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Topological insulators are characterized by an inverted band structure in the bulk and
metallic surface states on the surface. In LaBi, a semimetal with a band inversion equivalent
to a topological insulator, we observe surface-state-like behavior in the magnetoresistance.
The electrons responsible for this pseudo-two-dimensional transport, however, originate
from the bulk states rather topological surface states, which is witnessed by the angle-
dependent quantum oscillations of the magnetoresistance and ab initio calculations. As a
consequence, the magnetoresistance exhibits strong anisotropy with large amplitude (~ 10°

%).

Topological insulators (Tls) are characterized by their conducting surface states due to the
nontrivial topology of the bulk band structure.[1, 2] A three dimensional (3D) topological
insulator has topologically protected conducting surface states in the form of an odd
number of Dirac cones. Not limited to insulators, topological states have also been observed
in semimetals for example Weyl semimetals and Dirac semimetals, in which conduction and
valence bands disperse linearly through nodal points in all directions in the three-
dimensional space.[3-7] When these bands are doubly degenerate, the system is called a
Dirac semimetal. If the degeneracy is lifted by breaking time-reversal and/or inversion
symmetry, properties of a Weyl semimetal can be observed. Weyl semimetals exhibit exotic

Fermi arcs in the surface states[3] and interesting transport phenomena such as extremely
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large magnetoresistance (MR) and high charge carrier mobility.[8, 9] A group of topological
materials exist, however, with a zero energy gap, which are actually semimetallic and
referred as topological semimetals (TSMs). For example, the Heusler Tls usually exhibit an
inverted band structure and the gapless feature at the Fermi energy.[10-12] Large MR and
high mobility were also reported in these compounds such as LaPtBi.[13, 14] However, it is
still illusive to distinguish the contributions by the bulk and surface states to the transport

properties because of the semimetallic nature of TSMs.

Recently a new series of compounds, lanthanum monopnictides, were theoretically
predicted to be TSMs[15], which stimulates the interest in their transport properties.[16]
The last member, LaBi, is particularly interesting because of the largest spin-orbit coupling
which may result into topological surface states. Our experiments reveal a large,
unsaturated MR in LaBi, which is due to the electron-hole compensation in this semimetallic
material. We observe a remarkable transverse MR of the order of 10> % along with strong
anisotropy which brings it in the line of the best known materials like NbP, WTe; and
NbSb,.[8, 17, 18] Strong Shubnikov-de Haas quantum oscillations develop at low
temperatures which enables us to reconstruct the Fermi surface topology. The Fermi
surface topology extracted from angular dependent magneto-transport experiments agrees
well with our ab initio calculations. We observe an interesting strongly anisotropic Fermi

surface that originates from the bulk electron pockets, rather than real surface states.

High purity La and Bi metals were weighed and transferred into an alumina crucible
according to the composition Lag33Bige7 (15 g) inside argon filled glove box. The crucible was
sealed in a quartz vessel under 3 mbar Ar pressure pressure to avoid the La attack on the

quartz tube. The contents were heated at 1250 °C with a heating rate of 100 °C/h. This
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temperature was maintained for 1h followed by cooling to 1200 °C with a rate of 100 °C/h.
After this the content was slowly cooled (1 °C/h) until 1050 °C for crystal growth. At this
temperature the extra Bi flux was decanted out and the content was rapidly cooled down to
room temperature. Cubic crystals of LaBi were retrieved and stored inside a glove box. The
quality of the crystals was checked by using single crystal X-ray diffraction Bruker D8

VEsdNTURE X-ray diffractometer with M,-K,, radiation and a bent graphite monochromator.

The transport measurements were performed using the ACT rotator option of physical
property measurement system (PPMS, Quantum Design) with a maximum field of 9 T. The
35 T static magnetic field measurements were performed at the High Field Magnet
Laboratory HFML-RU/FOM, member of the European Magnetic Field Laboratore (EMFL), in
Nijmegen. Linear electrical contacts were made by 25 um Pt or 40 um Au wires using Ag

epoxy as glue.

The Vienna Ab-initio Simulation Package (VASP) was adopted to perform the density-
functional theory (DFT) calculations.[19, 20] The hybrid functional (HSE06)[21] with spin-
orbital coupling was used to calculate the electronic structures. The bulk Fermi surfaces and
the band structures were interpolated by maximally localized Wannier functions
(MLWFs)[22-24]. The experimental lattice constant a = 6.5797 A of rock salt LaBi was

adopted.

