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Anisotropy is a fundamental property of particle interactions. It occupies a central role in 

cold and ultra-cold molecular processes, where long-range forces have been found to 

significantly depend on orientation in ultra-cold polar molecule collisions
1,2

. Recent 

experiments have demonstrated the emergence of quantum phenomena such as scattering 

resonances in the cold collisions regime due to quantization of the intermolecular degrees 

of freedom
3–8

. Although these states have been shown to be sensitive to interaction details, 

the effect of anisotropy on quantum resonances has eluded experimental observation so far. 

Here, we directly measure the anisotropy in atom-molecule interactions via quantum 

resonances by changing the quantum state of the internal molecular rotor. We observe that 

a quantum scattering resonance at a collision energy of 𝒌𝑩 𝒙 𝟐𝟕𝟎 𝒎𝑲 appears in the 

Penning ionization of molecular hydrogen with metastable helium only if the molecule is 

rotationally excited. We use state of the art ab initio and multichannel quantum molecular 

dynamics calculations to show that the anisotropy contributes to the effective interaction 

only for 𝑯𝟐 molecules in the first excited rotational state, whereas rotationally ground state 

𝑯𝟐 interacts purely isotropically with metastable helium. Control over the quantum state of 

the internal molecular rotation allows us to switch the anisotropy on or off and thus 

disentangle the isotropic and anisotropic parts of the interaction. These quantum 

phenomena provide a challenging benchmark for even the most advanced theoretical 

descriptions, highlighting the advantage of using cold collisions to advance the microscopic 

understanding of particle interactions. 
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Anisotropy leaves fingerprints on many atomic and molecular processes, but its 

contribution is difficult to evaluate and quantify at high energies due to the many quantum states 

needed to describe the process. For example, anisotropy effects can be traced to changes in the 

angular distribution of products in collisions and half-collisions that are detected with advanced 

ion imaging techniques
9
. Numerous experiments have reported orientation effects including the 

study of bimolecular processes such as the reactive scattering of 𝐻 + 𝐷2 ref. (10), and 𝐹 + 𝐶𝐷4 

ref. (11)  as well as the inelastic scattering of 𝑁𝑂 by 𝐴𝑟 ref. (12). Spectroscopic techniques have 

been successfully used to identify hindered 𝐻2 rotation in an anisotropic potential of van der 

Waals molecules such as 𝐻2𝑂 + 𝐻2 complexes
13

 and 𝐻2𝐻𝐹 complexes
14

.  

 In cold and ultra-cold molecular processes, where the number of accessible quantum 

states is greatly reduced, anisotropy effects have so far been studied only in fast reactions. It has 

been shown that orientation of the long-range dipole-dipole interaction between molecules can 

be tuned via external electric fields
15

. In KRb molecules this method enabled the observation of 

rethermalization
1
 and the suppression of a bimolecular chemical reaction

2
. In addition, the 

reaction of 𝑁2
+ + 𝑅𝑏 has been shown to be dominated by the anisotropic charge-quadrupole long 

range interaction
16

. Similarly, fast Penning ionization reactions have been studied, demonstrating 

that the rotational state of a molecule defines the type and strength of the effective long-range 

interaction
17. These fast processes are fully described by the long-range interactions alone. At 

short internuclear separations the Penning ionization happens with unit probability acting as a 

perfect absorber preventing the formation of outgoing waves. In such a case there is no 

quantization along the internuclear coordinate which precludes the appearance of quantum 

scattering resonances.  

Experiments that are capable of resolving quantum resonance states allow for collision 

studies with near spectroscopic precision. For example, isotope shifts have been observed in the 

Penning ionization of molecular hydrogen isotopologues
6
. Similar effects between isotopes were 

observed in rotational state-to-state cross sections and linked to quantum scattering resonances 

appearing at different energies
18

. Feshbach resonances in ultra-cold anisotropic atom-atom 

collisions allowed the emergence of chaotic scattering in ultra-cold Er and Dy to be observed
19

.  

