key agile and traditional group characteristics. 

3.3.4 Correlational and causal comparative design model  

A causal comparative design involves the following steps (Johnson and Christensen, 2010): 

3.3.4.1 Involves comparing two or more groups on a single endogenous (internal) 

variable (software quality with this research, see step 1 of figure 2) 

3.3.4.2 The key characteristics that distinguish these groups are exogenous (external) 

variables (project characteristics with this research, see step 2 of figure 2). 

3.3.4.3 Groups that differ on exogenous (external) variables of interest are selected  

(agile and traditional methodologies, see step 2 of figure 2) 

3.3.4.4 Thereafter, the groups are compared by looking at an endogenous variable that 

might be influenced by an exogenous variable (see step 3 of figure 2). 

3.3.4.5 Next, collect data using a reliable instrument (see step 4 of figure 2). 

3.3.4.6 Finally, analyse, interpret data and disseminate findings (see step 5 and 6 of 

figure 2). 

The design elaborated above is depicted at a high level in Figure 2. 
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End

Groups selected because 

they differ on one 

endogenous(internal) 

variable. In this case 

Software quality:

    Ease of maintenance

    Ease of testing

    Ease of system training

    Ease of system learning

    System architecture 

robustness

    Portability

    Ease of use

    Ease of customization

    Ease of navigation
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    Error message 

comprehensibility 

    System help facilities

    System correctness

    Timeliness

    System completeness

StartStep 1

Traditional 

methodologies

Identify characteristics that differentiate 

between traditional and agile methodologies 

(Exogenous(external) variables)

 Documentation size 

    System architecture design

 Extent of customer involvement 

 Nature of requirements

 Project life cycle model

Agile 

methodologies

The world of Software development 

methodologies

Step 2

Try to ascertain which exogenous(external) variables 

might influence  an endogenous(internal) variable

Step 3

Data collection via a survey with a structured 

questionnaire

Step 4

Descriptive and inferential 

statistics
Disseminate findings

Step 5 Step 6

?????????

 
 

Figure 2 : Correlational and Causal Comparative Design Model. 
 

3.3.5 Question formulation 

All questions measuring software quality (see section 7 question15 to 29) were derived by cross 

tabulating system parameters and project characteristics as informed or underpinned by the 

causal comparative design (see section 3.3.3 and 3.3.4 for an explanation as well as figure 2). 

The question formulation template is depicted in the contingency below (see table 9) followed by 

the steps taken to actually derive the questions. A contingency table is essentially used to analyse 

and record the relationship between two or more categorical or nominal variables(Olivier,2009). 

System quality parameter under consideration=A 

 

B=Software development 

paradigm 

 

C=System developed using 

traditional methodology 

 

D=System developed using 

agile methodology 

 

E=Project characteristic under 

consideration 

 

F=Characteristic X 

 

G=Characteristic Y 

 

Table 9 : Question formulation template matrix 
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3.3.5.1 Between agile and traditional methodologies, the particular quality criteria that the 

researcher is interested in is identified, hence A gets populated (see step 1 of 

figure 2). 

3.3.5.2 Having identified agile and traditional methodologies as two different software 

development paradigms, cell B, C and D gets populated. 

3.3.5.3 The two paradigms mainly differ with respect to project characteristics, hence cell 

E gets populated with the particular project characteristic under consideration eg 

documentation size or project life cycle model (see step 2 of figure 2). 

3.3.5.4 Given a particular project characteristic, agile and traditional methodologies differ 

on this characteristic to different extents, hence cell F and G gets populated (see 

table 8). 

3.3.6 Questionnaire approval 

The information and consent note that were released with the questionnaire were reviewed and 

approved by the Ethical clearance committee of the School of computing at UNISA. It was then 

piloted and feedback incorporated prior to dissemination to the target audience. 

3.4 Data analysis and interpretation 

Data analysis is the process of mining the data to find meaning or information, using statistical 

techniques (Coronel, Morris and Rob, 2009). It is a structured process, which entails looking for 

patterns, discrepancies, associations and relationships within the data, from which conclusions 

can be deduced. Owing to the quantitative nature of this study, data capturing and coding, as 

well as descriptive and inferential statistic techniques were employed to analyse the data. 

3.4.1 Capturing and coding 

After collecting the data, it was captured in an excel spread sheet using pre-defined codes. The 

rationale for coding the data is to make it easier to enter in a computer, with fewer errors, so as 

to be able to perform a quantitative analysis (Oates, 2006). The following guidelines were used 

to design a coding scheme: codes were mutually exclusive i.e. no overlap between codes; the 

codes were exhaustive i.e. covering all predefined options; the codes were consistently applied; 

and codes for missing values were also included (Oates, 2006). Thereafter, the data was 

checked for mistakes, corrections and cleansing done prior to statistical analysis. 

3.4.2 Descriptive statistics  

Descriptive statistics techniques were used to compare the variables numerically. Specifically, 

the following methods were employed (Saunders, Lewis and Thornhill, 2009): 
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# Investigation type (inquiry) Statistical test Statistical application 

used 

1. Statistics to measure the central 

tendency. 

Mean and mode. Statistical Package for the 

Social Sciences (SPSS). 

Table 10 : Descriptive statistics test matrix. 

3.4.3 Inferential statistics 

Inferential statistics techniques were employed to search relationships, discrepancies and trends. 

This technique was used in order to reach conclusions that extend beyond the boundaries of the 

immediate data alone (Saunders, Lewis and Thornhill, 2009). The following inferential statistics 

techniques were employed (Saunders, Lewis and Thornhill, 2009). 

# Investigation type (inquiry). Statistical test. Statistical 

application used. 

1.  

   

To test whether a significant relationship 

exist between two variables. 

Fisher’s exact test. SPSS. 

2.  

   

To assess the strength of relationship 

between two variables. 

Cramer’s V coefficient. SPSS. 

Table 11 : Inferential statistics test matrix. 

3.5 Validity issues and ethical considerations 

When a paper is classified as research, it doesn't automatically mean that the results are reliable, 

valid or generalisable to other contexts. It’s important that researchers and practitioners 

understand the implication of threats to validity in research findings (Valerdi and Davidz, 2009). 

Despite the advantages of surveys, they also have limitations with regards to validity and 

reliability. The limitation is specifically related to the data collected, since it is self-reported, and 

a miscomprehension of the questions by respondents or manipulation of the data by the 

researcher can propagate inaccuracies in the data (Nardi, 2002). The following paragraphs will 

identify and explicate the ways in which validity and reliability issues were addressed, including 

ethical considerations. 

3.5.1 Content validity 

The issue of content validity often arises when a questionnaire is used as a data generation 

method. This refers to the ability of the questionnaire to generate data about the variables or 

concepts under scrutiny (Oates, 2006). All the variables for this study were identified, defined 

and operationalised. Further to this, all possible measures were employed to design the 

questions to cover all variables, be brief, relevant, unambiguous and objective. A pilot was 
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conducted with peers, as advised by Merriam (2002), in order to enhance validity, and feedback 

was incorporated into the questionnaire. Finally, the questionnaire was included as an appendix 

at the end of the research report, for scrutiny and evaluation. 

3.5.2 Construct validity 

Construct validity measures the degree to which the researcher is measuring the right variables 

under study by means of the questions in the questionnaire, and/or whether the study is 

measuring what the researcher presumes (Oates, 2006). To enhance validity, a brief pilot survey 

was done with a subset of the target population (Laanti et al., 2011). The pilot questionnaire was 

distributed to 10 respondents, and feedback was incorporated into the questionnaire before 

embarking on a full-scale study. 

3.5.3 Internal validity 

This is a concerned with the cause effect relationship i.e. the question is asked as to whether the 

research is justified in claiming that A causes B, and that a causal or correlation relationship 

exists in reality (Oates, 2006). In other words, internal validity is concerned with whether the 

results are objective or free from bias, or whether there are rival explanations or extraneous 

variables. Unfortunately, given the nature of this study, some other variables might have been 

involved since this study was undertaken in a social context where there is some uniqueness 

involved in each context. The former is the first source of threats to validity. The second source 

of validity threats may have come from the online data collection strategy, given that there could 

be duplicate submissions or responses not coming from the intended target group. Unfortunately, 

it was not possible to entirely hold all factors constant or eliminate them completely, which is only 

possible in a clinical laboratory setting, which is a setting that could have introduced bias and 

inaccuracies into the results. However, all necessary precautions were followed so as to identify 

other factors that could distort the findings and the following mitigating/isolation measures were 

employed. 

  
To mitigate or isolate variables from the first source of validity threats (rival explanation or 

extraneous variables), the study was designed to also obtain information about the following rival 

explanatory variables: the experience of the project teams; the level of senior management and 

user involvement; project team and organisation size; project size; relevant on-the-job training; 

and any quality standards or frameworks used. 

 
To mitigate or isolate variables from the second source of validity threats (online submission 

strategy), submissions were manually checked for duplicates, since a few open-ended questions 
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were included in the survey. The survey collection software was configured to check for duplicate 

submissions. In addition, the target nature of the selection and domain specific knowledge made 

it unlikely for someone not in the target population to respond. 

3.5.4 External validity 

This is concern with whether generalisations can be made about the research findings to other 

contexts, areas or times, beyond the original context where the study was carried out. 

Organisations in South Africa and globally were surveyed. The fact that responses also came 

from a global audience means generalisations are likely to be made. Similar and related studies 

have also been carried out, but not exactly like this one, so it is likely that comparisons might also 

be possible to corroborate findings. 

3.5.5 Reliability 

Reliability addresses repeatability of the study i.e. whether the same results will be obtained if 

the study is repeated. This is a bit tricky to assess firstly, because of the dynamic nature of 

software development and secondly because respondents can change their views over time, or 

deliberately give an opposite view (Oates, 2006). Repeatability of results is a key assessment 

criterion in positivist research, presupposing or assuming that there is some objective truth out 

there that needs to be investigated and reported. Another aspect regarding reliability is the 

neutrality of the research instruments i.e. the questionnaire and the researcher inclusive. Despite 

the possible biases and problems with repeatability, the following measures were taken to 

increase reliability: the researcher did everything possible to make sure that questions formulated 

were neutral i.e. not influencing the respondents to respond in a particular way. Secondly, the 

researcher took appropriate measures to make sure that questions formulated were not 

ambiguous, with clear and precise instructions how to complete the questionnaire. Thirdly, the 

questionnaire used for this study has been included as an appendix to this report for scrutiny, 

evaluation and independent testing and verification. Finally, the researcher remained neutral and 

objective throughout the entire study. 

3.5.6 Ethical considerations 

This refers to norms for conduct that distinguish between acceptable and unacceptable 

behaviour. In research, it particularly has to do with the rights of research subjects, participants 

or respondents. The researcher was fully aware and understood that those involved in the 

research have the right not to participate, the right to withdraw at any stage of the research, the 

right to give informed consent, the right to anonymity and confidentiality. This study complies with 

the UNISA Research Ethics Policy (2007). Respondents were invited to voluntarily complete the 



  
 

42 
 

questionnaire. The data collected was treated as private, confidential and the identity of the 

respondents was withheld. The researcher did everything possible to respect and uphold the 

ethical principle of honesty, objectivity, integrity, carefulness, openness, confidentiality and 

respect for intellectual property. 

3.6 Conclusion 

This chapter explored the research design and methodology that was employed to obtain results. 

Methods used were explained and their choice justified. The chosen research paradigm was 

positivism. Explanatory research was chosen as the applicable purpose of this study. The fact 

that studies these days tend to find themselves on the quantitative/qualitative continuum was 

highlighted. 

