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Abstract

We here present a code for performing analytic continuation of fermionic Green’s functions and self-energies as well as bosonic susceptibilities
on a graphics processing unit (GPU). The code is based on the sampling method introduced by Mishchenko et al. (2000), and is written for the
widely used CUDA platform from NVidia. Detailed scaling tests are presented, for two different GPUs, in order to highlight the advantages of this
code with respect to standard CPU computations. Finally, as an example of possible applications, we provide the analytic continuation of model
Gaussian functions, as well as more realistic test cases from many-body physics.
c⃝ 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).

Keywords: GPU; Analytic continuation; Parallelization; Green’s function

Code metadata

Current code version Version 1.0
Permanent link to code/repository used of this code version https://github.com/ElsevierSoftwareX/SOFTX-D-16-00025
Legal Code License GPL-3.0
Code versioning system used none
Software code languages, tools, and services used C++ with CUDA
Compilation requirements, operating environments & dependencies Linux, CUDA compatible NVIDIA GPU; CUDA Toolkit 7 with thrust library
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Support email for questions cjs.nordstrom@gmail.com

1. Introduction

The last two decades have seen a drastic increase of com-
putational studies in solid state physics. These not only com-
prehend works based on density functional theory [1], but also
more involved works based on many-body theory [2]. Solv-
ing the many-body problem usually involves the calculation
of Green’s functions and self-energies. At finite temperature, it
becomes more convenient to perform this calculation at imag-
inary times, or equivalently at imaginary energies. Although
this makes it possible to perform more efficient simulations, the

∗ Corresponding author.
E-mail address: cjs.nordstrom@gmail.com (J. Nordström).

physical observables one is interested in are still defined at
real times, or equivalently at real energies. Hence, one needs
to perform analytic continuation of Green’s functions and self-
energies in the complex plane. Unfortunately, this results in an
ill-posed problem, whose solution may be difficult to obtain
without a priori knowledge on the function itself. For these
reasons, a variety of numerical methods for performing the an-
alytic continuation exist. The most celebrated methods include
the maximum entropy method [3–10], the Padé approximant
method [11–14], the Singular Value Decomposition [15,10],
the non-negative Tikhonov method [16], the non-negative least-
square method [17], stochastic regularization methods [18] and
sampling methods [19–22].

In this article we focus on the approach proposed by
Mishchenko et al. in Ref. [19], where the analytic continuation
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is approximated with a sum of rectangles to be determined
via stochastic sampling. Although this method has raised high
expectations in the scientific community, its applicability has
been so far limited by the high computational cost. This
requires that one needs to perform the analytic continuation
on supercomputers facilities, which are not always accessible.
Moreover, one has often to experience long queuing times,
which makes the data analysis particularly inconvenient. It
would be desirable to be able to work directly on a common
laptop. To fulfill this need, we present here a code for
the analytic continuation through Mishchenko’s method for
graphics processing units (GPUs). At the moment the code
is applicable to fermionic Green’s functions and self-energies,
as well as to bosonic susceptibilities. For typical problems it
is possible to perform several analytic continuations in a few
minutes on a common laptop, which is going to significantly
extend the number of researchers interested in Mishchenko’s
approach. Moreover, some of the presented numerical routines
may find applicability for other problems requiring a stochastic
sampling.

2. Problems and background

This program provides an approximate solution to the ill-
posed Fredholm integral equation

G(x) =

 b

a
K (x, ω)ρ(ω)dω (1)

where G, K are known functions and ρ is unknown. For our
purposes G(x) can be a fermionic Green’s function, a fermionic
self-energy or a bosonic susceptibility with the symmetry that
its spectral function is odd. For the first two, x is either
the imaginary time τ or the imaginary fermionic (Matsubara)
frequency iωn . For a bosonic function x can only be the
imaginary bosonic frequency iωn (extensions to τ are planned
in the future). The function K in Eq. (1) is known as the kernel,
and for the three possibilities above can take the form:

Kf(τ, ω) =
exp(−τω)

1 + exp(−βω)
Kf(iωn, ω) =

1
iωn − ω

Kb(iωn, ω) =
ω2

ω2
n + ω2 (2)

where the subscripts f and b stay for fermionic and bosonic
respectively. The wanted unknown function ρ(ω) is the spectral
function, defined as a function of real energies ω.