LaBi has the largest spin-orbit coupling of all lanthanum monopnictides and it readily grows
with Bi as a self-flux in contrast to e.g. LaSb where tin is used as flux and creates a possibility
of elementary tin inclusion in the crystals. Moreover, LaBi is more stable than LaSb in air and
moisture. It crystallizes in rock salt structure with space group Fm-3m wherein La and Bi

atoms are arranged alternatively in all the three directions. The crystals obtained from Bi-
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flux growth are well faceted cube shaped with smooth (100) faces and can easily be cleaved

along these faces.

We measured the electrical transport of our well oriented crystals (as confirmed from Laue
diffraction) at temperatures down to 350 mK and magnetic fields up to 35 T. The current
was applied along [100] and the field was rotated along different directions of the crystals.
In order to improve statistical significance we have reproduced the measurements on many
crystals. At zero magnetic field, the resistivity p shows purely metallic behavior, decreases
linearly with temperature until 65 K below which it shows Fermi liquid behavior with pg +aT?
relation (supplementary Fig. S1). The resistivity values are 4.95 x 10 Q-cm at 300 K and
1.46 x 10”7 Q-cm at 2 K resulting a residual resistivity ratio (RRR) = 339 confirming the high
crystal quality, in fact the residual resistivity of LaBi is even less than in other known
semimetals (WTe,, NbP). Moreover, the conductivity per unit charge carrier at 300 K is of

the same order as in highly metallic elements like copper.

When a magnetic field is applied, a metal to insulator-like transition is observed at low
temperature and the transition temperature increases with increasing magnetic field (Fig.
1(d)). This was first observed in graphite but now it is well known for many semimetals
possessing high mobility.[8, 17, 18, 25, 26] This phenomenon has broadly been attributed to
the formation of excitons resulting in opening up of an excitonic gap in the material, which
is enhanced in the magnetic field.[25] Semimetals with a smaller carrier density resulting in
ineffective Coulomb screening and high mobility are ideal candidates to show metal to
insulator-like transition. This behavior can also be understood by scaling the temperature
dependent resistivity curves at different fields according to Kohler’s rule as observed in

WTe,.[27] This behavior is illustrated by plotting the MR versus woH/pp for different
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temperatures (Fig. S2 in the supplementary info). They all merge into the single behavior,

which fit to the equation:
MR = A(oH 1 p,)"

where A is a proportionality constant and m is the exponent. From the best fitting, m = 1.6
(m=2 corresponds to the perfectly compensated electron and hole system) which points out
the compensated nature of LaBi. Moreover, the normalized temperature dependent MR
values at different fields fall on top of each other. Hence, the low temperature phase is a
metallic phase rather than an insulating one in high magnetic field. Transport at low
temperature is dominated by electron charge carriers with a crossover temperature

between 10 and 20 K (see Fig. S8) after which the hole charge carriers dominate.

Now we focus on magnetoresistance (MR) of LaBi, defined as MR (%) = 100 x (o(B) —
0(0))/(0). This material exhibits a huge transverse MR at 2K and 9T (0.82 x 10> %, see Fig.
2(b)) when the magnetic field is applied along [001]. Another crystal with lower RRR = 193
exhibited smaller magnetoresistance (0.38 x 10° %) under the same conditions. The MR of
both crystals increases quadratically with field. Extending the magnetoresistance
measurements of LaBi to 35 T, we do not observe any sign of saturation (Fig. S9). The
unsaturation behavior at high magnetic field has only been demonstrated in very few
materials like NbP and WTe,. The value of MR does not change significantly until 15 K after
which it decreases sharply. Interestingly, we observe 100 % of further enhancement in the
MR when the field is along [101] (MR = 1.5 x 10° %, 2 K and 9 T) compared to [001] (MR = 0.8
x 10° %, 2 K and 9 T) field direction. This anisotropic behavior in the MR is visualized in the
polar plot of the resistivity where maxima and minima occur along [101] and [001],
respectively (inset of Fig. 2(b)). Such a large MR anisotropy in LaBi is a clear indication of
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anisotropic Fermi surface character. In contrast, LaSb shows only 30 % increase in MR along
[101] direction indicating smaller anisotropy compared to LaBi. Ab initio calculations[28]
clearly show the larger anisotropy in LaBi compared to LaSb which will be discussed further

in the following sections.