 

Following from the above, it was underscored that this study lies within that interactive continuum, 

but leans more towards the quantitative paradigm. Deduction was briefly explained as the mode 

of reasoning underlying this study. Dictated by the nature of the research question, the research 

strategy and design chosen was correlational, as well as causal comparative, using a survey with 

a structured questionnaire as a data collection method. The sampling method used was clustered 

sampling. The data collected was captured and coded prior to using descriptive and inferential 

statistics for analysis. Validity and reliability constraints, as well as mitigation measures, together 

with ethical consideration, were also addressed. The assumptions implicitly underpinning this 

study were also sporadically articulated. 
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CHAPTER 4: DATA ANALYSIS AND RESULTS 

4.1 Introduction  

The focus of this chapter is on data analysis and interpretation as per methodology described in 

Chapter three. The purpose is to ascertain, firstly, the impact of agile methodologies on selected 

software quality parameters when compared to traditional methodologies, and secondly, to 

establish whether there is a correlation between methodology type or use and software quality 

in general. The software application used for analysis was Statistical Package for the Social 

Sciences (SPSS). SPSS was used due to ease of use and credibility amongst statisticians 

(Abbas et al., 2010). The type of statistical analysis undertaken was descriptive and correlational. 

Descriptive statistics techniques are normally used to describe and compare variables 

numerically, while correlational analysis techniques are employed to find relationships between 

variables (Saunders et al., 2009). 

This section comprises five sections. The first section is a brief articulation of the data collection 

method employed, and sampling frame surveyed. The second section is a brief discussion of the 

reliability of the research instrument used. The third section is an analysis of background and 

demographic information. In this section, only frequency analysis was done, since the data type 

is categorical. In the fourth section, correlational analysis was conducted so as to establish 

association between research variables. The last section is a discussion, and conclusion of 

research findings. 

4.1.1 Data collection  

The sample frame was IT practitioners comprising mainly, but not exclusively, project managers, 

business analysts, system analysts, architects, developers, product managers, software test 

analysts, consultants and business stakeholders, who have worked in both agile and traditional 

environments. The questionnaire was distributed to these professionals in South Africa as well 

as placed online via a link courtesy of SurveyMonkey to three online professional groups for a 

period of three months. The survey collated 127 responses, 21 were incomplete, and therefore 

discarded. The remaining 106 complete responses were used for analysis.  

4.1.2 Scale reliability 

Validity concerns were extensively covered in the previous chapter, but scale reliability will be 

briefly revisited here. Reliability is concerned with the repeatability of the study, i.e. whether the 

same result can be obtained if the study is repeated. It is also concerned with trustworthiness of 

the research instrument (Oates, 2006). For this study, an actual reliability test was conducted to 
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test the reliability of the questionnaire. The purpose of the test was to determine the extent to 

which questions measuring software quality can be said to be internally consistent i.e. measuring 

the same construct. Cronbach’s alpha coefficient is the most popular reliability test in this regard, 

evident from the broader literature. It computes a value that advises the researcher of the degree 

of internal consistency of the measurement scale. The value typically lies between 1 and 0. The 

closer the value approaches 1, the higher the reliability, and the closer it approaches 0, the lower 

the reliability Mitchell (1996). Cronbach’s Alpha coefficient of reliability was computed for all 

variables measuring software quality, and the results are shown in Table 12.  

Reliability Statistics 

Cronbach's Alpha Number of items 

0.807 15 

Table 12 : Reliability statistics matrix. 

A score greater than 0.5 indicates high reliability (Mitchell, 1996). In this case, the score is 0.807, 

indicating that variables used to measure software quality were indeed highly reliable. 
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4.2 Analysis of background and demographic information 

This section is a comprehensive analysis of results of background and demographic information. 

The main graphical models used for analysis in this section are bar graphs. They are normally 

used to visually represent data and show comparisons between categorical data or to represent 

the number of observations in a given category. 

4.2.1 Methodology type 

This question (see question 1, section 7: questionnaire) was meant to gauge the current extent 

of agile and traditional methodology adoption in organisations that were surveyed. The results 

are shown in Figure 3. 

 

 

Figure 3 : Graphical representation of methodology adoption state. 

The results show that 19.81% are using traditional methodologies, 28.3% are using agile 

methodologies, 47.17% are using both methodologies, and 4.75% are using other 

methodologies. Other methodologies mentioned by respondents were mainly methodologies 

developed in-house, or customised SDLC or Agile. These results corroborate previous findings 

that agile methodologies are becoming increasing popular, with the number of organisations 

embracing them increasing (Salo and Abrahamsson 2008; Zhang et al., 2010; Laanti et al., 

2011). 
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However, despite the above-mentioned popularity of agile methodologies, in terms of increasing 

adoption, Rodriguez et al. (2012) have cautioned that most of the publications are generated by 

agile consultants, tool vendors, professional societies, and market research organisations; not 

from academics. This threatens the trustworthiness and validity of the research results, posing 

potential conflict of interest. 

The results on agile popularity contradict previous studies that traditional methodologies are still 

the dominant methodologies (Zhang et al., 2010; Kendall et al., 2012; Moniruzzaman and 

Hossain, 2013). Furthermore, the results also show that most organisations are not locked into 

one methodological category, but are using features of each methodology to complement one 

another.  

4.2.2 Definition of agility 

The purpose of this question was threefold, namely: to find out what agile means to respondents; 

to find out if their responses concur with the core principles of the Agile Manifesto; and lastly, to 

ascertain whether a universal definition of Agility can emerge or be observed. The results are 

show in Figure 4. 

 

Figure 4 : Graphical representation for definition of agility. 

Incorporated in the question was also an option for ‘other’. No respondent came up with another 

definition of agile. The reason for this might be because selecting ‘other’ would mean entering 
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free text which respondents might find to be more cognitively demanding as opposed to just 

conveniently selecting available options. Given this scenario, they were all restricted to select 

from the available options. 

 

The results show that ‘iterative and incremental development’ was selected by most respondents 

(28.33%) as the definition of agility. These results are consistent with the definition of agility in 

certain literature sources (Leau et al., 2012; Moniruzzaman and Hossain, 2013; Mohammad et 

al., 2013). However, once again, iterative and incremental development is not a feature unique 

only to agile methodologies. Other methodologies, including traditional ones also have iterative 

and incremental elements inherent to them (Larman and Basili, 2003; Rao et al., 2011). Jiang 

and Eberlein (2009) conducted a study seeking to determine the historical links between 

traditional and agile software development methodologies, concluding that many of the 

foundational practices and principles used in agile methodologies have historical links with 

traditional methodologies, and are therefore not entirely novel. It will therefore be technically 

inaccurate and misleading to base the definition of agility only or entirely on the iterative and 

incremental feature. 

 
An implicit observation from the graph is that certain respondents only selected one option, others 

selected two, while others selected four, and only 15% selected all of the above. This means that 

85% of respondents do not agree that agile means ‘all of the above’; otherwise it would have 

been selected by all respondents. This situation highlights the need for common standards for 

agile methodologies, as well as the need for a consensus definition of agility. The results also 

imply that some practitioners are applying at least some of the core principles of the Agile 

Manifesto differently, as may be inapplicable or ill-suited to their unique situations, nonetheless 

concluding that their methodologies are agile. Several studies have vehemently argued before 

that a universally accepted definition of agility is not readily observable, or is non-existent 

(Conboy and Fitzgerald; 2004; Aitken and Ilango 2013; Hummel 2014). This study has 

corroborated those findings. 

4.2.3 Agile methodology type 

The purpose of this question was to identify current adoption trends of agile methodologies and 

also to establish whether respondents were familiar with the agile methodology they chose to 

practice. The results are shown in Figure 5. 
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Figure 5 : Graphical representation of agile methodology type. 

It is clearly evident from the results that Scrum is the most widely used agile methodology, with 

more than half of organisations surveyed practicing it. This finding is consistent with previous 

research (Conboy 2009; Rao et al., 2011; Moniruzzaman and Hossain, 2013). Surprisingly, and 

contrary to previous reports, the much talked about XP got the lowest score of 1.25 percent. This 

is a striking contradiction of previous studies that found XP to be the main pillar and most popular 

or representative of the agile methodologies (Zhang et al., 2010; Ahmed et al., 2010; Kendall, 

2012). The under-representation of XP, contrary to expectations, might well be the beginning of 

a new trend. Kapitsaki and Christou (2014) found that Scrum is fast gaining ground when 

compared to other methodologies, especially XP. Meyer (2014) asserted that the assertive 

nature of XP, compelling the use of techniques as obligations rather than as options, has 

hampered its overall adoption. It is also interesting to note that the second mostly widely used 

agile methodology was noted to be ‘other’ than the options presented. Such methodologies were 

mainly reported by participants to be a combination of agile methodologies, or customised/in-

house agile methods. Another observation of worth noting is that 3.7% of respondents were not 

certain as to which agile methodology they were practicing. 

This scenario again underscores the need for research-based definitions of agility, as argued by 

Conboy and Fitzgerald (2004). Finally, it was observed that no respondent (0%) selected Lean 
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development, and Crystal agile methodologies, even though the literature asserted that they are 

also popular (Rao et al., 2011; Moniruzzaman and Hossain, 2013). 

4.2.4 Duration of agile practice  

This question aimed to determine maturity levels of organisations practicing agile methods in 

terms of the number of years since establishment. The results are shown in Figure 6. 

 

Figure 6 : Graphical representation for duration of agile practice. 

The results show that 13.58% of organisations surveyed are below one year in terms of agile 

experience. This indicates that agile methodologies are increasingly gaining popularity with more 

organisations adopting them. The results also show that a greater proportion of organisations 

(43.21%) have an agile experience of between 1-2 years. The interpretation is that most 

organisations are still at an infant stage with regards to agile experience. About a third of 

organisations (34.57%) surveyed have an experience of 3-5 years, indicating mid-level 

experience. The results also show that a relatively small percentage (8.642%) of organisations 

surveyed have really gained enough agile experience of six years and beyond. This is 

understandable; given that agile is still a relatively new software development paradigm. 
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4.2.5 Experience of the agile team 

Similar to the previous question for organisations (see section 4.2.4); this question was meant 

to gauge the experience levels of agile teams of respondents. The results are shown in Figure 

7. 

 

Figure 7 : Graphical representation of agile team experience. 

The results are similar to previous results for agile organisational experience (see section 4.2.4). 

This is another proof that the scale or instrument used is internally consistent. They show that 

more teams are beginning to use agile, with most teams still at a novice level of 1-2 years. A 

quarter (25.93%) of the teams has mid-level experience, and 17.25% have an experience greater 

than six years and beyond. 

4.2.6 Size of project team 

The objective of this question was to obtain information about the size of project teams. The 

results are shown in Figure 8, arranged by methodology type. 

 



  
 

51 
 

 

Figure 8 : Graphical representation of project team size clustered by methodology type. 

The results show that (60%) of those who selected an agile methodology had small projects team 

sizes (i.e. 1-10), compared to traditional and both methodologies. They also show that agile is 

less prominent (only 3.3%) when the team size is greater than 100. This observation is consistent 

with previous findings, and suggests that agile methodologies are suitable for small teams. 

Several studies have reported that agile methods work well in small environments or projects 

(Dyba and Dingsoyr, 2008a; Barlow et al., 2011; Saxena and Kaushik, 2013), but empirical 

evidence of their success in general, and in large environments in particular, remains elusive 

(Abrahamsson et al., 2010; Barlow et al., 2011). 

 
It is also interesting to note that ‘other’ methodologies are more prominent, (60%) when the team 

gets larger, i.e. greater than 100. Other methodologies from respondents were mainly 

customised agile or SDLC, as well as methodologies developed in-house. This therefore 

suggests that other methodologies are suitable when the project increases in size. 
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4.2.7 Average size of projects  

The objective of this question was to obtain information about the average size of projects. The 

results are shown in Figure 9, arranged by methodology type. 

 

Figure 9 : Graphical representation of project size clustered by methodology type. 

