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Summary for policy makers 

Basic materials like steel, cement or aluminium are important inputs for the 

construction of infrastructure and buildings as well as manufacturing of industrial 

products. Their primary production is however carbon intensive and in Europe 

responsible for the dominant share of industrial emissions and for 16% of overall 

greenhouse gas emissions.  

Emission reductions have been in the past achieved primarily with efficiency 

improvements of primary material production, but remaining efficiency potentials with 

best available technologies are modest. Therefore the focus is now on expanding action 

to new climate friendly options:  

 Innovative material production with electricity from wind and solar, biomass or 

Carbon Capture Storage/Carbon Capture and Use (CCS/CCU).  

 More efficient use of materials and extended product life time.  

 Substitution with higher value or different materials reducing overall carbon 

intensity.  

 Increasing re-use and recycling rates and avoiding loss of material quality with 

recycling.  

A portfolio of these climate friendly options is required to achieve the European Union’s 

80-95% emission reduction target for 2050 or climate neutrality as agreed in the Paris 

Agreement on climate change. Understanding the precise benefits and costs as well as 

possible scale of individual options will only become clear as these options are being 

explored in practice. Therefore an early development of this broad portfolio is essential 

to achieve the climate objectives with cost efficient technologies and practices.  

However, activities towards unlocking the portfolio are so far largely constrained to 

scientific analysis, laboratories and very few early demonstration projects. The current 

developments in the material sector are inconsistent with longer-term policy objectives. 

How will governments respond by 2030 if no further progress is achieved? This 

uncertainty is of increasing concern for all investment decisions in conventional 

material production.  

To attract investment and create job opportunities, the European and national policy 

frameworks needs to be consistent with the longer-term policy objectives. Therefore 

there is a need for an integrated perspective on innovation and use of the portfolio of 

climate friendly options. 

A policies framework for the large scale use of climate friendly options comprises a set 

of elements to address barriers, overcome inertia and internalize climate externalities, 

as outlined in Section 4. Together they not only support investments in existing options, 

but also give incentives to private actors to develop technologies, practices and 

business models. In the current debate four aspects are particularly time critical:  

 aligning the EU ETS cap and linear reduction factor with long term climate 

objectives, including timely response to accumulated allowance surplus with 

market stability reserve.  
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 ensuring full carbon price pass through to include in the policy framework all 

actors that can take forward climate friendly options and to ensure incremental 

costs can be recovered. 

 refining sector roadmaps in public-private cooperation to reflect technology 

learning, as basis for innovation funding decisions and to facilitate developments 

of policies and codes.  

 providing training and funding arrangements to support public procurement 

authorities in considering climate externalities – so as to create lead markets for 

climate friendly choices.  

 

Many climate friendly technologies and practices are, however, not yet fully developed 

and commercial viable. Therefore a policy framework for innovation is also needed to 

address financing constraints, to compensate for limited appropriation of benefits by 

the innovator, and to demonstrate commitment to climate policy. This may involve 

(more detail in Section 4): 

 Integration across funding channels:  there are a variety of funding channels 

with climate policy, industrial policy or regional development policy objectives 

at local, national, and European level that can in principle support innovation in 

climate-friendly materials. Thus, it is important for each channel to focus on 

strengths and to identify complementarities. 

 Project-based carbon price guarantees can complement investment grants and 

insure investors in climate-friendly production process and material options 

against regulatory risks over the life time of projects. This facilitates access to 

lower-cost finance for projects and firms while enhancing overall credibility of 

the climate regime. 

 Competition between projects for innovation support: a sufficiently broad 

portfolio of technologies and practices combined with iterative up-scaling can 

create competition and thus incentives to increase and accelerate efforts. 

Factors like market readiness and likely spill overs need to be considered in 

granting support.  

 Facilitate learning and transparent review: There is a need for continuous 

learning about technology, cost and social performance of climate-friendly 

material options. This should be the basis for a transparent review of the 

portfolio of mitigation opportunities benefiting from public support to limit 

regulatory uncertainty about funding decisions. 

 

The interlinkages between innovation and large scale adoption are central to the 

success of corporate strategy and industrial climate policy. Accounting for them will 

signal that the public and the private sector have a shared long term vision for climate 

friendly materials so as to support sustainable investments in jobs in Europe.  
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1.  Introduction 

Basic materials like steel, cement or aluminium are important inputs for the 

construction of infrastructure and buildings as well as manufacturing of industrial 

products. Their primary production is, however, very carbon-intensive and in Europe 

responsible for 16% of greenhouse gas emissions (Figure 1). To limit the risks from 

climate change, emissions need to decline drastically in order to achieve 80-95% 

emission reductions by 2050 and climate neutrality by the second half the century as 

agreed by EU and UNFCCC Paris Agreement. This requires a portfolio of new 

technologies and business models for the production and the use of basic materials.  

Figure 1: Basic Materials contribute to 16% of EU green-house gas emissions  
(EEA, UNFCCC 2010) 

 

 

In this report, we discuss a policy framework for the industry to achieve the EU’s climate 

objective and to participate successfully in a global low-carbon transition. Therefore, 

this report addresses the following three questions: 

I. A low-carbon transformation of the material sector requires a portfolio of 

mitigation options for climate friendly material production and use. How broad 

should this portfolio be in order to support a learning experience for a 

transparent review of the policy framework? 

II. Many options for climate friendly material production and use will be 

economically viable only if carbon intensive alternatives are exposed to the full 

carbon price, if regulation and norms tailored to traditional technologies are 

adjusted, and if regulatory risks are contained. What policy design enables a 

large-scale use of these climate friendly options? 

