
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a postprint version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/165995

 

 

 

Please be advised that this information was generated on 2018-07-07 and may be subject to

change.

http://hdl.handle.net/2066/165995


Eco-epidemiology of aquatic ecosystems: Separating chemicals from
multiple stressors

Leo Posthuma a,f,⁎, Scott D. Dyer b, Dick de Zwart a,c, Katherine Kapo d,
Christopher M. Holmes d, G. Allen Burton Jr. e

a RIVM, Centre for Sustainability, Environment and Health, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
b The Procter & Gamble Company, Cincinnati, OH, USA
c DdZ Ecotox, Odijk, The Netherlands
d Waterborne Environmental, Inc., Leesburg, VA, USA
e School of Natural Resources & Environment, University of Michigan, Ann Arbor, MI 48109, USA
f Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

H I G H L I G H T S

• Recent ‘non-toxic environment’ and
‘good ecological status’ goals require
mixture analyses.

• Human-dominated aquatic systems
have multiple chemical, physical and
biological stressors.

• Differences in chemical mixture im-
pacts can be predicted by a simple
proxy.

• Stressor impacts can be ranked across
sites and within sites.

• Contributions of mixtures and individu-
al chemicals to ecological impacts can
be diagnosed.

• Stressor ranking results support and en-
hance alternative management strate-
gies.
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A non-toxic environment and a good ecological status are policy goals guiding research and management of
chemicals and surface water systems in Europe and elsewhere. Research and policies on chemicals and water
are however still disparate and unable to evaluate the relative ecological impacts of chemical mixtures and
other stressors. This paper defines and explores the use of eco-epidemiological analysis of surveillance monitor-
ing data sets via a proxy to quantify mixture impacts on ecosystems. Case studies show examples of different,
progressive steps that are possible.
Case study data were obtained for various regions in Europe and the United States. Data types relate to potential
stressors at various scales, concerning landscape, land-use, in-stream physico-chemical and pollutant data, and
data on fish and invertebrates. The proxy-values for mixture impacts were quantified as predicted (multi-sub-
stance) Potentially Affected Fractions of species (msPAF), using Species Sensitivity Distribution (SSD) models
in conjunction with bioavailability and mixture models.
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The case studies summarize themonitoring data sets and the subsequent diagnostic bioassessments. Variation in
mixture toxic pressures amongst sites appeared to covary with abundance changes in large (50–86%) percent-
ages of taxa for the various study regions. This shows that an increased mixture toxic pressure (msPAF) relates
to increased ecological impacts. Subsequent multi-stressor evaluations resulted in statistically significant, site-
specific diagnosis of themagnitudes of ecological impacts and the relative contributions of different stress factors
to those impacts. This included bothmixtures and individual chemicals. These results allow for ranking stressors,
sites and impacted species groups. That is relevant information for water management.
The case studies are discussed in relation to policy andmanagement strategies that support reaching a non-toxic
environment and good ecological status. Reaching these goals requires not only focused sectoral policies, such as
on chemical- or water management, but also an overarching and solution-focused view.

© 2016 Elsevier B.V. All rights reserved.

Multiple stress
Stressor ranking

1. Introduction

Many surface waters are ecologically impaired due to combinations
of stressors of different kinds (Burkhead, 2012; EEA, 2012; ETC/ICM,
2012). This is at variance with policy goals to safeguard water as a key
heritage and as vital and scarce resource (EC, 2000; Carpenter et al.,
2011; Hoekstra and Mekonnen, 2012; Hoekstra and Wiedmann, 2014;
U.S. Senate, 2014). Mixtures of toxic chemicals are a specific cause for
concern, as they cause widespread exposures of biota and associated
risks to aquatic life (Schwarzenbach et al., 2006; USEPA, 2009; Malaj
et al., 2014; Diamond et al., 2015; Stehle and Schulz, 2015).

The goal for a non-toxic environment has been formulated explicitly
relatively recently (EC, 2014), although environmental regulations
around the globe have also aimed at this. In this recent formulation it
implies however: absence of impacts of pollutant mixtures on human
health and the environment. This novel specified goal requires assess-
ments of mixtures next to separate chemicals (EC, 2012), of evaluating
impacts rather than risks (Bjørn et al., 2014; Zijp et al., 2014), of ac-
counting for chemicals that are not subject to regulation or monitoring
(Sjerps et al., 2016) and consideration of multiple stressor influences
such as water scarcity (Heugens et al., 2001). Of particular interest
here is flow, as this can be a direct stressor aswell as amodifier of chem-
ical concentrations (Carpenter et al., 2011; Kuzmanović et al., 2016;
Sabater et al., 2016). Finally, landscape and land-use patterns act as
overarching drivers of ecological status and impairments (Allan, 2004;
Cervantes-Yoshida et al., 2015). Due to these characteristics, the non-
toxic environment goal is more specific than before. Assessment of the
presence of a non-toxic aquatic environment requiresmulti-stressor di-
agnostic approaches, in which the role of toxic chemicals can be delin-
eated on a land- and riverscape scale. This differs from classical
chemical risk assessments.

The classical approaches for assessing water quality and ecological
risk of chemicals are often disjointed in terms of research and regula-
tion. The literature on bioassessment (Metcalfe, 1989; Barbour et al.,
1999; Vander Laan et al., 2013) does not connectwell with the chemical
risk assessment literature (Schwarzenbach et al., 2006; Van Leeuwen

and Vermeire, 2007), so that e.g. transgression of risk-based safe criteria
are not predictive of mixture impacts (e.g., Carvalho et al. (2014)). Sep-
arate regulatory frameworks exist in Europe for chemicals (REACH,
concerning the Registration, Evaluation, Authorisation and Restriction
of Chemicals) and surface waters (WFD, the Water Framework Direc-
tive), though REACH liaises to water policies (Article 2.4), while water
policies address chemicals too via defining Good Chemical Status (EC,
2000; EC, 2003). A similar situation can be found in other countries
(for an overview of complexes of pollutant-related regulatory frame-
works within and across jurisdictions: see Geiser (2015)). This disjoint-
ed state is likely due to a number of reasons, such as the scientific
complexity of an infinite number of chemical-biota interactions
(Hendriks, 2013), the associated ‘curse of dimensionality’ where large
numbers of chemical parameters reduces the statistical power of
bioassessments to (near) zero (Bellman, 1961), and simply disparate
disciplinary focuses. It is therefore not surprising that mixture impact
assessments are under-represented in bioassessments (Metcalfe,
1989; Norris et al., 2007; Friberg et al., 2011), though recent studies in-
creasingly try to bridge the gap (Chiogna et al., 2016).

In this paper we aim to continue bridging the gap between bioas-
sessments and mixture impact assessments as shown in Fig. 1. We do
this by eco-epidemiological analysis of surveillance monitoring data
sets. The term ‘eco-epidemiology’ was coined in 1984 (Bro-Rasmussen
and Løkke, 1984). It was introduced as an approach to diagnose the rel-
ative importance of chemical impacts on ecosystems subject tomultiple
stress conditions. Since 1984, the concept hasmatured into an approach
that uses bioassessments to characterize ecological impairments,
followed by causal analyses to determine causes, with linkages to risk
assessment and decision making (Suter et al., 2007). In our studies,
the surveillance monitoring data sets were supplemented by a proxy
for mixture impacts on ecosystems. The aimwas to improve our under-
standing of multi-stressor impacts in aquatic ecosystems, and subse-
quently advancing chemical- and water management to attain the
goals of a non-toxic environment and good ecological status. We ad-
dress continental to local spatial variability while diagnosing the rela-
tive role of mixtures of chemicals in shaping local species assemblages

Fig. 1. The nexus of research and policies in chemical and water management, with the central policy goals of a non-toxic environment and a good ecological status, in the context of a
solution-focused assessment paradigm (water bodies restored and protected in a sustainable way, see Zijp et al. (2016)). The numbers reflect the schematic position of the Case
Studies presented in this manuscript (see Table 1).
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in the presence of multiple stressors. We focus on prioritization. This
can concern ranking impact magnitudes across water bodies (Norris
et al., 2007), ranking stressor types within water bodies (Fedorenkova
et al., 2012), and/or ranking ecotoxicity of chemicals within a mixture
(Brack et al., 2015). All such prioritizations are relevant for deriving
(cost) effective water quality management plans. In addition, we ad-
dress ‘emerging chemicals’ (UNEP, 2013) and options for predicting
net impacts of chemical use (Murray et al., 2010; Pal et al., 2010;
Pistocchi, 2014).

In order to improve our understanding of multi-stressor impacts in
aquatic ecosystems and forward the decision support towards reaching
a non-toxic environment, we describe and evaluate eco-
epidemiological methods that include methods to diagnose and predict
the impacts of chemical mixtures. We start from aquatic monitoring
data, as those are being collected in vast numbers (e.g., via surveillance
monitoring) triggered by existing law (EC, 2000; U.S. Senate, 2014). Sur-
vey data at various scales are required to answer questions like (a)what
are the states of our water systems?, (b) do these states change in time
or vary in space, positively or negatively, or comparatively?, and (c) if
so, what drives these changes or differences? We explore the state of
art regarding the diagnostic and prognostic analysis of multiple and
emerging stressors footprints in surface waters over large geographical
areas, such as national, states or catchments. Working at this scale has
threemotives. One, gradients of stressor data needbe ‘long’when statis-
tical power is to be reached in bioassessments (large inter-site variabil-
ity across sites). Two, for the same reason the gradients of degree of
ecological impacts need be ‘long’. Three, policy solutions are required
on the scale of a safe chemical economy (Geiser, 2015) in relation to
safe water supplies (Hoekstra and Wiedmann, 2014), which are large-
scale issues.

2. Case study data sources and approaches

2.1. Current pollutants assessment

Current assessments of chemicals often focus on separate chemicals
for environmental protection (European Communities, 2003) or for the
characterization of environmental status (EC, 2000), while whole efflu-
ent toxicity tests are applied to monitor and control pollutant mixture
emissions. Expanding on these common methods, we propose to add
methods to diagnose and predict impacts of chemical mixtures in the
context of co-occurring stressors based on monitoring data. These
methods focus directly on ecosystems and species occurring in field
conditions that are exposed to mixtures and multiple stresses under
field conditions, while encompassing inter-species interactions. We
apply a suite of methods in exposure and effects assessment, as de-
scribed in the case studies, and earlier introduced by De Zwart et al.
(2006) and Kapo et al. (2014).

2.2. Bioassessments of mixture impacts

The case study results presented in this paper expand on earlier
analyses of the same data sets, and provide – more than the separate
studies published earlier – an holistic overview of subsequent ap-
proaches and result types that can be obtained to provide the insights
required according to Fig. 1. The case studies are causal assessments. A
causal assessment should deliver technical support for decisionmaking,
and often refers to a particular situation, system or place, sensu Norton
et al. (2014). The studies considered here, however, all concern the
analysis of landscape-level monitoring data on species assemblages, in
order to delineate spatial variability in ecological impairment and its
probable causes, with special emphasis on mixture impacts. Full causal
analyses are not made, as those would require additional assessment
steps (Norton et al., 2014), which are beyond the illustrative nature of
the case studies.

2.3. Eco-epidemiology of chemical mixture impacts

Though the term eco-epidemiology dates back to 1984 (Bro-
Rasmussen and Løkke, 1984), eco-epidemiological studies remained
scarce for some decades. Often, chemical risks are evaluated via
checking transgressions of ambient Water Quality Criteria of individual
compounds (i.e., the PEC/PNEC-ratio type of evaluation, with PEC =
Predicted Environmental Concentration and PNEC = Predicted No Ef-
fect Concentration), though scientific evidence suggests that such trans-
gressions do not necessarily predict ecological impacts (Solomon and
Takacs, 2002; De Zwart et al., 2009; Burton et al., 2012; Carvalho et al.,
2014) — that is: transgressions may trigger management action while
there are no ecological impacts. In the mid-2000's, however, the
amounts of monitoring data had increased vastly, and the application
of Species Sensitivity Distribution (SSD) modelling in conjunction with
exposure- and mixture models reduced the ‘curse of dimensionality’
(De Zwart et al., 2006; Kapo and Burton, 2006). An SSDmodel is a prob-
ability distribution describing the sensitivity of multiple species ex-
posed to a hazardous compound (Van Straalen and Denneman, 1989;
Posthuma and De Zwart, 2014), at a certain impact level, using e.g. the
EC50 as sensitivity test endpoint. Bioavailable concentrations of
chemicals can be expressed in a proxy named ‘toxic pressure’. The
toxic pressure estimates the fraction of species that is probably affected
to a certain extent by an ambient exposure level. It is expressed as the
Potentially Affected FractionEndpoint of species affected to a certain ex-
tent, e.g., PAFEC50 for single compounds, or as multi-substance PAF
(msPAF) for mixtures (De Zwart and Posthuma, 2005). This proxy re-
duces the number of stressor variables from many (all chemicals sepa-
rate) to one per sample (total mixture toxic pressure), or to a few
representing main compound groups (e.g., msPAFPAHs, msPAFMetals, et
cetera). A local toxic pressure (msPAFEC50) of 58% has the conceptual
meaning that –when 100 specieswould have been tested to obtain sen-
sitivity data for a chemical – 58%would exhibit N50% effects if the tested
species would individually be exposed to this exposure (excluding eco-
logical interactions). We acknowledge that SSD-modelling is not based
on ecological considerations and that model outcomes not predict im-
pacts in ecological terms, following key arguments in the debate on
SSD-modelling in risk assessment (e.g., Forbes and Calow (2002) vis a
vis methods such as population- of food web modelling (e.g., Forbes
et al. (2008)). Supporting the development of the latter, we follow a
lower-tier pragmatic approach in using the toxic pressure proxy for
two reasons. First, the latter models cannot yet be applied in eco-
epidemiology. Second, though mixture toxic pressure should be seen
as a characteristic of thewater sample, it is quantitatively related to eco-
logical impacts (e.g., Posthuma and De Zwart (2012)).