The results further support the findings earlier (see Section 4.2.6) that agile methodologies are 

suitable in small environments. It is evident from the graph that agile is relatively less prominent 

(only 10%) when the project becomes larger or more complex, and more prominent (46.6% and 

43.3%) when the project size gets smaller or becomes less complex. Another finding supported 

by the bar graph is that ‘other’ methodologies (60%) are suitable when the project increases in 

size or complexity. As alluded to earlier, other methodologies mentioned by respondents were 

mainly methodologies developed in-house, or customised SDLC or agile. The interpretation here 

is that the prescriptive nature of methodologies makes them less likely to be applicable in their 

entirety when the project size becomes increasingly large or complex, and therefore need to be 

customised or adapted to be applicable in those environments.   

4.2.8 Size of organisation 

The aim of this question was to obtain information about organisational size. The results are 

shown in Figure 10, clustered by methodology type. 
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Figure 10 : Graphical representation of organisational size clustered by methodology type. 

The first observation is that organisations of all sizes participated in the survey from small, 

medium to large. The second observation is that agile is prominent when the organisational size 

is small, compared to traditional methodologies. The results further show that ‘other’ 

methodologies are suitable when organisational size gets larger, thus corroborating findings in 

the previous paragraphs (see section 4.2.6 and 4.2.7). 

It is therefore clear that agile methodologies are suitable for small environments, and need to be 

adapted when the project team, size and organisation becomes increasingly large or complex. 

4.2.9 Quality standards 

The purpose of this question was twofold: firstly, as a contingency to control for an extraneous 

variable in case a significant relation is found between methodology type and a given software 

quality parameter; and secondly, to check whether organisations are employing any software 

quality standards in their system development processes. The results are shown in Figure 11. 
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Figure 11 : Graphical representation of quality standards used. 

It is clearly evident from the results that ISO 9000 is the most widely used quality standard 

followed by CMMI. It is worth noting that 40.5% of organisations surveyed do not follow any 

quality standards. ‘Other’ quality standards mentioned by respondents were mostly in-house 

standards, or a combination of standards. 

Furthermore, a positive but weak relation was found between Software quality standard and ease 

of system testing (p=0.017). This will be explained further in section 4.3.2 (analysis of variables). 

No relationship was found between quality standard used and other selected software quality 

parameters. 

Further to the forgone analysis, so as to ascertain how and which quality standards are being 

used when different methodologies are employed, a bar graph of quality standards used 

clustered by methodology type was generated, with the results shown in Figure 12. 
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Figure 12 : Graphical representation of quality standard used clustered by methodology type. 

The results show that only CMM is being used by agile methodology users, but that agile is 

absent with respect to PMMM. ISO 9000 is employed somewhat more by traditional methodology 

users. Compared to traditional methodologies, agile methodologies were more prominent (40%) 

when it came to not using any software quality standard. The researcher speculates that agile 

enjoys a higher degree of representation compared to traditional methodologies, when it comes 

to not using quality standards, because their proponents claim that agile methodologies have 

built-in quality abilities (Huo et al., 2004; Bhasin, 2012). But again, the graph also implicitly shows 

that 60% of agile users are employing software quality standards. This again underscores the 

need for common standards for agile, and raises questions about reports linking agile to improved 

software quality (Huo et al., 2004; Ahmed et al., 2010; Bhasin 2012). One would then wonder if 

the software quality was improved as a consequence of using purely agile (without any external 

quality standard), or as a result of software quality standards used. It is a contentious issue, and 

warrants further investigation. 
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4.2.10 Stakeholder participation on projects 

The purpose of this question was twofold: firstly, as a contingency to control for a rival explanation 

variable (extraneous) in the case of a significant relationship between methodology type and a 

given software quality parameter; and secondly, to assess the level of stakeholder participation 

on projects. The results are shown in Figure 13. 

 

Figure 13 : Graphical representation of stakeholder participation on projects. 

The results show that approximately 75% (34.9% + 40.5%) of respondents agreed that 

stakeholders actively participated on projects. Seventeen percent (17%) were neutral, and a 

small proportion (6%) of respondents disagreed. 

Furthermore, a positive but weak significant relationship was found between active stakeholder 

participation and ‘ease of system interactivity (p=0.047). This will be explained further in section 

4.3.10 (analysis of research variables). No relationship was found between active stakeholder 

participation and other selected software quality parameters. 

4.2.11 Attendance of mandatory training and workshops 

The goal of this question was twofold; as a contingency to control for an extraneous variable in 

case a significant relationship between methodology type and a given software quality 

parameter; and secondly, to assess training and workshop attendance levels of project 

stakeholders. The results are shown in Figure 14. 
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Figure 14 : Graphical representation of mandatory workshop attendance and training. 

The results show that approximately 49% (13% + 36%) of respondents attended workshops 

and training. Approximately 34% were neutral, and 17% (11% + 6%) did not attend workshops 

or training. 

Furthermore, a positive but weak significant relationship was found between active workshop 

attendance/training and ease of system navigation (p=0.031). This will be explained further in 

section 4.3.9 (analysis of research variables). No relationship was found between workshop 

attendance/training and other selected software quality parameters. 

4.2.12 Respondents position within organisation 

The purpose of this question was to ascertain whether or not respondents had the necessary 

domain knowledge to complete the survey in a way that will produce meaningful results. The 

results are shown in the Figure 15. The bar graph shows that a greater percentage of 

respondents were business/system analyst, followed by project managers, where test analyst 

was third, in terms of representation. The representation of all relevant portfolios as depicted in 

the graph (Figure 15) is therefore ample evidence that the sample respondents had the relevant 

domain knowledge, and also understood what software methodologies and software quality 

entails.   

 



  
 

58 
 

 

Figure 15 : Graphical representation of organisational position of respondents. 

4.2.13 Identity of respondent’s organisation 

The goal of this question was to establish organisational representation of respondents. Banking 

and insurance was the most prominent, next was computer-related, and third was 

telecommunications. The bar graph (Figure 16) also shows that most organisational types were 

represented. 
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Figure 16 : Graphical representation of organisational identity of respondents. 

4.2.14 Respondents country of residence 

Finally, the rationale behind this question was to gauge global representation of respondents. 

Out of the 106 participants surveyed, 72 were from South Africa, seven from India, six each from 

UK and USA, three from Australia, two from Canada, and one each from Spain, Germany, New 

Zealand, Brazil, Ethiopia, Mexico, Serbia, Belgium, Nigeria and Sweden.  

The interpretation is that it was a global study that represented all major continents of the world, 

namely Africa, North America, South America, Europe, Asia and Australia/New Zealand. 
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Figure 17 : Graphical representation of participant’s country of residence. 

4.3 Analysis of research variables 

This section is a comprehensive and critical analysis of research variables identified for this 

study. The overarching objective of this research was to ascertain how selected software quality 

parameters are impacted if agile methodologies are used, as compared to traditional 

methodologies. In doing this, the study did also indirectly or implicitly establish whether or not 

certain software quality parameters can be linked to a system development methodology. 

The main graphical models used for analysis in this section are bar graphs. Statistical test of 

significance were also employed to ascertain correlations between variables. 

4.3.1 Ease of system maintenance 

The purpose of this question was to establish the effect on system maintenance when agile 

methodologies are used, as compared to traditional methodologies. The question made use of 

the distinction in Table 13. 

Systems Traditional system Agile system 

Project characteristics: 
Documentation 

Enormous and detailed 
documentation produced. 

Light and 
documentation 
produced minimal.  

Table 13 : Documentation distinction matrix: Ease of system maintenance. 

The distinguishing characteristic is documentation extent. The results are shown in Figure 18. 
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Figure 18 : Graphical representation of ease of system maintenance. 

The results show that more respondents (41.51%) agreed that a system is likely to be easier to 

maintain when there is minimal documentation, as compared to when there is enormous 

documentation. In other words, maintenance will be easier if an agile methodology is used, as 

compared to when a traditional methodology is employed. Traditionalists advocate enormous 

documentation, while agile proponents emphasise minimal documentation. The puzzle here is 

that the definition of enormous or minimal documentation is not precise. However, it is logical 

and authors agree that a certain minimum amount of documentation is indeed needed for system 

maintenance (Pressman, 2010; Ahmed et al, 2010; Amir et al., 2013); but the question of what 

is enough documentation or to what extent documentation ought to be produced is not an exact 

science. In an attempt to explain the above graph, one might speculate that when there is 

enormous or detailed documentation, the support personnel or engineer will become overloaded 

with information, thus complicating the maintenance process. On the contrary, if there is minimal 

documentation, it becomes almost effortless to peruse the documentation and readily maintain 

the system. 

 
However, against the above-mentioned backdrop, to be able to identify any apparent link 

between methodology use and ease of system maintenance, the point of departure is the 

fundamental assumption that there is no relation between them. This assumption is called the 

null hypothesis. This hypothesis postulates that there is no genuine relationship between any 
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variables, until proven (Oates, 2006). For a relationship to be uncovered, statistical test of 

significance needs to be computed for the data collected. Statistical tests of significance are 

normally used to compute a value that will indicate to the researcher whether the observed 

relation occurred by chance, or whether it indeed exists. This value is derived by computing the 

probability (p) of a relationship as being a result of chance (Oates 2006). If the probability of a 

relationship determined by chance is computed to be greater than 0.05 (one in 20), the null 

hypothesis is upheld i.e. there is no relationship between variables. On the contrary, if the 

probability of the relationship being down to chance is computed to be less than 0.05 (one in 20), 

the association is regarded as statistically significant i.e. there is a relationship between variables 

(Oates 2006). Several test of significance exist but for this study, Fisher’s exact test was used to 

compute the p values. As perfectly applicable with this study, Fisher’s test is normally employed 

in the following cases: to show interdependencies between variables in a contingency table, 

when the dependent and independent variable are both categorical; when the samples size is 

small (less than 1000); and when the Chi square test of independence assumption of count per 

cell is being violated (Everitt, 1992; Agresti, 2007; McDonald, 2009).Furthermore, Fisher’s test 

was used because it is more accurate than the Chi square test of independence when the sample 

size is small (McDonald, 2009). Contingency tables are normally used to find correlations 

between categorical or nominal data (Olivier, 2009). 

 

Therefore, to test the link between agile methodology use and ease of system maintenance, 

Fisher’s exact test was conducted and a p value of 0.97 was obtained. Normally, the researcher 

will look for p < 0.05 to conclude that a statistically significant relationship exists, but in this case, 

the p value of 0.97 is clearly greater than 0.05. So the null hypothesis is upheld. The Conclusion 

is that there is no relationship between agile methodology use and ease of system maintenance, 

and secondly, that ease of system maintenance is not linked to any system development 

methodology. This also explains why 23.5% of respondents remained neutral. 

4.3.2 Ease of system testing 

This question was meant to establish the effect on system testing when agile methodologies 

are used, when compared to traditional methodologies. The contrasting project features are 

shown in table 14. 

Systems Traditional system  Agile system  

Project characteristics : 
Documentation 

Enormous and detailed 
documentation produced. 

Light and minimal 
documentation 
produced. 

Table 14 : Documentation distinction matrix: Ease of system testing. 
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The differentiating characteristic is documentation extent. The results are shown in Figure 19. 

 
 

Figure 19 : Graphical representation of ease of system testing.  

The results show that more respondents (50.94%) agreed that a system will be relatively easier 

to test so as to uncover defects when there is enormous documentation. In other words, system 

testing will be easier if a traditional methodology is used, compared to when an agile methodology 

is employed. However, it is logical, and authors agree that documentation is needed as a 

communication tool amongst project stakeholders (Pressman, 2010; Amir et al., 2013). 

Documentation in this case is used as input to derive test cases, and also as a reference to 

validate whether system functionality is consistent, as specified in the earlier phases of the 

project. The elusive question is what extent of documentation is required to ensure that testing 

is made easier. 