2.1. Mishchenko’s stochastic optimization method

To obtain a solution ρ(ω) to Eq. (1), A.S. Mishchenko
et al. [19] have developed an approach based on the Monte
Carlo method. The main idea is to approximate the true ρ(ω)

with ρ̃(ω), which is a sum of R rectangles, then calculate G̃(τ )

for that particular ρ̃(ω) and compare the result to the known
values of G(τ ) to get an indication of how adequate the guess
ρ̃(ω) was. The rectangles are finally updated in a Monte Carlo

fashion, as described below. More in detail, ρ̃(ω) can be written
as

ρ̃(ω) =

R
i=1

χ{Pi }(ω) (3)

where the sum runs over R rectangles, which are defined as

χ{Pi }(ω) =


hi , ω ∈ [ci − wi/2, ci + wi/2]

0, otherwise.
(4)

Here {Pi } = {hi , wi , ci } represents width, height and position
(referred to the middle point). A set of rectangles is called a
configuration and corresponds to a given ρ̃(ω). The latter can be
transformed into the corresponding G̃(x) using Eq. (1). Given
the fact that the rectangle function χ{Pi }(ω) is constant with
height hi , inserting Eq. (3) into Eq. (1) gives

G̃(x) =

R
i=1

hi

 ci +wi /2

ci −wi /2
K (x, ω)dω. (5)

The integral within the sum can either be solved analytically
or calculated numerically depending on the kernel K . In a
practical situation the function to continue is known at a
finite set of N points. To express the deviation between G̃(x)

obtained from configuration ρ̃(ω) and the true G(x) that
is known at N points, one can use the following deviation
measure [19]:

D[ρ̃(ω)] =

N
j=1

G(x j ) − G̃(x j )

G(x j )

. (6)

Minimizing Eq. (6) numerically is an ill-conditioned problem
but by generating M independent solutions and taking the
average

ρ(ω) =
1
M

M
j=1

ρ̃ j (ω) (7)

the noise of the independent solutions averages out [19].
The implemented algorithm starts with an initial configura-

tion and iteratively applies random changes to the configuration
to reduce the deviation D[ρ̃(ω)] in Eq. (6). The full method can
be separated into elementary, local and global updates of the
configurations:

Elementary update: A single alteration C of a configuration
such as e.g. changing the width of a rectangle or
shifting its center.

Local update: A series of E consecutive elementary updates:

C(0) → C(1) → · · · → C(r) → C(r + 1)

→ · · · → C(E). (8)

Each elementary update is either accepted or discarded
according to a probability function. The result of the
local update is the configuration of the series that has
the lowest deviation D[ρ̃(ω)].

Global update: A series of L local updates, each including
E elementary updates, starting from a randomly



180 J. Nordström et al. / SoftwareX 5 (2016) 178–182

Fig. 1. Overview of the software structure and interactions. main.cu is an
example program which uses the library by reading two input files and produces
out.dat which contains the output spectral function.

generated initial configuration. The global update
results in one independent solution.

The average of all independent solutions of the global
updates, as in Eq. (7), provides the final approximation to ρ(ω).

3. Software description

3.1. Software architecture

The developed software is a GPU accelerated C++ code for
the stochastic optimization method outlined above. All GPU
related operations are based on CUDA, which is a parallel
computing platform and programming model for NVIDIA
graphic cards.

The software structure and interactions are shown in Fig. 1.
The main computational library is accessed through the
function compute which is defined in mish.cuh. This function
takes three input arguments, i.e. an input structure and two float
arrays, which contain the output spectral function ρ and its
argument ω. The details of the input structure are described in
the source code.

3.2. Software functionalities

The standard and recommended way of using the present
software is through the program main.cu, located in the source
folder. This program reads two input files, control.in and
infloa.in. The former specifies both algorithm-specific and
problem-specific parameters, while the latter contains the input
function for a finite number of points (τ or iωn). If one intends
to perform analytical continuation of a self-energy, first the
Hartree–Fock term should be removed, then the data should
be normalized to get analogous asymptotics as for a Green’s
function. After the continuation, the self-energy spectrum has
to be renormalized with the same factor as the input. For a
bosonic function the input Matsubara data has to be divided by
G(iωn = 0), while the output function has to be multiplied with
−ωG(iωn = 0)/2. The file infloa.in requires input data in the
column format x , Re[G(x)], Im[G(x)]. For real valued input
functions, the imaginary part is simply left out. The file out.dat
contains the resulting spectral density function from Eq. (7) in
the column format ω, ρ(ω). The output is space separated and
can be viewed directly by e.g. gnuplot.

3.3. Implementation details

The parallelization of the algorithm is done in two layers.
Firstly, each particular solution of Eq. (7) can be generated

independently. This is known as an embarrassingly parallel
task. The second layer is parallelization of selected tasks within
the computation of one particular solution. This specifically
includes the computation of Eq. (5). The sum for each x can
be computed independently. Eq. (6) is also done in parallel as
well as various memory transfer related tasks.

The main CUDA kernel, which does the majority of the
computations, is executed using a one dimensional CUDA grid
with size equal to the number of global updates. The CUDA
block size is set to be equal to the number of input Green’s
function points. This means that the grid and block size are
fixed depending on the input parameters. A drawback with
this is that the occupancy of the kernel might be low if the
number of input points is low. This also means that there exist
a maximum amount of input points which is limited by the
hardware, typically 512 or 1024 input points. However, in our
experience, this is not an issue in real world cases.

The significant data is stored in global memory on the GPU
in single precision and the total GPU memory usage can exceed
hundreds of megabytes. The algorithm implementation is heavy
on memory load/store operations on the GPU which is the
current main performance bottleneck.