After replacing the pollutant concentrations by the (mixture) toxic
pressure data, the statistical analyses in the case studies were executed
according to the various approaches common in aquatic bioassessments
(Sponseller et al., 2001; Allan, 2004; Leps et al., 2015). Details of the
steps made are provided with the case studies.

2.4. Case study data sources, approaches and limitations

Data sources for case studies are described with the case study re-
sults. The typical steps in data collection and management consist of
the collection of monitoring data, the imputation of abiotic and biotic
parameters, the expansion of the data set with additional landscape
and land use data, adding information of scale (like proximity of land
use to the water bodies), addition of mixture toxic pressure proxies
(Kapo et al., 2014), and screening of the resulting data set. The mixture
toxic pressures were based on measured or predicted concentrations
(e.g., via the iSTREEM® model (www.iStreem.org)). When observed
or predicted concentration data lack, toxicity was also evaluated by
proxy variables, such as broad-scale usage data (e.g., from agricultural
census), land cover (to identify agricultural land) and proximity to
streams (e.g., agriculture within 100 m). Notably, the derivation of
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mixture toxic pressures was tailored to the exposure ranges in the area
under investigation, that is: msPAFNOEC or msPAFEC50 at lower or higher
exposure concentration. Ecological impacts were quantified in a variety
of ways in the different case studies, e.g. abundance per taxon, trait fre-
quencies, biodiversity indices or metrics quantifying deviation from ex-
pected conditions (Lenat and Resh, 2001; Baird et al., 2008; Herman and
Nejadhashemi, 2015; Pilière et al., 2016). The resulting data set was
screened, by checking in various ways for redundant variables, e.g., via
analysis of correlations and of Variance Inflation Factors (Kline, 1998;
O'Brian, 2007). Variables that would invalidate diagnostic inferences
were removed from the statistical analyses. The data sets of the case
studies are all statistically appropriate for evaluating the relative contri-
bution of chemicals and their mixture to ecological impacts, as they
show a large variability of the (mixture) toxic pressure across sites
and no- or limited covariation to other stress factors.

Causal studies that are based on large-scale monitoring data have
limitations. Evidently, it is evident to collect good quality data, with spe-
cial emphasis on the proper co-location of stressor and response vari-
ables (Dyer et al., 2000), and to study a data set that represents the
situation under investigation, Interpretations on the role of pollutants
evidently relates only to the compoundsmeasured or modelled. Finally,
the final insights show statistical associations between stressor vari-
ables and biotic variables rather than proven causation.

2.5. Case studies and water quality assessment questions

The case studies concern different problem definitions in water
quality assessment and management (Fig. 1 and Table 1). They all con-
cern the statistical analyses of large-scale monitoring data sets in which
themixture-toxic pressure approachwas applied to study statistical as-
sociations between mixture and biotic parameters. The study data con-
cern various regions in Europe and the U.S. Note that the approaches
were initiated by- and relate to regulatory requirements, such as the
need to use a reference concept in regulatory bioassessment schemes.

3. Case study results

All case study descriptions provide a problem definition, and sum-
marized methods, results and implications. Note that (for ease of com-
munication) we use cause-effect terms rather than the more
appropriate terminology of statistical association. The case studies are
characterized by sufficient variation of the mixture toxic pressure
proxy and by lack of covariation of this proxy with other potential
stressors.

3.1. Mixture toxic pressure (co)variation

3.1.1. Problem definition
Statistical associations between mixture exposure levels and biotic

variables can only be meaningfully interpreted when there is sufficient
variability of mixture exposure levels, and when the covariation of this
parameterwith other stressors is absent or limited. This case study illus-
trates the analysis of variation and covariation of mixture toxic pressure
and other abiotic variables.

3.1.2. Methods
Monitoring data were collected for the analysis of abundances of

benthic invertebrate assemblages to multiple-stress conditions in a re-
gion in the Netherlands (Posthuma and De Zwart, 2012). The data set
concerns 220 benthic macroinvertebrate taxa, approximately 550
sites, and 12 abiotic variables. Mixture toxic pressures were calculated,
based on 45 measured compounds and SSDEC50-modelling. Variation
and covariation of the predictors was analysed.

3.1.3. Results
Cumulative distribution functions of the predictors are shown in

Fig. 2. An ideal data set would exhibit ‘diagonal’ distributions. The mix-
ture toxic pressure distribution for this data set shows (bold line) wide
variability of toxic pressure between samples, as well as the distribu-
tions of other predictors (continuous or stepwise distributions). Analy-
sis of the Variance Inflation Factors showed that the covariation of
mixture toxic pressure with the other predictors would not invalidate
inferences. This implies that statistical associations between mixture
exposures and biotic parameters based on these data are unbiased.

3.1.4. Discussion
This case study is just one example of inter-site variability ofmixture

toxic pressure on a landscape scale, and limited covariation with other
stressors. When study areas are large, experience has learned that the
toxic pressures of individual chemicals, subgroups of chemicals and of
total mixtures varies across sites too, while the probability of covaria-
tionwith other stressorswill reduce (they are not invalidating the infer-
ences in the case studies presented below). The requirement that the
chemical pollution proxy has no- or limited covariation with other
stressor variables likely requires data from large study areas, and critical
evaluation of both statistical- or non-statistical (logical) sources of co-
variation between mixture toxic pressure and other stressors.

Table 1
Case studies used to illustrate problem definitions, approaches and outputs types in the
eco-epidemiological analysis ofmonitoring data. The case studies present sequential steps,
shown via the numbers in Fig. 1. Case 1 concerns the data set, cases 2–4 concern the sci-
entific interpretation of the concept of toxic pressure (fundamental for the further cases),
and the cases 5–10 concern analyses made in the context of decision support.

Case
#

Case identification Problem definition

1 Mixture toxic pressure
(co)variation

What is the current distribution of
mixture toxic pressure variability? A
statistical association between mixture
toxic pressure and biotic parameters
requires sufficient variability of this
metric and low covariation with other
predictors.

2 Mixture exposures and species
abundance changes – pollutant
stress

Species sensitivity differences imply
expected different species abundance
changes; can these be elucidated with
Pearson correlation analyses?

3 Mixture exposures and species
abundance changes –
multi-stressor

As in the case with pollutant stress, but
now with multi-stress. Can chemical
pollution responses be elucidated with
multi-variate statistical models?

4 Calibrating mixture toxic
pressure to ecological impacts

The mixture toxic pressure proxy can be
derived from laboratory test data, but it
requires calibration to observed impacts.
What does the calibration look like?

5 Developing preliminary working
hypotheses

Scale matters in bioassessments, and this
also hold for chemical mixture impacts.
Can preliminary data explorations
support a proper diagnostic analysis of
the monitoring data set?

6 Ranking sites and stressors Can data analyses result in site-specific
information that supports a useful
ranking of impact magnitudes and of the
relative importance of probable causes?

7 Ranking chemicals within
mixtures

Ibidem for chemicals or chemical groups
within impacted sites?

8 Reference sites and mixture
toxic pressure

Are reference sites, used in the
regulatory context of water
management, indeed non-toxic, and also
relatively unaffected by other stressors?

9 Abatement policies and
abatement success

Can retrospective evaluation of
monitoring data elucidate the presence
of success of investments in abatement,
and show reduced mixture impacts?

10 Restoration target Is causal analysis sufficient, or is
attention needed for alternative
restoration and management scenarios?
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3.2. Mixture exposures and species abundance changes — main effect

3.2.1. Problem definition
The SSDmodel is based on the observation that species respond dif-

ferently to exposures to single chemicals under test conditions (Stephan
et al., 1985; Van Straalen and Denneman, 1989). Does this logically
mean that species will also respond differently to mixture exposures
under both laboratory and field conditions?Whatwould be the possible
influence of multiple stressors and ecological interactions, and could
these influence species responses in the field. What do mixture re-
sponses under field conditions look like?

3.2.2. Methods
Using the same data set as in the previous example, the association

between mixture toxic pressure (msPAFEC50) and the abundances of
103 individual benthic macrofauna taxa was established and ranked.

3.2.3. Results
Rank-ordered correlation coefficients between mixture toxic pres-

sure and taxon abundance varied widely (Fig. 3). No correlation was
found for the majority of taxa (grey band). Further, as expected from
the species sensitivity variation phenomenon, there was a negative cor-
relation for various taxa, withmore and less sensitively responding taxa.
Additionally, and not expected from the SSD-modelling of laboratory
test data on species sensitivities, some taxa exhibited an opportunistic
response. There were no strong and highly significant associations be-
tween toxic pressure variability and abundances of taxa.

3.2.4. Discussion
Diagnostic analyses of monitoring data can unveil a suite of direct,

taxon-specific statistical associations between mixture exposure and
abundance changes, part of which (abundance increases) are unexpect-
ed from the species sensitivity variability phenomenon. However, simi-
lar results were repeatedly found in other mixture impact assessment
studies (De Zwart et al., 2008; De Zwart et al., 2009), and they are also
typical for other stress parameters (Sundermann et al., 2015). These re-
sults imply that SSD-modelling yields a quantitative proxy which is
expressed in terms of ecological impact magnitude (fraction of species
potentially affected), and that a limited level of ecological responses

(and response variability) can be found, though it needs be noted that
this so far neglects multiple-stress influences. Moreover, the method
does not predict which species exhibit abundance reductions, nor
does it predict the presence of abundance increases in some species.
The latter are likely attributable to ecological interactions, e.g., due to re-
duced interspecies competition for resources, or due the loss of a sensi-
tive predator causing abundance increases in prey. When studying
impacts of chemicals in natural systems, the variability of response pat-
terns across taxa should be acknowledged.

3.3. Mixture exposures and species abundance changes – multiple stress

3.3.1. Problem definition
The two previous examples showed the presence of multiple stress-

es and ofmultiple types of species responses tomixture exposures,with
many species apparently indifferent to mixture exposure. The latter
may, however, bemisleading, due to other stressors masking the recog-
nition of impacts of mixtures in direct correlation analyses. Do multi-
stress conditions mask mixture impacts?

3.3.2. Methods
Various data sets (references in caption of Table 2) were analysed

using statistical models allowing for a multiple-stress interpretation.
In the examples, GLMs (Generalized Linear Models) were fitted to the
monitoring data. The models all had the shape of log(abundance) =
(a ∗ msPAF + a′ ∗ msPAF2) + (b ∗ predictor B + b′ ∗ predictor
B2) + … + ε, resulting in estimates of a, a′, b, b′ (et cetera). The fitted
model allows for linear as well as quadratic (optimal, minimum) re-
sponse shapes and their combinations. A typical example of the vari-
ables in the studied data sets is shown in Fig. 2.

3.3.3. Results
Analyses of the various data sets showed that the abundances of a

high proportion of taxa (50–86% of the taxa, at the levels of species,
genus and family) are related to mixture toxic pressure in surface
water bodies. The abundances of the taxa are similarly frequent co-
determined by other physical and chemical stressor variables (data in
cited studies). Taxon abundances are determined by multiple stresses.

3.3.4. Discussion
In comparison to the Pearson correlations of the various data sets

studied (see above), the percentages of taxa with a significant toxic
pressure – abundance association is high, with a minimum estimate of
50% (fish, species level) and amaximumvalue of nearly 90% (macrofau-
na, genus level). The repeated high percentages of taxa responding to
toxic pressure is surprising, as many large-scale evaluations do not

Fig. 3. Rank-ordered Pearson correlation coefficients between mixture toxic pressure
(msPAFEC50) and taxon abundance for 103 taxa.

Fig. 2. Cumulative distributions of predictor variability for a sampling area. Names of metrics
refer to stressor variable types as follows: ‘Semester’ relates to sampling time (spring or fall);
‘Shipping’ considers presence or absence of shipping; ‘Sed-Ero’ consider the sedimentation-
erosion balance; pH represents acidity; ‘%dry matter’, ‘sand%’, ‘lutum%’, and ‘OM%’ represent
the percentages dry matter, sand, clay and organic matter of the sediments; ‘tidal’
represents the influence of tide, and ‘depth’ represents depth of sampling. Toxic pressure
(%) represents the msPAFEC50 derived frommeasured chemical pollutant concentrations.
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suggest such clear and high numbers for toxicity (e.g., (EEA, 2012)). The
results show the presence of (combinations of) linear and quadratic
terms for mixture toxic pressure as well as for other stressors. The net
abundance changes of species, genera and families are thus commonly
a result of multiple-stressor influences which vary amongst taxa
(shown by different compositions of the GLM-models). In conclusion,
increased mixture toxic pressure is a proxy that predicts increased
change in ecosystems, associated with species-specific downward-,
neutral- and upward abundance changes. It predicts degree, not kind
of impact, and the evidence suggests that such impacts are present in
majority of taxa at current ambient chemical exposure levels.

3.4. Calibrating the mixture toxic pressure proxy to impacts

3.4.1. Problem definition
The relationships between predicted impact (e.g., msPAFEC50) and

observed impacts have not yet been calibrated to field impact observa-
tions, neither for taxon-specific abundance changes, nor for the ob-
served fraction of species affected. How does the predicted mixture
impact proxy relate to observed ecological impacts? This case study
shows analyses based on surveillance data, but also for two well-
defined contamination gradients. The latter approach reduces the influ-
ences of possible confounding factors.

3.4.2. Methods
Landscape study data are similar to those in Section 3.1 (Posthuma

and De Zwart, 2012). The relationships between predicted impacts
and observed impacts were based first on taxon abundance values pre-
dicted by the GLMs in combination with the monitoring data (taxon-
specific response variation), and then by calculating the percentages
of species showing N50% abundance change (summarizing the taxon-
specific responses). Validation study data were obtained from two ter-
restrial pollution gradients.