 

To test the link between methodology use and ease of system testing, Fisher’s exact test was 

conducted, and a p value of 0.014 was returned. The p value in this case is less than 0.05 and 

indicates a significant relationship between traditional methodology use and ease of system 

testing. However, statistical test of significance, like Fisher’s test, do not show the strength of the 

relationship. To test the strength of the relationship, Cramer’s V was used as opposed to Phi 

coefficient. Phi is normally used when the contingency table design is 2 x 2, or when both 

variables are dichotomous (Saunders et al., 2009). An example of this kind of design is the 
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relationship between gender (male and female) and smoking (Yes or No). Both gender and 

smoking have two categories. In cases where the table design is not 2 x 2, Cramer’s V is used 

to ascertain the relationship strength (Saunders et al., 2009). This study has a 4 x 3 design i.e. 

(traditional, agile, both, and other) x (traditional system, agile system and neutral). Cramer’s V 

value typically lies between 0 and 1. The relationship is stronger when the value approaches 1 

and weaker when it approaches 0 (Saunders et al., 2009). The corresponding Cramer’s V value 

in this case was 0.3, indicating weak relationship strength between traditional methodology use 

and ease of system testing. 

 

In addition to the above, and as referred to earlier in section 4.2.9, a positive but weak relationship 

was also found between software quality standards used, and ease of system testing in cases 

where traditional methodologies were selected (p=0.017).  Therefore, in this particular scenario, 

a meaningful conclusion becomes a daunting task, because the observed effect may have been 

due to an extraneous variable (software quality standard), rather than to the use of traditional 

methodology. Further investigations are needed to draw a conclusion. 

4.3.3 Ease of system training 

This question sought to establish the effect on system training when agile methodologies are 

used, compared against traditional methodologies. The differences are shown in table 15.  

Systems Traditional system Agile system 

Project characteristics: 
Documentation 

Enormous and detailed 
documentation produced. 

Light and minimal 
documentation 
produced. 

Table 15 : Documentation distinction matrix: Ease of system training. 

The differentiating criterion is documentation extent. The results are shown in Figure 20. 
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Figure 20 : Graphical representation of ease of system training.  

The results show that more respondents (43.4%) agreed that it would be somewhat easier to 

train system users when there is minimal documentation. In other words, system training would 

be easier if an agile methodology is used, compared to when a traditional methodology is 

employed. Documentation in a software development process is normally used as a 

communication tool amongst stakeholders. In this case, it is used as input to develop training 

material as well as user manuals. It is a question of determining the amount of documentation 

necessary to ensure training is easier. Respondents of this question leaned more towards the 

agile approach of minimal documentation. A possible reason for this observation might be that 

vast and detailed documentation has the potential to overwhelm the personnel compiling the 

training material, thus complicating the system training process. On the contrary, when there is 

minimal documentation, it becomes easier for training material to be developed. 

 

However, to test the link between methodology use and ease of system training, Fisher’s exact 

test was conducted and a p value of 0.7 was obtained. The p value in this case is far greater than 

0.05. The null hypothesis is therefore upheld. The conclusion is that there is no relationship 

between agile methodology use and ease of system training, and secondly, that ease of system 

training is not linked to any system development methodology. 
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4.3.4 Ease of system learning 

This question sought to establish the effect on system learning when agile methodologies are 

used compared to traditional methodologies. The differences are shown in table 16. 

Systems Traditional system Agile system 

Project characteristics : 
Documentation 

Enormous and detailed 
documentation produced. 

Light and minimal 
documentation 
produced. 

Table 16 : Documentation distinction Matrix: Ease of system learning. 

The differentiating feature is documentation extent. The results are shown in Figure 21. 

 

Figure 21 : Graphical representation of ease of system learning.  

The results show that more than half of respondents (50.94%) agreed that it will be relatively 

easier to learn a system when there is minimal documentation. In other words, system learning 

will be easier if an agile methodology is used, compared to when a traditional methodology is 

employed. Documentation in this case refers to hard copy user manuals, as well as electronic 

versions embedded with the application. As was the case with training discussed earlier (see 

section 4.3.3), one can only speculate here that vast and detailed documentation has the 

potential to overwhelm system learners, thus complicating the learning process, or making the 

learning curve more steep. On the contrary, when there is minimal documentation, it becomes 

easier to efficiently peruse and learn the system. This trend of associating ease of system training 
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and ease of system learning with minimal documentation does not appear to be coincidental, and 

warrants further investigation. 

 

However, to test the link between methodology use and ease of system learning, Fisher’s exact 

test was conducted and a p value of 0.25 was obtained. The p value in this case is greater than 

0.05. The null hypothesis is therefore upheld. The conclusion is that there is no relationship 

between agile methodology use and ease of system learning, and secondly, that ease of system 

learning is not linked to any system development methodology. 

4.3.5 Robustness of system architecture 

This question was meant to establish the effect or impact on robustness of system architecture 

when agile methodologies are used, compared to traditional methodologies. The differences 

are shown in table 17. 

Systems Traditional system Agile system 

Project characteristics: 
System architecture 

Design for current and 
future 
requirements. 

Design for only what is 
presently essential. 

Table 17 : System architecture distinction: Robustness of system architecture. 

System architecture design was used as the differentiating characteristic. The results are shown 

in Figure 22. 

 

Figure 22 : Graphical representation of system architecture.  
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The results show that more than half of respondents (58.49%) agreed that a system’s 

architecture will be relatively robust when a traditional methodology is used. Robustness of 

system architecture refers to the ability to withstand extensions with the addition of components 

without failing. Given the agile view of design for only what is presently essential, it is logical to 

concur with respondents that agile methodology use does not lead to a system with a scalable 

or robust architecture. The results as shown by the graph are consistent with previous findings 

(Cao and Ramesh, 2008; Schach, 2010).  

Motivated by divergent perceptions regarding the way in which agile methodologies correlate 

with architecture, Breivold, Sundmark and Larsson (2010) conducted a systematic literature 

review seeking to understand the relation between agile methodologies and architecture.  

Their conclusion was that there is lack of scientific support from an architectural benefit 

perspective for many of the claims made in the Agile Manifesto and that more empirical studies 

are needed to validate the claims. 

 

However, to test the link between methodology use and robustness of system architecture, 

Fisher’s exact test was conducted and a p value of 0.3 was returned. The p value in this case is 

greater than 0.05. The null hypothesis is therefore confirmed. The conclusion is that there is no 

relationship between traditional methodology use and robustness of system architecture, and 

secondly, that robustness of system architecture is not linked to any system development 

methodology. 

4.3.6 Portability 

This question was meant to establish the effect on software portability when agile methodologies 

are used compared to traditional methodologies. The differences are fleshed out in table 18.  

Systems Traditional system Agile system 

Project characteristics: 
System architecture 

Design for current and future 
requirements. 

Design for only what is 
presently essential. 

Table 18 : System architecture distinction: Portability. 

System architecture was used as the differentiating characteristic. The results are shown in 

Figure 23. 
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Figure 23 : Graphical representation of system portability. 

The results appear to be similar, but slightly more respondents (42.4%) agreed that system 

portability will be relatively easier when the design is focused on current and future use. In other 

words, system portability will be easier if a traditional methodology is used, compared to when 

an agile methodology is employed. Portability refers to ability of the software to be easily installed 

on different hardware and software platforms. 

 

However, to test the link between methodology use and system portability, Fisher’s exact test 

was conducted and a p value of 0.15 was obtained. The p value in this case is greater than 0.05. 

The null hypothesis is therefore supported. The conclusion is that there is no relationship 

between methodology use and system portability and secondly that system portability is not 

linked to any system development methodology. 

4.3.7 Meet usability needs 

This question was meant to establish the effect on system usability when agile methodologies 

are used compared to traditional methodologies. The differences appear in table 19. 

Systems Traditional system Agile system 

Project 
characteristics: 
Customer 
involvement. 

Customer involvement is 
low and passive. 

 Customer is onsite and 
considered as a team member. 

 Customer involvement is active 
and proactive. 

Table 19 : Customer involvement distinction: Meet usability needs. 
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The differentiating characteristic is the extent of customer involvement. The results are shown 

in Figure 24. 

 

Figure 24 : Graphical representation of meet usability needs. 

The results show that an overwhelming majority of respondents (85.85%) agreed that a system 

will meet usability needs to a greater extent when agile methodologies are used, compared to 

traditional system development methodologies. Agile methodologies advocate for onsite 

customer involvement. They also advocate for proactive customer involvement rather than 

reactive. 

Given these views, it is logical and one would stand to reason that their use will lead to improved 

usability design. Previous findings have also linked agile methodology use to improved usability 

(McInerney and Maurer, 2005; Sy, 2007). In contrast, other authors disagree and have asserted 

that agile methodologies have failed or are unable to address usability issues (Jokela and 

Abrahamsson, 2004; Lee, 2006). 

 

However, to test the link between methodology use and improved system usability, Fisher’s exact 

test was conducted and a p value of 0.8 was obtained. The p value in this case is greater than 

0.05. The null hypothesis is therefore corroborated. The conclusion is that, firstly, there is no 

relationship between agile methodology use and meet usability needs; and secondly, that meet 

usability needs is not linked to any system development methodology. 
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4.3.8 Ease of system customisation 

This question was meant to establish the effect on system customisation in a comparative 

manner between agile and traditional methodology usage. The differentiating factors are shown 

in table 20. 

Systems Traditional system Agile system 

Project 
characteristics: 
Customer 
involvement. 

Customer involvement is low 
and passive. 

 Customer is onsite and 
considered as a team 
member. 

 Customer involvement is 
active and proactive. 

Table 20 : Customer involvement distinction: Ease of customisation. 

Customer involvement is the distinguishing project characteristic. The results are shown in 

Figure 25. 

 

Figure 25 : Graphical representation of ease of customisation. 

The results show that the majority of respondents (72.64%) agreed that a system will be relatively 

easy to customise when agile methodologies are used, compared to traditional system 

methodologies. Customisation refers to adaptation of the system to suit one’s personal approach 

and preferences. If the customer is considered a team member, onsite and actively involved in 

the project as advocated by agilist, then it is reasonable to conclude that the resulting system will 
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be relatively easier to customise, compared to when customer involvement is low and passive 

(traditionalist). 

 

However, to test the link between methodology use and ease of customisation, Fisher’s exact 

test was conducted and a p value of 0.7 was obtained. The p value in this case is greater than 

0.05. The null hypothesis is therefore upheld. The conclusion is that there is no relationship 

between methodology use and ease of customisation, and secondly that ease of customisation 

is not linked to any system development methodology. 

4.3.9 Ease of system navigation 

This question sought to establish the effect on system navigation when agile methodologies are 

used compared to traditional methodologies. The differences are shown in table 21.  

Systems Traditional system Agile system 

Project characteristics: 
Customer 
involvement. 

Customer involvement is low 
and passive. 

 Customer is on-site and 
considered as a team 
member. 

 Customer involvement is 
active and proactive. 

Table 21 : Customer involvement distinction: Ease of system navigation. 

The differentiating factor is extent of customer involvement. The results are shown in Figure 26. 

 

Figure 26 : Graphical representation of ease of navigation. 
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The results show that majority of respondents (77.36%) agreed that a system will be relatively 

easy to navigate when agile methodologies are use, when compared to traditional system 

methodologies. Navigation refers to user movements around the system from one page or 

functionality to another; again, if the customer is considered a team member, on-site and actively 

involved in the project, then it is reasonable to conclude that the resulting system will be 

somewhat easier to navigate when compared to a situation in which customer involvement is low 

and passive. 

 

However, to test the link between methodology use and ease of customisation, Fisher’s exact 

test was conducted and a p value of 0.6 was obtained. The p value in this case is greater than 

0.05. The null hypothesis is therefore upheld. The conclusion is that there is no relationship 

between methodology use and ease of navigation, and secondly, that ease of navigation is not 

linked to any system development methodology. 

 

It should be recalled from section 4.2.11 that a weak but positive relation was found between 

mandatory workshop attendance or training and system navigation (p=0.031).  The weak nature 

of this relationship is something that requires further investigation. 

