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REVIEW Open Access

Genome-wide epigenomic profiling for
biomarker discovery
René A. M. Dirks, Hendrik G. Stunnenberg and Hendrik Marks*

Abstract

A myriad of diseases is caused or characterized by alteration of epigenetic patterns, including changes in DNA
methylation, post-translational histone modifications, or chromatin structure. These changes of the epigenome
represent a highly interesting layer of information for disease stratification and for personalized medicine. Traditionally,
epigenomic profiling required large amounts of cells, which are rarely available with clinical samples. Also, the cellular
heterogeneity complicates analysis when profiling clinical samples for unbiased genome-wide biomarker discovery.
Recent years saw great progress in miniaturization of genome-wide epigenomic profiling, enabling large-scale
epigenetic biomarker screens for disease diagnosis, prognosis, and stratification on patient-derived samples. All main
genome-wide profiling technologies have now been scaled down and/or are compatible with single-cell readout,
including: (i) Bisulfite sequencing to determine DNA methylation at base-pair resolution, (ii) ChIP-Seq to identify protein
binding sites on the genome, (iii) DNaseI-Seq/ATAC-Seq to profile open chromatin, and (iv) 4C-Seq and HiC-Seq to
determine the spatial organization of chromosomes. In this review we provide an overview of current genome-wide
epigenomic profiling technologies and main technological advances that allowed miniaturization of these assays down
to single-cell level. For each of these technologies we evaluate their application for future biomarker discovery. We will
focus on (i) compatibility of these technologies with methods used for clinical sample preservation, including methods
used by biobanks that store large numbers of patient samples, and (ii) automation of these technologies for robust
sample preparation and increased throughput.

Keywords: Genome-wide epigenetic profiling, Biomarker discovery, Miniaturization, Automation, Single cell, DNA
methylation, WGBS, ATAC-Seq, Stratification, Precision medicine

Background
Within fundamental and clinical research and in clin-
ical practice, biomarkers play an important role to fa-
cilitate disease diagnosis, prognosis, and selection of
targeted therapies in patients. As such, biomarkers
are critical for personalized medicine to improve dis-
ease stratification: the identification of groups of pa-
tients with shared (biological) characteristics, such as
a favorable response to a particular drug [1, 2]. Bio-
markers need to fulfill a number of requirements, the
most important of which is to show high predictive
value. From a practical perspective, the detection
method for a biomarker must be accurate, relatively
easy to carry out, and show high reproducibility [3].

Over the last decade, there has been an increasing
interest in biomarkers at the hand of rapid develop-
ments within high-throughput molecular biology tech-
nologies, capable of identifying “molecular
biomarkers” [4, 5]. Molecular biomarkers possess a
critical advantage over more traditional biomarkers
during the exploratory phase of biomarker discovery,
as many candidate molecular biomarkers can be
assayed in parallel. This particularly involves screen-
ing of (epi)genomic features at a genome-wide scale,
often making use of powerful next-generation sequen-
cing (NGS)-based technologies. These screens can as-
sess very large numbers of loci for the presence or
absence of a certain (epi)genomic feature. Subse-
quently, these loci can be evaluated as a potential
biomarker by determining their correlation between
samples with different characteristics, for example, by
comparing healthy versus diseased tissue.
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To be suitable for biomarker discovery, (epi)ge-
nomic profiling assays need to fulfill a number of im-
portant requirements. To accommodate sample
collection for batch processing, clinical samples are
often preserved by freezing or by formaldehyde cross-
linking. Therefore, an important requirement for
(epi)genomic biomarker screening technologies is that
these are compatible with processed samples. Add-
itionally, this allows inclusion of clinical samples that
have been processed for biobanking, or to use such
samples for replication or validation. Biobanks collect
large numbers of samples such as tissues or DNA
(deoxyribonucleic acid) and the associated patient in-
formation, which is highly valuable for retrospective
biomarker studies [6–9]. Exploratory screens for can-
didate biomarkers mainly rely on the use of patient
specimens, which are obtained in small quantities,
while also biobanks often contain limited quantities of
patient material. Therefore, a second requirement is
that assays used for biomarker discovery are compat-
ible with miniaturization to allow processing of low-
input samples. Furthermore, robust biomarker discov-
ery is dependent on the screening of large numbers
of samples due to the inherent clinical and biological
variability between patient samples [10]. Assays used
for biomarker discovery therefore benefit from auto-
mation and digitalization, facilitating upscaling while
reducing the chance of errors due to human
handling.
Genomic features that are utilized for molecular bio-

marker discovery can be separated in two categories: (i)
changes in the DNA sequence itself, such as mutations
and rearrangements, and (ii) changes in the epigenome,
represented by molecules and structures associated with
the DNA such as DNA methylation and post-
translational histone modifications. This review will
focus on the latter category, as recent developments in
epigenetic profiling technologies have not only greatly
increased our knowledge on epigenetic regulation, but
also allow for large-scale discovery of molecular epigen-
etic biomarkers. The first section of this review provides
an overview of epigenetic features and how these can be
assayed. We discuss how misregulation of epigenetic
processes may lead to disease, providing mechanistic ra-
tionale for the use of epigenetic features as biomarkers.
The feasibility of applying epigenetic biomarkers in the
clinic is demonstrated by examples of DNA methylation
biomarkers that have reached clinical stages. In the sec-
ond part of this review, we will focus on current
genome-wide epigenomic profiling technologies, and
whether these are already or will likely become compat-
ible with biomarker discovery in the near future. We will
evaluate these approaches with three criteria in mind: (i)
the possibility to use frozen or chemically fixed material

in these assays, (ii) compatibility with miniaturization
and single-cell profiling, and (iii) the current level of
automation.

Main text
The epigenome
Within a eukaryotic cell, the DNA is packaged to fit into
the small volume of the nucleus in a highly organized
fashion. The basic unit of chromatin involves the DNA
wrapped around nucleosomes consisting of two copies
of each of the core histones H2A, H2B, H3, and H4: the
so-called beads-on-string structure [11]. Subsequent
compaction leads to higher order structures including
the formation of very dense arrays of nucleosomes ob-
served in heterochromatin [12, 13]. Despite being tightly
packed, the chromatin appears to be highly plastic to
allow processes such as transcription, DNA damage re-
pair, DNA remodeling, and DNA replication. This plasti-
city is facilitated by several factors that influence both
local and global chromatin architectures. The most
prominent features affecting chromatin structure are re-
versible covalent modifications of the DNA, e.g., cyto-
sine methylation and hydroxymethylation mainly
occurring within the genomic CG context (CpGs), and
reversible post-translational modifications of histones,
e.g., lysine acetylation, lysine and arginine methylation,
serine and threonine phosphorylation, and lysine ubiqui-
tination and sumoylation. These modifications are set by
specific classes of enzymes: DNA methyltransferases
(DNMTs) in case of cytosine methylation [14] or
histone-modifying enzymes [15]. Besides facilitating
chromatin compaction, modifications of the DNA and
histones are read by adaptor molecules, chromatin-
modifying enzymes, and transcription factors (TFs) that
contribute to the regulation of transcription and other
chromatin-related processes [15, 16]. Next to modifica-
tions of DNA and histones, the three-dimensional (3D)
conformation of the DNA within the nucleus imposes
an additional regulatory layer of gene expression [17].
The chromatin state of a cell, including the genomic

