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Abstract

Sexual reproduction is a critical process in the life-cycle of plants and very sensitive to envi-

ronmental perturbations. To better understand the effect of high temperature on plant repro-

duction, we cultivated tomato (Solanum lycopersicum) plants in continuous mild heat. Under

this condition we observed a simultaneous reduction in pollen viability and appearance of

anthers with pistil-like structures, while in a more thermotolerant genotype, both traits were

improved. Ectopic expression of two pistil-specific genes, TRANSMITTING TISSUE SPE-

CIFIC and TOMATO AGAMOUS LIKE11, in the anthers confirmed that the anthers had

gained partial pistil identity. Concomitantly, expression of the B-class genes TOMATO APE-

TALA3, TOMATO MADS BOX GENE6 (TM6) and LePISTILLATA was reduced in anthers

under continuous mild heat. Plants in which TM6 was partially silenced reacted hypersensi-

tively to temperature elevation with regard to the frequency of pistilloid anthers, pollen viabil-

ity and pollen quantity. Taken together, these results suggest that high-temperature-

induced down-regulation of tomato B-class genes contributes to anther deformations and

reduced male fertility. Improving our understanding of how temperature perturbs the molec-

ular mechanisms of anther and pollen development will be important in the view of maintain-

ing agricultural output under current climate changes.

Introduction

Sexual reproduction is a key process in the life-cycle of plants, both in natural and in agricul-

tural settings, with fitness and yield, respectively, depending directly on its success. The effi-

ciency of the process, however, is strongly influenced by environmental conditions, such as
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water availability and ambient temperature [1,2]. With the current, rapid changes in global cli-

mate, the average and maximum temperatures are expected to increase in many parts of the

world as well as the frequency of heat waves [3]. Studies in various plant species, monocot and

dicot, have shown that development and functioning of especially the male gametophyte is

highly sensitive to both continuous mild increases and short extremes in temperature [4,5]. A

number of studies have addressed the problem of heat-induced male infertility in plants and

identified deviations in various tissues [6–8] and metabolic processes [9–16]. During their

development, the male gametophytes are actively supported by the surrounding sporophytic

cell layer, called the tapetum [17]. Because developmental defects in the pollen under high tem-

perature are often accompanied by developmental defects in the tapetum [7,8,18–23] it has

been suggested that the the latter constitutes the primary defect [1,24]. The sensitivity of the

tapetum to high temperature has been confirmed by a transcriptome analysis in rice, showing

that heat-repressed genes in anthers preferentially locate to this tissue [16].

Patterning of floral organs is primarily under control of a set of MADS-box genes. These

genes encode transcription factors with a conserved MADS-box DNA binding domain and

are thought to exist in all eukaryotes. In plants, MADS-box genes are involved in controlling

major aspects of development, including male and female gametophyte development, embryo

and seed development, as well as root, flower and fruit development [25].The MADS-

box genes involved in floral organ identity are also referred to as the ABC genes. The ABC

model was proposed as a result of research on mutants with homeotic deformations [26]. The

model divides the floral meristem into four whorls, each characterized by the expression of

specific (combinations) of ABC genes. This, in turn leads to the formation of the four kinds of

flower organs: activity of A-class genes alone in the first whorl will result in the formation of

sepals, the combination of A- and B-class genes leads to petals in the second whorl, B- and C-

class genes produce stamens in the third whorl and C-class genes alone direct pistil develop-

ment in the central fourth whorl [25,27].

When examining tomato flowers grown under continuous mild heat conditions, we

observed not only a reduction in pollen number and viability, but also the appearance of

anther deformations resembling a partial conversion to pistil identity. The aim of this study

was to identify the molecular changes underlying these deformations and determine the rela-

tion between anther deformation and impaired development of the male gametophyte under

mildly elevated temperatures.

Materials and Methods

Plant material and treatments

S. lycopersicum cultivar Red Setter was obtained from Metapontum Agrobios (Metaponto,

Italy). The cultivar Microtom (TOMJP00001) was provided by University of Tsukuba, Gene

Research Center, through the National Bio-Resource Project (NBRP) of the MEXT, Japan. The

TM6-RNAi line (TM6i6) in the Microtom background was kindly provided by Dr Vivian Irish

(Yale University, New Haven, USA; De Martino et al., 2006). The lines AtGRXS17-3 and

AtGRXS17-9 were in the Rubicon background [28].