The emergence of discrete quantized metastable states formed during a cold collision 

opens a new way to study anisotropy. Instead of recording the angular distribution of the 

collision products, one can conveniently alter the way anisotropy contributes by choosing 
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different rotational quantum states of the interacting molecules. The sensitivity of orbiting 

resonances towards molecular degrees of freedom has been theoretically predicted for example 

for the reaction 𝐷 + 𝐻2 ref. (20), the reactive scattering of 𝐹 + 𝐻2 ref. (21), and inelastic 

collisions of 𝐶𝑂 + 𝐻2 ref. (22). This effect has so far eluded experimental investigation due to 

insufficient resolution of individual quantum resonance states
22

. The introduction of merged 

beam experiments reaching temperatures as low as 10 mK
3,6

 allow for both low enough collision 

energies and high resolution, due to the correlation that develops during the free propagation of a 

supersonic molecular beam
23

. This merged beam configuration is used in the current collision 

measurements, as described in the methods section.   

Here we demonstrate the dramatic effect of anisotropy on shape resonances in cold 

Penning ionization reactions of metastable helium with molecular hydrogen in the rotational 

ground and first excited states (Fig. 1). In the classical collision regime down to several Kelvin 

temperatures, 𝐻2 behaves similarly, independent of whether it is in the 𝑗 = 0 or 𝑗 = 1 internal 

rotational state. However, below one Kelvin we observe a striking difference. While a strong 

shape resonance exists for 𝑗 = 1 at a collision energy of 𝑘𝐵  𝑥 270 𝑚𝐾, no resonances are 

observed in this energy range in the case of 𝑗 = 0. Using state of the art ab-initio theory and 

coupled channels quantum molecular dynamics we find that the interaction between hydrogen, 

which is internally in the ground rotational state and metastable helium, is effectively isotropic. 

This holds for any collision where the interaction anisotropy is small compared to the rotational 

constant of the molecule. In such a case, the anisotropic part of the interaction potential becomes 

important only for molecules in an excited rotational state. The wavefunction of rotationally 

excited 𝐻2 molecules is not spherically symmetric causing anisotropic components of the 

interaction to come into play, while in the rotational ground state, where the wavefunction is 

spherically symmetric, the contribution of anisotropic components is zero. We show that by 

accurately measuring the orbiting resonance positions, we can independently probe the isotropic 

and anisotropic parts of the interaction. Since the resonance wavefunctions span both the short 

and the long range parts of the potentials, we are able to benchmark first principles quantum 

dynamics calculations to within 7 ∙ 10−3 𝑐𝑚−1 or 200 MHz precision. This allows for a rigorous 

comparison with theory and a quantitative evaluation of different levels of treating electron 

correlations in electronic structure calculations. 
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Figure 1. The Penning ionization rate coefficient as function of collision energy of 

𝐻𝑒∗(23𝑆1) + 𝐻2 from ~300𝐾 down to ~10 𝑚𝐾 is presented in black dots including error 

bars. The upper (lower) panel corresponds to 𝐻2 internally in the 𝑗 = 0 (𝑗 = 1) rotational 

quantum state. Two shape resonances are observed below 5 𝐾 for the reaction with ortho-𝐻2 

(𝑗 = 1) at 2.37 𝐾 and at 270 𝑚𝐾. The 𝑗 = 1 lower energy resonance state corresponds 

asymptotically to the partial wave 𝑙 = 3, while the second resonance appearing both for 

𝑗 = 0 and 𝑗 = 1 correspond asymptotically to the 𝑙 = 4 partial wave. In the reaction with 

para-𝐻2 (𝑗 = 0), the 𝑙 = 3 resonance is absent, while the difference in energy of the 𝑙 = 4  

resonance cannot be distinguished from the 𝑗 = 1 case. The results of state-of-the-art first 

principles calculations for the reaction with the ground (𝑗 = 0) and excited (𝑗 = 1) rotational 

states are depicted by the green, blue, and red curves in both panels. The interaction potential 

obtained with the current “gold standard” of electronic structure methods, the coupled cluster 

theory with singles, doubles and non-iterative triple excitations (CCSD(T), green), alone 

erroneously predicts a low energy resonance for para-hydrogen (𝑗 = 0) and two low energy 

resonances for ortho-hydrogen (𝑗 = 1). Including the full configuration interaction (FCI) 

correction (blue) allows for agreement down to collision energies corresponding to a few 

hundred milli-Kelvin. Further improvement of the interaction potential is achieved by 

uniformly scaling the correlation energy by 0.4% (red), resulting in excellent agreement with 

the measured resonance positions and the overall behavior of the rate coefficient down to the 

lowest collision energies probed in the experiment. 
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Conveniently, merged beam experiments with molecular hydrogen can be carried out 

with control over the rotational state of the molecule. A normal molecular hydrogen beam cooled 

in supersonic expansions consists of 75% ortho-hydrogen and 25% para-hydrogen. It follows 

from the Pauli principle that the lowest rotational state for para-hydrogen is 𝑗 = 0 whereas 𝑗 = 1 

is the lowest molecular rotational state for ortho-hydrogen. A pure para-hydrogen sample can be 

prepared by catalytic conversion at cryogenic temperatures allowing the determination of the 

state selected rate coefficient, as has been described previously
17

.  