localization of modifications of DNA and histones, TF
binding sites, and 3D DNA structure, is generally re-
ferred to as the epigenome. The epigenome is an import-
ant layer that regulates which parts of the genome are
accessible and thereby active and which parts are con-
densed and hence inactive. As such, epigenetic changes
are a major driver of development and important to gain
and maintain cellular identity. Each of the approximately
200 distinct cell types in the human body has essentially
the same genome but has a unique epigenome that
serves to instruct specific gene expression programs
present within the cells. To gain insight in this variation,
the epigenetic features of these cell types (Fig. 1) are
comprehensively studied at a genome-wide scale using
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high-resolution technologies as summarized in Table 1.
Most of the approaches are based on NGS, which
generally yield higher sensitivity and resolution as
compared to alternative readouts such as microarrays,
and provide additional information such as allele spe-
cificity [18, 19]. The International Human Epigenome
Consortium (IHEC; http://www.ihec-epigenomes.org)
and associated consortia such as BLUEPRINT and
National Institutes of Health (NIH) Roadmap use
these technologies to generate human reference data
sets for a range of epigenetic features [20–23]. The
aim of IHEC is to generate approximately 1000 refer-
ence epigenomes which are made publicly available.
This data contains a wealth of information on the
epigenetic mechanisms acting in healthy cells and
serves as a valuable reference for comparisons with
malignant cells and tissues [24, 25].
Comparative analyses of epigenomes are compli-

cated by the epigenetic variability that is present be-
tween individuals within a population. Genetic
variation such as SNPs (single-nucleotide polymor-
phisms) or indels in regulatory sequences or muta-
tions in epigenetic enzymes will have a direct effect
on the epigenome [26–29]. Furthermore, environmen-
tal factors such as lifestyle, stress, and nutrition influ-
ence epigenetic patterns [30–33]. Also, epigenetic
patterns change during aging. In fact, DNA methyla-
tion markers in saliva and blood can be used for accur-
ate estimation of age [34–37]. Thus, epigenetic patterns
are plastic and change during development and over
time. The variability between individuals has to be
accounted for in epigenetic studies including biomarker
discovery and hence large cohorts need to be studied to
overcome the intra-individual variation. In this respect,
it is important to note that the extent of the intra-
individual variation is much less as compared to the

variation observed between tissues within individuals,
at least for DNA methylation [38–40].
It has become increasingly clear that misregulation or

mutations of epigenetic enzymes are at the basis of a
broad range of syndromes and diseases [41]. Mutations
in epigenetic enzymes are frequently observed in cancer
[42], intellectual disability [43], neurological disorders
such as Alzheimer’s, Parkinson’s, and Huntington’s dis-
ease [44], and autoimmune diseases such as rheumatoid
arthritis [45–47] and type 1 diabetes [48]. Most studies
have been performed in cancer: ~30% of all driver genes
characterized in cancer are related to chromatin struc-
ture and function [42]. Well-known examples of genes
in which mutations can promote or drive tumorigenesis
include DNMT3A and TET2, involved in DNA methyla-
tion and DNA demethylation, respectively, and EZH2,
which is part of the polycomb repressive complex 2
(PRC2) complex that trimethylates lysine 27 on histone
3 (H3K27me3) [49–51]. Apart from mutations in epi-
genetic enzymes, mistargeting of epigenetic enzymes,
such as the silencing of CDKN2A and MLH1 by aber-
rant promoter DNA methylation, is considered to drive
tumor formation [52]. Given their prominent roles in
cancer and various other diseases, epigenetics enzymes
represent promising targets for therapeutic intervention.
For example, small molecules targeting enzymes in-
volved in the post-translational modifications of his-
tones, such as SAHA (suberanilohydroxamic acid;
Vorinostat) inhibiting histone deacetylases (HDACs), are
effective as therapeutic drugs for a range of tumor types
including T cell lymphomas in case of SAHA [53–55].
See Rodriguez and Miller [56], Qureshi and Mehler [57],
and various papers within this special issue for excellent
recent reviews on the use of small molecules to target
epigenetic enzymes and their current status in clinical
applications.

Fig. 1 Main epigenetic features (indicated by orange arrows) that can be assayed on a genome-wide scale using sequencing-based technologies
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Epigenetic biomarkers
Molecular diagnosis and prognosis is traditionally often
based on (immuno)histochemistry or immunoassays, for

example by assaying prostate-specific antigen (PSA) in
case of testing for prostate cancer [58]. Also , changes in
RNA (ribonucleic acid) expression, genetic alterations,

Table 1 Summary of the main epigenetic features and the principles, caveats, and requirements of the main technologies used for
their profiling

DNA methylation. DNA methylation is the process in which a methyl group is added to the 5′ position of cytosines in the DNA, which mainly occurs
within the context of CpGs. DNA methylation typically acts to repress gene transcription when located in a gene promoter, while gene-body methylation
is positively correlated with expression [153–157]. Distal regulatory regions like enhancers generally contain low DNA methylation levels when active due
to binding of TFs [158]. The role or consequence of DNA methylation at other places of the genome is less well understood [14]. Genome-wide profiling
of DNA methylation generally relies on (i) affinity purification of methylated DNA fragments or (ii) the use of sodium bisulfite converting unmethylated
cytosines into uracil. The technologies referred to by the first method, MBD-Seq/MethylCap-Seq (methyl-CpG binding domain protein-enriched sequencing/
methylated DNA capture sequencing) [140, 141, 159] and MeDIP-Seq (methylation DNA immunoprecipitation sequencing) [160, 161], utilize a methyl binding
protein domain or an antibody raised against 5-methylcytosine, respectively, to affinity purify methylated DNA fragments from sheared genomic DNA. Al-
though MethylCap-Seq/MeDIP-Seq provides accurate measurements of DNA methylation [162], an important caveat is the aspecific background remaining
after the affinity purification. These might cause false positive results (in particular in case of copy number variations) if not properly controlled for. The second
method makes use of bisulfite on sheared genomic DNA to convert unmethylated cytosines into uracil, while leaving methylated cytosines unaffected [154].
After subsequent amplification to prepare the DNA for readout, the uracil (representing the unmethylated cytosine) is read as a thymidine, while cytosines rep-
resent methylated cytosines in the original sample. The readout of bisulfite-based methods is mainly performed by microarrays (including the Infinium Human-
Methylation450 BeadChip array (“450K array”) covering 450,000 of the 28 million genomic CpGs) [163] or by sequencing, referred to as whole-genome bisulfite
sequencing (WGBS). In light of the high sequencing costs associated with WGBS, reduced representation bisulfite sequencing (RRBS) selects for CpG-rich frag-
ments before sequencing using methylation-insensitive restriction enzymes such as MspI [164]. An important advantage of bisulfite-based methods (450K array,
WGBS, RRBS) over other DNA methylation profiling technologies is that these generate DNA methylation profiles at base-pair resolution. Furthermore, the input
requirements for WGBS/RRBS (20 ng of DNA for low-input WGBS/RRBS profiling, equivalent to 3 × 103 cells [121]) are low as compared to the 450K array
(500 ng; 7.5 × 104 cells) and MBD-Seq/MethylCap-Seq/MeDIP-Seq (1 μg DNA; 1.5 × 105 cells). Although dependent on sequencing depth, the coverage of
WGBS is usually >90% of all CpGs in the genome [165, 166], as compared to 60–90% for MBD-Seq/MethylCap-Seq/MeDIP-Seq and 2% for the 450K array. In
view of the superior specifications, WGBS is considered the “golden standard” for determining the DNA methylome.