III. The success of climate friendly options depends on their integration into 

complex production processes and value chains. This requires private sector 

involvement and initiative. However, private firms are concerned about the scale 

of investments and regulatory uncertainty, knowledge spill over and the time lag 
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before commercial success. What are the implications of these concerns for 

public innovation support? 

With this report, we aim to contribute to the debate by providing an integrated 

perspective across these three questions, in order to  

 support the emerging vision for technologies, business models and policies that 

characterize the transformation of the material sector; a shared vision or 

roadmap helps to coordinate the public and private sector’s choices for 

investment in the materials sector, 

 explore complementarities and potential discrepancies in and between new 

production processes, new materials, efficient material use, recycling and re-use 

to gather political support for a low-carbon transformation from actors involved 

in any option and ensure policies address the needs of all options, 

 integrate the often distinct debates on policies for innovation and for large scale 

use of climate friendly material options and to recognize that private actors will 

not invest in innovation without prospects for large-scale use. 

This policy summary is structured along the three main questions raised above and 

explores emerging implications for policy design.   

 

2. Portfolio of climate friendly options possible and necessary  

Most emission reductions in the material sectors have to date been achieved through 

efficiency improvements and a switch to less CO2 intensive fuels (mainly natural gas). 

Additional emissions reductions through efficiency improvements with existing process 

technologies will be modest and not sufficient to achieve the EU 2050 emission 

reduction targets. Accordingly, further emissions reductions channels need to be 

activated.  

 Climate friendly production processes: Radical innovation can include hydrogen 

based steel making using renewable electricity, bio-based chemicals for material 

production or capture and use or storage of CO2. The maturity of the different 

options varies – some are to be explored in laboratories, while others are to be 

explored next in larger scale demonstrations. Climate friendly production 

processes often improve several of the three mitigation clusters energy efficiency, 

fuels switch and carbon-capture and storage. 

 More efficient use of materials: For decades, declining material costs and 

increasing labour costs limited the attention dedicated to material efficiency. 

Climate and resource efficiency objectives could provide the necessary attention 

to identify and realize efficiency potentials estimated for example in construction 

in the range of 20-30%. 

 Substitution with higher value or different materials: Consumers review 

materials choices when performance requirements (fuel efficiency and weight of 

car) or preferences (design) changes. An increasing price of carbon intensive 
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materials can result in different material choices, and thus offer market 

opportunities for alternative or more tailored materials. 

 Increased reuse and recycling rates: In the construction and automotive 

industry recycling rates are already high, but need to be increased for example 

in packaging. For all material use it is increasingly important to design products 

that facilitate later recycling without a loss of material quality, for example by 

avoiding compound material use, or to even allow for reuse. 

 

While the role of these opportunities may differ across materials and is difficult to 

predict, it is clear that a deep decarbonisation of the industry sectors will depend on 

all of these mitigation opportunities. Despite these uncertainties, two major principles 

for policy design can be determined: 

 A broad portfolio of technologies and practices needs to be developed and 

explored to limit the risk that cost effective opportunities are ignored and climate 

policy objectives are achieved in an unnecessarily expensive manner. The 

portfolio most likely needs to consist of innovative climate friendly production 

processes as well as solutions down the value chain including material efficiency 

and substation. 

 Multiple projects for the exploration of technologies and practices are required 

to reduce the risk that execution failures preclude follow-up projects. 

 

2.1. Potential for climate friendly production of materials  

The possible portfolio of low-carbon technologies for materials production to achieve 

ambitious long-term reduction goals is substantially more diverse than it is in other 

sectors such as transport, buildings or electricity generation. At the same time, it is 

also less researched. Scholars mostly assess the impact of existing available 

technologies and energy efficiency improvements in the mid-term (Brunke und Blesl 

2014a, 2014b; Fleiter et al. 2012). In contrast, assessments of ambitious transition 

paths until 2050 including innovative break-through technologies are scarce. 

Still, several relevant studies are available and provide valuable input for mitigation 

options and potentials. Table 1 provides a typology of reduction options ranging from 

energy efficiency in the production process to material efficiency and substitution 

downstream at the end-user of the material. For each cluster of mitigation options 

example technologies are included for illustration. These are drawn from both today’s 

best available technologies and future technology (best not available technology).  
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Table 1: A typology of GHG reduction options in basic materials industry. Examples selected 

for illustration purposes only. 

 

(BAT: best available technologies; BNAT: best not available technologies; CCS: Carbon capture 

and storage; NFM: non-ferrous metals; RES H2 DRI-EAF: steelmaking with direct reduced iron 

and electric arc furnace using hydrogen from renewable energy sources; TRT: top gas recovery 

pressure turbine) 

 

The iron and steel industry is among the most intensively assessed sub-sectors. Studies 

focussing on the use of energy-efficient technologies in the global steel industry date 

back to the 1990s (Beer et al. 1998). More recent studies assess the steel industry in 

Japan (Gielen und Moriguchi 2002), China (Wang et al. 2007), the EU (Pardo und Moya 

2013) or from a global perspective (Oda et al. 2007). Similarly, a huge focus was on 

the cement industry with studies investigating energy-efficiency potentials in the US 

(Worrell et al. 2000), Thailand (Hasanbeigi et al. 2010), China (Xu et al. 2014) and the 

EU (Moya et al. 2011; Pardo et al. 2011). Other sectors have been less studied, but a 

few assessments are available for the global chemical industry (Saygin et al. 2011) or 

the global aluminium industry (Kermeli et al. 2014). 