In Fig. 1, we compare our experimental data to the results of first principles calculations. 

A 2D potential energy surface was obtained with the current “gold standard” of electronic 

structure theory, the coupled cluster method with single, double and approximate noniterative 

triple excitations (CCSD(T)), and further refined to include higher order correlation effects. 

Subsequently, the potential energy surface was used in quantum scattering calculations with 

reactive boundary conditions at short range
24

. The theoretical results demonstrate that indeed 

collisions with 𝑗 = 0 hydrogen are not sensitive to the anisotropic part of the interaction 

potential, such that the hydrogen molecule effectively behaves like an atom. Even scaling the 

anisotropic part by 50% does not introduce an observable change in the rate coefficient, as can 

be seen in the inset in Fig 2. In stark contrast the 𝑗 = 1 hydrogen rate coefficient is very sensitive 

to the anisotropy, emerging as shifts in the position of the orbiting resonance for different scaling 

factors of the anisotropic potential shown in Fig 2. 
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The sensitivity of quantum resonance states towards small changes in the interaction 

allows us to make a meaningful comparison of different levels of treating electron correlations in 

ab initio theory (Fig. 1). In fact, the interaction potential obtained with the “bare” CCSD(T)/aug-

cc-pV6Z method is not accurate enough to reproduce the low-energy resonances for collisions 

with both 𝑗 = 0 and 𝑗 = 1 𝐻2 (see the green curves in Fig. 1). To account for higher order 

electron correlation effects, the full configuration interaction (FCI) contribution beyond 

CCSD(T) has been calculated and added to the potential. The FCI-corrected potential energy 

Figure 2. The theoretical rate coefficients of 𝐻𝑒∗(23𝑆) + 𝐻2 in the first excited rotational 

state (𝑗 = 1) for different scaling factors of the anisotropic potential 𝑉2(𝑅). The rate 

resulting from the original potential is depicted by the solid red curve, and the scaling of 

the anisotropic part by a factor of 1.5, 0.5 and 0.2 is depicted by the blue, magenta and 

green dashed curves respectively.  As the scaling factor decreases the lower energy 

resonance position shifts to lower collision energies. The spectroscopic resolution of the 

resonance positions can serve as a sensitive measure of the anisotropy in the system. The 

logarithmic inset shows the rate for scaling factors of the anisotropic potential by the same 

factors for the reaction of 𝐻𝑒∗ + 𝐻2 in the ground rotational state (𝑗 = 0). The rate 

coefficient remains the same for different scaling factors, since the anisotropic potential 

has limited contribution to this reaction. 
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surface performs significantly better (blue curves in Fig. 1), in particularly for collisions with 

𝐻2(𝑗 = 1). However, it still predicts a fictitious resonance in the milli-Kelvin range for 𝐻2(𝑗 =

0). To further improve the theoretical model, we have uniformly scaled the correlation energy. 

This is motivated by the fact that incompleteness of the orbital basis set is the main source of 

error in the ab initio calculations. It particularly affects the correlation energy whereas the 

Hartree-Fock energy is practically fully converged in the aug-cc-pV6Z basis set (see Methods for 

details). Indeed, increasing the correlation energy in the interaction potential by merely 0.4% 

leads to an excellent agreement for the resonance position of 𝐻2( 𝑗 = 1) and confirms absence of 

this resonance for 𝐻2(𝑗 = 0) (red curves in Fig. 1). The latter can be understood as follows: 

Scaling the correlation energy by 0.4% corresponds to increasing the depth of the isotropic 

potential by around 0.1 cm
-1

. This shifts down the erroneous resonance obtained with CCSD(T) 

and CCSD(T) + δ FCI such that it becomes a truly bound state and does not anymore affect the 

reaction rate. 