3.4.3. Results
Species abundance patterns and observed fraction of species affect-

ed (responding N50% in abundance change, upward or downward)
are shown in Fig. 4. The two graphs (upper and lower) are for the
same data set, and show (bottom) the variance in taxon-specific abun-
dance changes, and (top) their aggregation in the observed fraction of
species affected (N50% abundance change in the field). The association
between predicted and observed fraction of taxa negatively affected at
the EC50-level (top, continuous line) is surprisingly close to the ideal
1:1 line. Note that the fraction of species with an increased abundance
response type (dotted line) responds at lower proxy levels than the de-
crease abundance response pattern.

3.4.4. Discussion
The mixture toxic pressure proxy relates to a complex set of re-

sponses, which are true at the same time: (1) increasing toxic pressure
relates to a variety of neutral and up- and downward abundance

changes of separate taxa, and (2) to associated net fractions of species
affected. This was also found in a similar analysis of a nationwide mon-
itoring data set for the Netherlands (Posthuma et al., 2016). In the cur-
rent study, pollution seems to trigger opportunistic species to rise in
abundance prior to triggering negative abundance change responses
on other species. A similar divergence of taxon-specific response pat-
terns to chemical exposures is not unique for this case study. It has
also been found in gradient studies (Fig. 5), where the impact of con-
founding factors is low.

3.5. Developing preliminary working hypothesis

3.5.1. Problem definition
Chemical mixture exposures in surface waters result from point-

(Waste Water Treatment Plants, WWTPs) and non-point sources (pes-
ticide or fertilizer use in the landscape upstream) in combination with

Table 2
Percentages of taxa (different taxonomic levels) for which a GLM-term (linear and/or quadratic) marks a significant influence of mixture toxic pressure (determined as msPAFEC50 or
msPAFNOEC), for various subsets of measured or modelled chemical concentrations. References are: (1) (Posthuma and De Zwart, 2006); (2) (De Zwart et al., 2008); (3) (De Zwart
et al., 2009), (4) (Posthuma and De Zwart, 2012); (5) (Posthuma et al., 2016). Note: data set (4) analysed taxa abundance data when found in N10 samples across the Netherlands, but
also a sub-set of taxa with a statistically robust data structure (taxa found in all sampling sites). ‘Var.’ reflects that the number of chemical pollutants is large, covering a wide variety of
compounds.

Study area Response variable msPAF Compounds Other stressors Ref.

Ohio (US) Fish (n = 96 taxa, species level) 55% (NOEC) Household 43%–99% 1
Ohio (US) Fish (n = 96 taxa, species level) 50% (NOEC) Metals + ammonia 43%–99% 1
U.K. Macrofauna (n = 76 taxa, family level) 71% (EC50) Metals + ammonia 55%–73% 2
U.K. Macrofauna (n = 76 taxa, family level) 56% (EC50) Pesticides (model) 55%–73% 2
Belgium Macrofauna (n = 64 taxa, mostly family level) 59% (EC50) Var. (n = 335) 66%–80% 3
Netherlands Benthic invertebrates (n = 103 taxa, genus level) 74% (EC50) Var. (n = 45) 72%–89% 4
Netherlands Macrofauna (n = 308 taxa, genus level) 59% (EC50) Var. (n N 1750) 38%–65% 5
Netherlands Macrofauna (n = 110 taxa, robust genus level data) 86% (EC50) Var. (n N 1750) 64%–84% 5

Fig. 4. Calibration of the msPAFEC50-proxy to the observed factorial abundance change
patterns for 45 taxa (bottom) and the observed fraction of species affected (top). The
continuous and broken lines (top figure) are the fractions of species with negative and a
positive abundance change, respectively. Dotted line: ideally expected 1:1 relationship
between predicted and observed affected fraction.

6 L. Posthuma et al. / Science of the Total Environment xxx (2016) xxx–xxx

Please cite this article as: Posthuma, L., et al., Eco-epidemiology of aquatic ecosystems: Separating chemicals frommultiple stressors, Sci Total En-
viron (2016), http://dx.doi.org/10.1016/j.scitotenv.2016.06.242

http://dx.doi.org/10.1016/j.scitotenv.2016.06.242


hydrological and chemical processes (dilution, breakdown, et cetera).
Chemical exposures and impacts thus expectedly vary across sampling
sites, with an expected key role for multiple stress (see earlier case
study). In linewith bioassessment experiences, the scale of observations
and of causal analysis is important to consider for chemical pollution too
(Mykrä et al., 2007; Li et al., 2012). Hence, the recognition of mixture
impacts in large monitoring data sets is also expected to improve
when emission-concentration-impact analyses are considered at scales
relevant for the chemical groups of interest.

3.5.2. Methods
Monitoring data were collected for Ohio (a state covering seven

ecoregions) between 2000 and 2008 (Kapo et al., 2014), starting with
3000 sites, of which 1917 sites had data for all parameters. Mixture
toxic pressures were determined for (separately) pesticides (n =
156), “down-the-drain” consumer product chemicals (n=7, household
product constituents), pharmaceuticals (n=49), estrogens (n=3) and
conventional pollutants (n = 11, metals, ammonia, and nitrite), based
onmeasured andmodelled concentrations. Conditional inference forest
analysis (Strobl et al., 2007) was applied separately at the state-wide
and ecoregional levels (n= 3) to provide initial evaluations of the rela-
tive influences of the various mixture toxic pressures and other
stressors on biological communities. The initial evaluations provide in-
formation on associations between stressors and community status,
but do not yet provide diagnostic information on ecological impacts
per site and the possible causal factors of those impacts (see case
study below). Therefore, the results of these analyses are helpful to rec-
ognize important patterns in the data, which can thereafter be used in

the refined diagnostic studies (example below). Response metrics
were the Index of Biotic Integrity (IBI, based on 12 fish assemblagemet-
rics) and the invertebrate community index (ICI, based on 10 inverte-
brate assemblage metrics).

3.5.3. Results
The analysis showed an important role of scale in the analysis of

emission-concentration-impact hypotheses. As a major result, the data
analyses showed that there was a strong influence of physical habitat
quality on biological community condition at the state-wide and
ecoregional scale compared with most other stressors. Given those in-
fluences, themixture toxic pressure of conventional pollutantswas neg-
atively associated with biological community condition, although its
relative influence at the state-level appeared to be lower compared to
other variables such as habitat and other water chemistry factors
(e.g., conductivity, biological oxygen demand, and related parameters).
At a more refined scale, of the ecoregions, the relative influence of the
mixture toxic pressure for conventional pollutants appeared to be
markedly higher, e.g., for the Western Allegheny Plateau. This outcome
is in line with the fact that the region is known for acid mine drainage
and industrial pollution, and it confirms the results of an earlier study
which was executed with an older monitoring data set (De Zwart
et al., 2006). The mixture toxic pressure for ‘down-the-drain’ consumer
products, which was highly correlated with toxic pressure of pharma-
ceuticals, had a relatively low influence compared with other stressors
at both the state and ecoregion scales. The greatest potential negative
influence of chemical emissions typical for human settlements on bio-
logical communities was found in the Erie Drift Plain ecoregion, an

Fig. 5. Terrestrial gradient studies corroborate the abundance change patterns found in Fig. 4. Top: a lead contamination gradient at Kastad, Norway. Data fromLåg et al. (1970) andHågvar
and Abrahamsen (1990). Bottom: a mixed-metal gradient at Gusum, Sweden. Data from (Tyler, 1984). Results summarized from Posthuma (1997) and Posthuma et al. (2001).
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area with high population densities. The mixture toxic pressure of pes-
ticides (evaluated for 159 compounds) was highly correlated with a
GIS-derived percentage agricultural land use. Further details on the out-
comes of the preliminary analyses are provided by Kapo et al. (2014).

3.5.4. Discussion
The role of chemicals in shaping biological community conditions

likely varies due to land use differences. Neglecting scale and landscape
issues, and looking only at a state-wide scale, may imply a statistical ‘di-
lution’ of an impact-signal for mixture effects in the data set. That is, im-
pacts that are present in the data set are not traced for statistical reasons
(e.g., the clear effect of metal mixtures at the ecoregion scale where
metal exposures mainly occur was hardly recognized at the state
scale). The preliminary diagnostic analysis generated initial stressor-
response information with a recognized role of scale. The preliminary
analysis results can offer insights into the possible mechanisms with
which landscape variables likely influence biological condition. Some
locally relevant aspects (emission sources) induce high inter-site stress-
or variability, while others can be addressed via large-scale land-use
proxies for initial recognition of stress patterns. The initial data explora-
tion illustrated here serves the purpose of integrating and optimizing
available raw data, delineating initial stressor-response associations
over large geographies (e.g., state and ecoregion), and laying the
groundwork for subsequent steps such as more refined diagnostic as-
sessment targeted on developing, and eventually testing, stressor-
response hypotheses at the local (site-specific) level. Delineating the
impacts of chemical mixtures requires not only a metric like mixture
toxic pressure, but – for the sake of finding impacts when they are
there, and for implementing solutions – also consideration of the differ-
ent scales at which emission-, exposure- and impact phenomena occur.

3.6. Ranking sites and stressors

3.6.1. Problem definition
Upon collating the data set for the analysis of mixture impacts, and

of preliminary scale-dependent approaches to investigate mixture im-
pacts in a hypothesis-driven way, the final aims of eco-
epidemiological analyses are: (1) the site-specific characterization of
the relative importance of chemical mixtures vis a vis other stressors
in causing ecological impacts, including consideration of the opportu-
nistic responses (described in Sections 3.2, 3.3 and 3.4), and (2) the
ranking of the relative importance of chemical groups or individual
chemicals within sites (see Section 3.7).

3.6.2. Methods
Various methods have been proposed to derive site-specific infor-

mation on impact magnitudes and probable causes. Two of these
methods were applied first on Ohio monitoring data collected prior to
the year 2000 (i.e., 1990–1995) (De Zwart et al., 2006; Kapo and
Burton, 2006; Kapo et al., 2008a) and had shown site-specific impact
magnitudes (expressed as species expected but absent based on
RIVPACS-modelling, see Section 3.8) and their probable causes. The
Weight of Evidence/Logistic Regression (WOE/LR) method was applied
here to investigate mixture impacts using the more recent Ohio (2000–
2008) data set. The latter data set is a vast expansion of the Ohio (1990–
1995) data set, examining both direct impacts to flowing water
(i.e., local catchment) and for entire upstream areas (Kapo et al.,
2014). As illustration, the differences between the older and the
newer Ohio data set are: (1) number of variables, after quantifyingmix-
ture toxic pressures: from 18 to 32; (2) the numbers of chemicals con-
sidered in the mixture toxic pressure variables: from 11 to 226;
(3) the numbers of sites, from 1572 to 3000; and (4) the number of
sites with complete data from 695 to 1917. The analyses of the newer
data set considered the IBI of fish as the response variable. In addition,
the Effect and Probable Cause (EPC) method was applied on the earlier
data set (De Zwart et al., 2006) to investigate impact magnitudes and

probable causes for taxa showing increased abundances. The method
can yield two types of pie diagrams for each sampling site, in which
pie sizes either represent the fraction of species expected but absent
or the fraction unexpected but present, and slice sizes towhichprobable
causes the changes are attributed by statistical associations.

3.6.3. Results
The WOE/LR analysis characterized catchments (data 2000–2008)

by relative probability of biological impact (Fig. 6), including the poten-
tial stressors hypothesized for each study catchment. The analysis out-
put enabled prioritization of sites of interest, that is: the identification
of catchments where mixture toxic pressure, such as those for metals
or effluent constituents, wasmost likely to have an impact on biota (ex-
ample for fish community condition in Fig. 6). Geographic trends in
stressor-response can be visualized from the analysis, such as urban-
impacted catchments in populated metropolitan areas such as Cleve-
land (enlargement in thefigure noted by “C”), and catchments impacted
by metals toxicity in the mining-impacted region of the Western Alle-
ghenyPlateau (south-east), corroborating thefindings of the two earlier
studies with the 1990–1995 surveillance data set.

The EPC analysis of theOhio (1990–1995) data set had earlier result-
ed in 695 site-specific Effect and Probable Cause (EPC) diagrams for sen-
sitive (species expected, but absent) responses (De Zwart et al., 2006),
but the role of stressors in relation to opportunist responses (Figs. 3 to
5) was not yet analysed. To sketch an overview of both response
types, EPC-results for the data set were collected for sensitive and op-
portunistic responses and then averaged according to land use. Note
that the changes of taxa abundances for the averaged EPC's relate to a
small number of chemicals represented in the mixture toxic pressure
proxy of this data set (see above). Landuseswere defined as the propor-
tionally dominant land use (% surface cover) locally draining to the sam-
pling site. Summary results are shown in Table 3. The EPCs for sensitive
and opportunistic changes appeared to be of similar sizes (impact mag-
nitude) and probable causes (attribution of impact to grouped predictor
types). The relative role ofmixtures in causing local ecological impacts is
shown to be low on average (1% and 2%). However, local values up to
30% were found for the Ohio (1990–1995) case study (in line with the
findings of the Sections 3.2 and 3.3), suggesting a skewed distribution
of the relative role of mixture exposures to ecological impacts. When
it is considered to implement abatement strategies, it is key to acknowl-
edge the variability in themixture proxy values for themixture impacts
across sites (like shown in Fig. 2).