In recent years, the sector roadmaps that were published by industrial sector 

organizations at EU level explore mitigation potentials until 2050 often including 

innovative process technologies (BCG 2013: Steel’s contribution to low-carbon Europe, 

EUROFER 2013: steel low-carbon roadmap, CEMBUREAU 2013: Cement low-carbon 

roadmap). A few technology examples are given in the following. For the petro-chemical 

industry, it is proposed to replace fossil fuel feedstock with biomass waste1. However, 

biomass availability is limited. Ammonia production could be electrified through solid 

state synthesis2. The cement industry considers a specific type of CCS technology 

                                                 

1 CEFIC, 2013, p. 112 
2 Amar et al., 2011, p. 1860 

Clustersof mitigation options BAT BNAT

Energy Efficiency • Oxy-fuel burners

• Use of waste heat

• Shoe press in paper dewatering

• Primary aluminium: inert anodes

• Low-carbon cement

Fuel switch • Clinker: Lignite -> waste/biomass

• Steam: Coal -> natural gas/ 

biomass

• Natural gas DRI-EAF

• Steel: RES-H2 DRI-EAF

End-of-pipe (CCS) • CCS cement

• CCS steel

• CCS steel with TRT

Recycling and re-use • Paper recycling

• Electric steel

• NFM-recycling

• Cement/concrete recycling (to 

replace virgin clinker)

Material efficiency • Construction: less over-

dimensioning

• Longer living products

• Carbon reinforced concrete

• Longer living products

Material substitution • Construction: Wood, clay and 

straw replacing concrete and steel

• Low-carbon cement

M
a
te

ri
a
ls

 in
d

u
st

ry
d

o
w

n
st

re
a
m



8 

(calcium looping), which comes with important co-benefits3. In the steel sector a new 

type of blast furnace that would eliminate the need for coking and sintering in hot iron 

production is currently being tested. While reducing construction and operation costs 

compared to conventional technologies, emissions could be reduced by 20%. Over 

longer time scales, hydrogen based ore reduction is under investigation, reducing 

emissions to almost zero (Jerkontortet, 2016). With a shift to CCS both construction 

and operational costs would increase but emission reductions of to 80% are possible45.  

These few examples show that there are potentially significant new production 

technologies under development. These technologies are in very different stages in the 

innovation cycle and it is certainly yet uncertain, if they will successfully enter the 

market. 

 

2.2. Potential for substitution of carbon intensive materials 

Innovative products will also have to play a key role in the industrial low-carbon 

transition. In the chemical sector development of new high-performing chemical 

compounds that can easily be assembled from bio-based feedstock will be essential6. 

The new products would facilitate the transition from a petro- to bio-chemical industry. 

For the cement sector most important low-carbon product innovations will need to 

occur in the design of new types of concrete. It is in theory possible to produce high 

quality concrete that only requires half of the amount of Portland cement as binding 

agent. This would lead to an emission reduction of 50%7, at current production levels. 

Advanced material science leading to high performance and lightweight steel can open 

a high value added market for steel producers, which targets downstream consumers 

in need of these types of steel for low-carbon performance of their products.   

 

2.3. Potential for efficient use of materials  

A paradigm shift towards higher levels of resource efficiency and a circular economy in 

the EU also matches well the industrial transitions mentioned in this report. Both the 

steel and the chemical sector have ample potential to increase re-usage and recycling 

of products 8  and need to realize options to increase value added at lower sales 

volumes9.  

There is now considerable evidence that products comprising carbon intensive 

materials could be manufactured efficiently and their lifetime extended to minimise 

replacement rates. In analysing the ‘reach’ of EU-wide collective corporate action, 

                                                 

3 Global CCS Institute, 2014 
4 Ulcos, 2016b  
5 Croezen and Koreland, 2010, p. 32-33  
6 Werpy & Petersen, 2004 
7 Garcia, 2008 
8 Bureau of International Recycling (2015)  
9 Allwood and Cullen, 2012, pp. 53-54 
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Skelton (2013) identifies that the EU has influence over additional (non-traded) 

emissions in the region of 1 Gt CO2, amounting to nearly a third of EU industry 

production emissions, by addressing company supply chains.  

Barrett and Scott (2012) identify a range of measures that affect the design and 

consumption of different products showing that material use could be reduced by 40% 

while still delivering the same service provided by the products. This is further 

supported by analysis from Girod et al (2014) who demonstrates substantial material 

efficiency gains in shelter, travel and food provision. Strategies include product 

longevity (Bakker et al., 2014), material substitution (Giesekam et al., 2014), design 

and urban planning (Müller et al., 2013) as well as product-service systems (Reim et 

al., 2015, Roelich et al., 2015). 

It is clear that there is not one simple option that delivers material efficiency across the 

whole economy but a range of options for each “material service demand”. They often 

question fundamental business models, re-thinking design and the inefficiency of 

consumption by households, firms and governments. However, if there is a willingness 

to address the broad range of options, the reductions in material use could be 

significant.  

 

3. Policy framework required for use of climate friendly options 

The challenge for climate policy and corporate strategy is to create a credible and 

shared perspective to turn these opportunities into reality.  

Ensure the internalization of climate externalities in the decision processes: A 

multitude of materials with a variety of production processes can deliver the services 

required in products and construction. It is therefore virtually impossible to provide 

generic recommendations for the type or scale of material used for specific applications, 

even more so in the context of evolving material properties. Exposing all decision 

makers to a carbon price provides a common basis to facilitate climate friendly material 

choices. If climate friendly materials options have incremental costs, then the climate 

friendly option will only be used if production and use decisions are exposed to climate 

externalities. If climate friendly options deliver cost savings, then they will be used at 

larger scale if carbon prices result in higher cost savings and more incentives for use 

of climate friendly options. For the structural reform this requires 

 alignment of EU Emissions Trading Scheme (ETS) cap and linear reduction 

factor with long-term climate objectives to create a realistic carbon price for 

low-carbon options. The market stability reserve needs to provide a timely 

response to accumulated surplus of allowances in EU ETS (Schopp et al. 2015); 

 reflection of the carbon price in the materials price to support efficient material 

use, higher value and low-carbon materials and as well as a business case for 

low-carbon production processes. This can be achieved through the inclusion of 

consumption of carbon intensive materials in the EU ETS, were international 

developments do not result in global pass-through of carbon prices. 