A similar comparison of different levels of theory and experiment could in principle also 

be performed using rovibrational spectroscopy of bound states. However, while spectroscopic 

methods measure the spacing between rovibrational states with high precision, they are 

susceptible to global shifts of the spectrum relative to the dissociation limit. In collisional 

spectroscopy the spectrum emerges above the dissociation threshold enabling the measurement 

of the energies of quasi-bound states on an absolute scale. Thus changes in the effective well 

depth due to the anisotropy are more pronounced in absolute scale measurements of the spectrum 

(Fig. 3). 

In order to qualitatively understand the role of anisotropy, it is convenient to consider the 

effective adiabatic interaction potentials. To this end, the interaction potential is expanded into 

two terms, 𝑉0(𝑅) the isotropic term, where 𝑅 is the interparticle separation, and 𝑉2(𝑅)𝑃2(cos 𝜃) 

which describes the angular dependence to first order, where 𝜃 is the polar angle between the 𝐻2 

molecule axis and the axis joining 𝐻2 center of mass with the 𝐻𝑒 atom. We use an adiabatic 

theory
25

 inspired by Klemperer and colleagues
26

 as well as Scribano et al.
27

 in order to construct 

effective potential curves that conserve the total angular momentum 𝐽. These potentials 

asymptotically correlate to a well-defined rotational state of 𝐻2 (𝑗) and a well-defined collisional 

angular momentum, i.e., partial wave 𝑙. The anisotropy, 𝑉2(𝑅), is small in our case compared to 

the rotational constant for all collision distances, such that mixing of rotational states of the same 



8 
 

parity in the 𝐻2 molecule is negligible. Figure 3 compares the three most relevant adiabatic 

potentials for the reaction that asymptotically correlate with 𝑗 = 0 and j = 1 𝐻2.  The red and 

black plotted adiabats correspond to scattering channels with the total angular momentum 𝐽 = 3 

and orbital angular momentum (partial wave) 𝑙 = 3, i.e. the channel for which the resonance 

occurs. The black curve corresponding to 𝐽 = 3 and 𝑗 = 0  𝐻2 is identical to the isotropic part of 

the interaction potential and includes the centrifugal term. It is deep enough to support a single 

bound state just below the threshold with a binding energy of 𝑘𝐵 𝑥 0.01 𝐾 as shown in the inset 

of Fig. 3. In case of j = 1 𝐻2, the anisotropy is responsible for reducing the well depth of the 

corresponding 𝐽 = 3 effective potential, shown in red, enough to raise the bound state above the 

dissociation threshold (Fig. 3 inset). This state is located below the top of the centrifugal barrier, 

and is accessible via tunneling in scattering experiments at a collision energy of  𝑘𝐵 𝑥 270 𝑚𝐾. 

The grey adiabat in Fig. 3 represents two nearly degenerate effective potential curves with the 

total angular momentum of  𝐽 = 2 and 𝐽 = 4 and 𝑗 = 1 𝐻2. Both potentials do not support 

resonances and have bound levels at 𝑘𝐵  𝑥 0.18 𝐾  below the dissociation threshold.  
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Figure 3. Effective potential curves for the reaction of metastable 𝐻𝑒 and 𝐻2, internally 

in the ground (solid black curve) and excited (solid red and grey curves) rotational states 

are presented, calculated according to adiabatic theory
25

. The adiabatic potentials shown 

in red and black correspond to the total angular momentum 𝐽 = 3. The potential of 𝑗 = 0 

supports one bound state, located below the dissociation threshold at  𝑘𝐵 𝑥 0.01 𝐾 . The 

contribution of the anisotropic part of the potential in the case of 𝑗 = 1 (red curve) causes 

a reduction of the well depth. This reduction is sufficient to shift the bound state by 

~0.3 𝐾 placing it above the dissociation threshold, as depicted by the horizontal solid red 

line, leading to the resonance at 270 mK in the reaction rate coefficient of  𝐻𝑒∗ + 𝐻2  in 

the excited rotational state (𝑗 = 1). The grey curve correspond to two nearly degenerate 

effective potential curves with  total angular momentum of 𝐽 = 2 and 𝐽 = 4 and with 