3.6.4. Discussion
The case studies demonstrate that it is possible to derive outputs

which provide insight in spatial differences in local impact magnitudes
and the local set of probable causes, by analysing existing monitoring
data with a combination of ecotoxicological and statistical modelling
in a GIS-data management context. This type of output is needed in
the context of the ambitions shown in Fig. 1, as the approaches and
the results link bioassessment with chemical risk assessment, while
yielding a basis of prioritizing sites and stressors per site for manage-
ment. In deriving a statement on a toxic- or a non-toxic environment,
the numbers of studied compounds and their representativity for the
potentialmixture problems, needs be specifically considered.Moreover,
the methods focus on effect types captured in the ecotoxicity data (like
growth, reproduction), so that specific attentionmay be needed for pol-
lutant groups with a specific exposure pathway or mode of action. It is
noteworthy that the approaches were applied not only to measured
chemical concentrations, but also to predicted ones. This may be a valu-
able asset, especially when this is done with validated models. With
such models, the diagnostic assessment is applied to a case where the
exposure to pollutants is – in fact – known better than after measure-
ments of water samples taken in a small set of sampling events.
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3.7. Ranking chemicals within mixtures

3.7.1. Problem definition
The previous case study provides insights in the relative relevance of

local mixtures in causing local ecological impacts. It seems that in that
step the focus on individual toxic chemicals is lost in the analyses,
while the role of specific pollutants or pollutants groups areworthwhile
to know in the context of programs of measures. However, the informa-
tion on specific pollutants can be obtained from the underlying data, the
toxic pressures of the individual compounds. Therefore, the local impact
attributed to a mixture can be dis-aggregated into compound groups
and compounds of specific interest.

3.7.2. Methods
Case study data for the Scheldt river were collected and analysed

using the EPC-method (De Zwart et al., 2009). The case study data con-
cerns a study on 335 chemicals (metals and organic compounds of

industrial origin and pesticides), the concentrations of which were
recalculated in mixture toxic pressures, msPAFEC50, 13 predictors (in-
cluding msPAF), 64 macroinvertebrate taxa, and 972 sites (31 used as
reference). The EPC-method was applied to quantify the pie size (spe-
cies expected, but missing as compared to the references) and slice
sizes (fraction of species expected but missing attributed to a predictor
variable). Thereupon, the mixture impacts were disaggregated in order
to rank the relative contributions of chemicals to the impacts, looking at
toxic pressures for subgroups of chemicals (metals, inorganic other
compound, organics and pesticides).

3.7.3. Results
The study identified the highest impacts of chemical mixtures on

macroinvertebrates in the Nete sub-catchment of the Scheldt catch-
ment. The disaggregation of the mixture toxic pressure data clearly
identifies the relative importance of metals in relation to ecological im-
pacts (Fig. 7). The Nete sub-catchment is known to drain an area char-
acterized by long-term metal smelter activities.

Fig. 6. WOE/LR spatial analysis of multiple-stressor influences, based on Ohio (2000–2008) data (Kapo et al., 2014). (A) Catchments (centroid points shown) with biological and
environmental data were analysed for three ecoregions. This generated (B and C) catchments (shaded polygons) symbolized by (relative) impact probability (for “poor” Index of Biotic
Integrity condition for fish as defined by Ohio EPA). In detail (C) the relative roles of potential local environmental variables (colours) contributing to the relative impact probability
(pie size, relative impact probability). Further detail can be found in diagnostic studies below.

Table 3
Effect and Probable Cause (EPC) results for the state of Ohio (distinguishing various land uses), considering both sensitive species responses (top) and opportunistic responses (bottom),
based on the data of De Zwart et al. (2006). Percentages are for impact magnitude (EPC pie size), where they reflect species lost or gained as compared to reference conditions, and the
relative contribution of a subgroup of stressors. The last column summarizes unexplained variance in species abundance changes (down and upward).

Response Land use Impact Ranking of stressor type (predictors in subgroups) relevance to impact

Magnitude PhysChem Habitat Flow Land use Toxicity Effluents Unexplained

Sensitive Nature 41% 26% 17% 5% 6% 2% 1% 42%
Sensitive Rowcrop 36% 25% 19% 7% 7% 2% 1% 39%
Sensitive Urban 54% 22% 14% 11% 7% 1% 2% 43%
Opportunist Nature 37% 27% 18% 5% 7% 1% 1% 42%
Opportunist Rowcrop 40% 31% 16% 8% 4% 1% 1% 39%
Opportunist Urban 31% 24% 15% 10% 6% 1% 0% 42%
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3.7.4. Discussion
The EPC and the spatial WOE/LR analysis approaches, while consid-

ered to yield exploratory stressor-response associations, delineate geo-
graphic patterns in stressor-response patterns (magnitude of impacts,
as compared to the references) and site-specific attribution of impacts
to probable causes (individual stressor variables, amongst which toxic
pressure). The outputs supportmanagement prioritization options, sub-
sequently: (1) sites in the landscape, (2) stressor within sites (including
mixtures), and (3) individual chemicals or chemical groups within sub-
catchments or sites. All these types type of information are useful in the
design and evaluation of optimal management strategies, site selection
strategies for fieldmonitoring, aswell as achieving a better understand-
ing of chemical risk in a multiple-stressor context.

3.8. Reference conditions and mixture toxic pressure

3.8.1. Problem definition
Regulatory frameworks for water quality management require the

use of benchmarks or reference conditions defined by physical, chemi-
cal, and ecological characteristics, against which impacts are judged
(EC, 2000; Stoddard et al., 2006). Given the array of water typologies,
there is an array of reference site types (e.g., large rivers, small lakes,
et cetera). The EuropeanWater Framework Directive (EC, 2000) defines
references as sites with ‘no orminimal anthropogenic stress’ (judged by
totally or nearly undisturbed conditions for hydromorphological-,
physicochemical-, and biological-quality elements, concentrations of
synthetic pollutants close to zero or below the limit of detection of ad-
vanced analytical techniques, and concentrations of non-synthetic pol-
lutants in the range of natural background levels). In using the
reference concept, the sites assigned as reference sitesmaynot be in ref-
erence conditions, due to e.g. droughts or floods. Checking the appropri-
ate use of reference sites and conditions is crucial for diagnostic success,
as illustrated in this case study.

3.8.2. Methods
Both the EPC-method and the WOE/LR analysis apply the reference

concept. In Ohio, the reference sites are commonly identified via best
professional judgment (De Zwart et al., 2006), but in this case study a
reference condition approach was used, defined by the maximum fish
assemblage integrity score (Index of Biotic Integrity, IBI N 46, (Karr,
1981)), related to high variability of biosurvey data for the set of refer-
ence sites. This case study explores whether these referencesmay be af-
fected by low-level chemical mixture exposures and other stressors

using the Ohio (2000–2008) data (Kapo et al., 2014), the characteristics
of which were detailed in Section 3.5.

3.8.3. Results
The number of sites with IBI-scores N46 was 944, which could be

grouped in 25 types of references using RIVPACS-type (River Inverte-
brate Prediction and Classification System) modelling of species occur-
rences (Clarke et al., 2003). Bray-Curtis dissimilarities (Bray and
Curtis, 1957) between the RIVPACS-predicted species composition and
the observed specieswere calculated for the 944 sites. Predicted andob-
servedfish fauna for the reference siteswere considered similar for local
Bray-Curtis index values b0.2, chosen to define ‘good’ reference condi-
tions at the time of sampling, and else dissimilar, defining poorer refer-
ence conditions (all at IBI N 46). Thereupon, potential influences of
stressor variables on reference conditions was investigated by evalua-
tion of statistical differences between the two groups of sites for each
stressor variable, including the mixture toxic pressure proxies for
some chemical groups. This analysis showed that various predictors sig-
nificantly differed between the two subgroups of sites, probably causing
slight deviations from (expected) reference conditions (be it with
IBI N 46). As an example, poor predictability of reference site fauna re-
garding urban land use predictors was related to higher average income
of people upstream and lower waste water treatment plant numbers,
but also to a lower number of permit violations, and a lower percentage
of annual effluent loads. Regarding instream habitat, poor predictability
of reference fauna appeared significantly related to poor values of all
habitat predictors. Surprisingly, a significantly poorer prediction of ref-
erence fauna was related to a lower rather than a higher upstream use
of pesticides (upstream-caused local toxic pressure). These outcomes
imply that sites, despite being judged as being in reference conditions,
may be influenced by a multitude of (upstream-caused) stressors/pre-
dictors. The net effect could not easily be delineated and assigned to a
single cause, as all factors act simultaneously. The results show, howev-
er, that reference sites andmodels should be scrutinized for consistency,
accuracy and optional causes for bias invisible in expert judgments
(such as chemical mixtures at low concentrations) prior to diagnostic
assessment.

3.8.4. Discussion
The use of reference sites or conditions in regulatory assessments of

water quality status requires a check on, amongst others, the presence
of possible (but hidden) chemical stressors. These may be locally pres-
ent due to (far) upstream emission sources, and may not be discerned
by expert judgment, especially given the phenomenon of ‘hidden

Fig. 7. Ecological impact analysis for the Scheldt basin in Belgium: disaggregation of themixture impact results into the relative contributions of chemicals (here: chemical groups, per sub-
catchment).
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mixture impacts’ explained in Sections 3.2 and 3.3. The problem of de-
fining, checking and using the reference concept (either as sites, condi-
tions or both) is particularly problematic for some water types, such as
large lowlands rivers, when those are almost all subject to various
sources of man-made stress; such a problem may be more widespread
than only in clearly human-influenced systems, as discussed by Ellis
(2015)). In the example, we expected poorer reference conditions in re-
lation to higher metrics for the use of various chemical groups, but we
found the opposite (‘good’ reference conditions at higher parameter
values for the use of chemicals). In this case, the diagnostic analysis
shown in Section 3.6 may thus be slightly biased by hidden stressor-
and impact patterns in the set of reference sites used to delineate im-
pacts and their probable causes. In that study, however, this bias is
low as compared to another source of bias that was found, related to
weather conditions. That is, reference sites (selected by best profession-
al judgment, and checked for hidden stressor influences as in this exam-
ple) may experience uncommon or extreme ecological conditions, like
extreme droughts and flashiness. Inspection of the fish data for the
expert-selected sites showedmany instances of low IBI in relation to ex-
treme weather events (unpublished results). It can be concluded that a
check on reference site definition, and reference conditions, is key to
perform prior to a diagnostic analysis of mixture and multiple-stress
impacts.

3.9. Abatement policies and abatement success

3.9.1. Problem definition
Monitoring data sets that cover a long time period can be used for

retrospective evaluation of abatement investments. This situation
holds for both Ohio data sets (1990–1995 and 2000–2008), especially
in view of investments in WWTPs. Ecological conditions and water
quality downstream ofWWTPs in urban areas were significantly affect-
ed in the first period (Dyer andWang, 2002). Here we explore whether
WWTP-investments resulted in improved ecological conditions.

3.9.2. Methods
The “before-after” comparison considered 301 co-located sites in-

volving a WWTP facility, with a categorization in sites downstream or
not downstreamof theWWTP, as well as in urban or rural sites. The im-
pact metrics were IBI, species richness and fish abnormalities (“DELT”:
deformities, erosions, lesions and tumours). In addition, the values of
the potential stressor metrics were compared.

3.9.3. Results
The observed “before-after” changes are summarized in Table 4.

Given unequal numbers of upstream and downstream-, and urban
and rural sites, and different numbers of measured parameters, the
state-wide fish condition metrics (IBI, DELTS, species richness) showed
a moderate but statistically significant increase over the decade, show-
ing a general improvement in fish condition over the 1990–2008 time

period. The improvement in IBI and species richness was however
only significant for sites in rivers downstream of WWTP discharges,
and fish abnormalities significantly declined for both downstream and
non-downstream sites, though the average decline was over 3 times
greater for downstream sites. These observations suggest a positive im-
pact of wastewater treatment within the given state-wide trend. IBI
change further differed between urban and rural sites, with a higher av-
erage IBI improvement for urban sites. The state-wide trend on im-
provement in species richness was largest (and significant) for rural
downstream sites and on improvement of DELT abnormalities the
trends were significant in both rural and urban sites. Of the potentially
causal factors, total phosphorous showed a significant increase over
time on the state level and an increase for downstream sites. The mix-
ture toxic pressure reduced significantly on the state level and for up-
and downstream sites, although no significant trend could be delineat-
ed for urban downstream sites (as expected) due to few co-located data
pointswithmeasurements (n=18). Given these trends, approximately
60% of the improvements (≥2 IBI increase) in downstream sites resulted
in the upgraded classification of the site to a higher OEPAbiological con-
dition status (OEPA 1988 biocriteria ranges), and approximately 40% of
the improvements remained in the same status. Themajority of the sta-
tus upgrades were “good” to “exceptional” status (32% of all improve-
ments) and from “fair” to “good” (17% of all improvements).

3.9.4. Discussion
The data analysis showed a trend of a state-wide improvements of

fish community conditions, within which investments in WWTPs ap-
peared to have resulted in an improvement of the biological condition,
especially downstream of WWTPs. The improved biological condition
coincided, amongst others, with reducedmixture toxic pressures. Espe-
cially, as the incidence of abnormalities is considered to be an indicator
of impact of industrial and municipal wastewater discharges on fish
communities (Ohio EPA, 1988), there may be a link between reduced
toxic pressure and reduced abnormalities. However, the data set
which could be constructed for the before-after comparisons contained
insufficient data to disentanglemixture toxic pressure and other factors
showing changes, amongst which total phosphorous. As part of the
studied facilities were operating at an advanced treatment level already
by 1996, separate information on the relative role of reduced toxic pres-
sure in causing impacts on fish would require both evaluation of earlier
(pre-1990) data, as well as a larger data set (see Case Study 1).

3.10. Restoration target

3.10.1. Problem definition
As a final step in Fig. 1, the implementation of abatement strategies

should result in the protection or restoration of water bodies, given the
understanding of the stressor-response relationships derived from bio-
assessments that involvemixture impact assessment. Early attention for
the definition of the desired end-status (after management) is key for

Table 4
Mean change in of abiotic and biotic variables based on a before-after comparison for sites up- and downstream from WWTPs in Ohio. “*” = Significant result (pb 0.05), according to
Wilcoxon Rank test; N = number of co-located data points).