Protein binding sites. Characterization of the genomic locations of post-translational histone modifications, histone variants, TFs, and other chromatin
associated proteins is generally performed by chromatin immunoprecipitation (ChIP). ChIP relies on the use of a specific antibody to perform affinity
purifications on sheared chromatin to isolate fragments bound by the protein of interest. In most workflows, proteins are crosslinked to the DNA by
formaldehyde, after which the chromatin is fragmented by sonication or enzymatic digestion. However, in particular in case of histones, ChIP can also
be performed on native (meaning non-crosslinked) chromatin fragmented by micrococcal nuclease (MNase) [167, 168]. After ChIP, the purified DNA
fragments are sequenced to determine the protein localization on a genome-wide scale (ChIP-Seq) [169, 170]. Loci in the genome which are
enriched for mapped sequencing reads (generally referred to as “peaks” according to their visual appearance in genome browsers) represent protein
binding sites. ChIP-Seq heavily relies on the availability of antibodies that are specific for their endogenous target and that are compatible with the
ChIP conditions. Since ChIP-Seq relies on an enrichment strategy, it generally requires a relative high number of cells as input to distinguish specific
signals from background. The number of input cells for ChIP-Seq is typically 0.5–5 × 106 cells, with profiling of histones requiring less cells than profil-
ing TFs [134].

Chromatin accessibility/footprinting. Transcriptional activation is tightly linked with disruption or eviction of nucleosome organization at control
regions such as promoters and enhancers due to binding of TFs. Regulatory DNA thus coincides with open or accessible genomic sites in chromatin
[171, 172]. Profiling of these accessible sites is performed using the exonuclease desoxyribonuclease 1 (DNaseI) or using the Tn5 transposase on
native chromatin, as both enzymes are able to target accessible genomic regions within chromatin. Selecting and sequencing short fragments (50–150 nt)
after treatment with DNaseI (DNAseI-Seq) [173, 174] or transposase (assay for transposase-accessible chromatin (ATAC)-Seq) allows to enrich for TF binding
sites, in contrast to larger fragments that might be derived from nucleosomes [175]. Similar to ChIP-Seq, loci in the genome which are enriched for
mapped sequencing reads (referred to as “peaks”) represent accessible sites. Within the ATAC-Seq procedure, the Tn5 transposase directly
inserts the adapters for sequencing. Therefore, ATAC-Seq has an important advantage in that it requires a relative small number of cells
(5 × 104 cells) [175] to start with as compared to DNAseI-Seq (1–10 × 106 cells [172]). Both for ATAC-Seq and DNAseI-Seq, characterization of
enriched DNA motifs within the accessible sites can be used to infer the identity of sequence-specific TFs. A complementary approach to
infer the identity of TFs that are binding within accessible regions is by the use of so-called “footprints.” Sequence-specific TFs protect the
genome from DNAseI and transposase digestion at the exact position where they are binding the DNA. This results in a unique, detectable
footprint that can be used for characterization of the factor that is binding [174, 176].

Nucleosome occupancy/positioning. Nucleosomes are the basic core particles of the chromatin, consisting of histones and approximately 147 base
pairs of DNA wrapped around it. Although the DNA-protein binding within nucleosomes is very stable, nucleosomes can be remodeled or slide
along the DNA, thereby facilitating or inhibiting chromatin-related processes such as transcription. Nucleosome positioning is usually determined with
the use of MNase on native chromatin [171, 177]. MNase is an endo-exonuclease that digests and cleaves DNA unless it is protected by proteins.
Nucleosome position can be determined by sequencing the DNA fragments (115–195 bp in size) isolated from chromatin treated with MNase (MNase-Seq)
[178, 179]. A typical MNAse-Seq profiling experiments requires 1–10 × 106 cells.

3D conformation of the genome. Chromatin loops and further high-order chromatin structures are profiled using chromosome confirmation capture
[180]. Chromosome confirmation capture relies on digestion of crosslinked chromatin using restriction enzymes, followed by ligation of the sticky
ends. Sequencing of DNA ligation products allows to determine the proximity of the ligated fragments and provides insight into the 3D structure
within the nucleus. Chromosomal loci that are far apart on a linear chromosome, but close together in nuclear space, can come into proximity and
will hence be ligated [181]. For genome-wide profiling, two different variants of chromosome confirmation capture that are popular include Circular
chromosome confirmation capture (4C-Seq) [182] and HiC-Seq [183, 184]. 4C-Seq determines all genomic interaction partners of one specific locus in
the genome (referred to as “bait”) at high resolution and sensitivity. In HiC-Seq, all genomic interactions are profiled at low resolution and sensitivity,
enabling a global 3D view on the genome. Using HiC-Seq, recent studies in mice and human have revealed that chromosome territories are arranged
into large megabase-sized topologically-associating domains (TADs) that are highly conserved and stable across cell types [183, 185]. 4C-Seq
experiments typically require 1 × 107 cells [186], while HiC-Seq experiments require 2.5 × 107 cells [187].
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and chromosomal abnormalities represent powerful bio-
markers in various diseases including cancer [59]. Notable
examples are mutations in the BRCA1 and BRCA2 genes
in breast and ovarian cancer or the presence of the Phila-
delphia chromosome in leukemia [60–62]. With the grow-
ing understanding that changes in the epigenome and
chromatin are related with or causative in disease [41], it
became clear that epigenetic alterations represent promis-
ing features to be used as biomarkers. An important char-
acteristic for their use as biomarker is that epigenetic
marks, in particular DNA methylation, are known to sur-
vive sample storage conditions reasonably well [63, 64].
Another convenient characteristic is that almost every bio-
logical tissue sample or body fluid such as blood or saliva
can be used for analysis of DNA methylation and other
epigenetic marks [22, 65, 66]. This robustness makes the
application of epigenetic biomarkers in a clinical
environment attractive.
Over the recent years, it has become clear that epigenetic

