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Abstract. Recently, Alkim, Ducas, Pöppelmann, and Schwabe proposed
a Ring-LWE-based key exchange protocol called �NewHope� [2] and il-
lustrated that this protocol is very e�cient on large Intel processors.
Their paper also claims that the parameter choice enables e�cient im-
plementation on small embedded processors. In this paper we show that
these claims are actually correct and present NewHope software for the
ARM Cortex-M family of 32-bit microcontrollers. More speci�cally, our
software targets the low-end Cortex-M0 and the high-end Cortex-M4
processor from this family. Our software starts from the C reference im-
plementation by the designers of NewHope and then carefully optimizes
subroutines in assembly. In particular, compared to best results known
so far, our NTT implementation achieves a speedup of almost a factor
of 2 on the Cortex-M4. Our Cortex-M0 NTT software slightly outper-
forms previously best results on the Cortex-M4, a much more powerful
processor. In total, the server side of the key exchange executes in only
1 467 101 cycles on the M0 and only 860388 cycles on the M4; the client
side executes in 1 738 922 cycles on the M0 and 984 761 cycles on the M4.
Keywords. Post-quantum key exchange, Ring-LWE, embedded micro-
controller, NTT.

1 Introduction

Almost all asymmetric cryptography in use today relies on the hardness of
factoring large integers or computing (elliptic-curve) discrete logarithms.
It is known that cryptography based on these problems will be broken in
polynomial time by Shor's algorithm [25] once a large quantum computer
is built. It is, however, unknown when this will be achieved. Researchers
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from IBM estimate the arrival of such quantum computers within the
next 2 decades [27]. This does not only imply that we need to switch to
so-called post-quantum cryptography in 15 or 20 years. For content that
we want protected over a period of 15 years or longer it is a necessary
to switch already today. This has been recognized, for example, by the
NSA [1], by NIST [19], or by the Tor project [16].

In the majority of contexts the most critical asymmetric primitive to
upgrade to post-quantum security is ephemeral key exchange. In 2015,
Bos, Costello, Naehrig, and Stebila proposed a post-quantum key ex-
change based on the Ring-learning-with-errors (RLWE) problem for TLS [7].
Later in 2015 (with updates in 2016), Alkim, Ducas, Pöppelmann, and
Schwabe signi�cantly improved on this proposal (in terms of speed, mes-
sage size, and security) with a protocol that they callNewHope. This pro-
tocol is now used in a post-quantum-crypto experiment by Google [8] and
is considered as one option to upgrade Tor's handshake to post-quantum
cryptography. See [16, Slide 16] and [14]. In Section 2.3 of the 2015-12-07
version of [2], the authors of NewHope state that

�it [. . . ] can be implemented in constant time using only integer
arithmetic - which is important on constrained devices without a
�oating point unit.�

In this paper we present such an implementation of NewHope on �con-
strained devices�; speci�cally on the ARMCortex-M0 and the ARMCortex-
M4 microcontrollers. Our software starts from the C reference implemen-
tation by Alkim, Ducas, Pöppelmann, and Schwabe and then carefully
optimizes all performance-critical routines in ARM assembly.

Contributions. Our software is to our knowledge the �rst to achieve
128 bits of post-quantum security (with a comfortable margin) for key
exchange on an embedded microcontroller. In terms of speed, the soft-
ware is not only competitive, but actually considerably faster than today's
elliptic-curve-based solutions. For example, our software outperforms the
Curve25519 [4] implementation for the Cortex-M0 presented in [11] by
more than a factor of two.

This speed is possible in part because of the design of NewHope, and
in part through a careful optimization of the software on the assembly
level. In particular for the number-theoretic transform (NTT) we show
signi�cant speedups that will also be useful in implementations of other
lattice-based schemes. Speci�cally, our dimension-1024 NTT takes 87 223
cycles on the Cortex-M4. The previous speed record on this architecture
was 71 090 cycles for a dimension-512 NTT from [9]. An NTT is essentially

2



a sequence of �butter�y� operations where the number of butter�ies is
n · log(n) for a dimension-n NTT. One would thus expect the number
from [9] to scale up to 10/9 · 2 · 71 090 = 157 977 cycles, almost a factor
of two slower than our result. On the much more restricted Cortex-M0
our NTT needs only 148 517 cycles and thus still outperforms the (scaled)
result from [9]. Other components that we optimized on the assembly level
include the error reconciliation [2, Section 5] and the ChaCha20 stream
cipher [5] that is used for e�cient generation of uniform noise.

Availability of the software. We place all of the software described in
this paper into the public domain to maximize reusability of our results.
It is available at https://github.com/newhopearm/newhopearm.git and
https://github.com/erdemalkim/newhopearm.

Organization of this paper. Section 2 describes the NewHope post-
quantum key exchange scheme. Section 3 gives a brief overview of the
Cortex-M processor family and zooms into the speci�cations of and dif-
ferences between the Cortex-M0 and the Cortex-M4. Section 4 provides
detailed information of design decisions and constraints for both target de-
vices. Finally, Section 5 presents and discusses our results and compares
them to previous work.