Plants were raised in climate chambers (14 hours per day light, ~200 μmol/m2s at plant

level, ~70% humidity) under control conditions (25˚C day, 19˚C night). Upon appearance of

the first inflorescence, buds and flowers were removed and the plants were kept under control

conditions, continuous mild heat (CMH32: 32˚C day, 26˚C night) or higher continuous mild

heat (CMH34: 34˚C day, 28˚C night). Flowers that developed fully under these conditions

were used to determine the frequency of anther deformations, light microscopy, gene expres-

sion studies and pollen germination rate. Pollen germination was analysed by in-vitro pollen
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germination as described by [29] with minor changes (sucrose and PEG400 were adjusted to

5% and 25%, respectively). To determine the frequency of anther deformations in Red Setter

at least eight plants were used per treatment and all flowers produced over a period of two

weeks were harvested (24 flowers under control conditions, 91 flowers under CMH32 and,

due to reduced flower set, 10 flowers under CMH34). To analyse the lines AtGRXS17-3 and

AtGRXS17-9 three plants were used per treatment and ten flowers per plant, that did fully

develop under these conditions, were harvested. Flowers that did showed spacing between

anthers, bent anther tips, green or shortened stamen were counted as deformed.

For gene expression studies seven and four plants of the cultivar Red Setter were grown

under control and CMH32, respectively. Anthers and pistils of the flowers were harvested sep-

arately and sampled randomly into pools (5 mature flowers or 10 flower buds with an anther

length of 2–3 mm per pool).

To study the Microtom TM6-RNAi line, Microtom wild type and transgenic plants were

grown in climate cabinets (MC1600, Snijders Labs, The Netherlands) under control conditions

(constant 22˚C, 12 hours LED-light from Philips Green Power LED DR/B/FR 120, ~250 μmol/

m2s, 60% humidity) and moved into milder continuous mild heat (CMH30: 30.5˚C day,

25.5˚C night,) upon flowering. To determine the rate of flower deformations newly opened

flowers were harvested daily on day 8 to 15 after moving the plants into CMH30, flowers were

scored as described above. Pollen germination was determined from newly opened flowers on

day 8 after moving into CMH30 and pollen number on the days 13–15 after moving into

CMH30. Flowers and pollen from control conditions were harvested and analysed on the

same days. Pollen germination was analysed as described above and pollen number was deter-

mined with a Bürker-Türk counting chamber.

Light microscopy

Anthers were fixed in FAA for 24 hours at 4˚C, dehydrated in a graded ethanol series and

embedded in Technovit 7100. Sections of 5–7μm were cut with a rotary microtome and

stained with toluidine blue 0.1% in 1% borax. Sections were viewed and photographed with a

Leitz Orthoplan microscope, equipped with a Leica camera DFC 420C.

qRT-PCR

RNA was extracted from the flower organs using Trizol (Invitrogen) and treated with DNase I.

cDNA was synthesized using the IScript kit (Bio-Rad) and the PCR (end volume of 25 μl, con-

taining cDNA equivalent to 10 ng RNA) was performed using the SybrGreen iQ mix (Bio-

Rad). The primer pairs (Table 1) used for the analysis were designed using Beacon Designer

(Premier Biosoft). Cq values were determined by CFX Manager 3.0 (Bio-Rad) and the effi-

ciency was calculated using LinReg PCR. The normalization factor was calculated using GeN-

orm (Biogazelle), using SAND,CAC, EF1α and RPL8 as reference genes. The qRT-PCR was

performed with four and five biological replicates from flower buds and mature flowers,

respectively.

Statistics

Frequencies of anther deformation under three temperatures and in three genotypes were

averaged on plant level and compared using a non-parametric Kruskal-Wallis one-way

ANOVA followed by Mann-Whitney U test to compare group means pairwise. As the data on

frequencies of anther deformation in the TM6 experiment did not comply with assumptions

of ANOVA, they were tested using a generalized linear model on count data. Pollen germina-

tion data and pollen number data were logit-transformed and log-transformed, respectively,
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and analysed by a one-way ANOVA with Tuckey or two-way ANOVA with Tuckey followed

by a one-way ANOVA to test for differences between individual groups, as appropriate. For

analysis of the qRT-PCR data, log-transformed normalized relative quantities were compared

using a student’s t-test, according to [30]. All analyses were performed using IBM SPSS statis-

tics version 21 (IBM).