features contain a high predictive value during various stages
of disease. These analyses thus far mainly focused on DNA
methylation. DNA methylation has been shown to be in-
formative for disease diagnosis, prognosis, and stratification.
Some of the DNA methylation-based epigenetic biomarkers,
such as the methylation status of VIM and SEPT9 for colo-
rectal cancer, SHOX2 for lung cancer, and GSTP1 for pros-
tate cancer, are in clinical use and diagnostic kits are
commercially available [67–71]. In case of one of the best
characterized biomarkers, GSTP1, a meta study (mainly
using prostatectomy tissue or prostate sextant biopsies)
showed that hypermethylation of the promoter allows to
diagnose prostate cancer with a sensitivity of 82% and a spe-
cificity of 95% [72]. Importantly, the use of multiple DNA
methylation biomarkers (combining hypermethylation of
GSTP1, APC, RASSF1, PTGS2, and MDR1) resulted in a
sensitivity and specificity of up to 100% [73]. See Heyn and
Esteller [74] for a recent comprehensive overview of DNA
methylation biomarkers and its potential use in the clinic.
In addition to its diagnostic potential, it has been well
established that DNA methylation is informative for pa-
tient prognosis in terms of tumor recurrence and overall
survival. For example, the hypermethylation of four genes,
CDKN2A, cadherin 13 (CDH13), RASSF1, and APC, can
be used to predict tumor progression of stage 1 non-small
cell lung cancer (NSCLC) [75]. In addition to disease
prognosis, DNA methylation has been shown to be valu-
able for patient stratification to predict response to che-
motherapeutic treatment. A well-known example is
hypermethylation of MGMT in glioblastoma, which ren-
der the tumors sensitive to alkylating agents [76, 77] such
as carmustine and temozolomide.
Together, these examples show the power and feasibil-

ity of using epigenetic features, and in particular DNA
methylation, as biomarkers. Epigenetic biomarkers are

complementary to genetic biomarkers. Whereas genetic
mutations can (among others) disrupt protein function
due to amino acid changes, epigenetic alterations can
de-regulate mechanisms such as transcriptional control,
leading to the inappropriate silencing or activation of
genes. Notably, epigenetic changes occur early and at
high frequencies in a wide range of diseases including
cancer [78]. It has been suggested that epigenetic alter-
ations occur at higher percentages of tumors than gen-
etic variations, resulting in a higher sensitivity in the
detection of tumors [79].

Genome-wide epigenetic profiling for DNA methylation
biomarkers
Thus far, the discovery of the epigenetic biomarkers
mostly relied on targeted approaches using individual
gene loci known or suspected to be involved in the eti-
ology or progression of the disease or other phenotype
under study. Despite the challenges in the identification
of biomarkers using such approaches, this yielded a
number of important epigenetic biomarkers. However,
these approaches require a priori knowledge for the se-
lection of candidate biomarkers.
In order to perform unbiased screens in the explora-

tory phase of biomarker discovery, genome-wide profil-
ing technologies have spurred molecular biomarker
discovery (detailed information on epigenomic profiling
assays is presented in Table 1). Using these technologies,
the entire (epi)genome can be interrogated for potential
biomarkers by comparing healthy versus diseased cells/
tissue, malignant versus non-malignant tumors, or drug-
sensitive versus drug-resistant tumors. This enables se-
lection of candidate biomarkers that are most inform-
ative for disease detection, prognosis, or stratification.
The use of genome-wide screens furthermore enables to
detect and evaluate combinations of (many) candidate
loci, which often results in increased sensitivity and spe-
cificity of the biomarker. Importantly, the identification
of individual genomic loci or genes as biomarkers from
large datasets requires robust statistical testing such as
multiple-testing correction (although traditional tests
like the Bonferroni correction are over-conservative
since there is often correlation between loci, i.e., they are
not independent) or stringent false discovery rate (FDR)
control (for example, by the Benjamini–Hochberg pro-
cedure) [80–82]. To define sets of biomarkers from large
dataset, alternative statistical methods (such as sparse
principle component analysis (PCA) or sparse canonical
correlation analysis (CCA) [83, 84]) are available as well.
In light of (i) challenges with the experimental setup
when using patient material, (ii) costs, and (iii) the ex-
tensive computational analysis associated with the ex-
ploratory phase of biomarker discovery, genome-wide
screens are often performed on relatively small cohorts.
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Independent of the (statistical) methods used, it is essen-
tial to validate (sets of ) candidate biomarkers in follow-
up studies on large cohorts using targeted epigenetic ap-
proaches before potential application in the clinic [85].
Recent years have seen an increasing number of stud-

ies using genome-wide epigenetic profiling to predict
disease outcome. For a range of tumors, including child-
hood acute lymphoblastic leukemia [86], kidney cancer
[87], NSCLC [88], rectal cancer [89], cervical cancer [90,
91], breast cancer [92, 93], and glioblastoma [94], DNA
methylome analysis has been shown to be of prognostic
value. Most of these studies define changes in DNA
methylation at single sites or at small subsets of sites
that represent potential disease signatures. Although
these studies are often restricted to a subset of CpGs
within the genome and mostly rely on relatively small
sample sizes, they show the power of performing
genome-wide biomarker screens.
Currently, the most popular platform used in the ex-

ploratory phase of DNA methylation biomarker discov-
ery represents the Infinium HumanMethylation450
BeadChip array (further referred to as “450K array”; see
a short explanation of the 450K array within Table 1).
The probes on the 450K array mainly represent func-
tional CpG islands and functional elements such as
promoters, enhancers, and TF binding sites. Main ad-
vantages of the 450K array for the detection of DNA
methylation as compared to other DNA methylation
platforms include (i) its high reproducibility, (ii) the
straightforward analysis methods, (iii) the large number
of samples that have been profiled using the 450K array
thus far (which can be used for comparative purposes),
and (iv) the relatively low costs. A disadvantage, like
with all bisulfite-based methods (unless combined with
additional chemical procedures), is that the 450K array
is unable to distinguish between DNA methylation and
DNA hydroxymethylation. Hydroxymethylated cyto-
sines represent an intermediate step during demethyla-
tion of methylated cytosines but is relatively stable and
is therefore likely to have specific biological functions
as well [95]. It should be noted that levels of DNA
hydroxymethylation are generally much lower as com-
pared to levels of DNA methylation (for example, DNA
hydroxymethylation levels are >95% lower in case of
peripheral blood mononuclear cell (PBMC) [96]). A fur-
ther disadvantage of the 450K array is that genetic dif-
ferences between samples might result in false
positives, in particular since a subset of probes on the
450K array target polymorphic CpGs that overlap SNPs
[97, 98]. For association studies using large cohorts,
computational methods (based on principle compo-
nents) have been developed to account for population
stratification resulting from differences in allele fre-
quencies [98–100].