2 The NewHope RLWE-based key exchange

The NewHope key exchange protocol is an instantiation of Peikert's
RLWE-based passively secure KEM presented in [22]. This section recalls
the speci�cation of the key exchange and in particular explains the com-
putations involved in the subroutines that our software optimizes on the
ARM Cortex-M0 and the Cortex-M4. For a detailed motivation of the
design choices in NewHope and a security analysis see [2].

The high-level overview of NewHope, as also listed in [2, Protocol 4],
is given in Protocol 1. In this overview, all elements printed in bold-
face, except for r, are elements of the ring Rq = Zq[X]/(Xn + 1), where
q = 12289 and n = 1024. The element r is in {0, 1, 2, 3}n. The operation
◦ denotes pointwise multiplication. All other operations are explained in
more detail in the following paragraphs.

Parse(SHAKE-128).NewHope generates a new (public) parameter a for
each key exchange. This eliminates concerns about backdoors in this pa-
rameter and all-for-the-price-of-one attacks (see [2, Section 3]). Server-side
applications are free to cache this parameter for several key exchanges to
improve performance, but our software, like the reference implementation,
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Parameters: q = 12289 < 214, n = 1024
Error distribution: ψn

16

Alice (server) Bob (client)

seed
$← {0, . . . , 255}32

â←Parse(SHAKE-128(seed))

s, e
$← ψn

16 s′, e′, e′′
$← ψn

16

ŝ←NTT(s)

b̂←â ◦ ŝ+ NTT(e)
ma=encodeA(seed,b̂)−−−−−−−−−−−−−→

1824 Bytes
(b̂, seed)←decodeA(ma)

â←Parse(SHAKE-128(seed))

t̂←NTT(s′)

û←â ◦ t̂+ NTT(e′)

v←NTT−1(b̂ ◦ t̂) + e′′

(û, r)←decodeB(mb)
mb=encodeB(û,r)←−−−−−−−−−−−

2048 Bytes
r

$← HelpRec(v)

v′←NTT−1(û ◦ ŝ) ν←Rec(v, r)
ν←Rec(v′, r) µ←SHA3-256(ν)
µ←SHA3-256(ν)

Protocol 1: The NewHope protocol including NTT and NTT−1 computations and
sizes of exchanged messages; ◦ denotes pointwise multiplication; x

$← χ denotes the
sampling of x ∈ R according to χ if χ is a probability distribution over R; a $← Rq

denotes the uniform choice of coe�cients from Zq; y
$← A denotes that the output of

A is assigned to y where A is a probabilistic algorithm running with randomly chosen
coins.

does not include caching. The parameter a is generated from a random
32-byte seed by extending this seed through the SHAKE-128 extendable-
output function (XOF) from the FIPS-202 standard [21]. The output of
SHAKE-128 is considered as an array of 16-bit little-endian unsigned in-
tegers. Each of these integers is used as a coe�cient of a if it is smaller
than 5q = 61445. Note that the amount of SHAKE-128 output required
to ��ll� all coe�cients of a may di�er for di�erent seeds (because a di�er-
ent amount of 16-bit integers may be discarded). This is not a problem,
because a XOF is designed to produce outputs of variable length. It is
also not a problem from a side-channel perspective, because a is public.

Sampling noise polynomials from ψ16. The distribution ψk is a cen-
tered binomial, which is used as LWE secret and error. NewHope uses
the parameter k = 16. The distribution ψ16 has a mean of 0 and a vari-
ance of 8, which leads to the standard deviation of σ =

√
8. Generating

a noise polynomial requires secure random-number generation. For this
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purpose we use the ChaCha20 stream cipher [5] to expand a 32-byte seed
(or, optionally on the Cortex-M4, the built-in hardware RNG).

NTT and NTT−1. The core computational e�ort of NewHope lies in
the number-theoretic transforms (NTTs), which are to a large extent in-
herently embedded into the protocol, because the exchanged messages
contain polynomials in the NTT domain. The NTT transform has three
sub-routines: pointwise multiplication, bit reversal of the coe�cients of
the polynomials, and the NTT calculation itself. All input polynomials
have randomly chosen coe�cients, therefore, we can assume that the co-
e�cients are already in bit-reversed order. This leads to the situation,
where our forward transform consists only of the NTT and multiplication
by square roots of twiddle factors. The NTT−1 consists of the transform,
the multiplication by the square roots of the twiddle factors and a bit-
reversal.

Encoding of messages. The key-exchange requires two message ex-
changes by the corresponding two parties, as can be seen in Protocol
1. The main part of each message is a 1024-coe�cient polynomial with
14-bit coe�cients. Those polynomials are encoded into a compressed little-
endian array, which takes a total of 1792 bytes. The message ma contains
an additional 32-byte seed and thus reaches a total size of 1824 bytes;
mb contains additional 256 bytes of reconciliation information and thus
reaches a total size of 2048 bytes.

