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(Abstract) 

Anaerobic ammonium-oxidizing (anammox) bacteria are one of the latest scientific 

discoveries in to the biogeochemical nitrogen cycle. These microorganisms are able to oxidize 

ammonium (NH4
+) with nitrite as the oxidant, (NO2

-), instead of oxygen and form dinitrogen 

(N2) as the end product. Recent research shed a light on the biochemistry underlying 

anammox metabolism with two key intermediates, nitric oxide (NO) and hydrazine (N2H4). 

Substrates and intermediates are converted exploiting the catalytic and electron-transfer 

potentials of c-type heme proteins known from numerous biochemical reactions and that have 

gotten new functionality in anammox biochemistry. On a global scale anammox bacteria 

significantly contribute to the removal of fixed nitrogen from the environment and the process 

finds rapidly increasing interest in wastewater treatment.   
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Ammonium and the Environment 

Ammonium (NH4
+) is an essential and often growth-limiting nutrient for all living organisms. 

However, excess deposits to the environment in densely populated areas and the excessive use 

of fertilizers in modern agriculture results in environmental hazards such as eutrophication 

and global warming. It is striking that more than one third of the total nitrogen (excluding N2 

in the atmosphere) that is now present in nature originates from industrial sources, most 

notably the Born-Haber process [1,2]. This amount is about 3.5-fold higher than the proposed 

safe boundary (35 millions of tons per year) for nitrogen deposition and has been 

progressively growing [3].  

However, ammonium can be removed by microbial activity and microorganisms that are able 

to convert ammonium to other fixed nitrogen compounds are known for more than one 

hundred years. In the presence of oxygen, ammonium can be oxidized by aerobic ammonium-

oxidizing bacteria (AOB) and archaea (AOA) to nitrite (NO2
-) [4-6], which is then converted 

to nitrate (NO3
-) by nitrite-oxidizing bacteria [7]. These oxidative processes are called 

nitrification. In the absence of oxygen, nitrite and nitrate can be reduced to N2 by denitrifiers 

or to ammonium by dissimilatory nitrite/nitrate reducing (DNRA) microorganisms [8-10]. In 

conventional wastewater treatment, the opportunities offered by the nitrifiers and denitrifiers 

are utilized to remove excess fixed nitrogen from wastewater streams. 

 

Anammox Bacteria 

Ammonium is a relatively inert compound and AOB and AOA rely on the oxidative power of 

oxygen to activate it into the more accessible hydroxylamine (NH2OH) [11,12]. This 

presumed strict dependence on oxygen may have hampered the quest to discover microbial 

processes through which ammonium is converted without oxygen (anoxically). Until recently, 

such processes were even deemed impossible. Still, twenty years ago the important 
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observation was made that ammonium was apparently depleted in a pilot-scale bioreactor 

operated under anoxic conditions. This observation initiated the search for the responsible 

microorganisms [13]. By dedicated methods, these very slowly growing organisms, termed 

anaerobic ammonium-oxidizing (anammox) bacteria, could be enriched for further studies 

[14,15]. After their first identification, which enabled the design of molecular tools for their 

detection [16,17] more than 10 species and a vast range of subspecies have been reported for 

the anammox bacteria in environments where fixed nitrogen is removed in the absence of 

oxygen [18,19]. Anammox bacteria have even been estimated to contribute for 30-70% to the 

annual release of N2 into the atmosphere [20,21]. Moreover, these microorganisms are now 

applied as a cost-effective and environment-friendly alternative to conventional wastewater 

treatment [22]. 

 

Anammox bacteria are exceptional organisms from a number of perspectives. 

Phylogenetically, they belong to Eubacterial Phylum of Planctomycetes [23,24], which are 

characterized by their complicated cell plan. This also holds for anammox bacteria that 

typically harbor a large vacuolar cell organelle, the anammoxosome, where the proteins 

involved in central catabolism reside (Box 1). 