To enable robust screening for a (set of ) potential
biomarker(s), most current studies apply the 450K
array on up to several hundred samples. To narrow
down and validate candidate biomarkers, more tar-
geted DNA methylation assays are used on the same
or a very similar-sized cohort [101]. Subsequently, the
remaining candidate biomarkers are further validated
on larger cohorts using targeted DNA methylation as-
says that are compatible with routine clinical use, for
example, by amplicon bisulfite sequencing [85]. Using
this powerful workflow, tumors for which prognostic
biomarkers have been identified include rectal cancer
[102], breast cancer [103], hepatocellular carcinoma
[104], and chronic lymphocytic leukemia (CLL) [105,
106]. Interestingly, using a similar workflow, sets of
DNA methylation biomarkers have recently been
identified that are prognostic for the aggressiveness of
tumors in prostate cancer [107, 108]. Such studies are
very important for improving treatment of prostate
cancer by avoiding (radical) prostatectomy in cases
where careful monitoring of the tumor over time is
preferred.

Biomarkers other than DNA methylation
The majority of epigenetic biomarkers identified thus far
involve changes in DNA methylation. However, in light
of the various types of epigenetic misregulation associ-
ated with diseases, changes in epigenetic features other
than DNA methylation are likely to become powerful
molecular biomarkers as well. ChIP-Seq profiling has re-
vealed prominent differences in binding sites of post-
translational histone modifications and other proteins
between healthy and cancer tissue, both in leukemia as
well as in solid tumors. For example, localized changes
in H3 acetylation have been reported in leukemia (see,
for example, Martens et al. [109] and Saeed et al. [110]).
For solid tumors, differential estrogen receptor (ER)
binding and H3K27me3 as determined by ChIP-Seq has
been shown to be associated with clinical outcome in
breast cancer [111, 112]. Also, androgen receptor (AR)
profiling predicts prostate cancer outcome [113]. A re-
cent study identified tumor-specific enhancer profiles in
colorectal, breast, and bladder carcinomas using
H3K4me2 ChIP-Seq [114]. Next to ChIP-Seq, DNAseI
hypersensitivity assays have identified tumor-specific
open chromatin sites for several types of cancer (see, for
example, Jin et al. [115]). In terms of chromatin con-
formation, it has recently been shown that disruption of
the 3D conformation of the genome can result in in-
appropriate enhancer activity causing mis-expression of
genes including proto-oncogenes [116, 117]. These ex-
amples show that, besides DNA methylation, changes in
(i) protein binding sites (including post-translational his-
tone modifications), (ii) accessible (open) chromatin, and
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(iii) the 3D conformation of the genome represent epi-
genetic features that are potential effective biomarkers
(Fig. 1). The near absence of biomarkers based on these
epigenetic features is mainly due to practical reasons.
ChIP-Seq as well as other comprehensive epigenetic pro-
filing technologies traditionally require (much) more in-
put material, up to 1 × 106 cells or more, to obtain
robust results as compared to DNA methylation profil-
ing (Table 1). This is particularly challenging for
(banked) patient samples, which are often available in
small quantities that might not be compatible with epi-
genetic profiling other than DNA methylation profiling.
Also, profiling of such epigenetic features often require
elaborate and delicate workflows (Table 1). Hence, quan-
titation and reproducibility of ChIP-Seq and other epi-
genetic profiling assays besides DNA methylation
profiling are challenging. Furthermore, DNA methyla-
tion profiling is better compatible with (archived) frozen
or fixed samples.
However, the last 2 years have seen a spectacular pro-

gress in miniaturization of epigenetic profiling assays. In
various instances, this included automation of (part of )
the workflow, improving the robustness of the assays
and its output. Also, improved workflows for epigenetic
profiling of frozen or fixed samples have been reported.
Although this involved proof-of-concept studies in basic
research settings, these efforts are likely to have signifi-
cant impetus on genome-wide epigenetic screens for
candidate biomarkers. The remainder of this review will
provide an overview of the current status of genome-
wide epigenetic profiling and the technological advances
that facilitate miniaturization, automation, and compati-
bility with preserved samples.

New developments in epigenetic profiling: compatibility
with preservation methods
Most epigenetic profiling assays have been developed
using fresh material in order to preserve the native chro-
matin architecture. However, epigenetic biomarker
screens require the use of patient-derived clinical sam-
ples that are generally processed to preserve the samples
as well as to allow convenient sample handling, for ex-
ample, for sectioning of biopsies. Also, samples present
in biobanks are fixed to allow long-time storage. In par-
ticular for retrospective studies, epigenetic profiling
technologies that are applied for biomarker screens
should therefore be compatible with methodologies that
are routinely used for sample preservation: freezing and
chemical fixation (in particular FFPE fixation) [118].

Freezing
Freezing of tissue specimens is typically performed by
snap-freezing with subsequent storage at −80 °C or in li-
quid nitrogen [119]. Freezing seems to maintain nuclear

integrity and chromatin structure very well (Fig. 2). WGBS
[120], ChIP-Seq [121–123], ATAC-Seq [124, 125], and
DNAseI-Seq [126, 127] all have been shown to be compat-
ible with frozen cells or tissues.

Chemical Fixation (FFPE)
Chemical fixation generally includes overnight crosslink-
ing with formaldehyde at high concentrations (up to
10%), followed by dehydration and paraffin embedding
(so-called “FFPE”: formalin-fixed, paraffin-embedded)
[128]. Although procedures for FFPE fixation are time-
consuming, FFPE fixation has the advantage that sam-
ples can be stored at room temperature and that samples
can be evaluated by morphology or immunohistochem-
istry (prior to possible further processing such as epigen-
etic profiling).
FFPE conditions do not affect DNA methylation, and

also formaldehyde and paraffin do not interfere with the
WGBS profiling procedure [129]. However, epigenetic
assays other than bisulfite-based DNA methylation pro-
filing are cumbersome with FFPE samples (Fig. 2). In
case of ChIP-Seq, crosslinking generally occurs in much
milder conditions (1% formaldehyde for 10 min) as com-
pared to the harsh conditions used for FFPE fixation
[120], which can complicate shearing and epitope acces-
sibility. Pathology tissue (PAT)-ChIP has been reported
to prepare FFPE samples for ChIP-Seq by the use of
deparaffinization, rehydration, and MNase treatment
followed by sonication at high power [130, 131]. How-
ever, PAT-ChIP comes with various limitations including
the long running time of the protocol (up to 4 days) and
the fact that it is not compatible with all ChIP-grade