Rec and HelpRec. The Error reconciliation of NewHope is based on
�nding the closest vector in a 4-dimensional lattice with basis

B4 =

1 0 0 0.5
0 1 0 0.5
0 0 1 0.5
0 0 0 0.5

 .

The HelpRec �rst splits the 1024 coe�cients of the input polynomial
v into 256 4-dimensional vectors xi = (vi,vi+256,vi+512,vi+768)

t, for i =
0, . . . , 255. It then computes reconciliation information ri from those xi

as

ri = HelpRec(xi, b) = CVPD4

(
2r

q
(xi + bg)

)
mod 2r,

where b is a random bit and g = (0.5, 0.5, 0.5, 0.5)t. Algorithm 1 describes
the computation of the closest vector denoted as CVPD4 . Note that the
output of HelpRec as stated above is a 4-dimensional vector with entries
in {0, 1, 2, 3} (i.e., 2-bit entries). Application to the whole polynomial v
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means applying it 256 times (for all xi). This produces a total of 2048 bits
of reconciliation information.

Algorithm 1 CVPD4(x ∈ R4)

Ensure: An integer vector z such that Bz is a closest vector to x
1: if (‖x− bxe‖1) < 1 then
2: return (bx0e, bx1e, bx2e, 0)t + bx3e · (−1,−1,−1, 2)t
3: else
4: return (bx0c, bx1c, bx2c, 1)t + bx3c · (−1,−1,−1, 2)t
5: end if

The Rec function also works on 4-dimensional vectors and is de�ned
as Rec(x, r) = LDDecode(1qx −

1
2rBr), where LDDecode is given in Algo-

rithm 2 (see [2, Algorithm 2]).

Algorithm 2 LDDecode(x ∈ R4/Z4)

Ensure: A bit k such that kg is a closest vector to x+ Z4: x− kg ∈ V + Z4

1: v = x− bxe
2: return 0 if ‖v‖1 ≤ 1 and 1 otherwise

The divisions by q and the presence of values like 1/2 might sug-
gest that the computation of the HelpRec and Rec requires �oating-point
arithmetic. However, one can simply multiply all values by 2q to obtain
integers; this is what the authors of NewHope refer to as e�ciently im-
plementable in �xed-point arithmetic.

Operation costs of NewHope. Table 1 summarizes the operations
involved on either side of the NewHope key exchange.
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Table 1: Operation counts on the client and the server side of NewHope.

Operation Server Client

Generating the public parameter a; 1 1

Sampling noise polynomials; 2 3

Computing the NTT; 2 2

Computing the NTT−1 with bit reversal; 1 1

Computing the pointwise multiplication; 2 2

Computing the vector r for error reconciliation; 0 1

Computing the error reconciliation Rec; 1 1

Hashing the 32-byte value ν with

SHA3-256 to obtain the �nal key µ. 1 1

3 The Cortex-M family of microcontrollers

The ARM Cortex-M processors are advertised as �the most popular choice
for embedded applications, having been licensed to over 175 ARM part-
ners� [15]. Their wide deployment in embedded applications makes them
an attractive target for optimized cryptography. ARM o�ers a wide range
with their Cortex-M family. At the low end of pricing, power consumption,
and also computational capabilities is the Cortex-M0. At the high end are
the Cortex-M4 and Cortex-M7. Like other embedded processors, ARM
Cortex-M chips are used in the Internet of Things, consumer products,
medical instrumentation, connectivity, or industry-control systems.

All Cortex-M processors have in common that data is processed in
32-bit words. Relevant di�erences for the software described in this paper
are the instruction set, the size of RAM and ROM, and the availability of
a random source. The Cortex-M0 is based on the ARMv6-M architecture.
This architecture combines the 16-bit Thumb instruction set with a few
32-bit instructions. The Cortex-M4 is based on the ARMv7-M architec-
ture. This architecture makes use of the 32-bit Thumb-2 instruction set.
Both processors have 16 general-purpose registers, out of which one is
used as stack pointer (r13), one is used as link register (r14), and one for
the program counter (r15). However, only 32-bit instructions can make
use of the 8 high general-purpose registers, which limits the Cortex-M0 to
essentially eight general purpose registers (except for register-to-register
copies, which can also reach the high registers). Another di�erence con-
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cerns the size of immediate values that instructions can handle: The M0
instruction set supports only 8-bit immediate values; the M4 instruction
set supports immediate values of up to 16 bits.

Both processors have a comparable timing with respect to cycle count
of atomic instructions. For example, the branch instruction needs 3 cycles
if the branch is taken and 1 cycle otherwise on both architectures. Both
architectures provide instructions to load or store multiple registers in
1 + n cycles, where n is the number of registers. In the case of load and
store instructions, however, architectural di�erences occur. On the Cortex-
M4, store instructions take only one cycle, because address generation is
performed in the initial cycle and the actual storing of data is performed
while the next instruction is executed. Load instruction can be pipelined
together with other independent load and store instructions. The Cortex-
M0 does not provide pipeline functionality for load and store instructions;
those instructions thus take 2 cycles.