Sites Stressor variables Response variables

Δ msPAF (%) Δ BOD (mg/L) Δ Total P (mg/L) Δ TSS (mg/L) Δ IBI Δ Species richness Δ DELTs

All sites (N = 301) −6.0* (N = 112) −0.69 (N = 115) +0.39* (N = 125) +3.66 (N = 141) +1.9* (N = 301) +0.81* (N = 301) −0.75* (N = 301)
Not downstream of
WWTP(s) (N = 98)

−12.6* (N = 29) −0.59 (N = 34) −0.12 (N = 40) −5.36 (N = 44) +1.2 (N = 98) +0.05 (N = 98) −0.27* (N = 98)

Downstream of WWTP(s) (N
= 203)

−3.7* (N = 83) −0.74 (N = 81) +0.63 (N = 85) +7.7 (N = 97) +2.3* (N = 203) +1.2* (N = 203) −0.97* (N = 203)

Rural sites downstream (N =
152)

−7.2* (N = 65) −0.97* (N = 62) +0.85 (N = 63) −16.9* (N = 74) +1.6* (N = 152) +1.3* (N = 152) −1.03* (N = 152)

Urban sites downstream (N
= 51)

+8.9 (N = 18) +0.01 (N = 19) −0.03 (N = 22) +87.17 (N = 23) +4.3* (N = 51) +0.79 (N = 51) −0.81* (N = 51)
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designing sustainable chemical- and water management plans (Zijp
et al., 2016). The restoration approaches for impacted sites can be
target-oriented, e.g., by considering specific ecosystem services (UN,
2003), and their underlying ecological phenomena. This case study is
an early example of such a target-oriented evaluation of mixture effects
using monitoring data.

3.10.2. Methods
TheWOE/LR analysis for Ohio (2000–2008data set) discussed previ-

ously (Section 3.6) was applied to evaluate stressor-response relation-
ships for various metrics, representing different emphasis on optional
restoration endpoints: for the community-level (represented by IBI),
for food web base stability (represented by proportion of omnivores),
insect food base (proportion of insectivores) and top predators (propor-
tion of carnivores). Conditional inference forest analysis provided the
initial assessment of relative variable importance (see Section 3.5),
followed by WOE/LR analysis to delineate relative impact probability
and local stressor-response hypotheses. Thereupon, it was investigated
whether different restoration endpoints relate to different stressor
rankings, and thus to potentially different restoration strategies.

3.10.3. Results
The results are schematically summarized in Fig. 8, based on under-

lying GIS-maps of impact magnitudes and probable causes (like those
shown in Fig. 6). In the underlying GIS-maps, the association strength
of a stressor variable cannot only be associated to a chosen reference
(like in Fig. 6), but also to a defined restoration endpoint of any kind, de-
fined in terms of an assemblage metric. This process asks first for an
evaluation of a desired future status (e.g., the reference conditions, or
emphasis on an optional ecosystem service), and thereafter an analysis
evaluatingwhether the optional status definitions can be reached, given
species-stressor relationships derived in the statistical analyses. The
outcomes can be spatially plotted (like. Fig. 6), but for the current case
study the outcomes were summarized schematically (Fig. 8). Different
stressor variables have different association strengths with the different
restoration endpoint definitions, and this shown by higher association
strengths for stressors plotted at the figure borders. The Figure shows
that different restoration targets would imply handling and reducing
different stressor combinations. Overall habitat condition in the Eastern
Cornbelt Plains ecoregion was, in the example results, strongly

predictive across all trophic-level endpoints, and would require man-
agement attention for all restoration targets. Mixture toxic pressure re-
lates more strongly to insect and fish biodiversity, so that this stressor
would require more attention to restore desired aspects of ecosystem
services, such as fishing or biological community status. If a manage-
ment goal is the protection of fishing resources, the identification of
the stressors most strongly related to top predators may provide the
most effective guidance for deriving a management strategy.

3.10.4. Discussion
This case study explores the possible implications of the eco-

epidemiological analyses of aquatic monitoring data, by emphasizing
restoration target evaluations for water bodies, next to causal analyses.
That is, the diagnostic analyses yield an understanding of the stressor-
response relationships (including the potential role of pollutant mix-
tures), and this understanding can also be used in a prognostic context
for water systemmanagement purposes. This alternative use of the data
analyses directly links to the concept of solution-focused risk assess-
ment. Solution-focused risk assessment is a methodological approach
to risk assessment that puts alternative management strategies upfront
in the assessment process. This idea was generated upon a large evalu-
ation of risk assessment practices, which suggested that the utility of as-
sessment outcomes for risk management could be improved by
formulating optional solution scenarios early in the assessment process
and by evaluating them (U.S. NAS, 2009; Abt et al., 2010; Finkel, 2011;
Zijp et al., 2016).

4. Discussion

4.1. Towards screening-level diagnosis

This paper presents analyses of existing surveillance monitoring
data sets that bridge bioassessment and chemical risk assessment, and
that build on previous publications on case study data that are all
based on the concept of ecoepidemiology (Bro-Rasmussen and Løkke,
1984; Suter et al., 2007). The bridging of bioassessment and (chemical)
risk assessment is needed to support reaching the new policy goal of a
non-toxic environment and good ecological status, and expands on a
current discussion on usingWeight of Evidence methods in risk assess-
ment (Ågerstrand and Beronius, 2016). Statistically significant relation-
ships were demonstrated between ecological status metrics and a
toxicity metric that quantifies the relative toxicity of ambient mixtures,
or specific pollutants or pollutant groups, to aquatic life (mixture toxic
pressure). The various methods described here provide insight into
site-specific stressors as well as geographic trends in biological impacts,
with each approach evaluating the data slightly differently and commu-
nicating different aspects of information. Though various eco-
epidemiologicalmethodswere applied in the case studies, past compar-
ison of the EPC and WOE/LR approaches (Kapo et al., 2008b) indicated
general agreement between the methodologies in stressor identifica-
tion results.

The case studies were not aimed to describe results for the studied
monitoring data set per se, but were chosen to as to provide an over-
view of potentially useful approaches at the interface of chemical risks
and water quality assessment, management and policies. That is, the
first case study illustrates the need to check themonitoring data for ‘sig-
nal’ (mixture toxic pressure variation) and lack of covariation (which
would complicate inferences from final diagnostic results). The next
set of case studies (Sections 3.2 to 3.4) illustrates thatmono-variate cor-
relations between current ambient pollutant exposures and species
abundances may reveal an apparently limited degree of association,
but that multiple-stress analyses show that a significant association ex-
ists between mixture toxic pressure and taxa responses for a high per-
centage of taxa (50–86% in the studied cases). Further analyses
showed, that the changes associated to increasedmixture toxic pressure
are – simultaneously – (1) a highly variable response of different taxa

Fig. 8. Example of visualization of potential stressors in terms of impacts to ecosystem
service delivery, given the outcomes of data analyses (sensu the case WOE/LR case
study, Section 3.6) applied to the Eastern Cornbelt Plains ecoregion (ER55). Mixture
toxic pressure is e.g. related strongest to ‘insect community ecosystem services’ and ‘fish
biodiversity and overall ecosystem quality’.
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(sensitive, neutral, opportunistic changes were found), which is in line
with the species sensitivity distribution phenomenon, and (2) an in-
creased net change of a biodiversity metric such as species number.
The final set of case studies showed that the use of the mixture toxic
pressure proxy in the eco-epidemiological analysis of monitoring data
eventually yields insights into key information for water quality man-
agement: (1) the option of ranking sites regarding impact magnitudes,
of (2) ranking stressors within sites (to delineate relative contributions
of stressor variables to impacts, Sections 3.6 and 3.7), and of diagnosing
specific pollutant groups (Section 3.7). Regarding the use of reference
sites and -conditions, the case studies further show that it is important
to check the reference conditions of the reference sites (at the time sam-
pleswere taken), for obtainingunbiased diagnostic results (Section 3.8),
that the methods can be helpful to explore the success of past abate-
ment strategies (Section 3.9), and that diagnostic approaches can also
help to explore alternative management scenarios (Section 3.10). The
last step is key, as it requires an explicit choice for water quality man-
agement to focus on restoration (to the reference conditions as defined)
or to alternative future scenarios, which may involve a focus on partic-
ular ecosystem services. The set of approaches helps to bridge the
gaps between bioassessments and chemical risk assessments, to sup-
port (solution-focused) sustainable chemical- and water policies
(Fig. 1). Finally, diagnostic tools are eventually needed to provide evi-
dence for reaching the goal of the non-toxic environment.

While the case studies provide useful examples for attaining the pol-
icy goals, they are not ideal. The data were collected following regulato-
ry surveillance monitoring schemes, which are not optimized to
represent the sites and hydrologic events for diagnosing multi-stress
and chemical impacts. Moreover, as many chemical compounds were
not monitored, the results may not provide full insights into toxic expo-
sures. Averaged values (e.g., Table 4) likely distract from the true spatial
distribution andmagnitudes of chemical impacts. Formanagement pur-
poses, however, the types of approaches that have been illustrated de-
liver an exploratory (screening-level) yet cost-effective approach to
support watershed management and/or the design of targeted higher-
tier field studies to better delineate stressor–impact relationships
(Kapo et al., 2014).

4.2. The case-study lessons

Despite the aforementioned limitations, the case studies present
clear, repetitive and novel findings, with associated literature
observations.

4.2.1. Mixture stress varies
Explorations of mixture toxic pressure variability on a landscape

scale consistently show high inter-site variability. Although Fig. 2 pre-
sents a relatively uniform distribution, other cases of national or region-
al monitoring data result in a more skewed distribution, with lower
numbers of sites with increased toxic pressure levels (see also Fig. 4 in
Malaj et al. (2014)).

4.2.2. Mixture stress has impacts
The collated studies show that a high (50–86%) percentage of spe-

cies of which the abundance is influenced by mixtures. These numbers
are unexpectedly high in the context of bioassessment reports, where
habitat and land-use and various other stressors are often identified as
priority stressors. They are, however, not unexpectedly highwhen com-
pared to risk assessment expectations. Many ecotoxicological analyses
predict and report that chemicals and their mixtures pose threats to
aquatic systems, be it due to common modes of action (baseline toxici-
ty) or highly specific modes of action (e.g., pharmaceuticals). A recent
risk analysis example at the European scale illustrates this (Malaj
et al., 2014). With the case study results, both chemical risk assessment
(predictive) and aquatic bioassessment (retrospective) results point to
the same conclusion: current chemical exposures cause impacts on

aquatic ecosystems, thereby affecting many species, with impacts vary-
ing across sites. It is important to note that ecoregions, sub-regions and
sites vary widely regarding impact causes and magnitudes. In most
cases, the site-specific evaluation is not only the most important, but
also the most informative. Regional to continental (averaged) assess-
ments have high levels of uncertainty, averaging-out the site-specific
phenomena.

4.2.3. Prioritizations for management are possible
The skewed distributions ofmixture toxic pressures over an area im-

plies that priority management attention to chemicals needs to become
focused on sites, e.g. in River BasinManagement Planning, given the cal-
ibration of the mixture toxic pressure proxy on observed ecological im-
pacts. Neither chemicals nor other stressors should be considered
separate from each other when considering restoration. At some sites,
mixtures may be dominant stressors, but at many sites they may act
as next-limiting factor for restoration. In addition to ranking sites and
stressors, it is likely that river-basin specific pollutants or pollutant
groups can be identified (Fig. 7) and prioritized for abatement. The bio-
assessment results on the dominance of a relatively small selection of
chemicals in a local mixture are similar to those of controlled experi-
ments. Such experiments have shown that mixture impacts can often
be attributed to few chemicals only (Backhaus and Karlsson, 2014).
This offers practical perspectives for the prioritization of abatement
strategies, contrasting to the impractical consequence of assuming
that an assessment should always cover the infinite number of think-
able chemical-species interactions.

4.2.4. Assessment methods bridge disciplines and regulations and yield
summary insights

The disciplines and policies shown in Fig. 1 apply different methods
and they yield different outcomes.However, chemical andwater assess-
ments can all consistently apply a single model (SSDs) for assessing
chemical problems. This option was first proposed by Van Straalen
andDenneman (1989). SSDs are the common basis to derive safe chem-
ical criteria, as well as to derive the impact proxy for exposed ecosys-
tems. This common basis is valuable for policy adoption of the
methods in the different contexts aswell as for risk and impact commu-
nication. Rather than presenting a high number of criteria-exceedance
observations (e.g., Vijver et al. (2008)), the mixture toxic pressure can
be summarized as a convenient summary overview of possibly mixture
toxicity-impacted areas (De Zwart, 2005; De Snoo and Vijver, 2012).
Areas where the mixture toxic pressure is negligible, despite a large
number of possible chemicals present, can be subject tomaintained pro-
tection, and highly ‘coloured’ (high toxic pressure) sites can be subject
to more intensive chemical emission reduction and restoration. Next
to landscape and the riverscape maps in GIS, chemical concentration
maps can show ‘chemoscapes’ of chemicals, but the mixture toxic pres-
sure map can provide spatial insights in the ecological ‘impactscape’.
These ideas are in line with working hypotheses that are being devel-
oped to explore whether chemical impacts on the landscape scale
could be related to major drivers of chemical emissions, with typical
emission ‘fingerprints’ and impacts such as those of agricultural land
use, or the built environment, or upstream combinations of emissions
under a mixed land-use scenario. Eco-epidemiological results can also
support post-market analyses aimed to ascertain that the use of
chemicals that are allowed on the market via current risk assessment
protocols is indeed safe, either for individual compounds or for
mixtures.