Fig. 2 Compatibility of commonly used sample preservation
methods with current epigenome profiling assays. A dotted line
indicates that these assays would benefit from further optimization
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antibodies. Interestingly, some of these issues have been
resolved in the very recently developed fixed-tissue
(FiT)-Seq procedure, which might open up new avenues
for ChIP-Seq profiling of FFPE samples [114]. DNaseI-
Seq on FFPE samples has been reported at the expense
of a drop in signal-to-noise ratios of around 50% as
compared to the use of fresh material [115].
Despite new developments for ChIP-Seq and DNaseI-

Seq, this overview shows that DNA methylation is still
the most robust of all epigenetic marks for profiling of
samples that are processed by freezing or chemical fix-
ation. Although most other epigenetic profiling assays
are compatible with frozen samples (at the expense of
signal-to-noise ratios for some of the assays), they are
generally not or poorly compatible with FFPE specimens
(Fig. 2). This also implies that for these assays, it is much
more challenging to make use of laser microdissection
to select specific regions of interest from specimens for
epigenetic analysis, for example, to separate tumor cells
from stromal cells [132, 133]. An additional advantage of
using DNA methylation for biomarker screening is that,
in contrast to the other epigenetic profiling assays dis-
cussed, the profiling can be performed on isolated gen-
omic DNA. This enables the use of genomic DNA from
clinical DNA banks to be included in DNA methylation
biomarker screens.
It should be noted that in contrast to retrospective

studies, it might be feasible to use fresh or fresh-frozen
patient material for screening in prospective biomarker
studies. However, the use of fresh(-frozen) material in
these studies could interfere with further development
of potential biomarkers if it turns out that these bio-
markers are incompatible with (FFPE-)fixed patient ma-
terial present in the clinic. In all cases, when collecting
patient samples for profiling of epigenetic marks, it is
important to keep the time between surgical removal
and fixation or freezing as short as possible to avoid epi-
tope destruction and/or breakdown of the chromatin. It
would therefore be helpful if the procedure time up to
fixation would be documented for banked samples, so as
to evaluate whether such banked samples are suitable
for the epigenetic profiling technology of choice.

New developments in epigenetic profiling:
miniaturization and automation
The recent years saw great progress in low-input epigen-
etic profiling without significantly affecting signal-to-
noise ratios (Fig. 3). Also, all main genome-wide epigen-
etic profiling assays are now compatible with single-cell
readouts. An overview of the main technological ad-
vances that allowed miniaturization and single-cell read-
out is described in Table 2. Besides miniaturization,
various epigenetic profiling assays, in particular ChIP-
Seq, have been (partly) automated to improve

reproducibility and to allow higher throughput. In this
section, we briefly evaluate these new technological de-
velopments with respect to biomarker discovery.

Miniaturization of epigenetic profiling
As summarized in Table 2, Fig. 3, and Table 3, the
amount of cells required for three of the main epigenetic
profiling assays is currently well compatible with
amounts present in patient-derived specimens or
amounts present in banked patient samples. For
bisulfite-based DNA methylation profiling, a starting
amount of 7.5 × 104 cells for the 450K array or 3 × 103

cells for WGBS/RRBS is sufficient to obtain high-quality
genome-wide profiles. For ChIP-Seq, the minimum
amount of starting material is highly dependent on the
protein to be profiled and the antibody that is used
[134]. Although both histone modification and TF bind-
ing sites (such as ER [111, 112]) are potentially powerful
as biomarker, the minimum number of cells required for
histone modification profiling (~1–5 × 104 cells) is much
more compatible with patient samples than the number
of cells required for TF profiling (generally 1 × 105 cells
or more; Tables 1 and 2). ATAC-Seq and DNAseI-Seq
are compatible with as low as 200 cells and 1 × 103 cells,
respectively (Table 2) [115, 135]. Together, this shows
that the input requirements for bisulfite-based DNA
methylation profiling, ChIP-Seq (in particular for histone
modifications), and ATAC-Seq/DNAseI-Seq are well
compatible with most clinical samples. The minimum
number of cells currently required for 4C-Seq and
HiC-Seq, at least 1 × 107 cells, is currently too high
for clinical use.
Interestingly, all main epigenetic profiling assays can

now provide single-cell readouts (Table 2, Table 3). The
possibility to assay individual cells within populations
allows interrogation of heterogeneity which in “bulk”
profiling would be averaged. This is very informative for
clinical samples which can be highly heterogeneous

Fig. 3 Level of comprehensiveness of epigenetic data from global
epigenetic profiling assays using an increasing number of cells
as input
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[136]. Single-cell profiling has been shown to be power-
ful in obtaining molecular signatures of heterogeneous
populations that shift in cell type composition [137]. As
such, an important clinical application of single-cell pro-
filing is to screen for resistant versus non-resistant cells
after drug treatment [138] or to monitor disease pro-
gression [139]. In terms of biomarker discovery, the use
of single-cell assays will allow to screen for cell types
that are most informative for disease stratification. Also,
the level of heterogeneity as measured by single-cell
studies might possibly by itself be informative for disease
stratification. From a practical perspective, epigenetic

profiling of single cells is challenging. Since one cell only
contains two copies for each genomic locus to be
assayed, any loss of material during washing or enrich-
ments steps such as immunoprecipitations will signifi-
cantly impact the outcome of the assay. Similarly,
background signals are hard to distinguish from true sig-
nal. One of the main strategies to account for false nega-
tive signals as well as for aspecific background is to
include a large number of cells in single-cell epigenetic
assays to enable proper statistics. However, this results
in (very) large datasets, for which computational and
statistical analysis are generally challenging. For single-

Table 2 Overview of the main technological advances that allowed miniaturization and single-cell readout of genome-wide
epigenetic profiling assays

WGBS Conventional WGBS profiling is compatible with a relatively low number of cells (Table 1). Recently, WGBS was adapted to enable single-cell
profiling (scBS-Seq; single-cell bisulfite sequencing) [188]. Single cells were captured by fluorescence-activated cell sorting (FACS). To cope with the
extensive DNA damage caused by the bisulfite treatment, Smallwood et al. [188] performed tagging of the DNA fragments with sequencing adaptors
after bisulfite conversion as developed by Miura et al. [189], instead of before conversion as performed in traditional WGBS. scBS-Seq allows to get
coverage of up to 48.4% over all CpGs. A subsequent study by Farlik et al. [190] used a similar approach for scBS-Seq but adapted it such that the
whole process of library preparation following bisulfite treatment and cleanup is performed in a single tube, minimizing DNA loss and reducing contamination
risk [190].