4.3.10 Ease of system interactivity 

This question was meant to establish the effect on system interactivity when agile methodologies 

are used compared to traditional methodologies. Table 22 shows the differentiating factor.  

Systems Traditional system Agile system 

Project characteristics: 
Customer 
involvement. 

Customer involvement is 
low and passive. 

 Customer is on-site and 
considered as a team 
member. 

 Customer involvement is 
active and proactive. 

Table 22 : Customer involvement distinction: Ease of system interactivity. 

Extent of customer involvement is the differentiating project characteristic. The results are 

shown in Figure 27. 
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Figure 27 : Graphical representation of ease of interactivity. 

The results show that majority of respondents (78.3%) agreed that a system will be relatively 

easy to interact with when agile methodologies are used; compared to traditional system 

methodologies. Interactivity refers to the extent of reciprocal action between the user and the 

system. If the customer is considered a team member, present onsite and actively involved in 

the project, then it is reasonable to conclude that the resulting system will be somewhat easier 

to interact with compared to when customer involvement is low, and/or passive. 

 

However, to test the link between methodology use and ease of interactivity, Fisher’s exact test 

was conducted and a p value of 1 was obtained. The p value, in this case, is greater than 0.05. 

The null hypothesis is therefore upheld. The conclusion is that there is no relationship between 

methodology use and ease of interactivity, and secondly, that ease of interactivity is not linked to 

any system development methodology. 

 

It should be recalled from section 4.2.10 that a weak, but positive relation, was found between 

active stakeholder participation and system interactivity (p=0.047).  The weak nature of this 

relationship is something that requires further investigation. 
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4.3.11 Error message comprehensibility 

This question sought to establish the ease with which users can understand system error 

messages when agile methodologies are used compared to traditional methodologies. The 

differences appear in table 23.  

Systems Traditional system Agile system 

Project characteristics: 
Customer 
involvement. 

Customer involvement is 
low and passive. 

 Customer is on-site and 
considered as a team 
member. 

 Customer involvement is 
active and proactive. 

Table 23 : Customer involvement distinction: Error message comprehensibility. 

The differentiating factor is extent of customer involvement. The results are shown in Figure 28. 

 

Figure 28 : Graphical representation of error message comprehensibility. 

The results show that majority of respondents (77.36%) agreed that it will be relatively easier to 

comprehend error messages from a system developed using agile methodologies, when 

compared to traditional methodologies. If the customer is considered a team member, present 

on-site and actively involved in the project, then it is rational to concur with results shown in the 

graph. 
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However, to test the link between methodology use and error message comprehensibility, 

Fisher’s exact test was conducted and a p value of 0.06 was obtained. The p value in this case 

is slightly greater than 0.05. The null hypothesis is therefore upheld. The conclusion is that there 

is no relationship between methodology use and error message comprehensibility, and secondly, 

that error message comprehensibility is not linked to any system development methodology. 

Because the p value found in this case (0.06) was slightly greater than 0.05, further investigation 

in this regard is recommended. 

4.3.12 System help facilities 

This question was meant to establish which system can produce better help facilities when agile 

system development methodologies are used, when compared to traditional methodologies. The 

differences appear in table 24. 

Systems Traditional system Agile system 

Project 
characteristics: 
Customer 
involvement. 

Customer involvement is low 
and passive. 

 Customer is onsite and 
considered as a team member. 

 Customer involvement is active 
and proactive. 

Table 24 : Customer involvement distinction: Help facilities. 

The differentiating characteristic is extent of customer involvement. The results are shown in 

Figure 29. 

 

Figure 29 : Graphical representation of help facilities. 
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The results show that majority of respondents (73.36%) agreed that better help facilities will be 

produced from a system developed using agile methodologies, compared to when traditional 

methodologies are used. Help facilities refers to a subset of the software component that acts as 

documentation for the software package. Its main purpose is to explain programme function, 

toolbar option, or other key elements with the user interface. The help system may be located 

locally on the computer, or be based online. If the customer is considered a team member, 

present onsite and actively involved in the project, then it is rational to concur with results shown 

in the graph. 

 

However, to test the link between methodology use and help facilities, Fisher’s exact test was 

conducted and a p value of 0.4 was obtained. The p value, in this case, is greater than 0.05. The 

null hypothesis is therefore upheld. The conclusion is that there is no relationship between 

methodology use and software help facilities, and secondly, that software facilities are not linked 

to any system development methodology. 

4.3.13 System correctness 

This question was meant to establish the effect on system correctness when agile methodologies 

are used compared to traditional methodologies. The differences have been fleshed out in table 

25.  

Systems Traditional system Agile system 

Project characteristics: 
Requirements. 

Knowable early, largely stable, 
clearly defined and documented. 

Emergent, rapid change, 
unknown and discovered 
during the project. 

Table 25 : Requirements distinction: System correctness. 

 

The differentiating criterion is requirements. The results are shown in Figure 30. 
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Figure 30 : Graphical representation of system correctness. 

The results show that most respondents (65%) agreed that a system is likely to be more correct 

when traditional methodologies are used, compared to when agile methodologies are employed. 

System correctness refers to the ability of the system to function according to the specification 

or to client’s needs. If requirements are knowable early, largely stable, clearly defined and 

documented as advocated for by traditionalists, then it is logical to concur with the results shown 

on the graph. Agile methodologies emphasise rapid and timely delivery of a working system, but 

the literature is sparse when it comes to agile methodology use and system correctness. 

 

However, to test the link between methodology use and system correctness, Fisher’s exact test 

was conducted and a p value of 0.2 was obtained. The p value in this case is greater than 0.05. 

The null hypothesis is therefore upheld. The conclusion is that there is no relationship between 

methodology use and system correctness, and secondly, that system correctness is not linked 

to any system development methodology.  

4.3.14 Timeliness 

This question sought to establish the effect on timeliness when agile methodologies are used 

compared to traditional methodologies. The differences are shown in table 26.  
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Systems Traditional system Agile system 

Project characteristics: 
Project life cycle. 

Linear/sequential model. Evolutionary, incremental 
and iterative model. 

Table 26 : Project life cycle distinction: Timeliness. 

The differentiating factor is project life cycle model. The results are shown in Figure 31. 

 

 

Figure 31 : Graphical representation of timeliness. 

The results show that slightly more than half (52.8%) of respondents agreed that a system is 

likely to be delivered on time when the project life cycle is evolutionary, incremental and iterative 

(agile), compared to when it is linear/sequential (traditional). 

Anecdotal evidence has in the past linked agile methodology use to timely delivery of software 

(Ahmed et al., 2010; Rao et al., 2011; Moniruzzaman and Hossain, 2013). This therefore 

suggests that there is not enough scientific evidence associating agile methodologies to timely 

delivery of software, and therefore warrants further investigation. 

 

However, to test the link between methodology use and timeliness, Fisher’s exact test was 

conducted and a p value of 0.02 was obtained. The p value, in this case, is less than 0.05. The 

null hypothesis is therefore rejected. This means that there is a significant relationship between 

methodology use and timeliness. 

This association is linked to traditional methodologies, because the traditional methodologies cell 

in the SPSS cross tabulation output had a positive standard residual value of 2.9. This, in other 
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words, means that there were more traditional methodology respondents in that cell than the 

hypothesis of independence predicts (Agresti, 2007). Standardised residual values are used to 

show which cell or cells are contributing the most to the significance value (Agresti, 2007). 

Standardised residuals with a positive value mean that the cell was over-represented in the actual 

sample, compared to the expected frequency. Standardised residuals with a negative value 

indicate that the cell was under-represented in the actual sample, compared to the expected 

frequency (Agresti, 2007). 

 

The corresponding Cramer’s V value was 0.3, indicating weak relationship strength. The 

conclusion is that there is a significant relationship between traditional methodology use and 

timeliness. This finding has therefore contradicted previous claims (Ahmed et al., 2010; Rao et 

al., 2011; Moniruzzaman and Hossain, 2013) linking agile methodology use to timely delivery of 

software. 

4.3.15 Completeness of system features 

This question sought to establish the effect on completeness of system features when agile 

methodologies are used, as compared to traditional methodologies. The differences appear in 

table 27. 

Systems Traditional system Agile system 

Project characteristics: 
Project life cycle. 

Linear/sequential model. Evolutionary, 
incremental and 
iterative model. 

Table 27 : Project life cycle distinction: Completeness of system features. 

Project life cycle model is the differentiating factor. The results are shown in Figure 32. 
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Figure 32 : Graphical representation of completeness of system features. 

The results show that slightly more respondents (51.8%) agreed that a system is likely to be 

delivered with complete features when agile methodologies are used compared to when 

traditional methodologies are employed. But again, given the agile view of evolutionary, 

incremental and iterative development, where a system is delivered as it increasingly becomes 

complete i.e. evolving over time, one would logically expect that the use of agile methodologies 

will not lead to system that is likely to be delivered with complete features.  

Paradoxically, the graph shows that the use of agile methodologies will lead to a system that will 

be delivered with complete features, when compared to traditional methodologies. 

 

However, to test the link between methodology use and completeness of system features, 

Fisher’s exact test was conducted, and a p value of 0.7 was obtained. The p value in this case is 

greater than 0.05. The null hypothesis is therefore upheld. 

The conclusion is that there is no relationship between methodology use and completeness of 

system features, and secondly, that completeness of system features is not linked to any system 

development methodology. 
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4.3.16 The most suitable project life cycle model 

Finally, this question was meant to establish which project life cycle model was most suitable 

for projects on which respondents worked. The results are shown in Figure 33.   

 
 

Figure 33 : Graphical representation for most suitable project life cycle model. 

The results show that about half of respondents (50.94%) selected evolutionary, incremental and 

iterative model as the most suitable project life cycle model for the projects on which they worked. 

The second most suitable model was linear sequential. 

Even though an evolutionary, incremental and iterative approach is emphasised by agile 

methodologies, it would be misleading to conclude that the most suitable project life cycle model 

is agile. It has been argued before (see section 4.2.2) that iteration and incrementation are not 

features unique to agile methodologies (Jiang and Eberlein 2009; Rao et al., 2011). Iteration 

means the first version of a software artefact is produced, and then revised to produce the 

second, and so on. Incrementation means producing a subset of what the software will achieve, 

and gradually adding other core functionality until it becomes complete (Schach, 2010). 

Despite the fact that steps in the waterfall model seem sequential, one would turn or be tempted 

to interpret or assume that software development with this model occurs in discrete phases, but 

in practice, it is considerably different (Schach, 2010). The same author advances two reasons 

for this; first software professionals are human, and therefore subject to making errors. Second, 



  
 

83 
 

the client’s requirement change in the course of the development process. Therefore, in an ideal 

world, software is not developed as sequentially or linearly depicted by the waterfall model 

(Schach, 2010). Iteration and incrementation are an intrinsic aspect of software development, 

and have been used in software engineering for over four decades (Larman and Basili, 2003). 

4.4 Discussion and Conclusion  

This chapter was an in-depth and critical analysis of survey results. The analysis philosophy, 

choice of methods and type of test employed was justified. Evidence of scale reliability was also 

articulated. The results show that combinations of traditional and agile methodologies are more 

frequently used than any single methodology. This suggests that most organisations are not 

locked into one methodology type, but employ the best features of each. Even though iterative 

and incremental development was selected by most respondents as the meaning of agility, it 

would be inappropriate and somewhat inaccurate to conclude that it is tantamount to agility, 

because it is not a feature unique to agile methodologies alone. To define agile methodologies 

as iterative and incremental development alone would be an incomplete analysis. The majority 

(85%) of respondents did not agree with all core principles of the Agile Manifesto. This means 

that a suitable common trend to enable the derivation of an appropriate consensus definition of 

agility did not emerge or observed. Furthermore, the results uncovered that Scrum was the most 

widely (60%) used, where agile methodology thus by far corroborating previous findings (Conboy 

2009; Rao et al., 2011; Moniruzzaman and Hossain, 2013). Contrary to previous studies, the 

much talked about extreme programming (XP) of being the main pillar and representative agile 

methodology obtained the lowest score (1.2%). This might be the beginning of a new trend that 

needs to be monitored and confirmed. The overall adoption of XP might have been hampered by 

its overly prescriptive nature on the use of techniques as obligations, rather than as options 

(Meyer, 2014). Recent trends suggest that Scrum has now taken over as the representative agile 

methodology (Rao et al., 2011; Moniruzzaman and Hossain, 2013; Kapitsaki and Christou, 

2014). 