4.2.5. Assessmentmethods can explore the relevance of emerging chemicals
Currently, most chemicals found in surface waters cannot be judged

asWater Quality Criteria (Sjerps et al., 2016), while chemical emissions
expectedly rise (UNEP, 2013). In the case studies, part of the toxic pres-
sures in water bodies were derived from modelling, e.g., with
iSTREEM®. This modelling, in conjunction with growing numbers of
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ecotoxicity data allows for a further step. That is: the generation of pre-
dicted impactmaps for many chemicals. To this end, as an example, U.S.
EPA's aquatic database contains data from 365,981 tests with 470,343
associated result records, covering 11,016 chemicals and 11,799 tested
species, (http://cfpub.epa.gov/ecotox/help.cfm?sub=recentadditions_
1215, consulted 24 Feb. 2016). Local toxic pressures were derived for
emerging chemicals from emission-based predicted environmental
concentrations in combinationwith newly derived SSDmodels, beyond
the limited number of SSDs used in chemical policies. Other disciplines
have indeed developed additional SSDEC50's, e.g. in the context of the
comparative Life Cycle Assessment of chemicals (Harbers et al., 2006;
Rosenbaum et al., 2008), and making use of patterns across SSD's (De
Zwart, 2002; Hendriks et al., 2013). Example studies have developed
this idea further in the format of chemical footprints – a judgment of
the ratio of net ecotoxic impact potential of emitted chemicals vis a vis
the water volume of a region (Bjørn et al., 2014; Zijp et al., 2014). This
may be the basis for net chemical impact judgment of regions, whereby
a completely novel regulatory judgment approach might be adopted
such as ‘no export of net mixture impacts to neighbouring regions’
(see e.g. Hoornweg et al. (2016)).

4.3. Versatility of study endpoints

Bioassessments can focus on amultitude of measurement endpoints
(in principle from ‘omics’ data, via fish deformities (DELTS), species
counts and trait frequencies (Pilière et al., 2016) up till trait frequencies
and functional metrics, see Table 2). These endpoints vary dramatically
in their importance to ecological impacts and in our ability to measure
them in an efficient and effective manner. Odum (1992) suggested to
focus on populations for the evaluation of impacts, but the eco-
epidemiological approaches can be used for all data types. It is critical
to link “impacts” to those that are of regulatory importance
(e.g., population, community and functional), although some sensitive
methodsmaybedeveloped as early-warning approach.Our case studies
can thus be seen as a few examples of a quickly developing set of
approaches.

4.4. The role of species sensitivity distributions

In all case studies, expected impacts have so far been quantified
based on the use of SSDs. We note that this model is subject to scholar
debate since its invention (Forbes and Forbes, 1993; Hopkin, 1993;
Forbes and Calow, 2002; Posthuma et al., 2002) up till now, be it with
a focus in that debate on the utility and accuracy of SSDs to estimate
protective criteria. In that discussion context, the issue at stake is an
honest ‘level playing field’ evaluation of chemical hazards across
chemicals prior to their formal registration and use. In the case studies,
however, the SSDmodel is used differently. SSDs are here used to quan-
tify a proxy for which it logically holds that increasing proxy values are
an expression of an increased potential of an environmental sample to
cause ecological harm. The proxy is – in fact – a recalculation of predict-
ed or observed concentrations into hazard units, ‘trained’ by laboratory
observations on effects in tested species. Thus, it quantifies a character-
istic of an environmental sample, in that it predicts which fraction of
tested species would exhibit effects when reared in a polluted sample.
It reflects the environment's Hazard Potential (as the counterpart of
the concept of Hazardous Concentrations used in the derivation of pro-
tective criteria). Just like any other environmental parameter
(e.g., acidity or salinity), ecological studies can establish the relationship
between parameter values and ecological phenomena. This has been
done repeatedly for msPAF, for highly different studies (example in
Section 3.4), like a calibration to the degree of genetic adaptation in
soil arthropods (Posthuma, 1992), and to responses in aquatic ecosys-
tems (Posthuma and De Zwart, 2006; Posthuma and De Zwart, 2012;
Posthuma et al., 2016). Despite differences amongst studies, it appeared
that within studies (ceteris paribus) increased proxy values appear to

relate to increased ecological impacts. The model predictions are there-
by of degree, not kind.

The statistical aphorism of George Box “All models are wrong, but
some are useful” (Box, 1979) applies here, and – following Box again –
the question of interest is: “Is the model illuminating and useful?”. The
linking of chemical risk assessment to bioassessment can be supported
by SSDs due to the observed meaning of the toxic pressure proxy: SSD
results shed light (“illuminate”) ecological effects of pollutant exposures
(given the case study results, especially in Sections 3.2 to 3.4, but also
3.6 and 3.7). This focus on usefulness of the SSD-model for decision
making is different from the set of reasons via which the SSD-model is
criticised or rejected, e.g., for its lack of ecological input, via unjustified
reification (the fallacy of misplaced concreteness, interpreting the
model and its output as a fact rather than as a proxy which is relevant
for rankings that are useful for decision making), or via arguments and
prescribed guidances that are solely applicable to the context of envi-
ronmental protection and safe criteria setting. Whether or not SSD-
outputs are the best way to provide decision support on environmental
pollution, rejection of the model for the above reasons may result in al-
ternative model approaches that are conceptually weaker (e.g., a
criteria-based judgment) and that lack the versatility to judge the myr-
iad of chemical-biota interactions. Our results show that increasedmix-
ture toxic pressure relates to increased impacts – which is in general
supportive of the use of SSDs as lower-tier model in practice-oriented
risk assessments and decision support, especially regarding prioritiza-
tion (of sites, of stressors, andof compoundswithinmixtures). Although
SSDs can thus be supportive for decision making, they are in our view
certainly not a panacea for all environmental management problems.

4.5. Towards solutions

Bioassessments that include toxic chemicals can improve the under-
standing of the causes of impacts in aquatic ecosystems at various spa-
tial scales, involving regional issues like land use, catchment-scale
phenomena like hydrology and proximity to economical activities, and
in-stream parameters for water quality and ecology. The case studies
show in which ways the understanding of polluted water systems can
increase, in the context of the solution-focused assessment paradigm
(Fig. 1). Although our analyses illustrate directions taken in diagnosing
chemical mixture impacts under field conditions, there are still many
improvements needed, not the least in the quality and evaluation of
the unique sets of monitoring data being collected for water manage-
ment (Hering et al., 2010), and further innovative technical approaches.
An intriguing option of the latter would be to fill data gaps on various
stressors via application of SSD-type modelling for stressors other
than chemicals, like engineered nanomaterials (Garner et al., 2015) or
radiation (Garnier-Laplace et al., 2006). And also to study interactive ef-
fects of e.g. climate change and endocrine disrupting chemicals (Brown
et al., 2015).

Irrespective of further developments, our findings underscore the
large-scale and highly diverse phenomenon of chemicals that are actu-
ally co-shaping species assemblages in aquatic ecosystems. We have
witnessed over the last decades that observed effects of chemicals
have diminished since the start of environmental policies, but our diag-
nosis of current impact levels (supported by similar risk analyses, (Malaj
et al., 2014)) shows that more efforts are needed. Chemical regulations
aim to reduce hazardous emissions, and water policies aim at water
quality improvements. But both signal the presence of a pollution prob-
lem, suggesting that further actions and a possible overarching re-
framing of the problem may be worthwhile. Amongst others, (Geiser,
2015) undertook such an effort recently. The holistic reframe, referred
to as a ‘new chemical economy’ (Schwarzman, 2015), describes a suite
of opportunities that start with safe chemical design, and evaluate
abatement opportunities frommany angles. These angles are of various
kinds: ‘hardware’ (chemicals, environment, exposures, impacts, geogra-
phy, hydrology, spatio-temporal aspects, etc.), ‘software’ (regulations
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andmanagement tools, but also teaching) and ‘mindware’ (a deliberate
evaluation of risks and impacts and alternative management options
aimed at sustainable management), and operate across disciplines and
current frameworks (Ministerie I&M, 2014). Regarding ‘hardware’, the
impact-focused approach can be further developed to support choices
for the most sustainable chemical-use scenarios given societal develop-
ments like the growth in green chemistry, the biobased economy and
the re-use of materials in the circular economy. Regarding ‘software’,
the case studies substantiate how the regulatory link between chemical
and water assessments could look like (as present in REACH via Article
2.4 and theWater Framework Directive in its concept of Good Chemical
Quality), and they cover the goals of a non-toxic environment and good
ecological status simultaneously. Regarding ‘mindware’, a solution-
focused orientation used next to causal analysis supports finding sensi-
ble but as yet unexpected abatement options (Brack et al., 2015; Zijp
et al., 2016), which has (amongst others) already resulted in an analysis
towards safe spatial planning of chemical emission sources vis a vis sen-
sitive functions (Coppens et al., 2015). While we acknowledge the
major improvements that have been gained, are gained, and will be
gained by continued application of existing chemical- and water poli-
cies, we wholeheartedly support the concluding remark of the risk
study of Malaj et al. (2014) based on our independently collected
impact-based results: “[…] more effort is necessary to integrate and ad-
vance these regulations toward the reduction of toxic pollution. Our study
suggests that a paradigm change in chemical regulation and management
is required to achieve a holistic approach, which assesses the toxic pressure
as awhole rather than from individual chemicals, and complements specific
case studies by large-scale analyses.”

Acknowledgments

LP, SD, DZ, KK, CH and AB wrote the manuscript, and collected,
analysed and summarized underlying data. LP and DdZ were funded
by RIVM's strategic research program, run under the auspices of the
Director-General of RIVM and RIVM's Scientific Advisory Board, under
projects S/607501 and S/015031, and by the SOLUTIONS project. The
SOLUTIONS project is supported by the EuropeanUnion Seventh Frame-
work Programme (FP7-ENV-2013-two-stage Collaborative project)
under grant agreement no. 603437. The results presented in this
paper were presented and discussed at the workshop “Estimating toxic-
ity thresholds for aquatic ecological communities from sensitivity distribu-
tions” held in Amsterdam, February 2014. The authors thank the
workshop organizers for their support.

References

Abt, E., Rodricks, J.V., Levy, J.I., Zeise, L., Burke, T.A., 2010. Science and decisions: advancing
risk assessment. Risk Anal. 30, 1028–1036.

Ågerstrand, M., Beronius, A., 2016. Weight of evidence evaluation and systematic review
in EU chemical risk assessment: foundation is laid but guidance is needed. Environ.
Int. 92–93, 590–596.

Allan, J.D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosys-
tems. Annu. Rev. Ecol. Evol. Syst. 35, 257–284.

Backhaus, T., Karlsson, M., 2014. Screening level mixture risk assessment
ofpharmaceuticals in STP effluents. Water Res. 49, 157–165.

Baird, D.J., Rubach, M.N., Van den Brink, P.J., 2008. Trait-based ecological risk assessment
(TERA): the new frontier? Integr. Environ. Assess. Manag. 4, 2–3.

Barbour, M.T., Gerritsen, J., Snyder, B.D., Stribling, J.B., 1999. Rapid Bioassessment Proto-
cols for Use in Streams andWadeable Rivers: Periphyton, Benthic Macroinvertebrates
and Fish. second ed. .

Bellman, R.E., 1961. Adaptive Control Processes: A Guided Tour. Princeton University
Press, Princeton, NJ, USA.

Bjørn, A., Diamond, M., Birkved, M., Hauschild, M.Z., 2014. Chemical footprint method for
improved communication of freshwater ecotoxicity impacts in the context of ecolog-
ical limits. Environ. Sci. Technol. 48, 13253–13262.

Box, G.E.P., 1979. Robustness in the strategy of scientific model building. Technical Sum-
mary Report #1954. Mathematics Resea rch Center, University of Wisconsin,
Madison.

Brack, W., Altenburger, R., Schüürmann, G., Krauss, M., López Herráez, D., van Gils, J., et al.,
2015. The SOLUTIONS project: challenges and responses for present and future
emerging pollutants in land and water resources management. Sci. Total Environ.
503–504, 22–31.

Bray, J.R., Curtis, J.T., 1957. An ordination of upland forest communities of southern Wis-
consin. Ecol. Monogr. 27, 325–349.

Bro-Rasmussen, F., Løkke, H., 1984. Ecoepidemiology — a casuistic discipline describing
ecological disturbances and damages in relation to their specific causes; exemplified
by chlorinated phenols and chlorophenoxy acids. Regul. Toxicol. Pharmacol. 4,
391–399.

Brown, A.R., Owen, S.F., Peters, J., Zhang, Y., Soffker, M., Paull, G.C., et al., 2015. Climate
change and pollution speed declines in zebrafish populations. Proc. Natl. Acad. Sci.

Burkhead, N.M., 2012. Extinction rates in north American freshwater fishes, 1900-2010.
Bioscience 62, 798–808.

Burton, G.A., De Zwart, D., Diamond, J., Dyer, S., Kapo, K.E., Liess, M., et al., 2012. Making
ecosystem reality checks the status quo. Environ. Toxicol. Chem. 31, 459–468.

Carpenter, S.R., Stanley, E.H., Vander Zanden, M.J., 2011. State of the world's freshwater
ecosystems: physical, chemical, and biological changes. Annu. Rev. Environ. Resour.
36, 75–99.

Carvalho, R.N., Arukwe, A., Ait-Aissa, S., Bado-Nilles, A., Balzamo, S., Baun, A., et al., 2014.
Mixtures of chemical pollutants at European legislation safety concentrations: how
safe are they? Toxicol. Sci. 141, 218–233.

Cervantes-Yoshida, K., Leidy, R.A., SM, C., 2015. Contemporary land change alters fish
communities in a San Francisco Bay Watershed, California, U.S.A. PLoS One 10,
e0141707.