ChIP-Seq. Traditionally, ChIP-Seq requires a large number of cells (at least several hundred thousands). However, improvements in the sample prepar-
ation procedure to prepare the ChIPped DNA for sequencing allowed to perform ChIP-Seq profiling on 1 × 104 cells for H3K4me3 and H3K27me3
[191–194] and recently even 200 cells for H3K4me3 [195]. Also, the use of MNase for chromatin digestion has been shown to facilitate low-input
ChIP-Seq [196, 197]. An alternative approach for downscaling the number of cells for ChIP-Seq is to use carrier material, such as inert proteins and/or
mRNA, which do not interfere with the ChIP-Seq procedure but increase efficiency and sensitivity [198]. This strategy allowed to perform ChIP-Seq on the
TF Estrogen Receptor (ER) on 1 × 104 cells. Similarly, bacterial DNA has been used as carrier, although this comes at the cost of increased sequencing depth
as the bacterial DNA remains included in the sequencing procedure [199]. In more recent studies aiming to obtain ChIP-Seq information from low num-
bers of cells, barcodes or adaptors for sequencing are ligated or transposed before or during the ChIP procedure instead of after the ChIP. ChIPmentation,
the use of transposase to add adaptors to DNA during the ChIP, was shown to be highly efficient and compatible with as low as 1 × 103 cells [200]. An
alternative recent strategy for low-input ChIP-Seq relies on the addition of histone octamers during ChIP to outcompete unspecific binding [201]. Ligation
of adaptors before the ChIP (indexing-first ChIP (iChIP)) allows to pool multiple samples during the ChIP-Seq procedure, after which the sequence tags can
be mapped back to the original sample [202, 203]. Bernstein and his coworkers developed this further using direct adaptor ligation on MNAse treated
chromatin in an automated droplet-based microfluidic device to obtain single-cell resolution for H3K4me3 and H3K4me2 ChIP-Seq [152]. Efficient
immunoprecipitations were performed by pooling 100 single cells with the addition of carrier material that is not amplified during preparation of the
ChIPped DNA for sequencing. This workflow enables the profiling of thousands of individual cells in parallel, mainly due to the continuous flow of droplets
that is being generated to capture the individual cells (Fig. 4). Inherent to single-cell enrichment techniques, the coverage per single cell is sparse (~1000
unique reads per cell) and does not allow comprehensive analysis of protein binding sites in individual cells. However, the single-cell ChIP-Seq was shown
to be very powerful in identifying functionally-relevant subpopulations within embryonic stem cells [152].

ATAC-Seq/DNAseI-Seq. ATAC-Seq has been downscaled to less than 200 cells [135, 175]. Next to this, Buenrostro et al. [151] reported ATAC-Seq to be
compatible with single-cell profiling by performing transposition on single cells captured on a commercial microfluidics platform (Fluidigm C1; Fig. 4).
This allows capturing of 96 single cells in parallel and subsequent processing steps toward a full library ready for sequencing. Together, this auto-
mated epigenetic platform represents the first of its kind in which a single-cell suspension is loaded on a platform that subsequently generates a full
library for sequencing without any further manual intervention. An alternative approach for single-cell ATAC-Seq has been developed by Cusanovich
et al. [204]. They performed the transposase reaction in intact nuclei on small pools, while simultaneously performing indexing of the tagged sides. Pool-
ing followed by redistribution of the small cell numbers combined with the introduction of a second barcode for each cell allowed to map back the tags
obtained after sequencing to individual cells. The advantage of this strategy is that it allows for a higher throughput as shown by the 15,000 individual cells
profiled by Cusanovich et al. [204]. Recently, also DNaseI-Seq has been further developed to facilitate low-input profiling (between 1 × 102 and 1 × 104 cells)
as well as single-cell profiling [115]. Critically, after FACS sorting of single cells followed by lysis and DNaseI digestion, large amounts of circular plasmid
DNA were added during further sample preparation for sequencing. The genomic coverage of both DNaseI-Seq and ATAC-Seq in single cells is inherently
low due to the fact that each cell only contains two copies of the genome. The average number of sequence reads per cell was about 317,000
reads for DNaseI-Seq [115] and 73,000 [151] or 35,000 [204] reads for ATAC-Seq after deep sequencing of the libraries. Clearly, these numbers
of sequencing reads do not allow to investigate individual genomic loci within single cells. Rather, the computational analysis in both studies
makes use of DNaseI hypersensitive sites (DHSs) determined in pools of cells in order to call DHSs in single cells. Despite this limitation, the
single-cell chromatin accessibility assays were shown to be powerful in identifying cell-type specific transcription factors, and their variation on genomic
binding within individual cells on a global scale [115, 151].

4C-Seq and HiC-Seq. 4C-Seq and HiC-Seq are relatively new techniques [182–184], for which optimization to low cell numbers have not been exten-
sively reported yet. However, it has been shown that HiC-Seq is compatible with single-cell profiling by performing in-nuclei DNA digestion and
ligation and subsequent manual picking of individual nuclei. Using single-cell HiC-Seq it was shown that the large megabase-sized TADs that have
been identified in large populations of cells are also present in single cells [205, 206]. Furthermore, single-cell HiC-Seq was shown to be very powerful
to reconstruct chromosome folding. Although providing information at single-cell resolution, the single-cell HiC-Seq protocol requires 1 × 107 cells as
starting material to facilitate the early steps of the protocol. Inherent to the HiC-Seq protocol, the resolution obtained in individual cells is low. Currently,
between 10,000 and 30,000 ligation events are profiled per cell [205].
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cell epigenetic profiling of clinical samples, there are two
additional issues to consider: (i) generation of single-cell
suspensions from patient samples might be challenging,
and (ii) the number of cells required as input for single-
cell epigenetic profiling is generally higher than for mini-
aturized epigenetic profiling in order to enable capturing
of single cells (Fig. 4), which might affect compatibility
with patient samples. Since single-cell technologies
emerged very recently, further developments in technol-
ogy (to increase sensitivity and specificity) and in com-
putational analysis (for more robust statistical testing
and model development) are to be expected. Once
single-cell epigenetic profiling has fully matured, it will

be very powerful for biomarker discovery in heteroge-
neous cell populations such as human blood samples
and biopsies.

Automation of epigenetic profiling
The use of genome-wide epigenetic profiling for bio-
marker discovery strongly benefits from automated pro-
cedures that are compatible with upscaling to facilitate
large-scale screens. Main advantages of automation in-
clude (i) a reduction in variability and batch effects, both
of which are frequently observed in epigenetic profiling,
(ii) increased throughput, (iii) reduced procedure and/or
hands-on time, and (iv) lower error rates. In light of the
limited number of cells within clinical samples, a com-
bination of automation and miniaturization is likely to
be beneficial in most cases. This comes with the add-
itional advantage of reduced reagent cost, which can be
substantial considering the high costs associated with
epigenetic profiling. It should be noted that epigenetic
profiling thus far is mainly being performed within basic
research settings on relatively small sample sizes, which
are well compatible with manual handling. Therefore,
most automated platforms have been developed recently
to cope with the increasing sample sizes and the profil-
ing of more challenging (clinical) samples. In this sec-
tion, we focus on automation of bulk and miniaturized
epigenetic profiling; information on automation of
single-cell technologies is included in Table 2.