 

Anammox Biochemistry 

Considering the presumed inert nature of ammonium, the prime question was how anammox 

bacteria are able to oxidize it in the absence of oxygen. Detailed analyses of substrate 

conversions in bioreactors [14], a chance finding regarding hydrazine (N2H4) [25,26], careful 

inspection of the first genome sequence of the anammox model organism Kuenenia 

stuttgartiensis [27], and preliminary physiological and biochemical studies [28], enabled the 
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formulation of a minimal set of reactions by which the two substrates of anammox bacteria, 

ammonium and nitrite, were converted into the end product N2 (eqn. 1). 

NO2
- + NH4

+   → N2 + 2 H2O  ΔG0’= -357 kJ mol-1  (eqn. 1) 

The conversion of the substrates would proceed in three consecutive, coupled redox reactions 

with two highly toxic intermediates, nitric oxide (NO) and hydrazine (Figure 1; Key Figure) 

[27-30]. In the first step (reaction 1 in Figure 1) of the current working hypothesis, the one-

electron reduction of nitrite to NO is catalyzed by a candidate known from many denitrifying 

microorganisms, nitrite reductase. The second step (reaction 2) combines ammonium (or 

ammonia) and NO with the input of three electrons. This step would involve a biochemical 

novelty: an enzyme termed hydrazine synthase (HZS) and based on genome analyses a unique 

multiheme protein was suggested as the candidate HZS [27]. The last step (reaction 3) is the 

oxidation of hydrazine into N2, which releases four electrons that drive reduction steps (1) and 

(2) in Figure 1. This reaction was hypothesized to be catalyzed by a variant of an already 

known enzyme, hydroxylamine oxidoreductase (HAO). HAO is a key enzyme used by AOB 

to convert hydroxylamine, the product of ammonium activation, into nitrite (eqn. 2) [31]. 

NH2OH + H2O  → NO2
- + 5H+ + 4e-  E0’= +0.06 V  (eqn. 2) 

AOB HAO is also a multiheme protein and in vitro it catalyzes hydrazine oxidation as a side 

activity [32,33]. As such, anammox metabolism would be fully supported by heme proteins 

(Box 2), which would explain the typical blood red color of enrichment cultures. Although 

many aspects remain to be resolved, ongoing research has confirmed that the ideas regarding 

anammox metabolism that were derived from genome analyses are essentially correct. 

 

Roads to NO 

NO is a key intermediate not only in annamox bacteria, but in many denitrifying 

microorganisms. In the latter, NO is commonly produced by the reduction of nitrite to NO 
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(Figure 1, reaction 1) and this reaction is catalyzed by one of the two completely different and 

well-studied enzymes, heme protein NirS (cd1 nitrite reductase), which contains a designated 

heme variant (heme d) as the catalytic center (Box 2) [34-37] or copper-containing NirK [36]. 

The genome of K. stuttgartiensis harbors the heme c and heme d structural genes including 

those coding for heme d assembly, but these are hardly expressed at the transcriptional and 

protein levels compared to the ones encoding other key catabolic proteins [27,28,30]. 

Remarkably, the NirS genes are among the highest expressed ones in the marine anammox 

species Scalindua brodae [39]. In contrast, the Jettenia caeni strain KSU-1 is lacking NirS, 

but possesses NirK instead [40], whereas Brocadia species are devoid of known nitrite 

reductase genes [42,43]. Apparently, anammox bacteria utilize different enzymes to reduce 

nitrite to NO, which has to include an as-yet elusive nitrite reductase. Based on their catalytic 

potentials, this new nitrite reductase might be found among the HAO-like proteins described 

next. 

 

A Collection of HAO-like Multiheme Proteins in Anammox Bacteria 

As alluded above, hydrazine oxidation is catalyzed artificially by HAO, a structurally 

complex homotrimeric protein that binds eight c-type hemes per subunit [43,44]. Seven of 

these hemes are His/His ligated and constitute a wire of heme groups that transfer the (four) 

electrons derived from hydroxylamine to nitrite (eqn. 2) via different routes to exit heme 1 

(Figures 2B-C). Here, the catalytic center is heme 4, which lacks a distal ligand, offering the 

site for substrate binding and conversion (Figure 2D). A peculiar property of heme 4 is that it 

makes two covalent bonds with a tyrosine from a neighboring subunit, which binds the 

subunits to each other. This tyrosine bonding causes the heme 4 structure to become highly 

ruffled, resulting in a characteristic absorbance band around 460 nm in the UV-Vis spectrum 
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of the reduced enzyme. Due to this absorbance band, catalytic heme 4 is termed the P460 

prosthetic group. 