file:///I:/Projects_current/MaterialsInnovation/ClimateFriendlyMaterials/Outlook-Report/SingleCommentedVersions/Barrett_CFM%20PolicySummary_preliminary%20draft_020117%20JB%20additions.docx%23_ENREF_51
file:///I:/Projects_current/MaterialsInnovation/ClimateFriendlyMaterials/Outlook-Report/SingleCommentedVersions/Barrett_CFM%20PolicySummary_preliminary%20draft_020117%20JB%20additions.docx%23_ENREF_3
file:///I:/Projects_current/MaterialsInnovation/ClimateFriendlyMaterials/Outlook-Report/SingleCommentedVersions/Barrett_CFM%20PolicySummary_preliminary%20draft_020117%20JB%20additions.docx%23_ENREF_22
file:///I:/Projects_current/MaterialsInnovation/ClimateFriendlyMaterials/Outlook-Report/SingleCommentedVersions/Barrett_CFM%20PolicySummary_preliminary%20draft_020117%20JB%20additions.docx%23_ENREF_36
file:///I:/Projects_current/MaterialsInnovation/ClimateFriendlyMaterials/Outlook-Report/SingleCommentedVersions/Barrett_CFM%20PolicySummary_preliminary%20draft_020117%20JB%20additions.docx%23_ENREF_46
file:///I:/Projects_current/MaterialsInnovation/ClimateFriendlyMaterials/Outlook-Report/SingleCommentedVersions/Barrett_CFM%20PolicySummary_preliminary%20draft_020117%20JB%20additions.docx%23_ENREF_46
file:///I:/Projects_current/MaterialsInnovation/ClimateFriendlyMaterials/Outlook-Report/SingleCommentedVersions/Barrett_CFM%20PolicySummary_preliminary%20draft_020117%20JB%20additions.docx%23_ENREF_47
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Enabling environment including standards and codes: A shift to climate friendly 

material use requires adjustments to a variety of planning and permitting regimes, 

building codes, certification or various security requirements as well as appropriate 

training and certification of the work force and consumer engagement. To overcome 

barriers, the low carbon transformation of the materials sector requires: 

 roadmaps for sectors to identify needs and to manage adjustment processes, 

and  

 a governance structure that allows for learning about the requirements and the 

implementation of suitable solutions to enhance public acceptance and a 

positive business response. 

Including carbon externalities in public procurement: Getting “value for money” is the 

primary objective of public procurement procedures. Public procurement based on 

environmental parameters can play an essential role to (i) to create markets for climate 

friendly options (ii) aggregate demand and to allow for economies of scale, and (iii) to 

support the public awareness for climate friendly materials and producers.  

Realizing such potential for public procurement requires incentives for local 

authorities and procurement officials to adopt environmental criteria in procurement. 

Based on the green public procurement directive best practice examples, training of 

procurement teams needs to be further advanced and there is a need for a clear 

governance structure. This will help to make the overarching climate objectives relevant 

for individual procurement choices. Alternatively funding arrangements could address 

incremental costs that may result when implementing green public procurement. 

 

3.1. Effective carbon pricing in the ETS 

The evolution of a carbon-pricing regime in the EU is the key determinant for the 

prospects of adoption of climate friendly materials. Currently, it is at the crossroads 

between moving towards a unification of the price signal based on the reformed EU ETS 

and further fragmentation along sectoral lines (e.g. RES, energy efficiency, industry, 

transport, buildings) (CECILIA 2050/ENTRACTE 2015). 

An assessment of policy instruments designed to promote low-carbon material choices 

should take into account that sectoral and overarching carbon pricing policy choices 

are interconnected. 

Ambitious EU ETS reform resulting in a higher and more predictable carbon price signal 

decrease the need for dedicated instruments focused on industry, but also may lower 

their impact on the broader European Emission Allowances (EUA) market through 

weakening the supply/demand channel (e.g. through introduction of a carbon price 

floor). The inclusion of material consumption in the EU ETS may be a catalyst for such 

reforms by addressing industrial competitiveness concerns. Furthermore, the higher 

the EUA price, the more effective will consumption charges linked to the EU ETS be in 

driving climate friendly material choices. Expectations about future carbon prices are 

also crucial for innovation-related investments that pay off in the longer term  
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A lack of the EU ETS reform will result in a weak overarching carbon price signal. If a 

high carbon lock-in is to be avoided, broad national and/or sectoral instruments 

dedicated to the promotion of low-carbon material innovation should be adopted. This, 

in turn, will further undermine the role of the EU ETS in the policy mix for 

decarbonisation, at least in the short and mid-term. Low EUA prices will also mean that 

the inclusion of consumption will have a limited impact on the material efficiency and 

substitution further down the value chain, unless the carbon charge on consumption 

will be set higher than the EU ETS price. That, however, will further contribute to a 

fragmentation of the carbon-pricing regime. 

 

Figure 2: Policy feedback loops in two indicative scenarios 

 

Carbon price regime fragmentation 

 

Carbon price regime integration 

  

 

While the fragmentation of the carbon price regime may be a less efficient policy option 

than a regime integration, it remains a probable option. Thus, the assessment of policy 

options for climate friendly materials should cover both scenarios, highlighting 

consequences of each policy choice from the perspective of the whole climate policy 

mix. 