It was also observed that agile methodologies are increasingly gaining popularity with most 

organisations transitioning to them. Despite reports of widespread adoption (Salo and 

Abrahamsson 2008; Zhang et al., 2010; Laanti et al., 2011), Rodriguez et al. (2012) have 

cautioned that most publications are not academic, but rather written by agile consultants 

themselves, along with tool vendors, professional societies, market research organisations, 

indicating a potential conflict of interest that may threaten trustworthiness and validity of results. 

Still on agile adoption, the results show that most organisations are still at a level of between 1-
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5 years with regards to agile experience, where only a few organisations have past the 

experience level of six years and beyond. 

The inquiry on agile team size, agile project size and agile organisational size yielded perfectly 

consistent results, further indicating that the scale used was internally consistent. Further to that, 

the results also revealed that agile methodologies work well in small environments and are 

unsuitable for large environments. This conclusion is perfectly in line with previous studies (Dyba 

and Dingsoyr, 2008a; Abrahamsson et al., 2010; Barlow et al., 2011; Saxena and Kaushik, 2013). 

In addition, it was uncovered that ‘other’ meaning customised SDLC, Agile or in-house 

methodologies were more prominent when the environment gets increasingly large or complex, 

suggesting that customised methodologies are more suitable for complex or larger environments. 

With regards to quality standards, the most used quality standard was the ISO 9000. It was also 

evident that approximately 40% of organisations surveyed are not employing any software 

standards in their system development processes. 

 
The results further show that approximately 40% of agile users are not employing any software 

quality standards, while 60% are employing software quality standards. This observation raises 

questions about claims that agile methodologies have built-in software quality abilities (Huo et 

al., 2004; Bhasin, 2012). This leaves one to wonder whether previous reports linking agile 

methodologies to improved software quality (Santos et al., 2011; Rao et al., 2011; Barlow et al., 

2011) are as a result of using pure agile methods with built-in software quality abilities, or as a 

result of external quality standards employed. The question as to why agile users might still use 

quality standards if their methodology has built-in software quality abilities is contentious, and 

warrants further investigation. 

 

Most respondents (75%) agreed that key stakeholders actively participated on the projects that 

they worked on, and further to that, albeit weak, a significant relationship was found between 

active stakeholder participation and ease of system interactivity. 

 

Relative to those who disagreed (17%), it was found that about half (49%) of respondents 

attended mandatory workshops and training, while 34% remained neutral. Further to that, albeit 

weak, a significant relationship was found between attendance of workshops or training, and 

ease of system navigation. 
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With regards to relevant domain knowledge, it was evident from respondents’ professions 

namely: project managers; programme or portfolio managers; business/system analysts; 

software architects; IT lecturers; quality assurance consultants; software testing analyst; 

developers/programmers; process analyst; IT consultants and business stakeholders, that they 

had the relevant and necessary domain knowledge to complete the survey in a manner that can 

produce meaningful results. In terms of respondent’s country of residence, although dominated 

by respondents from South Africa, it was evident from the results that representation was global, 

encompassing all major continents of the globe. 

From an analysis of research variable with regards to methodology use, correlational values 

are summarised in Table 28. 

# Research variable P values 
(Fisher’s 
exact test) 

Correlation 
with traditional 
methodology 
use 

Correlation with 
agile methodology 
use 

1.  Ease of system maintenance. 0.97 No No 

2.  Ease of system testing. 0.014 Yes No 

3.  Ease of system training. 0.7 No No 

4.  Ease of system learning. 0.25 No No 

5.  Robustness of system architecture. 0.3 No No 

6.  Portability. 0.15 No No 

7.  Meet usability needs. 0.8 No No 

8.  Ease of system customisation. 0.7 No No 

9.  Ease of system navigation. 0.6 No No 

10.  Ease of system interactivity. 1 No No 

11.  System correctness. 0.2 No No 

12.  Timeliness. 0.02 Yes No 

13.  Completeness of system features. 0.7 No No 

14.  Error message comprehensibility. 0.06(close) No No 

15.  System help facilities. 0.4 No No 

Table 28 : Research variable correlation matrix. 

The matrix (Table 28) shows that there is a correlation between traditional methodology use and 

ease system testing, as well as with traditional methodology use and timeliness. The case of 

system testing is not sufficient to conclude, because software quality standards (extraneous 

variable) also had a significant correlation with ease of system testing (p=0.017). Further 

investigation is recommended. 

With regards to timeliness, albeit weak, the conclusion is that there is a significant relationship 

between traditional methodology use and timeliness. This is a contradiction relative to previous 

reports, putting forward anecdotal evidence and linking agile methodologies to timely delivery of 

software (Ahmed et al., 2010; Rao et al., 2011; Moniruzzaman and Hossain, 2013). 
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No correlation was found between agile methodology use and any of the software quality 

parameters identified for this study. 

Generally, as shown in Table 28, this study did not find a significant correlation between 

methodology use and the following software quality parameters: system maintenance; system 

training; system learning; system architecture; portability; meeting usability needs; system 

customisation; system navigation; system interactivity; error message comprehensibility; help 

facilities; system correctness; and completeness of system features. There was therefore 

insufficient evidence linking agile methodology use to improved software quality for the just 

mentioned software quality parameters.  

Therefore, the first major conclusion is that this research failed to link methodology use to most 

of the selected software quality criteria. The fundamental deduction here is that even though 

possible, it is difficult to link software quality criteria to a methodology. The reason for the above 

is threefold: firstly, software itself is inherently complex and the development process itself is 

complex (Brooks, 1987), with significant amount of variables and dynamics. This therefore makes 

it highly improbable to conclusively link a particular quality criterion to the use of a particular 

methodology (Avison and Fitzgerald, 2006). The reason for this is that it is not possible in a 

software development environment to hold all other variables constant, as with clinical laboratory 

experiments. Secondly, quality itself is a highly subjective, complex and multifaceted concept 

that is difficult to define, where an agreed upon and all-encompassing definition of software 

quality is still to arrive. Thirdly, methodologies as promulgated by their authors are never quite 

used as intended. All the quality enhancing issues promised by the methodologies seem 

convincing, but regrettably only exist in theory. Practically speaking, they are rarely applied 

(Avison and Fitzgerald, 2006). This same sentiment has been shared by other consultants, 

asserting that 50% of their client base claims to be using agile methodologies, but only 10% of 

the work is actually being done in an agile manner (Bedell, 2011). In addition to that, all the quality 

principles theoretically promised and prophesied by given methodologies assume that the 

software development process unfolds mechanistically, but pragmatically, it is considerably 

different, and driven by humans. This fundamental disconnect between theory and application 

makes it difficult to prove that a particular methodology led to A, B, C etc.  

The second major conclusion is that agile methodologies, when compared to traditional 

methodologies, do not improve software quality for the selected criteria espoused by this study. 

Several studies have reported broad benefits of improved software quality (Santos et al., 2011; 

Rao et al., 2011; Barlow et al., 2011) but other studies have raised scepticism and argued that 

empirical evidence is conjectural and lacking (Ambler, 2008; Selic, 2009; Rodríguez, et al., 2009; 
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Abrahamsson et al., 2010; Barlow et al., 2011; Hummel, 2014). Claims that agile methodologies 

use leads to improved software quality could not be validated for selected quality criteria. 

 

The third and last major conclusion is that, in general this research has so far refuted findings 

from previous research (citations were provided), it has also upheld and corroborated findings of 

previous research, and, more importantly, it has also made new significant findings on its own. 

As referred to in the previous chapter (research design and methodology), the mode of reasoning 

underlying this research is deduction. Deduction, which is associated with the Scientific method, 

is a form of logic that draws conclusions from other premises or statements that follow from such 

premises. Simply stated, it draws conclusions from a particular case, based on the general case 

i.e. using a top-down approach (Mouton, 2005). 

Therefore, against the aforesaid background, results of this study can be generalised. 

Generalisation, also known as external validity, in this case means that these research findings 

can be extended to other context, or areas beyond the original context where the study was 

carried out. The researcher is confident that if this study was to be repeated in a given form, the 

results would not deviate significantly from those contained herein. 

 

  



  
 

88 
 

CHAPTER 5: CONCLUSION 

5.1 Introduction 

The main goal of this chapter is to synthesise the dissertation and validate that the research 

question was answered and research objectives achieved. The chapter is made up of eight major 

sections. The first section is an introduction of the purpose and contents of the chapter. The 

second section is a synopsis of dissertation chapters. The third section is a confirmation that the 

research question was answered and research objectives met, while the fourth articulates 

contributions of the research to practice and academia. Like any other research effort, the fifth 

section is an acknowledgement of research limitations. Recommendations and areas for future 

research are discussed in the sixth section, where a final section provides the conclusion to the 

study. The last section is a personal reflection on the subject of the research by the researcher.  

5.2 Synopsis of chapters 

Chapter one provided extensive contextualisation and articulation of the research problem and 

background. It also formalised the theoretical and definitional framework. The following five areas 

ambiguous in existing literature, led to problem statement formulation and study motivation: 

(a) An over-emphasis of existing research on the system development process rather than the 

product (March and Smith 1995; Abrahamson et al., 2009; Bhasin, 2012); (b) limited studies on 

agile methodologies in the quality assurance arena (Bhasin, 2012); (c) huge and growing 

controversy as well as scepticisms regarding the perceived benefits of agile methodologies 

compared to traditional methodologies (Dyba and Dingsoyr, 2008b; Ambler, 2008; Rodríguez et 

al., 2009; Selic, 2009; Abrahamsson et al., 2010; Barlow et al., 2011; Hummel, 2014); (d) Sparsity 

of global studies investigating the perceived benefits of agile methodologies compared to 

traditional methodologies at the time of literature review; (e) the need for more empirical studies 

on agile methodologies and software engineering in general (Perry et al., 2000; Dyba and 

Dingsoyr, 2008a; Zhang et al., 2010) 

The main research question sought to understand the impact of the use of agile methodologies 

on selected software quality criteria compared to traditional methodologies. The main research 

question was then disintegrated into sub-questions that could be easily answered by the research 

methodology employed. Following from the prior, the research objectives were therefore to 

ascertain the way in which selected quality parameters are impacted regarding methodology use 

in a comparative manner. Similarly, the main research objective was then sub-divided into 

objectives that the study sought to achieve. 
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Key research variables i.e. agile methodologies, traditional methodologies and software quality 

were identified and their definitions articulated and operationalised. Taking cognisance of the 

different and diverse criteria for software quality, a dichotomy was articulated from the word 

‘software quality’, viz. that between ‘system quality’ and ‘information quality’, respectively (Delone 

and McLean, 1992). The Delone and McLean (2003) model of IS success was therefore used as 

a theoretical framework to derive the quality criteria used for this research. 

Chapter two deployed a critical commentary and extensive literature review, relevant to the study, 

with the objective of identifying a gap, weaknesses or flaws in the already existing body of 

knowledge on agile methodologies from a software quality enhancing perspective. The Chapter 

commenced by presenting an overview of traditional methodologies, the most popular ones 

identified were the Waterfall Model, the Spiral Model, the V Model and the Rationale Unified 

Process. Their current adoption trends were also discussed. It was evident from the literature 

that they remain the dominant methodologies in use (Zhang et al., 2010; Kendall et al., 2012; 

Moniruzzaman and Hossain, 2013). 