Results

Co-occurrence of floral deformations and low pollen viability under

continuous mild heat conditions

As has been reported before [31], tomato pollen viability was compromised when plants were

grown under contiunuous mild heat (CMH), with clear effects being visible at ~32˚C/26˚C

day- and night-time temperatures (CMH32; Fig 1A). In addition, we observed that under

these conditions part of the anthers developed deformations, consisting of spacing between

anthers, twisting and greening of the tips (“antheridial cone splitting”; Fig 1B). The frequency

of these deformations increased with higher temperatures (CMH34), while at the same time

pollen viability was further reduced (Fig 1A). To test whether the negative correlation between

the occurrence of anther deformation and pollen viability remained when using a different

perturbation than temperature, we compared wild-type plants with plants with increased heat

tolerance, due to overexpression of the glutaredoxin GRXS17 [28]. When grown under control

conditions, transgenic lines were indistinguishable from the wild type. In contrast, when

grown at CMH32, the AtGRXS17-overexpressing lines showed significantly fewer flowers with

anther deformations than the wild type, while the pollen viability was higher than in the wild

type (Fig 1C). Thus, in both experimental systems, pollen viability and the presence of anther

deformation were negatively correlated within the same temperature range.

CMH-induced anther deformations are homeotic

Closer inspection revealed that in some cases aberrant tissue was present on the adaxial side of

the anthers grown under CMH32 (Fig 1B). Cytological analysis showed the presence of clus-

ters of relatively small cells, along the length of the anthers (compare Fig 2A and Fig 2B). This

abnormal tissue bore a similarity to the transmitting tissue found in the centre of the style (Fig

2C). Furthermore, ovule-like protrusions were found at the base of the anthers (Fig 2D). Thus,

tissues and organs resembing those normally found in the inner-most whorl of tomato flowers

Table 1. List of primers used in this study.

Gene Accession number Sequence forward primer Sequence reverse primer

TAP3 Solyc04g081000.2.1 ATATTAGACTTACGCCTTC AATTACTACTCAACCTAGAG

TM6 Solyc02g084630.2.1 GTTCACAGTAATGGCGTTA ATAATAGAGTGCTTAACACAGAA

TPI Solyc06g059970.2.1 CCCACTTTAAATTAAGAACT GCTAGGTAAGTAGAACAAT

LePI Solyc08g067230.2.1 ATTGAGACAACTAGAGATAGCA TAGATGGGAGGTTTGATTTAGA

TAG1 Solyc02g071730.2.1 CTCAGCAATTCGATACTC CTCTCAAGCACATTAGAC

TAGL1 Solyc07g055920.2.1 GCATAGCAGAGGTAGAGA TTACAGGCAGGAAGTTATTG

SlTTS Solyc02g078100.2.1 AAGCCACCATCACCTTAT TCAGCCTGTTCAACTAATG

TAGL11 solyc11g028020.1.1 TCTACTGAGGAGGAAGGAA AAGTTGAGATGTCCAGAGTAT

SAND Solyc03g115810.2.1 TTGCTTGGAGGAACAGACG GCAAACAGAACCCCTGAATC

CAC Solyc08g006960.2.1 CCTCCGTTGTGATGTAACTGG ATTGGTGGAAAGTAACATCATCG

EF1α Solyc06g005060.2.1 TGATCAAGCCTGGTATGGTTGT CTGGGTCATCCTTGGAGTT

RPL8 Solyc10g006580.2.1 GGTGTTCTGGTGATTACGCCATTG CCAGCAACCTGACCAATCATAGC

doi:10.1371/journal.pone.0167614.t001
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Fig 1. Continous mild heat conditions affect pollen viability and flower deformation simultaneously.

A, Frequency of anther deformations and pollen germination rate of tomato plants (cv. Red Setter) grown

under different temperature regimes (CT, CMH32, CMH34). Values represent the mean ± SD, different letters

indicate statistically significant differences (per trait, P<0.01). B, Mature flowers of wild-type tomato (cv. Red

Setter) from control (CT) and CMH32 conditions. Insets show the adaxial side of the indicated boxed regions.