 

Amazingly, anammox genomes contain genes coding for 10-11 different HAO-like octaheme 

protein paralogs that are highly conserved among the sequenced genomes. Most of these 

paralogs are expressed to variable degrees in K. stuttgartiensis (Figure 2A). The immediate 

questions then are: which gene product represents the hydrazine-oxidizing enzyme hydrazine 

dehydrogenase (HDH) and what is the function of the other ones? By direct purification two 

of these HAO-like proteins, both major proteins in the cells, were functionally identified [28, 

45-48]. The first one, kustd1061, named after the K. stuttgartiensis (kust) gene identifier, was 

studied in detail and its crystal structure was resolved (Figures 2B-D) [47]. Despite having 

only 30% amino acid sequence identity, the structures of kustd1061 and HAO from the 

aerobic ammonium oxidizer Nitrosomonas europaea (NeHAO) are fully superimposable and 

both proteins share highly similar catalytic sites. Like NeHAO (eqn. 2), kustd1061 oxidizes 

hydroxylamine, but instead of nitrite its end product is NO (Figure 1, reaction 4). This 

difference in activity is the result of a small difference near the catalytic site preventing the 

addition of water to produce nitrite [47]. After its activity, kustd1061 is denoted 

hydroxylamine oxidase (KsHOX). However, the physiological function of KsHOX would 

remain enigmatic since hydroxylamine is not an established intermediate in the anammox 

process. Similar to NeHAO, KsHOX can also oxidize hydrazine to N2. In crystals of KsHOX 

soaked with hydrazine, hydrazine (or more likely its two-electron oxidation product diazene 

(NH=NH)) is seen as being bound to the catalytic heme 4 (Figure 2D) [47]. As is the case for 

NeHAO, this hydrazine oxidizing activity is observed in vitro, but it is not a physiological 

one. The genuine HDH in K. stuttgartiensis is represented by kustc0694 [28,48] and a close 

homolog of it has been described for J. caeni [45]. In the genome of K. stuttgartiensis a 
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second gene (kustd1340) with a high sequence identity to HDH (>98% in the translated amino 

acid sequence) is present. This gene duplication, which is conserved in most genomes of 

anammox species, most likely represents a second HDH species. The expression of kustd1340 

(on the transcript level) was only detected in K. stuttgartiensis cells under stress and its 

regulation remains to be determined [49]. 

 

The structural similarity of NeHAO and KsHOX is most likely shared in HDH [48]. All three 

are homotrimeric proteins with a P460 catalytic heme and all three perform oxidative reactions 

(eqn. 2 and reactions 3 and 4 in Figure 1). Unlike the former two, HDH associates into 

octamers of trimers ((α3)8) carrying an astonishing 192 c-type heme molecules [47]. P460 

seems to be specifically designed to perform oxidative reactions [47,48,50]. The other HAO-

like proteins listed in Figure 2A lack the tyrosine involved in covalent bonds with heme 4, and 

consequently would be devoid of the particular catalytic center, thereby favoring reductive 

reactions. In K. stuttgartiensis cells, we find two notable and quite abundant representatives of 

these [30,51]. The first one is the kust0457-0458 protein in which octaheme kustc0458 and 

diheme kustc0457 constitute a heterododecameric (α6β6) complex comprising 60 c-type 

hemes [51]. The second one (kuste4574), a close homolog of kustc0458, forms part of a novel 

type of Rieske-heme b (R/b; bc1) complex (kuste4569-74) (Figure 1) [30]. Again, homologs 

of kust0457-0458 and of this R/b complex, including HAO-like kuste4574 homologs, are 

found in all anammox bacteria genomes sequenced thus far. Merely based on protein 

sequence analyses, it has been postulated that the role of the kust0457-0458 and kuste4574 is 

the reduction of nitrite, making these the elusive nitrite reductases producing NO [29]. 
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Ammonium Production 