Next was an overview of agile methodologies, the most popular ones identified were Scrum, 

Extreme Programming (XP), Lean Development, Feature Driven development, Dynamic 

software development methods, Crystal Methodologies and Adaptive Software Development. 

Their Current adoption trends were also discussed. It was evident from literature that they are 

becoming popular with the number of organisations embracing them increasing. (Schwaber et 

al., 2007; Salo and Abrahamsson, 2008; Zhang et al., 2010; Esfahani et al., 2010; Laanti et al., 

2011). 

Despite the growing number of organisations transitioning to agile, it was highlighted that several 

studies have found that there are many problems, impediments and difficulties encountered with 

agile adoption, as well as putting the proposed benefits into practice (Barlow et al., 2011; Leau 

et al., 2012; Prause and Durdik, 2012; Asnawi et al., 2012; Pathak and Saha, 2013; Twidale and 

Nichols, 2013). 

A discussion on the historical underpinnings of agile methodologies was also explored. Some 

literatures sources have argued that there is significant evidence that practices used in both 

traditional and agile methods have historical links, and that many practices in both methods have 

roots in other disciplines, as well as in traditional engineering principles (Larman and Basili, 2003; 

Merisalo-Rantanen et al., 2005; Meso and Jain, 2006; Jian and Eberlein, 2009). On the contrary, 

sceptics argue that the Agile Manifesto principles, as well as agile methodologies, are 
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insufficiently grounded in theory, with no readily observable or agreed upon definition (Conboy 

and Fitzgerald, 2004; Dingsoyr et al., 2012; Aitken and Ilango, 2013; Hummel, 2014). 

The discussion above was followed by a critical review of related work. Gaps in existing studies 

were eminent, and apparent in the following areas: (a) some related studies reported that agile 

methods do improve product quality, however, some studies were inconclusive, while others 

were contradictory (Dyba and Dingsoyr, 2008b); (b) some studies were merely subjective 

opinions of the authors, with expert analysis, evaluations and contributions. Generalisations 

could not be made, because no rigorous research methodology was employed (Huo et al., 2004; 

Mnkandla and Dwolatzky, 2006); (c) limitations of most studies were never acknowledged, 

despite inherent shortcomings with all research (Ahmed et al., 2010); (d) Research variables 

were not properly defined, and operationalised (Abbas et al., 2010). Conclusions drawn from 

such research lacked credibility, because respondents are left to interpret research variables in 

their own way; (e) broad conclusions were drawn, that the use of agile methodologies leads to 

improved product quality without explicitly stating the software quality metrics selected (Ahmed 

et al., 2010); (f) the reviewed studies were mostly carried out in small, isolated settings with no 

global study at the time of doing the literature review (Barlow et al., 2011); (g) with most studies, 

the research methodology employed was qualitative (Hummel, 2014); (h) some of the studies 

were success stories, and lessons were learnt with only limited contextual information (Rodríguez 

et al., 2009). Therefore, the opportunity to carry out this study was primarily built on the just 

articulated shortcomings, or defects in existing literature. 

Chapter three unpacked the research design and methodology employed. The choice of methods 

used was explained and justified. The philosophical paradigm underlying the research was 

positivism. The way the problem statement was formulated so as to be answered revealed that 

the research is explanatory in nature. It was disclosed that the research strategy is a survey using 

a structured questionnaire as the data collection method. Furthermore, it was stated that the data 

analysis approach is quantitative, using deduction as the mode of reasoning. The sampling frame 

was also identified, and its composition discussed. The fundamental research design underlying 

this research was causal comparative, as well as correlational. Validity, reliability issues, 

mitigation measures and ethical considerations were also addressed in this chapter. The chapter 

then proceeded by highlighting the fact that quantitative and qualitative methods or approaches 

represent an interactive continuum, rather than bi polar opposites, adding that studies these days 

tend to find themselves on the quantitative/qualitative interactive continuum. Following on from 

the former, it was underscored that this study lies within that interactive continuum, but that it 



  
 

91 
 

leans more towards the quantitative paradigm (Newman and Benz, 1998; Onwuegbuzie and 

Leech, 2005). 

Chapter four was a comprehensive analysis of data collected from the survey. The specific tests 

applied were described, and their choice justified, primarily owing to fact that the data type was 

categorical (nominal). SPSS was used to analyse the data. Statistical techniques employed were 

frequency and correlational analysis. Reliability of the scale was further demonstrated by 

computation of Cronbach’s alpha coefficient. Demographic and background data was analysed 

using frequency analysis, aided by bar charts as graphical models. Analysis of research variables 

was done by applying a test of significance, using the fundamental assumption of the null 

hypothesis as the point of departure. Specifically, bar graphs were employed so as to show the 

number of occurrences in each category. Fisher’s exact test was conducted to ascertain the 

association between selected software quality parameters and methodology use. Cramer’s V 

value was computed so as to establish the strength of significant relationships. The following 

were main findings: 

5.2.1 Traditional and agile methodologies combined are being used (47%) more than any 

other methodology; 

5.2.2 Agile methodology use (28%) surpassed traditional methodology use (19%); 

5.2.3 A suitable consensus definition for agile methodologies did not emerge from the data 

collected; 

5.2.4 Scrum was the most widely used agile methodology by far; 

5.2.5 The popularity and adoption state of XP showed a significantly decreasing trend; 

5.2.6 In terms of agile team and organisational experience, the average results showed that 

87% of organisations are between 1-5 years old, while 13% have an experience of 6 years 

and beyond; 

5.2.7 The inquiry on agile team size, agile project size and agile organisational size yielded 

perfectly consistent results, and showed that agile methodologies are suitable for small 

projects or environments and need adaptations for large and complex environments or 

projects; 

5.2.8 The results showed that ‘Other’ methodologies, i.e. customised agile or SDLC, are 

suitable, as the environment increasingly becomes larger and more complex; 
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5.2.9 It was uncovered that 40% of organisations do not use any software quality standards 

or frameworks; 

5.2.10 It was apparent that 60% of agile methodology users are still employing software quality 

standards, despites claims that agile methodologies have built-in software quality 

standards; 

5.2.11 Comparatively, ISO 9000 was the most widely used (31%) software quality standard; 

5.2.12 There was 75% active stakeholder participation on projects; 

5.2.13 Approximately half of project stakeholders attended mandatory workshops/training, 

while half did not attend; 

5.2.14 Significant positive relationships were found between ease of system testing(p=0.014), 

timeliness(p=0.02) and traditional methodology use; 

5.2.15 A significant positive relationship was found between software quality standard used 

and ease of system testing(p=0.017); 

5.2.16 A significant positive relationship was found between active stakeholder participation 

and ease of system interactivity(p=0.047); 

5.2.17 A significant positive relationship was found between active workshop attendance    

/training and ease of system navigation(p=0.031); 

5.2.18 The association between any of the selected software quality criteria in relation to agile 

methodology use was not apparent; 

5.2.19 The association between most of the selected software quality criteria in relation to 

methodology use in general was also not apparent; 

5.2.20 It is possible, but not easy, to conclusively link a software quality criterion to a 

methodology, because of the ramifications and complexities of the software development 

process, and also because of the subjective and multifaceted nature of quality; 

5.2.21 The most suitable project life cycle model was evolutionary, incremental and iterative;  

5.2.22  It was implicitly uncovered that methodologies are rarely used as originally intended by 

their authors, highlighting a fundamental misalignment or disconnect between theory and 

practice.   
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5.3 The research question answered 

The main research question was: what is the impact of the use of agile methodologies on 
software quality criteria compared to traditional methodologies? 
 

Sub question 1: What is the impact of the use of agile methodologies on system quality 

criteria compared to traditional methodologies? 

 

Sub question 2: What is the impact of the use of agile methodologies on information quality 

criteria compared to traditional methodologies? 

 

The main research objective was: to investigate if a positive correlation exists between 

system and information quality criteria when agile methodologies are used compared to 

traditional methodologies. 

 

Sub-objective 1: To ascertain if a positive correlation exist between the following system quality 

criteria when agile methodologies are used compared to traditional methodologies: ease of 

system maintenance; ease of system testing; ease of system training; ease of system learning; 

robustness of system architecture; portability; meet usability needs; ease of system 

customisation; ease of system navigation; ease of system interactivity; system correctness; 

timeliness and completeness of system features. 

 

Sub-objective 2: To ascertain whether a positive correlation exists between the following 

information quality criteria when agile methodologies are used, when compared to traditional 

methodologies: error message comprehensibility and system help facilities. 

The research question was answered and objectives met. Evidence of this assertion is 

summarised in Table 29. Therefore, all the research questions raised at the beginning of this 

study were answered. 

# Research variable P 
values(Fish
er’s exact 
test) 

Correlation 
with traditional 
methodology 
use 

Correlation with 
agile 
methodology 
use 

Research 
question 
answered 

1.  Ease of system maintenance. 0.97 No No Yes 

2.  Ease of system testing. 0.014 Yes No Yes 

3.  Ease of system training. 0.7 No No Yes 

4.  Ease of system learning. 0.25 No No Yes 

5.  Robustness of system architecture. 0.3 No No Yes 

6.  Portability. 0.15 No No Yes 

7.  Meet usability needs. 0.8 No No Yes 

8.  Ease of system customisation. 0.7 No No Yes 

9.  Ease of system navigation. 0.6 No No Yes 

10.  Ease of system interactivity. 1 No No Yes 

11.  System correctness. 0.2 No No Yes 

12.  Timeliness. 0.02 Yes No Yes 

13.  Completeness of system features. 0.7 No No Yes 

14.  Error message comprehensibility. 0.06(close) No No Yes 

15.  System help facilities. 0.4 No No Yes 

Table 29 : Research question answered matrix. 



  
 

94 
 

5.4 Significance and contributions of the research 

This research made the following contributions to practice and academia: 

 

5.4.1 The main contribution of this research is the 22 major findings discussed in section 5.2. 

5.4.2 This research validated and contradicted existing knowledge or facts. The contradiction 

of previous knowledge stimulates debate and provides opportunities for further research 

as discussed in section 5.6.  

5.4.3 The research findings made a contribution to the epistemology of Information systems, 

Software project management, Software engineering and Computing in general. 

5.5 Research limitations 

Inherent in all research are limitations. The following is an acknowledgement of research 

shortcomings: 

5.5.1 In cases where significant relationships were found, temptations to infer causation or 

causality will be premature. This means that conclusions cannot be drawn, that A causes B 

in such cases. Correlational and causal comparative research design, as is the case with this 

research, is weak at drawing causality conclusions (Neil, 2000).  

5.5.2 The questionnaire was designed with the intention of querying respondents, to answer 

the questions according to their practical project experiences, observations and lessons 

learnt with regards to software quality and methodology use. This might not have been the 

case. Some respondents might have answered the questions based only on the theoretical 

distinctions between traditional and agile methodologies. 

5.5.3 Every effort was made by the researcher to control for extraneous variables, despite this 

control endeavour, some elusive and clandestine variables might have come into play, 

suppressing significant relationships that would have been otherwise be uncovered. 

Despite these limitations, the research results are still valid and valuable to both practitioners, for 

application and academics for further research. 

5.6 Recommendations for future research  

5.6.1 The need for a better comprehension of agility as well as common standards for agile. 

For a concept to be properly investigated, it is imperative that it has a strong underpinning 

logic and rationale. The Agile Manifesto postulated its principles and philosophy. Other 

authors have also defined agile mostly as being an incremental and iterative paradigm (Leau 

et al., 2012; Moniruzzaman and Hossain, 2013; Mohammad et al., 2013, but this incremental 
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and iterative feature is not tantamount to agility (Larman and Basili, 2003; Jiang and Eberlein 

2009; Rao et al., 2011). They have therefore been diverse interpretations of what it means, 

also evident from the results of this research. Most interpretations tend to be contextual. It 

therefore becomes a daunting task trying to investigate a concept that is not properly defined 

or clarified. Even though there are some common elements or features in all agile 

methodologies, consensus on a consistent definition has not convincingly emerged. The 

emergence of a common definitional framework for agility is necessary to build a meaningful 

cumulative and coherent body of knowledge.  