𝑗 = 1 𝐻2. They support bound states at  𝑘𝐵 𝑥 0.18 𝐾  below the dissociation threshold and 

no quasi-bound states. The bound and quasi-bound states wavefunctions for total angular 

momentum 𝐽 = 3 are depicted by the black and red dashed curves respectively. The 

resonance state wavefunction spans both the short and the long range part of the potential, 

and can therefore be probed in collision experiments. 
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Orbiting resonances amplify minute differences in particle interactions, making them 

easily detectable in cold collision experiments, provided the energy resolution is sufficiently 

high. They are a manifestation of the quantization of intermolecular degrees of freedom forms a 

wave matter analogue of an optical cavity. Quantum resonances thus provide an ideal probe to 

illuminate different contributions to particle interactions, with a sensitivity that is a challenge for 

current state of the art ab initio theory. The sensitivity of quantum resonances towards the 

internal state of a molecule can be exploited in many experiments. Changing the rotational state 

of a molecule effectively switches the anisotropy of the interparticle interaction on and off, shifts 

resonance positions and thus dramatically changes the collisional cross section. Such control 

over collisional properties can be critical to the success of molecular cooling methods that rely 

on collisions such as evaporative or sympathetic cooling. 

 

Methods 

Methods and any associated references are available in the online version of the paper. 

References 

1. Ni, K.-K. et al. Dipolar collisions of polar molecules in the quantum regime. Nature 464, 

1324–1328 (2010). 

 

2. de Miranda, M. H. G. et al. Controlling the quantum stereodynamics of ultracold 

bimolecular reactions. Nat. Phys. 7, 502–507 (2011). 

 

3. Henson, A. B., Gersten, S., Shagam, Y., Narevicius, J. & Narevicius, E. Observation of 

resonances in Penning ionization reactions at sub-kelvin temperatures in merged beams. 

Science 338, 234–8 (2012). 

 

4. Chefdeville, S. et al. Observation of partial wave resonances in low-energy O2-H2 

inelastic collisions. Science 341, 1094–6 (2013). 

 

5. Costes, M. & Naulin, C. Observation of quantum dynamical resonances in near cold 

inelastic collisions of astrophysical molecules. Chem. Sci. 7, 2462–9 (2016). 

 

6. Lavert-Ofir, E. et al. Observation of the isotope effect in sub-kelvin reactions. Nat. Chem. 

6, 332–335 (2014). 



11 
 

 

7. Vogels, S. N. et al. Imaging resonances in low-energy NO-He inelastic collisions. Science 

350, 787–90 (2015). 

 

8. Bergeat, A., Onvlee, J., Naulin, C., van der Avoird, A. & Costes, M. Quantum dynamical 

resonances in low-energy CO(j = 0) + He inelastic collisions. Nat. Chem. 7, 349–53 

(2015). 

 

9. Ashfold, M. N. R. et al. Imaging the dynamics of gas phase reactions. Phys. Chem. Chem. 

Phys. 8, 26–53 (2006). 

 

10. Kitsopoulos, T. N., Buntine, M. A., Baldwin, D. P., Zare, R. N. & Chandler, D. W. 

Reaction product imaging: the H + D2 reaction. Science 260, 1605–10 (1993). 

 

11. Lin, J. J., Zhou, J., Shiu, W. & Liu, K. State-specific correlation of coincident product 

pairs in the F + CD4 reaction. Science 300, 966–9 (2003). 

 

12. Kohguchi, H., Suzuki, T. & Alexander, M. H. Fully state-resolved differential cross 

sections for the inelastic scattering of the open-shell NO molecule by Ar. Science 294, 

832–4 (2001). 

 

13. van der Avoird, A. & Nesbitt, D. J. Rovibrational states of the H2O-H2 complex: an ab 

initio calculation. J. Chem. Phys. 134, 044314 (2011). 

 

14. Lovejoy, C. M., Nelson, D. D. & Nesbitt, D. J. Hindered internal rotation in jet cooled 

H2HF complexes. J. Chem. Phys. 87, 5621 (1987). 

 

15. Carr, L. D., DeMille, D., Krems, R. V & Ye, J. Cold and ultracold molecules: science, 

technology and applications. New J. Phys. 11, 055049 (2009). 

 

16. Hall, F. H. J. & Willitsch, S. Millikelvin reactive collisions between sympathetically 

cooled molecular ions and laser-cooled atoms in an ion-atom hybrid trap. Phys. Rev. Lett. 