The Cortex-M0 does not have a hardware random-number generator
(RNG), whereas the Cortex-M4 on our STM32F4xx-series development
board o�ers a 32-bit hardware RNG. This RNG unit passes all statistical
tests for secure random number generation provided by the NIST [26].
For the M4 we present two versions of our noise generation: one using
ChaCha20 and one using this hardware RNG (which has also been used
for noise generation in [9]).

4 Implementation details

This section �rst provides a detailed explanation of general optimiza-
tion techniques. We then provide two architecture-speci�c subsections in
which we elaborate on processor-speci�c optimization techniques. For the
SHAKE-128 function and the SHA3-256 function we use the optimized
implementation by the Daemen, Peeters, Van Assche and Van Keer [6].

The main focus of our optimization lies on the NTT and the NTT−1.
In our description we treat the NTT and the NTT−1 together, because
they only di�er in the fact that the NTT−1 requires a bit reversal and in
the constants being used: powers of ω for the NTT and powers of ω−1 for
the NTT−1. The choices for these parameters made by the designers of
NewHope are ω = 49 and ω−1 = 49−1 mod q = 1254. This implies that
γ = 7 is the square root of ω, the n-th root of unity. The existence of ω and
γ is guaranteed by the parameter choice of n = 1024 and q = 12289, which
is the smallest prime for which q ≡ 1 mod 2n. This together with n being
a power of 2 allows an e�cient implementation of the NTT for elements
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of Rq = Zq[X]/(Xn + 1). As an obvious optimization we make use of
precomputed powers of ω and γ, and removed multiplications by ω0 = 1
from last level of the NTT. These well known optimization techniques for
speeding up the NTT computation save us 1525 multiplications.

For precomputing the constants, there are essentially three di�erent
strategies to trade-o� time and memory. One approach is to precompute
none of the powers of ω and γ the other extreme is obviously to precom-
pute all of the powers of ω and γ; a middle ground is to precompute a
subset of them. Not precomputing any powers implies that only one co-
e�cient needs to be stored and the rest is generated `on the �y', which
costs one additional multiplication per power. The cost intensive aspect,
however, is that the product needs to be reduced afterwards, which rules
out this option for us as we chose to focus on e�ciency. Precomputing all
powers was the logical approach to begin with due to consistency with
the reference implementation provided by [2]. This requires to store 3072
14-bit coe�cients: the 512 powers of ω, the 512 bit reversed powers of ω,
the 1024 powers of γ, and the 1024 inverted powers of γ. These constants,
however, have a partial overlap, which points into the direction of the third
approach, namely to balance the memory usage and the computational
costs. We found in our experiments that the most balanced approach is
to store the 512 powers of ω and use them to compute the powers of γ.
The �rst 512 elements of the powers of γ are identical to the powers of ω,
because the powers of γ are bit reversed. The second 512 elements can be
computed by a simple multiplication with γ = 7. Since 7 needs only 3 bits
and both the precomputed powers of ω and the coe�cients are 14-bits in
size no reduction is required, because we operate on a 32-bit architecture
and after a multiplication the maximum bit size is 3 + 14 + 14 = 31-bits.
With this approach we were able to reduce the size of precomputed tables
needed by a factor of 1

3 for a price of ≈ 750 cycles. It is the most e�cient
setup for the NTT transform with regards to both memory and compu-
tational costs, as it only requires to keep 512 14-bit coe�cients at a low
cycle count overhead.

The approach for NTT−1 it is not as straight forward, because the pow-
ers of ω−1 are not as easily related to the powers of γ (γ2n ≡ 1 mod q).
The only balancing technique we could apply would be to use same powers
of ω used for the NTT. This would imply that the resulting polynomial
would be in reversed order. We would then need to reorder the polynomial
to the natural form. This could be integrated into the required multipli-
cation with the precomputed powers of γ. We implemented it during our
experiments and decided against it in the �nal implementation as it saves
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only 1
6 of the table sizes, (namely 512 inverted powers of ω) but introduces

an overhead of > 3 000 cycles. Therefore, we decided to keep the reversed
powers of ω. In our speed-optimized implementation we decided against
this tradeo�, but it might well be worth considering if memory constraints
are an issue.

Listing 1 Reduction routines used in the butter�y operation.

(a) Montgomery reduction (R = 218).
montgomery_reduce,rm:
MUL rt, rm, #12287
AND rt, rt, #262143
MUL rt, rt, #12289
ADD rm, rm, rt
SHR rm, rm, #18

(b) Short Barrett reduction.
barrett_reduce, rb:
MUL rt, rb, #5
SHR rt, rt, #16
MUL rt, rt, #12289
SUB rb, rb, rt

Listing 2 Gentlemen-Sande butter�y operation - all variables are
uint16_t.