The field dependent resistivity shows SdH quantum oscillations, which are detected at low
temperatures and fields as low as 2 T. To extract their amplitude of the oscillations, a third
order polynomial was subtracted from the resistivity; the resulting oscillations at different
temperatures are plotted against the inverse magnetic field (inset of Fig. 2(c)). These
oscillations are highly periodic and their amplitudes diminish with increasing temperature
beyond 10 K. We employed a fast Fourier transform (FFT) in order to extract the frequencies
involved in the oscillations (Fig. 2(c)). We notice that two fundamental frequencies, F, at
274 T from electron pocket, o and Fz at 603 T from hole pocket, B as well as second
harmonic of a-pocket at 547 T are observed when B is along [001]. The temperature
dependence of the FFT amplitudes of the corresponding Fermi pockets is shown in Fig. 2(d),
which follow the Lifshitz-Kosevich (LK) relation:

Apxx o e‘Z”ZkBTD/ﬁ 27[2kBT /ﬂ
24 sinh (22°k,T / B)

where kg is Boltzmann’s constant, and Tp (Dingle temperature) and = ehB/2tm” (with m"
being the effective mass) are fitting parameters. Best fitting yields the values for m" and Tp
of 0.23mg and 8.9 K for the a—pocket and 0.15mg and 9.1 K for the f—pocket, respectively,
where mg is the bare electron mass. We analyze the most dominant frequency
corresponding to the a—pocket to obtain various parameters related to the Fermi surface,

which play a significant role in electrical transport. Considering the circular cross section of
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the Fermi surface along [001], the Fermi area (Af) that cover by electrons is found to be
0.026 A2 from Onsager relation F = (h/(4en’))Ar where F is the frequency of oscillation. Af is
used further to obtain the Fermi vector kr = 9.1 x102% A™. According to the relations m =
Er/ve and v = hkF/m* the values of Fermi energy (Ef) and Fermi velocity (vf) are 2.76 meV

and 4.6 x 10* m/s respectively.

Our ab-initio calculations clearly show the presence of electron and hole pockets located at
the Fermi level. However, their presence can also be observed experimentally in a nonlinear
Hall resistivity which otherwise should behave linearly. We observed nonlinear Hall effect,
with a positive Hall constant at low fields which changes its sign at higher fields. On
increasing the temperature, the Hall constant is positive in the entire field range. In order to
guantitatively determine the carrier densities we calculate the conductivity tensor and apply
a two-band model to separate carrier densities and their corresponding mobilities. The
resultant hole and electron densities are 7.56 x 10%° cm™ and 7.62 x 10?° cm™ respectively,
and the corresponding mobility values are 1.89 x 10* and 1.75 x 10" cm?/Vs respectively, at
2 K. This is in accordance to the compensated nature of LaBi. High carrier concentration and

large mobility explain the excellent conductivity in LaBi compared to other semimetals.

The band structure along high-symmetry lines for LaBi is shown in Fig. 3(a). The Fermi
energy is 20 meV below the ideal electron-hole compensation point in the calculated band
structure and crosses three doubly-degenerate bands (blue, green and red). The blue and
green bands are hole pockets and the red bands are electron pockets. The band crossing
points near X-points between La-5d and Bi-6p states present the band inversion indicating a
3D topological insulator. The exact position of the Fermi energy, Er (-20 meV) is determined

by comparing the calculated angular dependence of the extremal cross-sectional area to the
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measured quantum oscillation frequencies. Calculations reveal two hole pockets (£ andy)
and three electron pockets (@) in the first Brillouin zone (BZ). These electron pockets are
identical in shape and they are located at every X-point. & and y are strongly anisotropic as
shown in Fig. 3(b), but the pocket £ is nearly spherical and lies entirely inside y at the /-
point. All pockets have only one extremal orbit when the field is applied along the

crystallographic axes.