109, 233202 (2012). 

 

17. Shagam, Y. et al. Molecular hydrogen interacts more strongly when rotationally excited at 

low temperatures leading to faster reactions. Nat. Chem. 7, 921–926 (2015). 

 

18. Hauser, D. et al. Rotational state-changing cold collisions of hydroxyl ions with helium. 



12 
 

Nat. Phys. 11, 467–470 (2015). 

 

19. Maier, T. et al. Emergence of Chaotic Scattering in Ultracold Er and Dy. Phys. Rev. X 5, 

041029 (2015). 

 

20. Simbotin, I. & Côté, R. Effect of nuclear spin symmetry in cold and ultracold reactions: D 

+ para/ortho-H2. New J. Phys. 17, 065003 (2015). 

 

21. Lique, F., Li, G., Werner, H.-J. & Alexander, M. H. Communication: non-adiabatic 

coupling and resonances in the F + H2 reaction at low energies. J. Chem. Phys. 134, 

231101 (2011). 

 

22. Chefdeville, S. et al. Experimental and Theoretical Analysis of Low-Energy CO + H2 

Inelastic Collisions. Astrophys. J. 799, L9 (2015). 

 

23. Shagam, Y. & Narevicius, E. Sub-Kelvin Collision Temperatures in Merged Neutral 

Beams by Correlation in Phase-Space. J. Phys. Chem. C 117, 22454–22461 (2013). 

 

24. Janssen, L. M. C., van der Avoird, A. & Groenenboom, G. C. Quantum reactive scattering 

of ultracold NH(X
3
Σ

-
) radicals in a magnetic trap. Phys. Rev. Lett. 110, 063201 (2013). 

 

25. Pawlak, M., Shagam, Y., Narevicius, E. & Moiseyev, N. Adiabatic theory for anisotropic 

cold molecule collisions. J. Chem. Phys. 143, 074114 (2015). 

 

26. Holmgren, S. L., Waldman, M. & Klemperer, W. Internal dynamics of van der Waals 

complexes. I. Born–Oppenheimer separation of radial and angular motion. J. Chem. Phys. 

67, 4414 (1977). 

 

27. Scribano, Y., Faure, A. & Lauvergnat, D. Rotational excitation of H2O by para-H2 from an 

adiabatically reduced dimensional potential. J. Chem. Phys. 136, 094109 (2012). 

 

 

Acknowledgements 

This research was made possible, in part, by the historic generosity of the Harold Perlman 

family. The authors acknowledge financial support from the European Commission through ERC 

grant EU-FP7-ERC-CoG 1485 QuCC. Additional financial support from the German-Israeli 



13 
 

Foundation, (grant no. 1254), from the COST Action (CM1405), as well as the Polish National 

Science Center grant DEC-2012/07/B/ST2/00235 is acknowledged. 

Competing financial interests 

The authors declare no competing financial interests.  



14 
 

Methods 

The experimental setup, which has been discussed previously
3,6,17

, consists of two supersonic 

beams, generated by pulsed Even-Lavie valves
28

, placed at a relative angle of 10°. The straight 

beam consists of noble gas mixtures of 𝐻2. The second beam consists of 𝐻𝑒4 , excited to the 

23𝑆1 metastable state (𝐻𝑒∗) using a dielectric barrier discharge
29

, located at the exit of the valve, 

and is merged with the straight beam using a 20 𝑐𝑚 magnetic guide, leading to zero relative 

angle between the beams at the detection region. The 𝐻𝑒∗ beam velocity is kept constant at 

870
𝑚

𝑠
 while the 𝐻2 beam velocity is tuned by changing the valve temperature and seeding the 

𝐻2 in noble carrier gas mixtures. The collision energy is determined by the relative mean 

velocity between the beams and the velocity distribution of each beam spanning from 300 𝐾 to 

10 𝑚𝐾23
.  

The metastable 𝐻𝑒 beam is characterized using an on-axis multichannel plate (MCP). 

The 𝐻2 beam is characterized using a time-of-flight mass spectrometer (TOF-MS)
30

, which 

contains an additional ionization element. The TOF-MS is positioned perpendicular to the 

beams’ propagation, operating in a multi-pulsed mode, at 4 𝜇𝑠 intervals. The reaction product 

ions are detected with the TOF-MS with the ionization element turned off, while the neutral 

molecules are characterized with the ionization element turned on. The relative rate coefficient is 

calculated according to the ratio between the products’ measured signal and the reactants’ 

measured signal at each time interval. The rate coefficient is normalized to an absolute scale 

according to room temperature thermal rate measurement of 𝐻𝑒(23𝑆1)  +   𝐻2 ref. (31). 