LDR ($a_{j}$),r0
LDR ($a_{j + d}$),r1
MOV rt,rt,r0
ADD r0,r0,r1
ADD rt,rt,#36867
SUB rt,rt,r1
LDR ($omega_t$),r1
MUL rt,rt,r1
barret_reduce,r0
montgomery_reduce,rt
STR ($a_j$),r0
STR ($a_{j + d}$),rt

The NTT for n = 1024 consist of 10 levels, each performing 512
Gentlemen-Sande butter�y operations [12]. Each butter�y operation con-
sists of three loads, one addition, one subtraction, one multiplication by
a constant and two stores. One more addition needs to be performed to
keep all coe�cients in unsigned format.

Thus, except for the modular reductions, a butter�y operation re-
quires at least 2 registers for coe�cients, one temporary register, and
one 16-bit immediate value. Self-evidently we carry over the optimization
techniques applied to the computation of the NTT already in place in
the reference implementation. These consist of speeding up the modular-
arithmetic. The �rst optimization is to use Montgomery arithmetic [17].
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This demands that all constants are stored in the Montgomery represen-
tation with R = 218. Our assembly version of the Montgomery reduction
is given in Listing 1a. It shows that Montgomery reduction requires two
14-bit, one 18-bit, and one 5-bit immediate value, and also one temporary
register. The second optimization is to use short Barrett reductions [3] for
modular reductions after addition. Our assembly version of this routine is
given in Listing 1b; it shows how we reduce a 16-bit unsigned integer to
an integer congruent modulo q of at most 14-bits. It requires one 14-bit,
one 5-bit and one 3-bit immediate values, and one additional register. The
ARM instruction set does not allow immediate values as parameter in the
multiply instruction on both microcontrollers. Therefore, immediate val-
ues used in multiplications must be loaded to a register �rst. With these
conditions, each butter�y operation requires at least 4 registers. The third
optimization is called `lazy reduction'. It describes that the short Barrett
reduction is only applied every second level [2]. This works, since per level
at most one carry bit occurs; the short Barrett can handle up to 16-bits
and the starting value is at most 14-bits in size. However, because we are
computing two additions before the reduction, we need to add 3q (36867)
before the subtraction to keep all coe�cients in the unsigned format.

A note on the Longa-Naehrig approach. As a follow-up work to [2],
Longa and Naehrig presented speedups to NewHope and in particular
the NTT in [13]. They claim a speedup of the NTT by a factor 1.9 in the C
implementation and by a factor of 1.25 in the AVX2-optimized implemen-
tation. The central idea of that paper is a specialized modular reduction
routine for primes of the shape k · 2m + ` for small values of k and `; in
the case of NewHope those values are k = 3 and ` = 1. This reduction
routine is combined with extensive use of lazy reduction. The factor of 1.9
in the C implementation is largely explained by the fact that the software
makes heavy use of 64-bit integers, which the software described in [2]
explicitly avoids. Obviously, making use of 64-bit integers makes sense on
AMD64 processors, but is much less e�cient on the 32-bit microcontrollers
targeted in this paper. The AVX2 implementation described in [13] has
in the meantime been outperformed by the latest version of the AVX2
software by the NewHope authors, which uses double-precision �oating-
point arithmetic.

We experimented with the approach described by Longa and Naehrig
on the M0 and M4 and were not able to gain any speedups. This is partly
explained by the lack of 64-bit registers (and a 32 × 32-bit multiplier on
the M0). Another reason was that we observed a slight increase in regis-
ter usage, which signi�cantly increased the required number of loads and
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stores, in particular on the M0. Furthermore, the lazy-reduction approach
leaves intermediate values of > 16 bits, which need to be stored to RAM
before processing the next level. Using 32-bit integers for those interme-
diate values increases the memory usage of the NTT by 2 KB, which is
prohibitive on the M0.

4.1 Cortex-M0 speci�c optimization

The �rst optimization necessary for the Cortex-M0 is to �t NewHope
onto the processor. The portable reference implementation provided by
the authors of NewHope and described in [2] exceeds the Cortex-M0's
8KB of RAM. The C reference implementation of NewHope closely fol-
lows the description in Protocol 1, and makes use of 4 polynomials during
key generation and 8 polynomials for the computations on the client side.
Each of these polynomials is represented by its 1024 unsigned 16-bit coe�-
cients, and thus consumes 2KB of RAM. Even with only minimal overhead
for di�erent variables or microcontroller internal RAM usage, only up to
3 polynomials �t simultaneously into the RAM of the Cortex-M0. By re-
structuring the code and adapting the data types used we could �t both,
the server side and the client side onto the Cortex-M0. We solved a similar
issue during noise extension. On the Cortex-M0 it is impossible to have a
bu�er larger than 1024-byte. We therefore perform four ChaCha20 calls.
This required another bit of entropy. We simply used the loop counter
used for the four consecutive calls as input byte for the second element of
the initialization vector for the ChaCha20 function.