Experimentally, by tracking the angle dependent SdH frequencies it is possible to
reconstruct the entire Fermi surface. In this process, we rotate the whole resistivity setup to
track how the SdH oscillation frequency F changes as a function of the tilt angle with respect
to the field in a broad range of more than 200°. The angle between the magnetic field and
the current is varied in steps of 10° and the recorded resistivity and the corresponding FFT
are shown in Fig. 4(a). We observe a shift of dominant « frequency as follows. At 6 =0° (B Il
[001]), F, is at 274 T (Fig. 4(b)) and on gradually tilting the field towards 90° (B Il [100]),
F, increases. When @reaches 30°, a new frequency, F, is encountered just above F, which
decreases on increasing the angle further. This F,, does not correspond to the fundamental
frequency and is attributed to the neighboring (100) plane because of crystal symmetry.
When B is applied perfectly along [100] at 8= 90°, F,, becomes the fundamental frequency
corresponding to the (100) plane whereas F, of the (001) plane disappears completely. This
evolution of frequencies is exactly similar to the yband in simple cubic SmBg topological
insulator.[29] From the full angular rotation, we tracked F, and plotted it against & (Fig.
4(b)) yielding intriguing results. F, roughly follows the function F,/cos(0-nmt/2) (shown by
blue dashed lines) close to the principle crystallographic axes [001], [100] etc. as seen in Fig.

4(c). The similar inverse cosine behavior for F, has also been observed in LaSb (from the
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same family of compounds) and the correlation has been argued to be arising from the
topological 2D surface states. However, our ab-initio calculations in LaBi shows the presence
of highly anisotropic 3D elongated ellipsoidal electron pockets (aspect ratio = 7.9). The cross

section area of an ellipsoid and hence the corresponding frequency varies with the tilt angle

as: ALUF, [ 7zab/\/sin29+(a2 /bZ)COSZH, where a and b are semimajor and semiminor

axes of the ellipsoid respectively. When a/b >> 1, the above relation reduces approximately
to the inverse cosine for small @ values.[30] In LaBi, when the field is tilted further away
from these axes, marked deviation from the inverse cosine relation is seen. We have
mapped the experimental frequencies on the calculated angular dependence of Fermi
surface cross sections (shown by red crosses in Fig. 4(c)) and observe a striking correlation
between F, and extremal cross section area of elongated 3D electron pockets. Hence, we
consider the band corresponding to o to be only pseudo-2D in nature. The frequency
corresponding to S (Fp) is largely independent of the angle. This corresponds very well with
the angular dependent extremal area of an almost spherical hole pocket (/) situated at the

[I*point of the Brillouin zone.

In summary, we show from electrical transport measurements and ab-initio calculations
that despite having topologically protected insulating gap, LaBi behaves as a semimetal with
very high bulk conductivity. At low temperature, the transport in lanthanum monopnictides
is dominated by highly elongated 3D electron pockets centered at X-points in the Brillouin
zone which behave like pseudo-2D and roughly follow the inverse cosine rule. Additionally,
co-presence of electron and hole pockets makes LaBi a compensated material, with a huge

unsaturated magnetoresistance and remarkable anisotropy.

Page | 9



This work was financially supported by the Deutsche Forschungsgemein- schaft DFG (Project
No. EB 518/1-1 of DFG-SPP 1666 “Topological Insulators”, and SFB 1143) and by the ERC
(Advanced Grant No. 291472 Idea Heusler). The authors declare that they have no

competing financial interests.

*Corresponding authors

shekhar@cpfs.mpg.de and felser@cpfs.mpg.de

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

[2] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

[3] X. Wan, A. M. Turner, A. Vishwanath and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).

[4] H. Weng, C. Fang, Z. Fang, B. A. Bernevig and X. Dai, Phys. Rev. X 5, 011029 (2015).

[5] Z. K. Liu, L. X. Yang, Y. Sun, T. Zhang, H. Peng, H. F. Yang, C. Chen, Y. Zhang, Y. F. Guo, D.
Prabhakaran, M. Schmidt, Z. Hussain, S. K. Mo, C. Felser, B. Yan and Y. L. Chen, Nat. Mater.
15, 27 (2016).

[6] Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S. K. Mo, H.
Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain and Y. L
Chen, Nat. Mater. 13, 677 (2014).

[7] Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z.
Fang, X. Dai, Z. Hussain and Y. L. Chen, Science 343, 864 (2014).

[8] C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski,
J. Wosnitza, Z. Liu, Y. Chen, W. Schnelle, H. Borrmann, Y. Grin, C. Felser and B. Yan, Nat. Phys.
11, 645 (2015).

[9] X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X.
Dai and G. Chen, Phys. Rev. X 5, 031023 (2015).

[10] S. Chadov, X. Qj, J. Kuibler, G. H. Fecher, C. Felser and S. C. Zhang, Nat. Mater. 9, 541 (2010).