Chiogna, G., Majone, B., Cano Paoli, K., Diamantini, E., Stella, E., Mallucci, S., et al., 2016. A
review of hydrological and chemical stressors in the Adige catchment and its ecolog-
ical status. Sci. Total Environ. 540, 429–443.

Clarke, R.T., Wright, J.F., Furse, M.T., 2003. RIVPACS models for predicting the expected
macroinvertebrate fauna and assessing the ecological quality of rivers. Ecol. Model.
160, 219–233.

Coppens, L.J.C., van Gils, J.A.G., ter Laak, T.L., Raterman, B.W., van Wezel, A.P., 2015. To-
wards spatially smart abatement of human pharmaceuticals in surface waters: defin-
ing impact of sewage treatment plants on susceptible functions. Water Res. 81,
356–365.

De Snoo, G.R., Vijver, M., 2012. Bestrijdingsmiddelen en water kwaliteit [Plant protection
products and water quality] Leiden, the Netherlands .

De Zwart, D., 2002. Observed regularities in SSDs for aquatic species. In: Posthuma, L.,
Suter II, G.W., Traas, T.P. (Eds.), Species Sensitivity Distributions in Ecotoxicology.
Lewis Publishers, Boca Raton, FL, USA, pp. 133–154.

De Zwart, D., 2005. Ecological effects of pesticide use in The Netherlands: modeled and
observed effects in the field ditch. Integr. Environ. Assess. Manag. 1, 123–134.

De Zwart, D., Dyer, S.D., Posthuma, L., Hawkins, C.P., 2006. Predictive models attribute ef-
fects on fish assemblages to toxicity and habitat alteration. Ecol. Appl. 16, 1295–1310.

De Zwart, D., Posthuma, L., 2005. Complex mixture toxicity for single and multiple spe-
cies: proposed methodologies. Environ. Toxicol. Chem. 24, 2665–2676.

De Zwart, D., Posthuma, L., Gevrey, M., Von Der Ohe, P.C., De Deckere, E., 2009. Diagnosis
of ecosystem impairment in a multiple-stress context-how to formulate effective
river basin management plans. Integr. Environ. Assess. Manag. 5, 38–49.

De Zwart, D., Posthuma, L., Pemberton, E., 2008. Understanding Ecological Impacts in Riv-
ers in England and Wales and Identifying Their Possible Causes. Part 1 — The Effect
and Probable Cause (EPC) Method. Environment Agency.

Diamond, J., Munkittrick, K., Kapo, K.E., Flippin, J., 2015. A framework for screening sites at
risk from contaminants of emerging concern. Environ. Toxicol. Chem. 34, 2671–2681.

Dyer, S.D., Wang, X., 2002. A comparison of stream biological responses to discharge from
wastewater treatment plants in high and low population density areas. Environ.
Toxicol. Chem. 21 (5), 1065–1075.

Dyer, S.D., White-Hull, C.D., Carr, G.J., Smith, E.P., Wang, X., 2000. Bottom-up and top-
down approaches to assess multiple stressors over large geographic areas. Environ.
Toxicol. Chem. 19, 1066–1075.

EC, 2000. Directive 2000/60/EC of the European parliament and of the council of 23 Octo-
ber 2000 establishing a framework for community action in the field of water policy.
Off. J. Eur. Communities 327, 1–72.

EC, 2003. Proposal for a Regulation of the European Parliament and of the Council
Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals
(Reach), Establishing a European Chemicals Agency and Amending Directive 1999/
45/EC and Regulation (EC) on Persistent Organic Pollutants. European Commission,
Brussels, Belgium.

EC, 2012. The Combination Effects of Chemicals. Chemical Mixtures. European Commis-
sions, Brussels, Belgium.

EC, 2014. LivingWell, Within the Limits of Our Planet. General Union Environment Action
Programme. 2020.

EEA, 2012. European Waters — Assessment of Status and Pressures.
Ellis, E.C., 2015. Ecology in an anthropogenic biosphere. Ecol. Monogr. 85, 287–331.
ETC/ICM, 2012. Ecological and Chemical Status and Pressures of European Waters.

European Topic Centre on Inland, Coastal andMarineWaters, Prague, Czech Republic.
Communities, European]–>E., 2003. Technical Guidance Document on Risk Assessment

in Support of: Commission Directive 93/67/EEC on Risk Assessment for New Notified
Substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for Existing
Substances, and Directive 98/8/EC of the European Parliament and of the Council
Concerning the Placing of Biocidal Products on the Market Part II .

Fedorenkova, A., Vonk, J.A., Lenders, H.J.R., Creemers, R.C.M., Breure, A.M., Hendriks, A.J.,
2012. Ranking ecological risks of multiple chemical stressors on amphibians. Environ.
Toxicol. Chem. 31, 1416–1421.

Finkel, A.M., 2011. Solution-focused risk assessment: a proposal for the fusion of environ-
mental analysis and action. Hum. Ecol. Risk. Assess. 17, 754–787.

Forbes, T.L., Forbes, V.E., 1993. A critique of the use of distribution-based extrapolation
models in ecotoxicology. Funct. Ecol. 7, 249–254.

Forbes, V.E., Calow, P., 2002. Species sensitivity distributions revisited: a critical appraisal.
Hum. Ecol. Risk. Assess. 8, 473–492.

15L. Posthuma et al. / Science of the Total Environment xxx (2016) xxx–xxx

Please cite this article as: Posthuma, L., et al., Eco-epidemiology of aquatic ecosystems: Separating chemicals frommultiple stressors, Sci Total En-
viron (2016), http://dx.doi.org/10.1016/j.scitotenv.2016.06.242

http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0005
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0005
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0010
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0010
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0010
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0015
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0015
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0020
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0020
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0025
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0025
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0030
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0030
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0030
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0035
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0035
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0040
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0040
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0040
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0045
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0045
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0045
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0050
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0050
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0050
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0055
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0055
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0060
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0060
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0060
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0060
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0065
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0065
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0070
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0070
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0075
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0075
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0080
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0080
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0080
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0085
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0085
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0090
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0090
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0090
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0095
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0095
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0095
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0100
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0100
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0100
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0105
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0105
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0105
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0105
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0110
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0110
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0115
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0115
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0115
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0120
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0120
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0125
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0125
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0130
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0130
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0135
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0135
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0135
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0140
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0140
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0140
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0145
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0145
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0150
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0150
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0150
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0155
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0155
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0155
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0160
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0160
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0160
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0165
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0165
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0165
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0165
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0165
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0170
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0170
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0175
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0175
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0180
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0185
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0190
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0190
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0195
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0195
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0195
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0195
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0195
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0200
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0200
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0205
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0205
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0210
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0210
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0215
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0215
http://dx.doi.org/10.1016/j.scitotenv.2016.06.242


Forbes, V.E., Calow, P., Sibly, R.M., 2008. The extrapolation problem and how population
modeling can help. Environ. Toxicol. Chem. 27, 1987–1994.

Friberg, N., Bonada, N., Bradley, D.C., Dunbar, M.J., Edwards, F.K., Grey, J., et al., 2011. Bio-
monitoring of human impacts in freshwater ecosystems. The good, the bad and the
ugly. Adv. Ecol. Res. 44, 1–68.

Garner, K.L., Suh, S., Lenihan, H.S., AA, K., 2015. Species sensitivity distributions for
engineered nanomaterials. Environ. Sci. Technol. 49 (9), 5753–5759.

Garnier-Laplace, J., Della-Vedova, C., Gilbin, R., Copplestone, D., Hingston, J., Ciffroy, P.,
2006. First derivation of predicted-no-effect values for freshwater and terrestrial eco-
systems exposed to radioactive substances. Environ. Sci. Technol. 40, 6498–6505.

Geiser, K., 2015. Chemicals Without Harm. Policies for a Sustainable World. MIT Press
(456 pp).

Hågvar, S., Abrahamsen, G., 1990. Microarthropoda and enchytraeidae (Oligochaeta) in
naturally lead-contaminated soil, a gradient study. Environ. Entomol. 19, 1263–1277.

Harbers, J.V., Huijbregts, M.A.J., Posthuma, L., Van de Meent, D., 2006. Estimating the im-
pact of high-production-volume chemicals on remote ecosystems by toxic pressure
calculation. Environ. Sci. Technol. 40, 1573–1580.

Hendriks, A.J., 2013. How to deal with 100,000+ substances, sites, and species: overarch-
ing principles in environmental risk assessment. Environ. Sci. Technol. 47,
3546–3547.

Hendriks, A.J., Awkerman, J.A., de Zwart, D., Huijbregts, M.A.J., 2013. Sensitivity of species
to chemicals: dose-response characteristics for various test types (LC50, LR50 and
LD50) and modes of action. Ecotoxicol. Environ. Saf. 97, 10–16.

Hering, D., Borja, A., Carstensen, J., Carvalho, L., Elliott, M., Feld, C.K., et al., 2010. The
European water framework directive at the age of 10: a critical review of the
achievements with recommendations for the future. Sci. Total Environ. 408,
4007–4019.

Herman, M.R., Nejadhashemi, A.P., 2015. A review of macroinvertebrate- and fish-based
stream health indices. Ecohydrol. Hydrobiol. 15, 53–67.

Heugens, E.H.W., Hendriks, A.J., Dekker, T., Van Straalen, N.M., Admiraal, W., 2001. A re-
view of the effects of multiple stressors on aquatic organisms and analysis of uncer-
tainty factors for use in risk assessment. Crit. Rev. Toxicol. 31, 247–284.

Hoekstra, A.Y., Mekonnen, M.M., 2012. The water footprint of humanity. Proc. Natl. Acad.
Sci. 109, 3232–3237.

Hoekstra, A.Y., Wiedmann, T.O., 2014. Humanity's unsustainable environmental footprint.
Science 344, 1114–1117.

Hoornweg, D., Hosseini, M., Kennedy, C., Behdadi, A., 2016. An urban approach to plane-
tary boundaries. Ambio 1–14.

Hopkin, S.P., 1993. Ecological implications of 95% protection levels for metals in soil. Oikos
66, 137–141.

Kapo, K.E., Burton, G.A.J., De Zwart, D., Posthuma, L., SD, D., 2008a. Quantitative lines of ev-
idence for screening-level diagnostic assessment of regional fish community impacts:
a comparison of spatial database evaluation methods. Environ. Sci. Technol. 42,
9412–9418.

Kapo, K.E., Burton Jr., G.A., 2006. A geographic information systems-based, weights-of-
evidence approach for diagnosing aquatic ecosystem impairment. Environ. Toxicol.
Chem. 25, 2237–2249.

Kapo, K.E., Burton Jr., G.A., Zwart, D., Posthuma, L., Dyer, S.D., 2008b. Quantitative lines of
evidence for screening-level diagnostic assessment of regional fish community im-
pacts: a comparison of spatial database evaluation methods. Environ. Sci. Technol.
42, 9412–9418.

Kapo, K.E., Holmes, C.M., Dyer, S.D., de Zwart, D., Posthuma, L., 2014. Developing a foun-
dation for eco-epidemiological assessment of aquatic ecological status over large geo-
graphic regions utilizing existing data resources and models. Environ. Toxicol. Chem.
33, 1665–1677.

Karr, J.R., 1981. Assessment of biotic integrity using fish communities. Fisheries 6, 21–27.
Kline, R.B., 1998. Principles and Practice of Structural Equation Modeling. Guilford Press,

New York, NY, USA.
Kuzmanović, M., López-Doval, J.C., De Castro-Català, N., Guasch, H., Petrović, M., Muñoz, I.,

et al., 2016. Ecotoxicological risk assessment of chemical pollution in four Iberian
river basins and its relationship with the aquatic macroinvertebrate community sta-
tus. Sci. Total Environ. 540, 324–333.

Låg, J., Hvatum, O.O., Bolviken, B., 1970. An occurence of naturally lead-poisoned soil at
Kastad near Gjovik, Norway. Nor. Geol. Unders. 266, 141–157.

Lenat, D.R., Resh, V.H., 2001. Taxonomy and stream ecology — the benefits of genus- and
species-level identifications. American Benthological Society]–>J. N. Am. Benthol.
Soc. 20, 287–298.

Leps, M., Tonkin, J.D., Dahm, V., Haase, P., Sundermann, A., 2015. Disentangling environ-
mental drivers of benthic invertebrate assemblages: the role of spatial scale and
riverscape heterogeneity in a multiple stressor environment. Sci. Total Environ. 536,
546–556.

Li, F., Chung, N., Bae, M.J., Kwon, Y.S., Park, Y.S., 2012. Relationships between streammac-
roinvertebrates and environmental variables at multiple spatial scales. Freshw. Biol.
57, 2107–2124.

Malaj, E., von der Ohe, P.C., Grote, M., Usseglio-Polatera, P., et al., 2014. Organic chemicals
jeopardize the health of freshwater ecosystems on the continental scale. Kühne R.
Proceedings of the National Academy of Sciences. Mondy CP.

Metcalfe, J.L., 1989. Biological water quality assessment of running waters based on mac-
roinvertebrate communities: history and present status in Europe. Environ. Pollut. 60,
101–139.

Ministerie I&M, 2014. Bewust Omgaan met Veiligheid: Rode Draden. Een proeve van een
IenM-breed afwegingskader veiligheid. Ministerie van Infrastructuur en Milieu, Den
Haag.

Murray, K.E., Thomas, S.M., Bodour, A.A., 2010. Prioritizing research for trace pollutants
and emerging contaminants in the freshwater environment. Environ. Pollut. 158,
3462–3471.

Mykrä, H., Heino, J., Muotka, T., 2007. Scale-related patterns in the spatial and environ-
mental components of stream macroinvertebrate assemblage variation. Glob. Ecol.
Biogeogr. 16, 149–159.

Norris, R.H., Linke, S., Prosser, I.A.N., Young, W.J., Liston, P., Bauer, N., et al., 2007. Very-
broad-scale assessment of human impacts on river condition. Freshw. Biol. 52,
959–976.