After �tting the key exchange protocol into the boundaries provided
by the Cortex-M0, we could start to look into optimization for speed.
A general aspect regarding optimization on Cortex-M processors is that
data is processed in words of 32-bits. This allows us to cut the amount
of stores and loads in half for the coe�cients and constants represented
as unsigned 16-bit values. For the shared key and seeds, unsigned 8-bit
values, the amount of load and stores is decreased by four. For logical oper-
ations on the values loaded this way, no overhead is generated. Arithmetic
operations, however, produce overhead, because the 32-bit values need to
be split before computation and the 16-bit values need to be merged af-
terwards. This costs 2 additional cycles for every load and 2 more cycles
before every store.

As can be seen in the operation counts summarized in Table 1 at the
end of Section 2, the NTT and the NTT−1 are the most frequently called
operations. Since it is also the most expensive function with regards to
cycle counts, it was the natural choice to begin with.
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NTT and NTT−1.We began our optimization of the NTT (and NTT−1),
by unrolling the 10 levels and standardizing the inner loops, such that ev-
ery level loops 256 times and performs two Gentlemen-Sande butter�y
operations per loop iteration. Performing two Gentlemen-Sande butter�y
operations per iteration is bene�cial, because it allows us to make the
best use of the 32-bit word size of the Cortex-M family. Listing 2 shows
the code for one Gentlemen-Sande butter�y operation. For the lazy re-
duction on every second level the Barrett reduction is omitted. Since each
coe�cient is a 16-bit value, we are able to load two of them per load op-
eration. We continued our optimization by merging levels 0 and 1. Level
0 takes every element and performs the butter�y operations; level 1 takes
every second element and performs the butter�y operations. If we combine
both levels for e�ciency we need to load two 32-bit words, thus four 16-bit
coe�cients. For each 2 loads we can now perform 4 combined Gentlemen-
Sande butter�y operations. We perform the two butter�y operations of
level 0 (without the Barrett reduction followed by the two butter�y op-
erations of level 1 (with the Barrett reduction). One loop iteration thus
handles both levels.

These four merged butter�y operations take a total of 134 cycles. Un-
fortunately this does not work for the other consecutive levels on the
Cortex-M0. With its limited instruction set and the resulting 8 general
purpose registers, the overhead gets out of proportion when merging higher
levels. Therefore we get a cycle count of 96 for every even and a cycle count
of 86 for every odd level. The last optimization we performed was to min-
imize register reordering. We went through our NTT code and optimized
it such that constants and loop-counter are placed in high registers where
possible to allow to make use of the Cortex-M0's full potential.

Before each call to the NTT a multiplication with the γ coe�cients
and after each call to the NTT−1 a multiplication with the precomputed
γ−1 coe�cients must be performed. We implemented the multiplication on
the coe�cients in assembly to bene�t from the Cortex-M0's 32-bit word
size. Additionally to the architectural bene�t we make use of the fact that
the multiplication of the coe�cients with the precomputed coe�cients is
a simple operation and does not need too many registers. Therefore we
are able to load 4 coe�cients at once and also store them. With this we
decreased the amount of loads and stores needed by another factor of two.
We could reduce the cycle count for the multiplication of coe�cients by
55.04% compared to the reference implementation.

We also decided to rewrite the pointwise multiplication of polynomials
such that it makes optimal usage of the target architecture. We achieve a
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56.08% decreased cycle count, compared to the reference implementation,
for the pointwise multiplication by making use of the word size. We load
and store two consecutive coe�cients of the polynomial and apply the
calculations needed on each half word. By doing so, we only call half of
the iterations of the main loop.

Before the NTT−1 is called a bit reversal needs to be performed. We
did not provide an assembly optimized version for this function. The prob-
lem is that consecutive coe�cients do not necessarily get changed, which
implies that we cannot bene�t from the word size. We just adapted the
bit reversal to not loop over the last elements which are una�ected by it.

Sampling noise polynomials. The noise seeds which form the base of
the noise polynomials are not generated on the Cortex-M0. The devel-
opment board we used during the implementation does not provide an
RNG. Since there is no default option for random number generation on
the Cortex-M0 we made the choice to allow a context-speci�c implemen-
tation. The randomly generated seed is crucial for the security of the key
exchange, therefore, we provide an easy to replace C function in our code.
The random seed gets subsequently extended by the ChaCha20 stream ci-
pher. We based our architecture speci�c implementation on a ChaCha20
implementation speci�cally designed for the Cortex-M0 by Neikes and
Samwel [18]. The core functionality of this stream cipher is optimized
in assembly. Additions we made were merely in the initialization phase.
Again we bene�t from the 32-bit word length of the architecture, which
allowed us to represent the internal variables e�ciently. The reference im-
plementation makes use of two helper functions to store and load values
in little-endian, however, this aspect can be solved simply by the little-
endian architecture. Therefore, we could omit the helper functions, which
gives us a 10.82% decreased cycle count compared to the reference imple-
mentation.