The para-𝐻2 sample is prepared by liquefying normal-𝐻2 in liquid Helium while in 

contact with the paramagnetic catalyst nickel sulfate. The sample is examined by resonance-

enhanced multiphoton ionization (REMPI) followed by detection with the TOF-MS to determine 

its purity, showing that more than 98% of the 𝐻2 is in the ground rotational state, as previously 

described in detail
32

.  

Rate coefficients were obtained by carrying out coupled-channels quantum reactive 

scattering calculations using the method by Janssen et al.
24

, where only the reactant configuration 

is explicitly considered, and knowledge of the real value of interaction energy is sufficient. This 

approach is based on the assumption that the reaction proceeds irreversibly once the reactants 

reach a sufficiently short interparticle distance 𝑅𝑐, the ''capture radius”; and reactive collisions 
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are simulated by imposing appropriate short-range boundary conditions. Such a quantum capture 

approach is particularly suitable to describe a chemi-ionization process because of its 

irreversibility and strongly exoenergetic character, which implies that the total rate coefficient is 

exclusively determined by the dynamics in the entrance channel of the reaction. Since the real-

valued Born-Oppenheimer interaction potential between 𝐻𝑒∗ and 𝐻2 does not include any 

coupling with the ionization continuum, 𝐻𝑒 + 𝐻2
+ + 𝑒−, we modified the purely repulsive wall 

of the potential, assuming that the isotropic part 𝑉0(𝑅) is constant at short intermolecular 

distance (𝑅 <  𝑅𝑐) and equal to the energy released in the ionization process, i.e., 𝑉0(𝑅)  =

 𝑉𝑐  =  −3.646 𝑒𝑉 if 𝑅 ≤  𝑅𝑐. This results in a barrier at short range and allows for the loss of 

the flux into the reactive channels via quantum tunneling. 

Close-coupling quantum scattering calculations were performed separately for collisions 

of 𝐻𝑒∗ with para-𝐻2 (𝑗 = 0) and with ortho-𝐻2 (𝑗 = 1). The angular basis functions were 

constructed as products of the rotational state of the 𝐻2 molecule and the partial wave describing 

the orbital motion of the whole complex, and were symmetry-adapted to values of the total 

angular momentum 𝐽 and parity. The basis set was restricted to even or odd rotational states of 

𝐻2 for collisions with para-𝐻2, or ortho-𝐻2 respectively. For collision energies up to 10 Kelvin, 

the basis set yielding fully converged cross sections included all relevant functions with 𝑗 ≤  4 

and 𝐽 <  8. The scattering wave functions were propagated from 𝑅𝑐 = 7.0 to 𝑅𝑚𝑎𝑥 = 200 𝑎0 by 

means of a Numerov propagator. The capture radius was determined by the condition that the 

elastic cross sections are fully converged; choosing a smaller 𝑅𝑐 only results in a homogeneous 

scaling of the reaction rate coefficients, as does a modification of 𝑉𝑐. Short-range and asymptotic 

boundary conditions were imposed afterwards, as described in the original paper
24

. The 

calculated reactive cross sections as a function of energy were multiplied by the velocity and 

convoluted with the experimental uncertainty for the collision energies to yield the final 

theoretical rate coefficients.  

The potential energy surface was obtained using the counter-poise corrected 

supermolecular method in which the interaction energy is obtained as the difference of the total 

energy of the dimer (𝐻𝑒∗ + 𝐻2) and the total energies of the monomers, calculated in the basis 

set of the dimer with basis functions placed at the position of the interacting partner with charges 

set to zero. Since the 𝐻𝑒∗ + 𝐻2 system is not the actual triplet ground state of the system (which 

is 𝐻𝑒(11𝑆)+3𝛴 excited 𝐻2) we have employed the maximum overlap method
33,34

 with the 
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orbitals corresponding to the isolated 𝐻𝑒∗ + 𝐻2 potential with appropriate occupancy of 