Norton, S.B., G.W.I., S., SM, C., 2014. Ecological Causal Assessment. CRC Press, Boca Raton,
FL. USA.

O'Brian, R.M., 2007. A caution regarding rules of thumb for variance inflation factors. Qual.
Quant. 41, 673–690.

Odum, E.P., 1992. Great ideas in ecology for the 1990's. Bioscience 42, 532–545.
Ohio EPA, 1988. Biological Criteria for the Protection of Aquatic Life (Volume II). Ecologi-

cal Assessment Section, Ohio EPA, Columbus OH.
Pal, A., Gin, K.Y.-H., Lin, A.Y.-C., Reinhard, M., 2010. Impacts of emerging organic contam-

inants on freshwater resources: review of recent occurrences, sources, fate and ef-
fects. Sci. Total Environ. 408, 6062–6069.

Pilière, A., Verberk, W., Gräwe, M., Breure, A.M., Dyer, S.D., Posthuma, L., et al., 2016. On
the importance of trait interrelationships for understanding species environmental
responses of stream invertebrates. Freshw. Biol. 61, 181–194.

Pistocchi, A., 2014. Perspectives: The Challenge of Cumulative Impacts and Planetary
Boundaries. GIS Based Chemical Fate Modeling. JohnWiley & Sons, Inc., pp. 475–479.

Posthuma, L., 1992. Genetic Ecology of Metal Tolerance in Collembola. Vrije Universiteit.
Posthuma, L., 1997. Effects of toxicants on population and community parameters in field

conditions, and their potential use in the validation of risk assessment methods. In:
Straalen, N.M., Løkke, H. (Eds.), Ecological Risk Assessment of Contaminants in Soil.
Springer US, Boston, MA, pp. 85–123.

Posthuma, L., De Zwart, D., 2006. Predicted effects of toxicant mixtures are confirmed by
changes in fish species assemblages in Ohio, USA, rivers. Environ. Toxicol. Chem. 25,
1094–1105.

Posthuma, L., De Zwart, D., 2012. Predicted mixture toxic pressure relates to observed
fraction of benthic macrofauna species impacted by contaminant mixtures. Environ.
Toxicol. Chem. 31, 2175–2188.

Posthuma, L., De Zwart, D., 2014. Species Sensitivity Distributions. Encyclopedia of Toxi-
cology. third ed. 4. Elsevier Inc., Academic Press, pp. 363–368.

Posthuma, L., De Zwart, D., Keijzers, R., Postma, J., 2016. Watersysteemanalyse met de
Ecologische Sleutelfactor Toxiciteit. Deel 2. Calibratie: toxische druk en ecologische
effecten op macrofauna. STOWA, Amersfoort, the Netherlands.

Posthuma, L., Schouten, A.J., Van Beelen, P., Rutgers, M., 2001. Forecasting effects of toxi-
cants at the community level. Four case studies comparing observed community ef-
fects of zinc with forecasts from a generic ecotoxicological risk assessment method.
In: Rainbow, P.S., Hopkin, S.P., Crane, M. (Eds.), Forecasting the Environmental Fate
and Effects of Chemicals. John Wiley, Chichester, UK, pp. 151–175.

Posthuma, L., Suter, G.W.I., Traas, T.P., 2002. Species Sensitivity Distributions in Ecotoxi-
cology. CRC-Press, Boca Raton, FL, U.S.A.

Rosenbaum, R.K., Bachmann, T.M., Gold, L.S., Huijbregts, M.A.J., Jolliet, O., Juraske, R., et al.,
2008. USEtox— the UNEP-SETAC toxicity model: recommended characterisation fac-
tors for human toxicity and freshwater ecotoxicity in life cycle impact assessment.
Int. J. Life Cycle Assess. 13, 532–546.

Sabater, S., Barceló, D., De Castro-Català, N., Ginebreda, A., Kuzmanovic, M., Petrovic, M., et
al., 2016. Shared effects of organic microcontaminants and environmental stressors
on biofilms and invertebrates in impaired rivers. Environ. Pollut. 210, 303–314.

Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., von Gunten, U.,
et al., 2006. The challenge of micropollutants in aquatic systems. Science 313,
1072–1077.

Schwarzman, M.R., 2015. A new chemical economy. Science 349, 1175.
Sjerps, R.M.A., Vughs, D., Van Leerdam, J.A., Ter Laak, T.L., Van Wezel, A.P., 2016. Data-

driven prioritization of chemicals for various water types using suspect screening
LC-HRMS. Water Res. 93, 254–264.

Solomon, K.R., Takacs, P., 2002. Probabilistic risk assessment using species sensitivity
distributions. In: Posthuma, L., Suter II, G.W., Traas, T.P. (Eds.), Species Sensitivity
Distributions in Ecotoxicology. Lewis Publishers, Boca Raton, FL, USA,
pp. 285–313.

Sponseller, R.A., Benfield, E.F., Valett, H.M., 2001. Relationships between land use, spatial
scale and stream macroinvertebrate communities. Freshw. Biol. 46, 1409–1424.

Stehle, S., Schulz, R., 2015. Agricultural insecticides threaten surface waters at the global
scale. Proc. Nat. Acad. Sci.

Stephan, C.E., Mount, D.I., Hansen, D.J., Gentile, J.H., Chapman, G.A., Brungs, W.A., 1985.
Guidelines for Deriving Numerical National Water Quality Criteria for the Protection
of Aquatic Organisms and Their Uses. US EPA ORD ERL, Duluth MN, pp. 1–97.

Stoddard, J.L., Larsen, D.P., Hawkins, C.P., Johnson, R.K., Norris, R.H., 2006. Setting expecta-
tions for the ecological condition of streams: the concept of reference condition. Ecol.
Appl. 16, 1267–1276.

Strobl, C., Boulesteix, A.N., Zeileis, A., Hothorn, T., 2007. Bias in random forest variable im-
portance measures: illustrations, sources and a solution. BMC Bioinf. 8.

Sundermann, A., Leps, M., Leisner, S., Haase, P., 2015. Taxon-specific physico-chemical
change points for stream benthic invertebrates. Ecol. Indic. 57, 314–323.

Suter, G.W., Cormier, S., Norton, S.B., 2007. Ecoepidemiology and causal analysis. In: Suter,
G.W. (Ed.), Ecological Risk Assessment, second ed. CRC Press, Boca Raton, FL, USA,
pp. 39–68.

NAS, U.S., 2009. Science and Decisions: Advancing Risk Assessment. The National Acade-
mies Press.

Senate, U.S., 2014. Water Resources Reform and Development Act of 2014.
Tyler, G., 1984. The impact of heavy metal pollution on forests: a case study of Gusum,

Sweden. Ambio 13, 18–24.
UN, 2003. Millenium Ecosystem Assessment. Ecosystems and Human Well-Being. A

Framework for Assessment. Island Press, Washington, DC, USA.

16 L. Posthuma et al. / Science of the Total Environment xxx (2016) xxx–xxx

Please cite this article as: Posthuma, L., et al., Eco-epidemiology of aquatic ecosystems: Separating chemicals frommultiple stressors, Sci Total En-
viron (2016), http://dx.doi.org/10.1016/j.scitotenv.2016.06.242

http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0220
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0220
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0225
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0225
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0225
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0230
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0230
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0235
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0235
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0240
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0240
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf9000
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf9000
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0245
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0245
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0245
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0250
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0250
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0250
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0250
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0255
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0255
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0255
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0260
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0260
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0260
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0260
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0265
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0265
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0270
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0270
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0270
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0275
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0275
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0280
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0280
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0285
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0285
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0290
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0290
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0295
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0295
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0295
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0295
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0300
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0300
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0300
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0305
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0305
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0305
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0305
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0310
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0310
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0310
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0310
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0315
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0320
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0320
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0325
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0325
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0325
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf9005
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf9005
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0330
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0330
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0330
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0335
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0335
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0335
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0335
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0340
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0340
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0340
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0345
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0345
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0345
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0350
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0350
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0350
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0355
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0355
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0355
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0360
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0360
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0360
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0365
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0365
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0365
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0370
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0370
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0370
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0375
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0375
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0380
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0380
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0385
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0390
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0390
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0395
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0395
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0395
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0400
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0400
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0400
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0410
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0410
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0415
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0420
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0420
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0420
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0420
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0425
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0425
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0425
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0430
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0430
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0430
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0435
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0435
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0440
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0440
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0440
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0445
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0445
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0445
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0445
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0445
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0450
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0450
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0455
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0455
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0455
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0460
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0460
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0465
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0465
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0470
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0475
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0475
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0475
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0480
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0480
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0480
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0480
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0485
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0485
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0490
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0490
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0495
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0495
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0500
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0500
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0500
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0505
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0505
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0510
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0510
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0515
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0515
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0515
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0520
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0520
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0525
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf9015
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf9015
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0530
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0530
http://dx.doi.org/10.1016/j.scitotenv.2016.06.242


UNEP, 2013. Global Chemicals Outlook. Towards Sound Management of Chemicals. Unit-
ed Nations Environment Programme, Geneva, Switzerland.

USEPA, 2009. The National Study of Chemical Residues in Lake Fish Tissue. U.S. Environ-
mental Protection Agency, Office of Water, Washington, DC.

Van Leeuwen, C.J., Vermeire, T.G., 2007. Risk Assessment of Chemicals. An Introduction.
second ed. Springer, Dordrecht, the Netherlands.

Van Straalen, N.M., Denneman, C.A.J., 1989. Ecotoxicological evaluation of soil quality
criteria. Ecotoxicol. Environ. Saf. 18, 241–251.

Vander Laan, J.J., Hawkins, C.P., Olson, J.R., Hill, R.A., 2013. Linking land use, in-stream
stressors, and biological condition to infer causes of regional ecological impairment
in streams. Freshw. Sci. 32, 801–820.

Vijver, M.G., Van't Zelfde, M., Tamis, W.L.M., Musters, K.J.M., De Snoo, G.R., 2008. Spatial
and temporal analysis of pesticides concentrations in surface water: pesticides
atlas. J. Environ. Sci. Health B 43, 665–674.

Zijp, M.C., Posthuma, L., Van de Meent, D., 2014. Definition and applications of a versatile
chemical pollution footprint methodology. Environ. Sci. Technol. 48, 10588–10597.

Zijp, M.C., Posthuma, L., Wintersen, A., Devilee, J., Swartjes, F.A., 2016. Definition and use
of solution-focused sustainability assessment: a novel approach to generate, explore
and decide on sustainable solutions for wicked problems. Environ. Int. 91, 319–331.

17L. Posthuma et al. / Science of the Total Environment xxx (2016) xxx–xxx

Please cite this article as: Posthuma, L., et al., Eco-epidemiology of aquatic ecosystems: Separating chemicals frommultiple stressors, Sci Total En-
viron (2016), http://dx.doi.org/10.1016/j.scitotenv.2016.06.242

http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0535
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0535
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0540
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0540
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0545
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0545
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0550
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0550
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0555
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0555
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0555
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0560
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0560
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0560
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0565
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0565
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0570
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0570
http://refhub.elsevier.com/S0048-9697(16)31432-2/rf0570
http://dx.doi.org/10.1016/j.scitotenv.2016.06.242

	Eco-�epidemiology of aquatic ecosystems: Separating chemicals from multiple stressors
	1. Introduction
	2. Case study data sources and approaches
	2.1. Current pollutants assessment
	2.2. Bioassessments of mixture impacts
	2.3. Eco-epidemiology of chemical mixture impacts
	2.4. Case study data sources, approaches and limitations
	2.5. Case studies and water quality assessment questions

	3. Case study results
	3.1. Mixture toxic pressure (co)variation
	3.1.1. Problem definition
	3.1.2. Methods
	3.1.3. Results
	3.1.4. Discussion

	3.2. Mixture exposures and species abundance changes — main effect
	3.2.1. Problem definition
	3.2.2. Methods
	3.2.3. Results
	3.2.4. Discussion

	3.3. Mixture exposures and species abundance changes – multiple stress
	3.3.1. Problem definition
	3.3.2. Methods
	3.3.3. Results
	3.3.4. Discussion

	3.4. Calibrating the mixture toxic pressure proxy to impacts
	3.4.1. Problem definition
	3.4.2. Methods
	3.4.3. Results
	3.4.4. Discussion

	3.5. Developing preliminary working hypothesis
	3.5.1. Problem definition
	3.5.2. Methods
	3.5.3. Results
	3.5.4. Discussion

	3.6. Ranking sites and stressors
	3.6.1. Problem definition
	3.6.2. Methods
	3.6.3. Results
	3.6.4. Discussion

	3.7. Ranking chemicals within mixtures
	3.7.1. Problem definition
	3.7.2. Methods
	3.7.3. Results
	3.7.4. Discussion

	3.8. Reference conditions and mixture toxic pressure
	3.8.1. Problem definition
	3.8.2. Methods
	3.8.3. Results
	3.8.4. Discussion

	3.9. Abatement policies and abatement success
	3.9.1. Problem definition
	3.9.2. Methods
	3.9.3. Results
	3.9.4. Discussion

	3.10. Restoration target
	3.10.1. Problem definition
	3.10.2. Methods
	3.10.3. Results
	3.10.4. Discussion


	4. Discussion
	4.1. Towards screening-level diagnosis
	4.2. The case-study lessons
	4.2.1. Mixture stress varies
	4.2.2. Mixture stress has impacts
	4.2.3. Prioritizations for management are possible
	4.2.4. Assessment methods bridge disciplines and regulations and yield summary insights
	4.2.5. Assessment methods can explore the relevance of emerging chemicals

	4.3. Versatility of study endpoints
	4.4. The role of species sensitivity distributions
	4.5. Towards solutions

	Acknowledgments
	References