Scale bars: 1 mm and 0,5 mm (insets). a, anther; ovl, ovule-like structures; p, petal; pi, pistil; s, sepal. C,

High-Temperature Defects in Tomato Anther and Pollen
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were present on the anthers of flowers grown under CMH32, suggesting that CMH32 induced

a partial homeotic conversion from anthers to pistil.

To independently confirm that the anthers gained pistil-like identity under CMH32, we

harvested anthers and pistils from plants grown under control and CMH32 conditions and

analyzed the expression of two pistil-specific genes. In tobacco, TRANSMITTINGTISSUE SPE-
CIFIC (TTS) is known to be expressed in the transmitting tissue of the style [32]. The tomato

ortholog (Solyc02g078100), which we named SlTTS, was identified on the basis of sequence

similarity. Gene expression analysis showed that its transcript indeed accumulated specifically

in pistils, with strongest expression in mature flowers (Fig 3A). Similarly, we confirmed that

Frequency of anther deformations and pollen germination rate of wild type (WT) tomato plants (cv. Rubicon)

and transgenic lines AtGRXS17-3 and AtGRXS17-9 grown under CMH32. Under control conditions, no

anther deformations were observed, and percentage pollen viability was 60 ± 12 (SD), 60 ± 13 and 56 ± 9 for

WT, AtGRXS17-3 and AtGRXS17-9, respectively (no significant differences between genotypes). Values

represent the mean ± SD, different letters indicate statistically significant differences (per trait, P<0.05).

doi:10.1371/journal.pone.0167614.g001

Fig 2. Cross sections of anthers and pistils from mature flowers of the tomato cultivar Red Setter grown under control and continuous

mild heat conditions. A, overview of anthers grown under control conditions (CT). Scale bar: 300 μm. B, overview of anthers and pistil from

CHM32. Scale bar 300 μm. C, transmitting-tissue-like cells from an anther grown under CMH32 (close up of B) on the left, and true stylar

transmitting tissue from control conditions on the right. Scale bar 20 μm. D, ovule-like deformation from an anther grown under CMH32 (scale bar

30 μm). Upper inset shows overview of CMH32 anther with ovule-like deformation (scale bar 300 μm), lower inset shows a true ovule from control

conditions (scale bar 50 μm). a, anther; l, locule; ov, ovule; ovl, ovule-like structure; st, style; tt, transmitting tissue; ttl, transmitting tissue-like cells;

v, vascular bundle.

doi:10.1371/journal.pone.0167614.g002
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the expression of the MADS-box gene TOMATO AGAMOUS LIKE11 (TAGL11), involved in

ovule development [33], was pistil specific (Fig 3B). Subsequent analysis showed that the

anthers of plants grown under CMH32 had significantly higher expression of SlTTS and

TAGL11 then those from plants grown under control conditions (Fig 3C and 3D). This result

supports the hypothesis that the observed anther deformations are homeotic conversions.

Expression of B- and C-class genes under CMH32

Anther identity depends on activity of B- and C-class genes and a decreased ratio of B- to C-

class gene expression may lead to pistil-like identity in the anthers [34]. Therefore, we analyzed

expression of these classes of genes in anthers grown under control and CMH32 conditions. In

Fig 3. Relative expression of pistil marker genes in anthers and pistils of Red Setter grown under

control conditions and continuous mild heat (CMH32). A, B, Relative expression of the SlTTS (A) and

TAGL11 (B) in anthers and pistils from 2-3mm flower buds and mature flowers (grown under control

conditions). C, D, relative expression of SlTTS (C) and TAGL11 (D) in anthers grown under control conditions

(CT) and CMH32. Values represent the mean ± SE, with the mean expression in anthers (A, B) or under

control conditions (C, D) at each developmental stage set to 1. *, significantly different from anther (A, B) or the

control treatment (C, D), P<0.05; **, P<0.01; ***, P<0.001.

doi:10.1371/journal.pone.0167614.g003
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core eudicots, the APETALA3 (AP3) B-class gene lineage has diverged into two paralogous lin-

eages: euAP3 and TOMATO MADS BOX GENE6 (TM6) [35]. While in Arabidopsis and Antir-

rhinum only the euAP3 lineage has been retained [36], tomato has both lineages, i.e. TOMATO
AP3 (TAP3) and TM6 [34]. A loss-of-function mutation in TAP3 results in a homeotic conver-

sion of stamen to pistil-like tissue, as well as conversion of petals to sepal-like structures [37].