Error reconciliation and help-vector generation. We continued our
optimization with the Rec function by implementing it in assembly. This
yields the general bene�ts of the 32-bit word size. By additionally unrolling
and restructuring the loop we make even better use of the architecture.
We calculate 8-bits of the key and perform four consecutive calls to this
function to get 32-bit of the key before storing it. We store 32-bit of
the key eight times to compute all 256 bits of the key. Contrary to the
reference implementation, we apply helper functions as soon as possible
without storing intermediates. These changes give us a 32.10% decreased
cycle count compared to the reference implementation.
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In the case of the HelpRec function, we �rst bene�t from the fast
ChaCha20 implementation. We continued by rewriting the main loop in
assembly. The loop iterates over the 256 random bits used as fair coin
and encodes each bit into 4 coe�cients of the input polynomial. We re-
structured the loop to load 8 times a full word (32-bit). Afterwards, we
perform the loop internal calculations per bit and apply the results to the
four positions of the polynomial. These optimization measures grant us a
14.43% faster implementation compared to the reference implementation.

Polynomial addition. Additionally, we wrote assembly implementations
for the basic arithmetic calculations for polynomials. The addition works
by taking each coe�cient of the �rst and each coe�cient of the second
polynomial at the same position and adding them together before reduc-
ing the sum with a call to the Barrett reduction. We implemented the
Barrett reduction speci�c for the context and the architecture, such that
we manage to decrease the cycle count to 5. Due to the fact that this
simple function does not require meticulous register usage we could load
two 32-bit words at once, thus 4 coe�cients. We do so for the coe�cients
of the �rst polynomial and load 2 coe�cients of the second polynomial,
compute the results, load the next 2 coe�cients of the second polyno-
mial, compute the second two results and store the newly computed 4
coe�cients with one instruction. We manage to reduce the cycle count
required for polynomial addition by 59.02% compared to the reference
implementation.

4.2 Cortex-M4 speci�c optimization

Compared to the Cortex-M0, the Cortex-M4 is much more powerful. It
has 192KB of RAM, the portable reference implementation can thus run
without adaptations on this microcontroller. Additionally, the Cortex-M4
on our development board features a hardware random-number generator.
This enables us to calculate the seeds on the microcontroller directly. Ad-
ditionally, we are not required to make use of LDM and STM instructions
to save cycles for memory operations, thanks to the architectural bene-
�ts described in 3. This enables us to use 16-bit loads and stores directly
without extracting the 16-bit coe�cients from 32-bit words. The most ob-
vious implication of this is that the C implementation performs as good as
assembly when there are no arithmetic and/or reordering optimizations.

NTT and NTT−1. Inside one butter�y operation, 2 temporary regis-
ters are required to calculate the results. The Cortex-M4 has 14 available
general-purpose registers and we need to keep the addresses of the input
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polynomial and the array of precomputed twiddle factors. Therefore, we
have 10 registers available during our computations. This implies that
we can merge up to 3 levels to save on loads and stores. Making use of
these architectural constraints we split the NTT on the Cortex-M4 in four
chunks of layers. The �rst two chunks each perform three layers of the
NTT in one loop. These loops process 8 coe�cients and run 128 times. In
the third chunk we took the �rst 512 coe�cients of the input-polynomial
and ran the next three layers of the NTT on them. Afterwards, we took the
second 512 coe�cients of the input-polynomial and ran the same layers on
them. When the results are loaded into the registers we were able to ran
the last layer on them, which saved us 1024 loads and stores. The precom-
puted twiddle factors are such that we do not need multiplication for the
last layer. We incorporate the additional register that kept the addresses
of the twiddle factors into the calculations performed at the last layer.
This reduces the total amount of loads and stores needed for the NTT to
3.5n instead of 10n (n = 1024). By applying the concept of merged layers,
we where able to reduce our NTT assembly code for the Cortex-M4 to 384
branches instead of 5120 needed in the C reference implementation.

The Cortex-M4 has a `multiply and accumulate' instruction for 32-bit
integers. It can be seen that both in reductions in Listing 1 multiplication
is followed by addition or subtraction. Therefore, we could use this in-
struction in both, butter�y and pointwise multiplication. This saves more
than 30000 cycles per NTT transform. To be able to use this optimization
we implemented the pointwise multiplication of polynomials in assembly.

We also implemented the bit reversal operation in assembly. However,
while unrolling the bit reversal operation in assembly saves 6500 cycles,
the code size of the unrolled bit reversal is 7799 bytes more than the
looped implementation. Due to this trade o� we decided against the use
of it in our work, because we only have two NTT−1's. In another scenario,
however, it could be bene�cial and proofs that there is still room for
improvements.

Sampling noise polynomials. We implemented the sampling of noise
polynomials in two di�erent ways on the Cortex-M4. First, we imple-
mented the sampling by calling ChaCha20 as the reference implementa-
tion does. Second, we implemented the sampling by using the built-in
RNG. It generates a 32-bit random number every 40 cycles. Each coe�-
cient of a polynomial requires 2k random bits, 2k+1 additions, 2k shifts,
2k logical `and' instructions and 1 subtraction. For every 32-bit number
we generated one coe�cient in 50 cycles. These calculations take more
time than required by the RNG, which implies that the RNG does not
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have to wait on our calculations. Since we need 32-bit of randomness for
one coe�cient, the RNG is called 1024 times during the process of sam-
pling one polynomial. As can be seen, the performance of the generation
of a noise polynomial is strongly dependent on the parameter `k'. There-
fore, the running time of the noise sampling can be predicted by the time
required to generate 2k random bits with the RNG.