Weaker
EU ETS

Sectoral policies as 
second-best answers

Further 
fragmentation 
of policy mix

Stronger
EU ETS

Limited, but well-
tailored sectoral 

policies

Sectoral 
policies 

supporting 
EU ETS
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3.2. Inclusion of Consumption 

Initially, the EU expected that its ETS would be copied and integrated with similar 

schemes around the world. However, while some countries have implemented emission 

trading systems, their stringency and prices differ (Kossoy et al. 2015). Therefore, it is 

not possible to fully pass the carbon cost onto product prices of carbon intensive 

materials when they are traded internationally. This creates concerns regarding a 

relocation of production and associated carbon emissions (“carbon leakage”) outside 

the EU’s territory if carbon pricing puts a competitive disadvantage to European 

producers. To avoid higher costs for industry that could trigger such “carbon leakage”, 

allowances are allocated free of charge to industrial emitters. This further reduces 

carbon price pass-through. 

Full carbon price pass-through is however crucial for the application of climate friendly 

technologies and practices in the material sector. It allows for example low-carbon 

cement to compete on a level playing field with traditional cement that bears the full 

carbon price. It allows the construction industry to dedicate more resources to planning 

and quality control as the savings from efficient material use increase. It also allows 

steel producers to invest in more expensive low-carbon steel making technologies, as 

incremental costs are passed with the carbon price to downstream purchasers and 

consumers. 

The EU Parliament’s draft ETS reform text (as of January 2017, following a vote in the 

environment committee in December 2016) established the principle of full carbon-

price pass through to material prices. It aims to achieve full carbon price pass through 

by including imports of selected materials into EU ETS while no longer granting free 

allowances to European producers of these materials.  Thus producers will pass the full 

carbon price to product prices. The additional cost is adjusted for imports (and possibly 

exports) at the level of the benchmark that was previously used for free allocation to 

European producers. This also ensures full carbon leakage protection.  

The full carbon price pass-through could be better achieved by “inclusion of 

consumption” instead of “inclusion of imports” of selected basic materials into EU ETS. 

Inclusion of consumption is politically less controversial than import adjustments and 

other trade related approaches, as it replicates uncontroversial consumption charges 

well established for alcohol, tobacco or excise on fuels. Inclusion of consumption has 

first been implemented in Korean and Chinese emission trading systems in the context 

of electricity (Munnings et al., 2016). It has been shown to be technically and 

administratively feasible (Ismer et al., 2016), legally viable as part of EU ETS (Ismer 

and Haussner, 2016) and discussed in the context of cement (Neuhoff et al., 2014), 

steel (Neuhoff et al., 2014) and pulp&paper (Roth et al., 2016). 
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Figure 3: How does Inclusion of Consumption in EU ETS work?  

 

 

The system works by providing carbon-intensive materials producers free allowance 

allocation according to a benchmark and tightly linked to recent production volumes. 

This gives materials producers the full incentives for climate friendly production of 

materials while providing full protection against carbon leakage. The tight link of 

allocation to recent production volumes inhibits the carbon price pass through. Carbon 

price pass-through is instead re-established with an additional consumption charge for 

European consumers at the benchmark for carbon intensity of primary production of 

the material. Thus industrial and final consumers have the full incentives for efficient 

and alternative material use and producers a business case for climate friendly material 

production processes with incremental costs. 

Materials that are close substitutes and carbon intensive should be jointly covered. In 

cement, steel and aluminum for example a € 30/tCO2 would already trigger price 

increases of 10%, 20% and 30%. Cambridge Econometrics simulated the macro-

economic impacts for a scenario with EU ETS prices increasing to €80/tCO2 by 2050. 

If demand is responsive (elasticity -1) CO2 emissions from materials decline by up to 

50% while overall economic performance increases by a quarter percent by 2050 

(http://www.carboncap.eu/). 
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3.3. Enabling environment for technology adoption 

Climate friendly technologies and practices may not be selected, even where they seem 

economical rational. This points to the importance of a broader consideration of 

decision criteria and processes that can support or inhibit climate friendly material 

choices – the enabling environment.  

Adoption of technologies or innovations is linked by marketing and management 

literature primarily to technology and adopter characteristics of firms (Frambach and 

Schillewaert, 2002) or consumers (Arts et al., 2011). Technologies have frequently not 

been implemented because example pay-back periods exceed internal amortization 

requirements of about 2 years. Despite the evidence that firms with sustainable 

initiatives perform better (Judge and Douglas, 1998; Nakao et al., 2007) adoption of 

sustainable technologies remains slow. Institutional pressures of customers, 

competitors, and other stakeholders may accelerate adoption in the future  (Srinivasan 

et al., 2002).  

However, innovation in and adoption of material and production technologies in isolated 

firms at individual supply chain levels is insufficient. Business ecosystems need to 

combine value network structures and integrated technological knowledge-oriented 

education systems (Barnett, 2006). Thus supply chain barriers could be bridged in 

development and adoption of technologies. Value network structures could also help 

supply chain reconfigurations and reformulations of business models and customer 

value propositions and facilitated systemic innovation in related technologies. For 

example, changing from steel carbon fibres in making cars requires new coating 

processes to replace electrostatic systems. 

Governments also have an important role in improving sustainable development of the 

firm (Wolf, 2013). The Dutch Environmental Law for example urges firms that use 

moderate energy levels to implement all sustainable technologies with pay back periods 

up to five years to overcome the constraint implied by 2 year amortisation. The “Vehicle 

Emissions Performance Standards” have improved the operational efficiency of car use 

by 20% between 1990 and 2011. Electrical appliances have also demonstrated 

significant improvements in efficiency driven by the Eco-Design Directive. The same can 

be said for improvement in building efficiency under the Energy Performance of 

Buildings Directive (Scott et al. 2017).  Beyond the local impacts, there is also evidence 

of “trading up effects” (Vogel, 2009; Crippa et al., 2016). Crippa et al. (2016) found 

the implementation of regulatory standards for emissions and engine efficiencies in 

cars in Europe and America had a ‘trading up effect’ through economic integration 

where suppliers, use improved standards in their home country and support the 

implementation of similar standards to benefits from economies of scale. 