1𝑠12𝑠1𝜎𝑔2 as starting point. The spin-restricted coupled-cluster method with single- and double 

excitations with non-iterative correction to triple excitations (CCSD(T)) in a very large basis set, 

considered nowadays the gold standard of quantum chemistry, was employed, using the 

MOLPRO suite of codes
35

. The aug-mcc-pVXZ family for the hydrogen atom
36

 and the aug-cc-

pVXZ family optimized for the triplet state of  the metastable helium dimer
37

 were employed, 

where X=4,5,6,7 stands for the cardinal number, which corresponds to the highest angular 

momentum, equal to l=3,4,5,6, respectively. To better account for the dispersion interaction we 

have also used a set of mid-bond functions located between the center-of-mass of the 𝐻2 

molecule and the 𝐻𝑒 atom. These were obtained from polarization functions of hydrogen atom 

basis sets. The potential used in the subsequent scattering calculations was obtained with the 

aug-cc-pV6Z basis set. At large intermolecular separations, between 𝑅 =  16 and 𝑅 =  20 𝑎0, it 

was smoothly connected to the analytic long-range potential, employing a switching function
38

 

and the long-range coefficients (C6 and C8) of ref. (39).  The interatomic distance of the 𝐻2 

molecule was set to 1.4487 𝑎0 which corresponds to the expectation value of the interatomic 

separation in the ground vibrational state of the hydrogen molecule. To ensure a proper 

convergence of the expansion into Legendre polynomials, the potential was calculated from 0 to 

90 degrees with a step of 15 degrees. The projection onto Legendre polynomials was performed 

with the integration procedure introduced by Janssen et al.
38

. 

The interaction energy was corrected beyond CCSD(T) with the correction obtained as 

the difference between the coupled-cluster method with fourth-fold excitations (CCSDTQ) and 

CCSD(T) in the same basis set. Due to the enormous numerical cost, CCSDTQ calculations, 

which are equivalent to FCI for a four-electron system and exact for a given basis set, were 

performed only for linear- and T-shape geometries, with a smaller basis set, aug-cc-pVQZ and 

no mid-bond functions, using the CFOUR package
40

 interfaced with the MRCC program
41

. The 

dominant source of uncertainty of the potential energy surface is incompleteness of the basis set 

whereas relativistic effects and the diagonal Born-Oppenheimer (DBO) correction were found to 

be negligible: Relativistic effects, estimated by calculating the scalar relativistic perturbation 

correction (mass velocity and one-electron Darwin term) are of the order of 0.01 cm
-1

 in the 

global minimum with a well depth of 14.30 𝑐𝑚−1 at 10.5 𝑎0. The DBO correction was obtained 

as the difference between the corrections for the dimer and infinitely separated monomers for T-
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shape and L-shape geometries, calculated with the aug-cc-pVQZ basis set and the Hartree-Fock 

wavefunction (it is not sensitive to the size of the basis set nor the quality of the wavefunction). 

The contribution of the DBO correction to 𝑉0 is 0.044 𝑐𝑚−1 in the global minimum. The basis 

set incompleteness affects the correlation energy only, while the Hartree-Fock interaction energy 

is converged to within 0.01 𝑐𝑚−1 in our calculations. Truncation of the basis set results in a 

shallower potential and an inner turning point that is slightly shifted toward larger intermolecular 

distances. The basis set limit is estimated assuming a convergence pattern A+BX
-3

 or A+BX
-

3
+CX

-5
 for singlet systems and A+BX

-5
 for triplet helium since the correlation energy was found 

to converge with the cardinal number as X
-3

 for singlet electron pairs and as X
-5

 for triplet 

pairs
42,43

. The correlation energy in the 𝐻2 and 𝐻𝑒∗ monomers are very different in magnitude 

(9031 ± 1 𝑐𝑚−1 compared to 214.7 ± 0.01 𝑐𝑚−1). For the total system, the basis set limit for 

the CCSD(T) calculations in the global minimum extrapolated from the aug-cc-pV6Z and aug-

cc-pV7Z basis sets (in latter case we could afford  for such calculations for single geometry) is 

−14.62 𝑐𝑚−1, whereas extrapolation from the X=5,6,7 basis set yields the limit −14.42 𝑐𝑚−1. 

As a conservative estimate, we take the difference between the potential obtained in aug-cc-

pV6Z and the basis set limit extrapolated from X=6,7 as the uncertainty of the potential. 
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