The Cortex-M4 memory operation can be pipelined, thus calling two
16-bit load/store instructions takes the same amount of time as calling
one 32-bit load/store instruction and split it into two 16-bit integers.
This allowed us to use the C implementation for the other operations
of NewHope without experiencing any signi�cant slowdown.

5 Results and comparison

In this section, we present our results and compare them with results from
the literature. Cortex-M0 benchmarks are obtained on the STM32F0 Dis-
covery board, which is equipped with a STM32F051R8T6 microcontroller.
Cortex-M4 benchmarks are obtained on the STM32F4 Discovery develop-
ment board, which is equipped with a STM32F407VGT6 microcontroller.
Our software is compiled with arm-none-eabi-gcc version 5.2.0 and -Ofast

as compiler �ag for both, the Cortex-M0 and the Cortex-M4. Cycle counts
and ROM size of our software is summarized in Table 2.

Comparison with previous results. The literature describes various
implementations of lattice-based cryptography on embedded microcon-
trollers.

For example, in [24] the authors targeted the AVR architecture, and
in [23] the authors targeted FPGAs. A direct and fair comparison among
those implementations underlies many, often unsolvable constraints. The
architectures vary, di�erent schemes are implemented, and last but not
least do all candidates for comparison to our result target lower security
levels. To gauge the progress of implementation techniques, most compar-
isons between di�erent schemes focus on comparing the performance of
subroutines; in the context of ideal-lattice-based cryptography mainly on
comparing noise sampling and the NTT, the two most costly operations.

To the best of our knowledge, there are two papers that describe op-
timizations of ideal-lattice-based cryptography for the ARM Cortex-M
family of microcontrollers. In [9], de Clercq, Roy, Vercauteren, and Ver-
bauwhede optimize RLWE-based encryption and in [20], Oder, Pöppel-
mann, and Güneysu optimize the Bliss signature scheme by Ducas, Dur-
mus, Lepoint, and Lyubashevsky [10]. Both papers target the Cortex-M4F
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Table 2: Cycle counts of NewHope building blocks on target devices.

Operation Cortex-M0 Cortex-M4

Generation of a 380 855 293 975

NTT 148 517 87 223

NTT−1 167 405 a 97 789 a

Sampling of a noise polynomial 208 692 b 172 221 b

(54 322)c

HelpRec 68 170 44 348

Rec 46 945 34 524

Key generation (server) 1 168 224 964 440 b

(681 514)c

Key gen + shared key (client) 1 738 922 1 418 124 b

(984 761)c

Shared key (server) 298 877 178 874

ROM usage (bytes) 30 178 22 828 b

(18 544)c

a Includes bit reversal operation
b Noise generation done by ChaCha20
c Noise generation done by RNG

microcontroller and implemented the NTT on 512-coe�cient polynomials
with the same modulus q = 12289 that we used. An additional challenge
for comparison is that the NTT operations in [9] and [20] use dimension
512, whereas we use dimension 1024. As explained in the introduction,
NTT computations are essentially a sequence of butter�y operations. For
comparison we thus scale the numbers from [9] and [20] to dimension 1024
by the number of butter�ies, i.e., by a factor of 20/9.

From Table 3 we can see that even if we use the built-in RNG of
the M4, our sampling algorithm is 1.75× slower than the Knuth-Yao al-
gorithm used in [9]. Note however, that our sampling algorithm, unlike
the Knuth-Yao sampler, runs in constant time and is thus inherently pro-
tected against timing attacks. Also, the slightly decreased performance on
embedded microcontrollers is a price to pay for compatibility with signif-
icantly increased timing-attack-protected sampling performance on large
processors with caches. For details, see [2, Section 4].

With respect to the NTT the cycle counts we achieve on the Cortex-
M4 are 45% faster than [9] and 68% faster than [20]. In the case of the
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Table 3: Performance comparison of NTT implementation and error sam-
pling

NTT Noise samplinga

Cortex-M0 (ours) 148 517 270

Cortex-M4 (ours) 87 223 174b

(50)c

Cortex-M4F [9] 157 977d 28.5

Cortex-M4F [20] 272 486d 1 828
a Cycle counts for sampling one coe�cient
b Noise generation done by ChaCha20
c Noise generation done by RNG
d Number scaled from dimension 512 to dimension 1024 by multiplying by 20/9

Cortex-M0, the cycle savings are 6% faster than the M4F counts from [9]
and 45% faster than the M4F counts from [20]. This demonstrates that the
optimization measures applied by us provide faster results on comparable
hardware and enable inferior hardware to outperform the best results on
ARM Cortex-M processors for calculating a NTT.
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