The enabling environment is also important for efforts dedicated to development of 

sustainable technologies. This may involve the importance attributed to such 

development by stakeholders (Wolf, 2013), the nature of governance policies, e.g. 

international agreements on energy (De Coninck, Fischer, Newell, and Ueno, 2008), or 

file:///I:/Projects_current/MaterialsInnovation/ClimateFriendlyMaterials/Outlook-Report/SingleCommentedVersions/Barrett_CFM%20PolicySummary_preliminary%20draft_020117%20JB%20additions.docx%23_ENREF_11
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other external factors such as regulatory requirements, energy costs and customer 

demand (Rosen, 2013).  

Coordination across the different stages of the value chain and across public and private 

actors is essential for such a transition. The EU 2050 roadmap remains however rather 

unspecific (COM 2011: Low carbon roadmap and impact assessment), while road maps 

developed by sector organizations are primarily focused on new material production 

processes. This points the importance of further development and refinement 

roadmaps for the material sectors. 

Also standardization of technologies and avoiding institutional voids in regulatory 

frameworks is necessary. It needs to be complemented with an educational system 

directed at technological knowledge development from lower to the highest level of 

professions feeds the development, implementation and use of technologies. 

Governance structures need to allow for learning about the emerging requirements 

and timely adjustments of standards, regulation and training. 

 

3.4. Use of Public Procurement 

In the EU, governments spend the equivalent of 15% of the gross domestic product via 

public procurement in areas such as infrastructures, buildings, information technology, 

office equipment, and vehicles. In these areas, public procurement can create lead 

markets for climate friendly choices, providing some certainty to private sector 

suppliers on the uptake of innovations, and scaling up production to bring costs down 

(Edquist and Zabala-Iturriagagoitia, 2012). Like other ‘demand-side innovation’ tools 

(regulations and standards), procurement can spur innovation without engaging new 

spending, a plus in times of fiscal consolidation (Lember et al., 2015). 

Many EU countries have launched sustainable public procurement programs of various 

kinds and scopes. The 2014 EU Directives on public procurement accommodates many 

innovations in this space, including the possibility to reflect the cost of externalities in 

public tenders, the use of life-cycle cost analysis or total cost of ownership. At 

international level, public procurement is governed by the Revised Agreement on 

Government Procurement. This agreement also includes the option to evaluate bids 

according to environmental characteristics. 

Thus green public procurement can overcome the barrier created by the traditional 

“lowest bidder” approach to public procurement, which can be in blatant contradiction 

with the interest of procuring agency (e.g. when acquiring cheap equipment with energy 

expenditures that would more than offset the original price difference with a more 

efficient equipment).  

In the Netherlands, Rijkswaterstaat, the public works administration, provides a 

Sustainable Building Calculator (DuboCalc) to tenderers to assess the environmental 

impacts of the use of materials in the contract (van Geldermalsen 2014). It allows 

contractors to ‘optimise’ on the basis of various environmental costs derived from a 

life-cycle analysis of materials, including CO2. The environmental impacts are 
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translated into a monetary value, which is combined with the tender price to award the 

contract. Thus the cost of carbon is reflected, with all materials accounted for with their 

actual carbon and other environmental footprints.The level of the carbon price need not 

reflect the current EU ETS price, but may reflect the future carbon constraint. 

The Norwegian Ministry of Transport launched in 2010 a competition for an energy 

efficient and low-emission car ferry to link two villages in the Sognefjord. The successful 

bidder would be awarded a 10-year concession contract. The Norwegian Public Roads 

Administration, in charge of the competition, required a minimum 15-20% 

improvement in energy efficiency over that of the existing diesel-powered ferry. Bids 

were evaluated on the basis of the price (60%), energy use per passenger car-km (18%), 

total energy use per year (6%), tons of CO2 emitted per year (6%), kilograms of NOx 

emitted per year (4%) and innovation (6%). The winning consortium offered the world’s 

first electric car ferry.10 

A well-known challenge of sustainable public procurement is the ability of procurement 

officers to design tenders that best drive sustainable and innovative approaches, 

without overly restricting competition for example by prescribing specific technology 

solutions. This is being addressed with green public procurement directive and 

guidelines, best practice examples, and training of procurement teams. 

Furthermore, procurement officials may require a mandate to implement procurement 

procedures that may result in incremental costs. This requires a clear governance 

structure to make the overarching climate objectives relevant for individual 

procurement choices, or funding arrangements to address incremental costs.   

                                                 

10 References to other sustainable public procurement efforts can be found in Baron (2016). 
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4. Innovation strategy required for many climate friendly 
options 

The potential of climate-friendly options will only be fully realized if integrated in 

complex production processes and value chains. This requires a strong engagement 

and initiative from the private sector. However, the following concerns may hinder 

private firms’ incentives to invest in climate friendly options: 

 The scale of investments required for innovation in green products and 

processes is large compared to the available financial resources of companies, 

and the time to bridge before commercial success long. Hence, firms will 

struggle to finance the investment. 

 Appropriation of the benefits by innovators in the material sector may be limited, 

as engineering innovation is difficult to protect with patents, and the attribution 

of scarcity rents in a fragmented value chain is uncertain.  

 Regulatory risks can remain significant where commercial success of an 

innovative process or product depends for example on a fully effective carbon 

price.  