4. Illustrative examples

The software is tested through an accurate comparison with
existing CPU implementations of the stochastic optimization
method [19], and a very good agreement is found. Illustrative
examples can be provided for the analytic continuation of
known functions. This implies first converting a known spectral
function to a Green’s function through Eq. (1) and then
performing the analytic continuation through our software.

Fig. 2 shows a comparison between the analytic continuation
obtained by means of our code versus the exact result for two
simple test-cases consisting of (fermionic) Gaussian functions.
Although these tests involve only symmetric functions with a
limited number of peaks (one or two), the provided software
reconstructs their shapes very well in both cases. A much more
demanding test is presented in Fig. 3(a), for the atomic-like self-
energy of a Sm atom in a cluster containing seven Sm atoms, as
described in Ref. [14]. This is the most demanding test for the
analytic continuation, since it involves resolving several narrow
peaks at short distances from each other. Our software, as well
as CPU versions of Mishchenko’s method, captures only the
two main peaks close to zero energy but fail to resolve the high
energy peaks. One should not think that these issues are proper
of the Mishchenko’s method alone. Other techniques as well
have severe problems in reproducing the high energy peaks,
unless very high precision data are provided, which are not
always accessible. In Fig. 3(b) we instead present an example
of analytical continuation of a bosonic susceptibility for a non-
interacting electron system on a cubic lattice in random phase
approximation, as described in Ref. [23].

Our software will be mostly applied to perform the ana-
lytic continuation of data plagued by numerical noise, e.g. from
quantum Monte-Carlo simulations [24]. Illustrative examples
for the Hubbard model on an infinite-dimensional Bethe lattice
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(a) 128 Green’s points, 512 Global updates, 80
local updates, 80 elementary updates.

(b) 128 Green’s points, 512 Global updates, 80
local updates, 80 elementary updates.

Fig. 2. Two different Green’s functions consisting of Gaussians. The dashed black curve is the exact solution and the red curve is the approximated solution obtained
by the presented software. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(a) Sm self-energy. (b) Bosonic susceptibility.

Fig. 3. Imaginary part of the atomic-like self-energy of a Sm atom in a cluster and of a bosonic susceptibility for a non-interacting electron system on a cubic lattice.
The generated functions are shown in red, while the expected functions are in dashed black. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

(a) Insulator. (b) Metal.

Fig. 4. Spectral functions for the Hubbard model (see main text). In panel a (b) the insulating (metallic) phase is shown. The solid red line indicates the solution
obtained with our code, while the dashed black line corresponds to results obtained with the maximum entropy method [3–5]. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

at half-filling for U/W = 2.5 and β = 150 are reported in
Fig. 4. Here U is the strength of the local Coulomb repulsion,
W is half the bandwidth for the non-interacting system, and β

is the inverse temperature. For these parameters the fermionic
Green’s function has two solutions; an insulating one and a
metallic one. Continuations for both solutions are reported in
Fig. 4. Given that the exact analytic form of the solution is
not known, we compare our results to the maximum entropy
method [3–5]. The agreement is in general good. The maxi-
mum entropy method seems to have a slightly higher resolv-
ing power, but requires a priori information on the shape of

the function, while the stochastic optimization method is com-
pletely unbiased. In fact, one of the most convenient applica-
tions of the stochastic optimization method is to provide an
initial estimate of the true spectral function, which can then be
used as an input for other techniques, e.g. as a model function
for the maximum entropy method.

4.1. Performance

To our knowledge, the existing implementations of the
stochastic optimization method by Mishchenko et al. are not
very well optimized and thus, not suitable for speedup mea-
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Fig. 5. Logarithmic plot (both x- and y-axis) of time versus number of global
updates. For the green curve (diamonds) we used a GTX 670, and for the red
curve (circles) a 610M GPU. [128 threads per block, 40 local updates, 40
elementary updates] (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

surements of GPU versus CPU. One simple metric to measure
the parallel efficiency is by looking at the total execution time
while varying the global updates (number of particular solu-
tions). The total amount of computations increases linearly with
each added global update. Since we scale the number of GPU
cores used with the number of global updates, a perfectly par-
allel execution would require a constant runtime, regardless of
the number of global updates. This feature is tested for two dif-
ferent GPUs, and the results are shown in Fig. 5. The GTX 670
is a faster and more efficient GPU compared with the 610M.
Fig. 5 shows that the GTX 670 scales better when increasing
the number of global updates. This indicates that the implemen-
tation scales very well when increasing the parallel capacity.

5. Conclusions

We have presented a GPU implementation of the stochas-
tic optimization method by Mishchenko et al. [19] to perform
the analytic continuation of Green’s functions. Our software
makes it possible to obtain results with sufficient accuracy (i.e. a
stochastic sampling which is large enough) on a common lap-
top, without requiring the access to a supercomputer. For a
typical problem with 64 input points, in only 25 s our imple-
mentation can do about 200 elementary updates for 200 local
updates and a total of 128 global updates, which corresponds to
a total of 5 120 000 elementary updates. We are confident that
this code can contribute to increase the usage of the stochastic
optimization method among scientists working in many-body
theory.
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