[11] H. Lin, L. A. Wray, Y. Xia, S. Xu, S. Jia, R. J. Cava, A. Bansil and M. Z. Hasan, Nat. Mater. 9, 546
(2010).

[12] B. Yan and A. de Visser, MRS Bull. 39, 859 (2014).

[13] C. Shekhar, S. Ouardi, A. K. Nayak, G. H. Fecher, W. Schnelle and C. Felser, Phys. Rev. B 86,
155314 (2012).

[14] Z.Hou, W. Wang, G. Xu, X. Zhang, Z. Wei, S. Shen, E. Liu, Y. Yao, Y. Chai, Y. Sun, X. Xi, W.
Wang, Z. Liu, G. Wu and X.-x. Zhang, Phys. Rev. B 92, 235134 (2015).

[15] M. Zeng, C. Fang, G. Chang, Y.-A. Chen, T. Hsieh, A. Bansil, H. Lin and L. Fu, arXiv preprint
arXiv:1504.03492, (2015).

[16] F. F. Tafti, Q. D. Gibson, S. K. Kushwaha, N. Haldolaarachchige and R. J. Cava, Nat. Phys. 12,
(2016).

[17] M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige,
M. Hirschberger, N. P. Ong and R. J. Cava, Nature 514, 205 (2014).

[18] K. Wang, D. Graf, L. Li, L. Wang and C. Petrovic, Sci. Rep. 4, 7328 (2014).

[19] G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).

[20] G. Kresse and J. Furthmiller, Comput. Mater. Sci. 6, 15 (1996).

[21] J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

Page | 10



[22] N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).

[23] I. Souza, N. Marzari and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001).

[24] A. A. Mostofi, J. R. Yates, Y.-S. Lee, |. Souza, D. Vanderbilt and N. Marzari, Comput. Phys.
Commun. 178, 685 (2008).

[25] D. V. Khveshchenko, Phys. Rev. Lett. 87, 206401 (2001).

[26] X. Du, S.-W. Tsai, D. L. Maslov and A. F. Hebard, Phys. Rev. Lett. 94, 166601 (2005).

[27] Y. L. Wang, L. R. Thoutam, Z. L. Xiao, J. Hu, S. Das, Z. Q. Mao, J. Wei, R. Divan, A. Luican-
Mayer, G. W. Crabtree and W. K. Kwok, Phys. Rev. B 92, 180402 (2015).

[28] A. Hasegawa, J. Phys. Soc. Jpn 54, 677 (1985).

[29] G. Li, Z. Xiang, F. Yu, T. Asaba, B. Lawson, P. Cai, C. Tinsman, A. Berkley, S. Wolgast, Y. S. Eo,
D.-J. Kim, C. Kurdak, J. W. Allen, K. Sun, X. H. Chen, Y. Y. Wang, Z. Fisk and L. Li, Science 346,
1208 (2014).

[30] J. M. Schneider, B. A. Piot, |. Sheikin and D. K. Maude, Phys. Rev. Lett. 108, 117401 (2012).

Figure captions

FIG. 1. Schematic band structure, unit cell, photograph of the crystal and temperature
dependent resistivity of LaBi. (a) Schematic band structure of an ideal topological insulator
(left panel) where the topological gap and the corresponding surface states are at the Fermi
energy. Schematic band structure of LaBi with the topological gap and the surface states
below the Fermi energy (right panel) in addition to a trivial valence band crossing the Fermi
energy. (b) Crystal structure of LaBi where La and Bi are represented with red and green
spheres respectively. (c) Typical crystal of LaBi obtained from the flux growth technique
where crystal edges are marked with red dashed lines. (d) Temperature dependent
electrical resistivity of LaBi at 0 T and fields up to 9 T. The blue dashed line is a guide to the

eye to track the metal to the insulator-like transition with increasing field.

FIG. 2. Magnetoresistance and SdH quantum oscillations of LaBi (a) Field dependent
transverse resistance of LaBi at different temperatures starting from 1.85 K to 20 K with a
maximum field of 9T. (b) Transverse magnetoresistance of LaBi at fields along [001] and
[101] directions at 2 K. Inset of Figure 2b shows the polar plot of MR at 5T wherein maxima
and minima occur at fields along [101] and [001] family of directions correspondingly. Inset
of (c) shows SdH quantum oscillations after subtraction of third order polynomial plotted
against the inverse of the magnetic field at temperatures from 1.85 K to 10 K. (c)
Corresponding FFT amplitudes of SdH oscillations depicting fundamental frequencies F, (274

T), Fp (603 T) and the second harmonic of F, (546 T). (d) Temperature dependent FFT
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amplitudes of F, (274 T) and Fz (603 T) along with their fittings according to Lifshitz-Kosevich

relation to obtain their corresponding effective masses.