Silencing of TM6, on the other hand, only leads to homeotic conversions of the stamen

[34,37]. Similarly, tomato contains two PISTILLATA-type B-class genes, i.e. Lycopersicum
esculentum PISTILLATA (LePI) and TOMATO PISTILLATA (TPI) [34,38]. Fig 4 shows that

the relative expression of the B-class gene TAP3 was already reduced in young anthers grown

under CMH32, while in mature anthers also TM6 and LePI were expressed significantly lower.

The B-class gene TPI was not differentially expressed, and also expression of the C-class genes

TOMATO AGAMOUS1 (TAG1) and TAG-LIKE1 (TAGL1) was not significantly affected by

CMH32. Interestingly, the more heat tolerant AtGRXS17-overexpression lines (Fig 1C) not

only showed markedly reduced ectopic expression of the pistil marker TAGL11 in young

anthers under CMH32 than the wild type, but also significantly higher AP3 expression (Fig 5).

Flower phenotype of a TM6-RNAi line under CMH30 and control

conditions

To determine whether the observed down-regulation of B-class genes in anthers under

CMH32 acted up- or downstream of the change in identity, we analysed a weak TM6-RNAi

Fig 4. Relative expression of B- and C-class genes under control and continuous mild heat

conditions (CMH32) in anthers of the tomato cultivar Red setter. A, expression of the B-class genes

TAP3, TM6, TPI and LePI and the C-class genes TAG1 and TAGL1 in young anthers of 2–3 mm. B, gene

expression in mature anthers. Values represent the mean ± SE, with the mean expression in the control

condition set to 1. *, significantly different from the control treatment, P<0.05; **, P<0.01; ***, P<0.001.

doi:10.1371/journal.pone.0167614.g004
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line [34]. As was previously described, this line showed only very few anther-to-pistil conver-

sions when grown under control conditions (Table 2). However, when grown under CMH30,

a temperature regime not high enough to cause homeotic conversions in the wild-type

Fig 5. Relative expression of the pistil marker gene TAGL11 and B-class gene TAP3 in wild-type and

AtGRXS17-overexpressing lines under continuous mild heat (CMH32) conditions. A, B, Relative

expression of TAGL11 (A) and TAP3 (B) in young anthers of 2–3 mm in wild type (WT) and AtGRXS17-

overexpressing lines grown under CMH32. Values represent the mean ± SE, with the mean expression in the

wild type set to 1. *, significantly different from the wild type, P<0.05; ***, P<0.001.

doi:10.1371/journal.pone.0167614.g005
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background, the frequency of anther-to-pistil related deformations in this line increased signif-

icantly (Table 2). At this temperature regime, most of the TM6-RNAi flowers had strong

anther deformations, even stronger than those of wild-type plants under CMH32. The

enhanced effect at CMH30 might be due to combined mild reductions in TM6 and AP3
expression, although activities of these genes are not dependent on each other [34].

Effect of reduced B-Class gene activity on pollen viability

To determine whether reduction of B-Class gene activity also affected pollen development, we

analysed pollen number and pollen germination potential of the wild type and TM6-RNAi

lines grown under control and CMH30. As expected, pollen number and viability was some-

what reduced by CMH30 in the wild type. Already under control conditions, TM6-RNAi

plants produced significantly fewer pollen than the wild type, and the remaining pollen had

lower viability (Table 2). Under CMH30, these characteristics were further affected, especially

pollen viability. There was a significant interaction between genotype and treatment for both

traits, in that the TM6-RNAi line responded singnificantly more strongly to the treatment than

the wild type (Table 2). Taken together, our results show that an artificial decrease in TM6
expression mimics/enhances high temperature-induced phenotypic defects in both, anther

and pollen development.

Discussion

In the current era of global warming, high temperature damage to plants is a increasingly fre-

quent phenomenon, particularly around the reproductive period [39,40]. Heat-induced male

infertility has been noted in a wide variety of angiosperms and a link between defects in pollen

development and the function of sporophytic anther tissue under high temperature has been

hypothesized. Data presented here suggest a mechanistic basis for this relation. Our results fit

a model in which continuous mild heat represses B-class gene activity, which normally acts to

direct stamen identity and thereby supports pollen development. Interestingly, gross morpho-

logical changes in stamen size and morphology have been noted to accompany reduction of

pollen viability not only in the various tomato accessions in this study, but also in a number of

other species [41–44]. Furthermore, closer inspection of a data set from [8] on transcriptomic

changes in developing flower organs of barley under CMH revealed a similar down-regulation

of B-class genes (data not shown). Together, these findings suggest that the model proposed

may be more broadly applicable to flowering plants.