Public innovation support therefore needs to address financing constraints, to 

compensate for limited appropriation of benefits by the innovator, and to demonstrate 

commitment to climate policy. 

Project-based carbon price guarantees can insure investors in climate-friendly 

production process and material options against regulatory risks and thus facilitate 

access to lower-cost finance for projects and firms while enhancing overall credibility 

of the climate regime. 

Competition between projects for innovation support: Diversity of technologies and 

iterative up-scaling create competition and thus incentives to increase and accelerate 

efforts. Competition through new entrants can encourage incumbents to innovate, or to 

allow new entrants to capture market shares as in wind and solar power. For different 

stages of technology development, the policy framework, needs to considerate the level 

of market readiness, the level of appropriability by private actors, and the likeliness of 

spill-overs of innovation to develop a sufficiently broad technology portfolio. 

Facilitate learning and transparent review: Continuous learning about technology, cost 

and social performance of climate-friendly material options is needed. This should be 

the basis for a transparent review of the portfolio of mitigation opportunities benefiting 

from public support to limit regulatory uncertainty about funding decisions. 

Integrate across funding channels:  A variety of funding channels with climate policy, 

industrial policy or regional development policy objectives at local, national, and 

European exist that can in principle support innovation in climate-friendly materials. 

Thus, it is important for each channel to focus on strengths and to identify 

complementarities. 
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4.1. Innovation support for large-scale demonstration 
projects 

The notion of the technology valley of death is that technologies at the demonstration 

stage face particular challenges that lead to under-investment (Murphy and Edwards, 

2003; Watson, 2008; Weyant, 2011). Private sector involvement is essential for 

experiential learning (Hendry et al., 2010) and to ensure technologies are explored as 

part of value chains and consumer markets (Macey and Brown, 1990).  

However, private actors will struggle to fully fund innovation activities and in particular 

demonstration projects in break-through material technologies (Hurmelinna-Laukkanen 

et al., 2008). This is, because also other firms will benefit from knowledge about 

outcomes of demonstration projects. The radical innovation is inherently linked to 

uncertainty about performance, which typically requires a hedging strategy across a 

multitude of projects. However, the scale of investment required limits the ability of 

even the largest firms to afford such a portfolio. Furthermore, the regulatory risk about 

future market opportunities – e.g. linked to stringency of emission targets will impact 

all climate friendly innovation projects of a firm.  

Hence, sharing of risks and rewards between public and private is essential (Baer et al., 

1976; Markusson et al., 2011). Nemet et al. (2016) find in a study of 511 

demonstration projects for capital intensive technologies a median public contribution 

of 64% with a 25-75th percentile range of 29% and 80%. The following policy 

recommendations follow from their analysis:  

Prioritizing learning and tolerating failures:  Selection of demonstration projects 

should focus on maximizing learning or minimizing cost per learning. Production and 

costs are useful indicators of progress but should not be the only project selection 

criteria. Otherwise technology risk will be avoided, technical diversity minimized, both 

of which are crucial for learning (Anadon et al., 2016). Instead demonstrations should 

be seen as experiments (Lefevre, 1984), part of a process of continuous 

experimentation (Hellsmark, 2010).  

Disseminating knowledge: Management of knowledge produced, codification, stored, 

and transmission is central (Grubler and Nemet, 2014).  Performance review of 

demonstrations projects (Frishammar et al., 2015) and reporting of results (Gallagher 

et al., 2006) is helpful. For example, UK CCS plant design benefitted from access to 

the engineering plans in previous rounds (Reiner 2016). These benefits need to be 

balanced with private claims of proprietary access to knowledge created.  

Iterative upscaling:  Learning is enhanced with a sequence iterating technical, 

organizational and market demonstration (Bossink, 2015). Demonstration plants are 

tools for upscaling (Frishammar et al., 2015), which takes time, and requires passing 

through a formative phase' of experimentation (Wilson, 2012). Building to full 

commercial size immediately is asking for trouble, as we've seen in wind (Garud and 

Karnoe, 2003) and to some extent in CCS (Lupion and Herzog, 2013).   
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Supporting diversity Strong scale economies imply a need for diversity support 

(Markusson et al., 2012) to avoid lock in (Shackley and Thompson, 2012). Given 

multiple pathways available for large scale low carbon technologies, premature focus 

can be risky (Nemet et al., 2013). This creates a need to support variety while 

evolutionary mechanisms impose selection pressure (Kemp et al., 1998). 

The proposed Innovation Fund for the period 2020-2030 can become an important tool 

to enable a timely commercialisation of new material technologies. Linked to a 

milestone-based reward system can reduce the risk for both the public and private 

sector. Close integration with further funding channels and instruments is essential for 

the required scale of innovation.  

 

4.2. Project based carbon contracts 

For pilot plants and subsequent commercialization of climate-friendly production 

processes and new materials, large-scale investments are required. Climate-friendly 

technologies typically require higher investment costs than conventional technologies 

or refurbishment of existing assets to achieve better energy efficiency (insulation, heat 

recovery) or for additional processes to reduce emissions, like in the case of carbon 

capture and use for other applications. They may also imply higher operational cost 

with a shift from coal to low-carbon energy carriers like biomass or renewable electricity.  

Firms will consider additional investment and operational costs against savings on CO2 

emissions monetized at the anticipated CO2 price during the initial 10-15 years of plant 

operation. Large uncertainty about the trajectory of the CO2 price (i) can put at risk the 

operation of technologies with incremental operational costs and (ii) diminish the 

contribution of such savings to the refinancing of investment cost. Thus it can stop the 

progress of new technologies or increase the required scale of public co-funding for 

innovation. 