Table 3 Overview of the number of cells required for the
various epigenetic profiling assays

Epigenomic
profiling
method

Cell input using
traditional profiling
on bulk cells to
obtain optimal
data quality

Cell input using
miniaturized
profiling

Compatible
with single-
cell readout

Compatible
with single
cell as input

WGBS 3 × 103 3 × 103 ✓ ✓

ChIP-Seq 0.5–5 × 106* 1 × 104 or
more

✓

DNAseI-Seq 1–10 × 106 1 × 103 ✓ ✓

ATAC-Seq 5 × 104 2 × 102 ✓ ✓

Hi-C-Seq 2.5 × 107 1 × 107 ✓

MNase-Seq 1 × 106 –

*Depending on histone modification/TF

Fig. 4 State-of-the-art microfluidic systems capable of performing single-cell epigenomic profiling. Simplified representation of a Fluidigm
C1 integrated fluidic circuit design capable of capturing 96 single cell for ATAC-Seq [151] (a). Droplet microfluidic workflow applying bar-
coding of single-cell chromatin to enable pooling for subsequent ChIP experiments [152] (b). Alternatively, single cells can be captured
by FACS (not shown)
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Efforts to design automated workflows for epigenetic
profiling have mainly been focused on ChIP-Seq and to
a lesser extent on DNA methylation profiling. This can
be explained by the fact that DNA methylation profiling,
and chromatin profiling (ATAC-Seq/DNAseI-Seq) as
well, is relatively straightforward and therefore well com-
patible with manual handling. Considering 4C-Seq and
HiC-Seq, these are relatively new technologies for which
automated workflows have not been reported yet. For
DNA methylation profiling, (parts of ) the workflow for
MBD-Seq, MethylCap-Seq, and MeDIP-Seq have been
designed on custom-programmed robotic liquid hand-
ling systems [140–142]. For ChIP-Seq, immunoprecipita-
tions and subsequent sample preparation for sequencing
have been designed on the same or similar robotic
systems [143–146]. However, these robotic workflows re-
quire large amounts of starting material in the range of
1 × 106 cells or more. Clearly, with such input require-
ments, these platforms are not readily compatible with
biomarker discovery.
More recently, miniaturized automated platforms have

been described for ChIP-Seq using PDMS (polydimethyl-
siloxane)-based microfluidic devices that have been de-
signed to perform automated immunoprecipitations.
These platforms allow to perform ChIP-Seq using as low
as 1 × 103 cells [147] or 100 cells [148] due to very small
reaction volumes, providing proof-of-principle that auto-
mated low-input ChIP-Seq profiling is feasible. However,
to facilitate high-throughput profiling, it would be import-
ant to increase the number of parallel samples to be pro-
filed, as currently these platforms contain a maximum of
assaying four samples in parallel [147, 148]. Furthermore,
integration with the labor-intensive DNA library prepar-
ation procedure would be desirable; stand-alone library
preparation platforms on microfluidic devices have been
reported [149, 150]. For DNA methylation profiling, vari-
ous commercial low-input bisulfite conversion kits have
been shown to be compatible with automation. However,
a fully automated miniaturized DNA methylation profiling
platform has not been reported yet.

Conclusions
Biomarkers are highly valuable and desirable in a wide
range of clinical settings, ranging from pharmacodynam-
ics to monitoring treatment. Here, we have provided an
overview of recent developments within genome-wide
profiling technologies that may enable future large-scale
screens for candidate epigenetic biomarkers. When com-
paring compatibility with miniaturization, automation
and tissue preservation methods, bisulfite-based DNA
methylation profiling is currently by far superior to other
epigenetic profiling technologies for large-scale bio-
marker discovery. DNA methylation assays are technic-
ally less challenging than most other profiling assays, as

it is not dependent on delicate enzymatic reactions or
on immunoprecipitation, but on chemical conversion. A
critical advantage of DNA methylation profiling over
other assays is that is not affected by freezing or chem-
ical fixation, and therefore very well compatible with (ar-
chived) clinical samples. DNA methylation profiling has
the additional advantage that it requires a relatively low
number of cells as input. In line with these advantages,
most of the epigenetic biomarkers that have been identi-
fied thus far involve changes in DNA methylation.
Despite the advantages of DNA methylation, various

other epigenetic marks are promising biomarkers.
Histone-modifying enzymes are frequently mutated in a
range of diseases, often directly affecting epigenetic pat-
terns of post-translational histone modifications. The
main methodology to profile these post-translational his-
tone modifications is ChIP-Seq. ChIP-Seq is challenging
on samples containing low numbers of cells as well as
on archived samples, often resulting in variability in
signal-to-noise ratios. However, in view of the continu-
ous improvements in ChIP-Seq procedures for (ultra-
)low input samples and for fixed samples, large scale
ChIP-Seq-based screens for candidate biomarkers is
likely to become feasible in the near future. These
screens might benefit from the automated ChIP(-Seq)
platforms that are currently being developed. The devel-
opment of such automated platforms will also facili-
tate robust integration of ChIP assays as a diagnostic
tool in clinical practice.
Of the remaining technologies discussed in this

paper, ATAC-Seq and DNAseI-Seq seem most com-
patible with profiling of clinical samples, requiring as
low as several hundred cells as input. Both ATAC-Seq
and DNAseI-Seq are compatible with frozen patient
samples [125–128], while DNAseI-Seq was recently
successfully applied on FFPE samples [115]. However,
as compared to DNAseI-Seq, the workflow of ATAC-
Seq is much more straightforward as the adaptors for
sequencing are inserted as part of the transposition.
Also, at least for single-cell ATAC-Seq, a fully automated
platform has been developed [151]. For biomarker discov-
ery, compatibility of ATAC-Seq with FFPE samples would
be highly desirable, as this would enable to include clinical
samples from biobanks in large-scale ATAC-Seq profiling
studies. This might be achieved by incorporating critical
steps from the FFPE-compatible DNAseI-Seq. Although
the use of open chromatin as an epigenetic biomarker has
been rare thus far, the flexibility and ease of the recently
developed ATAC-Seq (and possibly DNAseI-Seq) will un-
doubtedly boost the use of open chromatin in clinical
research and clinical practice.
Together, this review shows that genome-wide epigen-

etic profiling technologies have very rapidly matured
over the past decade. While originally these technologies
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were only compatible with large numbers of (in vitro
cultured) cells, most of these can now be applied on
samples containing very low numbers of primary cells
down to single cells. Combined with an increasing num-
ber of sophisticated workflows and (automated) plat-
forms, this will pave the way for large-scale epigenetic
screens on clinical patient material. Such screens are es-
sential to fill the need for new biomarkers for disease
diagnosis, prognosis, and selection of targeted therapies,
necessary for personalized medicine.
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