Table 2. Presence of anther deformations, pollen germination rate and pollen number of wild-type Microtom and the TM6–RNAi line under control

and CMH30 conditions.

Anther deformations (%) Pollen germination (%) Pollen number (*103)

CT CMH30 CT CMH30 CT CMH30

WT 0 ± 0 A (32) 0 ± 0 A (73) 76.4 ± 9.6 A (26) 24.9 ± 19.4 B (12) 71.8 ± 25.4 A (19) 20.6 ± 10.8 B (23)

TM6i6 12.4 ± 7.5 A (80) 57.1 ± 14.1 B (82) 36.6 ± 15.5 B (22) 0 ± 0 C (8) 9.7 ± 6.5 BC (18) 3.9 ± 3.5 C (19)

Genotype < 0.001 (11.634) < 0.001 (55.951) <0.001 (39.117)

Treatment < 0.01 (7.855) < 0.001 (68.868) <0.001 (15.042)

Interaction < 0.01 (8.554) 0.014 (6.453) 0.044 (4.219)

Plants were grown under control temperatures (CT) or CMH30. Values are mean ± SD. The number of analysed flowers is indicated between brackets.

Different capitals indicate significant differences between the treatment-genotype groups for the concerning trait, P<0.05. Significances of the main effects

and their interaction according to the two-way analyses are indicated, with χ2 or F-values between brackets.

doi:10.1371/journal.pone.0167614.t002
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Support for our results comes from the tomato stamenless type of mutants mutant. The sl
mutant has complete homeotic conversion of anthers to carpels (fused to the central carpel)

and was recently found to be a TAP3 mutant [37,45]. sl-2 is likely to be allelic to sl [46], but has

a weaker homeotic phenotype, analogous to the TM6-RNAi line used in our studies [37,47].

Interestingly, the flower phenotypes of these mutants are temperature dependend, as flower

morphology and fertility of both can be rescued by growth at reduced temperatures and the

anther and pollen defects of the sl-2 mutant are strongly enhanced when the plants are grown

at elevated temperature [45,47]. These findings are in accordance with the fact that TAP3/TM6
gene expression is reduced by high temperature (Fig 4) and induced by low temperature treat-

ment [48]. Thus, B-class gene activity seems to be negatively regulated by ambient temperature

over a broad range of temperatures.

Studies in Arabidopsis have shown that expression of B-class genes is regulated by different

pathways over the course of flower development. During the floral meristem patterning stage,

their expression is induced by LEAFY and APETALA1 [49,50]. At later stages of anther and

pollen development, however, B-class gene expression is maintained by gibberellin (GA) via

degradation of DELLA proteins, which act as repressors of the B-class MADS-box genes

[50,51]. Notably, a GA-hyposensitive mutant in wheat has recently been shown to be hyper-

sensitive to high temperature regarding seed set [52] and among rice cultivars, the ability to

maintain pollen viability under high temperatures was shown to correlate with higher contents

of GA [53].

Phenotypically, male infertility as caused by high growth temperature is very similar to that

caused by drought during flower development, including abberent development of the tape-

tum [1,24]. In Arabidopsis, it has been shown that AP3 gene expression is also reduced under

drought [54], which may mean that the similarity extends towards the underlying molecular

defect. Interestingly, homeotic anther conversion has also been described for a cytoplasmic

male sterile (CMS) Brassica napus line and expression of the B class genes was strongly reduced

in the CMS line [55]. The reason for the anther phenotype is unknown, but as the CMS is

caused by mitochondrial dysfunction, it has been suggested to be related to higher reactive

oxygen species (ROS) production [56]. Because high temperature is known to affect ROS lev-

els, it is tempting to hypothesize that this represents the initial defect in this condition as well.

This would agree to our finding that overexpression of a glutaredoxin gene improves anther

and pollen development and AP3 gene expression under high temperature. Future studies

combining manipulations of B-class gene activity, GA signaling strength and ROS levels

should shed light on this.
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