Of particular concern for investors is, that the price risk associated with the EU ETS is 

not purely market driven, but consists also of a general credibility problem of 

governments and a time horizon problem of carbon markets (Helm and Hepburn, 2005). 

The general credibility problem is due to governments’ incentive to renege on their 

policy position and, for example, supply additional allowances to deliver short-term 

price reductions for consumers and industry at the expense of longer-term investment 

incentives. The time horizon problem arises since the investment timescales for the 

assets and infrastructure needed in the materials sector often exceed the periods for 

which for example benchmarks, or the emission trajectory under the EU ETS are defined 

(Nemet et al., 2017). 

Building on the general idea of carbon contract (Helm and Hepburn, 2005) and 

commitments by governments through financial options (Ismer and Neuhoff, 2006), 

national governments could offer long-term carbon contracts for differences (CCfD) on 

the carbon price, linked to innovative projects with the potential for deep emissions 

reductions. Thus they could provide a commitment to a reference carbon price and 
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benchmark and thus make the cost savings from emission reductions predictable and 

bankable for investors. Thus additional financing structures and sources can be 

accessible and financing costs reduced, facilitating implementation of additional 

projects or reducing the required public investment support for such projects.  

 

Figure 4: Project based carbon contracts insure investors against low carbon prices and 
consumers against high ones 

 

 

Several design elements need to be considered. The first is the qualification for 

recipients of CCfDs. As the objective is progress with new climate-friendly materials or 

production processes, an ex-ante assessment needs to confirm a sufficiently deep 

emission reduction. 

Second, the contract reference price and contract duration could result from a 

competitive bidding process, or be set ex-ante by governments while projects bid for 

example on the additional innovation support required. In this case, the reference price 

could (i) reflect current expectations of price developments (ii) anticipate future CO2 

price increases (iii) be based on the social cost of carbon (iv) include a mark-up to 

provide incentives for innovative technologies.  

Third, the monitoring mechanism on the CCfD could build on existing monitoring 

mechanisms of the EU ETS, for example, to ensure the continued linkage to an active 

project.  
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4.3. Legal aspects  

Public funding can support innovation processes. However, it also can distort the 

market and discriminate against a group of competitors. It is thus essential to frame 

public funding schemes in a transparent and non-discriminatory manner. 

From an EU law perspective, public funding through EU institutions is not subject to 

State Aid rules. These rules only apply where public funding takes place through 

Member States. According to Art. 107 TFEU, any aid granted by a Member State or 

through State resources in any from whatsoever which distorts or threatens to distort 

competition by favoring certain undertakings or the production of certain goods is, in 

so far as it affects trade between Member States, incompatible with the internal market 

and thus prohibited. Nevertheless, this does not constitute an absolute prohibition on 

state aid. Rather, the Commission can grant approval for state aid schemes under the 

EU rules on state aid (Art. 107:III TFEU). If the commission has not approved a funding 

scheme qualifying as state aid, undertakings that received aid would have to pay back 

the financial resources that were granted by Member States. 

From an international law perspective, public funding schemes have to comply with the 

General Agreement on Subsidies and Countervailing Measures. This Agreement applies 

where a financial contribution that constitutes a benefit was granted to undertakings 

within the territory of a Member to the Agreement by the government. Financial 

contributions do comprise not only a direct transfer of funds (e.g. grants, loans and 

equity infusion), but also government revenue forgone that is otherwise due (e.g. tax 

credits). 

The agreement distinguishes between two types of subsidies: Prohibited subsidies and 

actionable subsidies. Prohibited subsidies comprise financial contributions that are 

specifically designed to distort international trade. In contrast, actionable subsidies are 

financial contributions with an adverse effect to the domestic industry of other Members. 

Both kinds of subsidies have to be withdrawn. Otherwise, Members can impose 

countervailing duties. 

Due to the consequence of illegal state aid, it is essential to draft public funding 

schemes on innovation within the framework of EU and WTO law. 

 

5. Conclusion – linking up policies for innovation and use 

In conclusion, a consistent perspective for a climate-friendly transition of the materials 

sectors requires the fulfilment of the following three needs: 

First, the need to develop a shared vision or roadmap for technologies, business models 

and policies, which supports the coordination of public and private sector’s choices for 

investment in the materials sector. This shared perspective should be based on the 

portfolio of technological options, should structure the enabling environment, and 

should work as a basis for decisions on public co-funding.  Successful realization needs 

to attract both industry interest and be based on broad public engagement. 
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Second, to jointly consider new production processes, new materials, efficient material 

use, and recycling and reuse of materials for the structure of road maps and design of 

policies. This ensures consistency across technologies and materials, engages all 

actors to jointly support a policy framework, and allows for incentives for fast and cost 

efficient technology development from competing between technologies and business 

models.  

Third, the need for an integrated design of policies for innovation and a large-scale use 

of climate-friendly material options, recognizing that private actors will not invest in 

innovation without prospects for large-scale use. This creates interlinkages between 

innovation and large-scale use, which can be summarized as follows: 

 private firms will only dedicate their own resources to innovation if this opens 

future business opportunities. Thus, a credible perspective of large-scale use is 

necessary to motivate and structure innovation by private firms. 

 a credible vision for the large scale use of technologies depends on the policy 

framework, both with respect to the enabling environment (standards and codes, 

training and certification of work force) and with respect to the internalization of 

carbon externalities by carbon prices. 

 while private identification and selection of promising options and initiative in 

their realization is essential, public support for innovation including pilot 

projects will also be critical as together, it is a strong business case. 

The interlinkages between innovation and large-scale adoption are central for the 

success of corporate strategy and industrial climate policy. Accounting for them will 

signal that the public and the private sector have a shared long-term vision for climate 

friendly materials. 

 

Figure 5: Link policies for innovation and use of climate friendly materials 
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