FIG. 3. Band structure and the first Brillouin zone of LaBi (a) Bulk band structure of LaBi. The
gray dash line is the Fermi energy 20 meV below the compensation point. A topological gap
appears near X-point of the Brillouin zone. (b) The Fermi surface in the first Brillouin zone at
Fermi energy. There are two hole pockets centered at the /-point (H; corresponds to S

band) and three identical electron pockets (E corresponds to a band) centered at X-points.

FIG. 4. Angular dependent SdH oscillations, corresponding FFTs and Fermiology of LaBi. (a)
SdH oscillations amplitude (after polynomial (cubic) background subtraction) for tilt angles
30° to 150° (step size 10°). (b) Corresponding FFT amplitudes showing the angular
dependence of F, and Fz. The inset shows the scheme for the field rotation in the (010)
plane. (c) Angular dependence of the SdH oscillation frequencies (solid circles) along with
the calculated frequencies obtained from the extremal area of 3D Fermi surface cross
sections (red cross for « electron pockets, green cross for £ hole pocket) and inverse cosine
relation (blue dashed lines). The purple solid circle is the frequency obtained from high

magnetic field measurement up to 35T.
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Supplementary Information

Observation of pseudo-two-dimensional electron
transport in the rock salt-type topological semimetal
LaBi
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FIG. S1. Temperature dependent resistivity at zero field showing Fermi liquid behavior (fitted with
red dotted line) in low temperature resistivity and linear behavior (fitted with dotted green line) at
high temperature. The inset shows a typical crystal of LaBi obtained from flux growth technique.
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Scaling of temperature dependent resistivity by Kohler’s rule
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FIG. S2. Temperature dependent MR plotted against magnetic field over zero field resistivity. The
overall behavior is fitted (res line) with the relation: MR = A(H/p0)" .
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FIG. S3. (a) Temperature dependent MR at different magnetic fields. (b) Temperature dependent MR
at different magnetic fields normalized by their corresponding MR values at 5.5 K.
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Angle dependent MR

p(x10™> Qcm)
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FIG. S4. Angle dependent MR of LaBi at 2K; inset shows the profile of crystal movement in the fixed
field direction.
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FIG. S5. Angle dependent FFT for field rotation in the angle range 0° to 220° in a step of 10°.
Frequencies corresponding to &, & and f are tracked by blue dashed lines. The inset shows the
schematic of field rotation in the plane (010).
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Polar plot
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FIG. S6. (a) Polar plot of resistivity when the current is passed along [100] and the field is rotated in

the direction [001]—[111]—[110]. (b) Schematic of the crystal orientation and its rotation with
respect to the magnetic field.

Temperature dependent MR
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FIG. S7. MR of LaBi crystals at different temperatures for crystals (a) RRR =193 and (b) R = 339.
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Two band model

As the Fermi surface of LaBi has four fold symmetry, the Hall conductivity tensor can be

defined as:

— 'OVX
- 2 2
pyx +pxx

O-xy

According to semiclassical Drude model individual electron and hole conductivities can be

summed up to obtain overall transverse conductivity tensor as follows:

o, =|nu
Xy h:uh 1+(ﬂhB)

GXX(B =O):(nh:uh +ne/ue)e

Here, np, 1 are density and mobility of hole whereas as ne, u. are density and mobility of
electron respectively; e is the electronic charge. Using these equations, Hall conductivity can

be fitted to obtain hole and electron density and mobility as fitting parameters.
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FIG. S8. (a) Hall resistivity of at different fields as a function of magnetic field. For temperature until
20 K, Hall resistivity is nonlinear after which it varies linearly. (b) Hall conductivity (black open circles)
as a function of field at 2K along with the fitting (red solid line) according to the two band model.
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FIG. S9. High magnetic field MR with a maximum field of 35T. The MR remains unsaturated until 35T
and behaves almost parabolic (MR = aH**?) with field as shown by the red dotted line.
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