 

5.6.2 The need to develop a unifying framework for agile methodologies. 

This recommendation is inextricably linked to the first. Several agile methodologies exist, all 

postulating different set of practices regarding how to build software systems. They all have 

strengths and weaknesses. They have also been competition amongst them in terms of 

popularity and suitability in different environments. Building on a common definitional 

framework for agile methodologies, the very best features of each should be leveraged upon 

and combined into a consolidated, integrated and unifying meta-framework. A typical or 

proposed research topic here can be formulated as illustrated below.  

‘Agile methodologies: Towards a unifying meta-framework or methodology’  

 

5.6.3 The need to develop a unifying framework for traditional methodologies. 

Prior to the inception of agile, traditional methodologies were the dominant paradigms for 

developing software systems. Many of them exist and their weaknesses have also been 

uncovered and well-documented. Their definition is not so ambiguous compared to agile 

methodologies. The very best features of each should be leveraged upon and combined into 

a consolidated, integrated and unifying meta-framework. A typical or proposed research topic 

here can be formulated as illustrated below.  

‘Traditional methodologies: Towards a unifying meta-framework or methodology’ 

 

5.6.4 The need for the development of a unified and sufficient software quality model.  

Several models exist to help improve the software development process, irrespective of 

methodology used, such as the capability maturity model (CMM), project management 

maturity model (PMMM), ISO 9000 amongst others. They all have weaknesses and 

strengths. The very best features of each should be leveraged upon and combined into a 

consolidated, integrated and unifying software quality meta-framework. A typical or 

proposed research topic here can be formulated as illustrated below.  
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‘Software quality: Towards a unifying meta-framework or model’ 

 

5.6.5 The need to investigate current adoption trends of Extreme programming (XP) 

Several studies have reported that XP is the main pillar and most popular or representative 

agile methodology (Zhang et al., 2010; Ahmed et al., 2010; Kendall, 2012). Kapitsaki and 

Christou (2014) contend that Scrum is fast gaining ground, when compared to other 

methodologies, especially XP. Meyer (2014) asserted that the assertive nature of XP 

compelling the use of techniques as obligations rather than as options, has comparatively 

hampered its overall adoption. This study corroborated the just stated two findings, by 

showing a decreasing adoption trend for XP. Further research in this regard is therefore 

recommended. 

 

5.6.6 The need to investigate built-in quality abilities in agile methodologies. 

Previous studies have proclaimed that agile methodologies have built-in quality abilities that 

lead to improved software quality (Huo et al., 2004; Bhasin, 2012). This study found that 60% 

of agile users are still employing software quality standards in their system development 

processes, while 40% are not. Why would more than half of agile users still use other quality 

standards if the built-in quality enhancing ability assertion is correct? This raises the question 

as to whether the software quality was improved as a consequence of using pure agile 

methods (i.e. without any external quality standard), or whether as a result of software quality 

standards used. A typical or proposed research topic here might be formulated as follows: 

‘An empirical validation of built in quality abilities in agile methodologies’. 

 

5.6.7 The need to investigate claimed methodology use versus actual use. 

It was previously noted that there is a fundamental disconnect between theory and practice 

that requires closure (see section 5.2.22 and 4.4). Users often claim to be using a particular 

methodology, but there is never adequate guarantee or assurance that they are actually 

adhering to the principles or philosophy of the methodology in its entirety. For example, users 

might claim to be completely (100%) using methodology X, meanwhile actual work being 

done using methodology X is 15 percent. This will lead to wrong and deceitful conclusions if 

software quality is improved or compromised. An investigation into claimed methodology use 

versus actual use can help uncover insights where the misalignment between theory and 

practice lies.  
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5.6.8 The need to investigate the suitability and adaptability of agile in large and complex 

environments. 

Several studies have reported that agile methods work well in small environments or projects 

(Dyba and Dingsoyr, 2008a; Barlow et al., 2011; Saxena and Kaushik, 2013), but empirical 

evidence of their success in general, as well as in large environments, remains scarce 

(Abrahamsson et al., 2010; Barlow et al., 2011). This study has corroborated those findings 

(see section 4.2.6). Further investigation of their suitability and adaptability in large and 

complex environments is therefore recommended. 

 

5.6.9 The need for the disclosure of software quality criteria used in studies conducted.  

The researcher noticed that some studies on agile methodologies and quality issues did not 

explicitly state which software quality criteria were under investigation (Ahmed et al, 2010). 

This makes comparison of studies difficult. Researchers ought to refrain from drawing broad 

all-encompassing conclusions about improved software quality. Software quality is a 

complex, multifaceted term and needs to be dissected for analysis. Research variables need 

to be properly defined, and operationalised, for any meaningful studies to be done and 

conclusions to be drawn. 

 

5.6.10 The need for more global studies on agile software development in relation to quality. 

The literature is sparse when it comes to studies investigating agile methodologies in relation 

to quality on a larger, wider and global scale. Very few studies have been carried on a large 

scale (Barlow et al., 2011) and no global study was found at the time of writing this 

recommendation. This lack of global studies was one of the motivations for this study. The 

researcher therefore recommends studies on a much larger or broader scale, so that 

concrete generalisations can be made, or inapplicability of agile methodologies in certain 

areas can become apparent. 

 

5.6.11 The need to investigate the suitability and applicability of agile methodologies for IT 

offshoring.  

One key feature of agile methodologies is that customer is on-site and considered as a team 

member, i.e. customer involvement is active and proactive. This therefore assumes that the 

client and the project team are co-located. This kind of assumption and model will clearly 

prove problematic when it comes to IT offshoring, which involves soliciting or outsourcing IT 
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services from a vendor in a geographically different environment. Further research on the 

suitability and applicability of agile methodologies in this area are needed. 

5.6.12 The need to investigate the adaptability, suitability and applicability of agile 

methodologies in designing reusable artefacts. 

One key characteristic of agile methodologies is to design only for what is presently essential. 

Another feature is light and minimal documentation. These assumptions will clearly prove 

inapplicable or inadequate for the development of reusable artefacts. Reusable artefacts 

include code, analysis/design documents and patterns that can be re-used from one initiative 

to another, either partially or in their entirety. The design of reusable artefacts involves taking 

a holistic and future view of the solution being designed and not only narrowly focusing on 

the present situation or problem. It is clearly evident that the two agile assumptions just 

mentioned above cannot be valid in developing reusable artefacts. Research to investigate 

the applicability of agile methodologies in the design of reusable artefacts is therefore 

recommended.   

5.7 Concluding remarks 

This chapter presented a synopsis and synthesis of the whole report with the objective of 

summarising key findings. The key findings that the research uncovered (see section 5.2 and 

table 29) demonstrated that the research question was answered and objectives achieved. 

Furthermore, the findings implicitly uncovered that theoretical assumptions about software quality 

in relation methodology use compared to practical reality or application are considerably different. 

Limitations of this study were acknowledged and the main contributions highlighted. Building on 

flaws in existing literature and primarily from the findings contained herein, recommendations for 

future research areas were proposed. 

5.8 Personal reflection 

This final section is a reflection on the entire dissertation and its findings.  

Since the promulgation and articulation of the Agile Manifesto about a decade and a half ago, 

efforts to promote the agile agenda have been relentless, but largely driven by consultants and 

market research organisations. The amount of scientific publications on agile methodologies 

since then has also introduced an interesting and illuminating debate and contribution to the 

software engineering discipline in general. To date, there is still a great deal of competition and 

friction among agile and traditional methodology advocates in terms of suitability to develop 

software systems, with the former claiming that their paradigm is superior than that of its 
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predecessor when it comes to software quality improvements. No clear winner has so far 

emerged.  

The objective of this study was emphasised throughout this report, and should be apparent to 

the reader by now. This dissertation would be incomplete without acknowledging the fact that 

some the results of this study are perfectly consistent with the researcher’s initial assumptions 

and expectations, but that most of the findings contradicted expectations, assumptions and prior 

knowledge. In other words, the null hypothesis was upheld in most cases, contrary to the 

researcher’s beliefs. 

With regards to the main lessons inferred, it became apparent that, albeit possible, it is not 

straightforward as it seems to attribute a system quality aspect to the use of a particular 

methodology. The reason for this is twofold; Firstly because of the claimed methodology use 

versus actual use phenomenon and secondly because of the difficulty to completely control and 

hold elusive and clandestine extraneous variables constant in the software development 

environment. 

Furthermore, it also became apparent that some of the researcher’s initial assumptions and prior 

knowledge about software quality and methodology use is considerably inconsistent with the 

practical reality. On this note, the researcher’s recommendation and advice to researchers and 

academics is to refrain from postulating frameworks, models, methodologies or theories from the 

comfort of an armchair, or from the outcome of some boardroom or resort meeting. All 

endeavours or efforts must be undertaken to go to the field in an effort to compare assumptions 

or norms, to that which actually is the case empirically, using the structured process of research. 

Another point of reflexivity is the source of publication. Interpretation of research publications in 

light of the source is something worthy of caution. The importance of scrutinising the source of 

publications, whether they come from academics, consultants, governments, or from tools 

vendors, cannot not be over-emphasised. Publications not coming from academics should be 

interpreted with extreme caution.  

With regards to further research concerning methodologies in general, as well as software quality 

in particular, the researcher’s recommendation is that the possibility of combining all agile 

methodologies into one consolidated, systemic meta-methodology or framework should be 

investigated, as well as for all traditional methodologies. 

Furthermore, the possibility of combining suitable and applicable existing software quality models 

into one systemic meta-framework or model should also be investigated. Such meta-models, 
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methodologies or frameworks should be vigorously and meticulously validated empirically prior 

to adoption. In addition, these models, frameworks or methodologies should also be continuously 

reviewed for their current relevance, applicability and improvements, continuously made for the 

benefit of software quality. These are the researcher’s predictions in this regard for the not too-

distant future. 

From section 4.3.1, it should be recalled that the main reason why Fisher’s exact test was used 

over Chi square test of independence was due to the fact that the contingency tables were 

violating the Chi square test assumption of count per cell (i.e. the expected cell frequency must 

not be less than 5). However, the researcher noticed that in all but one case where significant 

values where generated by Fisher’s test, Chi square values were also significant. This 

observation is summarised in Table 30. 

# Variable Correlation with: Yes/No P values 

(Fisher’s exact 

test) 

P values (Chi 

square values) 

1.  Ease of system 

testing. 

Traditional 

methodology use. 

Yes 0.014 0.017 

2.  Ease of system 

navigation. 

Workshop 

attendance and 

training. 

Yes 0.031 0.014 

3.  Ease of system 

interactivity. 

Active stakeholder 

participation on 

projects. 

Yes 0.047 0.030 

4.  Timeliness. Traditional 

methodology use. 

Yes 0.02 0.014 

5.  Ease of system 

testing. 

Software quality 

standard used. 

Yes 0.017 0.06(close) 

Table 30 : Comparison of Fisher and Chi square significant values. 

The difference between Fisher and Chi square test in terms of returning significant values is 

almost negligible or very close; therefore, the assumption of count per cell must be reviewed and 

investigated by statistics students. 

Agile methodologies certainly do have their place in the software engineering community, and 

have made an enormous and indispensable contribution. This is clearly illustrated by the 

proliferation of books and journals been published, ubiquitous agile conferences and the 

emergence of pro agile consultants.  

However, they have also been a large number of scientific publications aimed at adapting them 

to be used in different environments. This suggests that their suitability and applicability in all 

environments or situations is limited. Despite this limitation, agile methods have come to stay, 
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and their somewhat controversial nature and debate with traditional methodologies will endure 

into the future.  
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7. APPENDIX: QUESTIONNAIRE 
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