In the absence of ammonium, anammox bacteria are able to generate this substrate by 

reducing nitrate or nitrite using electrons derived from the oxidation of supplementary organic 

or inorganic compounds [18,29]. Nitrite formation from nitrate is mediated by the 

bidirectional nitrite:nitrate oxidoreductase (NXR) (Figure 1, reaction 5) [51,52]. Under 

normal (i.e., autotrophic) growth conditions with CO2 as sole carbon source and with 

ammonium and nitrite as energy substrates, NXR catalyzes the oxidation of nitrite to nitrate to 

provide the reducing equivalents for CO2 fixation The way nitrite is reduced to ammonium is 

another missing piece in the anammox puzzle. 

 

In DNRA bacteria, the dissimilatory (respiratory) reduction of nitrite to ammonium (Figure 1, 

reaction 6) is commonly catalyzed by nitrite reductase NrfA, also referred to as cytochrome 

c552 (nitrite reductase) after the absorbance maximum of the catalytic heme [53-56]. NrfA is a 

dimeric pentaheme protein in which heme 1 represents this catalytic center and hemes 2-5 are 

involved in electron transfer (Figure 3B). Heme 1 has lysine as the distinctive proximal 

ligand, which is reflected in the CXXCK binding motif in the protein sequence. Interestingly, 

these five hemes are fully superimposable to hemes 4-8 in HAO-like octaheme proteins 

(Figure 3A) and the latter have been suggested to be evolved from the fusion of a NrfA-like 

progenitor and a triheme protein [50]. In fact, octaheme proteins that catalyze nitrite reduction 

to ammonium and in which catalytic heme 4 is proximally ligated to a lysine through the 

CXXCK motif are known from Thioalkalivibrio species (Figure 3C) [57-59]. Despite being 

octaheme proteins, their sequences are unrelated to those of NeHAO and the HAO-like 

anammox proteins listed in Figure 2A. Still, heme packing is also conserved here (Figure 3). 

Nitrite reduction to ammonium is also catalyzed by assimilatory nitrite reductases and, at least 

in vitro, by dissimilatory and assimilatory sulfite reductases [60-63]. Reactions catalyzed by 
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these enzymes, in this case iron sulfur proteins bearing siroheme as their catalytic center (Box 

2), are the six-electron reductions of nitrite to ammonium (Figure 1, reaction 6) or sulfite to 

sulfide (eqn. 3). 

HSO3
- + 6H+ + 6e-  → HS- + 3H2O  E0’= -0.116 V  (eqn. 3) 

These enzymes are somewhat promiscuous in the use of their nitrogenous and sulfurous 

substrates, which may be the result of the isoelectronic character of the reactions. Siroheme-

type sulfite reductase has octaheme counterparts [64-66]. While amino acid sequences of 

these octaheme sulfite reductases and HAO-like proteins differ completely, the arrangement 

of their eight hemes are spatially nearly the same (Figure 3D). This conservation applies to 

one more sulfurous compound-reducing enzyme, octaheme tetrathionate reductase (OTR) 

from Shewanella, which is capable of nitrite reduction as well (Figure 3E) [67,68]. 

 

The puzzling aspect is that genomes of anammox bacteria lack all of the above nitrite 

reductases. However, Brocadia [40] and Jettenia [41] species have a gene whose translated 

amino acid sequence fully aligns with pentaheme NrfAs, except that the diagnostic CXXCK 

motif for the binding of the catalytic heme 1 is replaced by the canonical CXXCH motif. 

However, this replacement is also seen in genes from established ammonifying bacteria like 

Anaerobacter dehalogenans and Campylobacter jejuni [69]. Therefore, the particular 

pentaheme proteins most likely represent alternative NrfA-like nitrite reductases. 

Interestingly, the catalytic heme (2) in the Shewanella OTR (Figure 3E) has a lysine as its 

proximal ligand, despite the presence in the amino acid sequence of the CXXCH binding 

motif [67]. In the crystal structure, the histidine is moved away and the lysine is derived from 

another part of the protein backbone. Such ligand switch might also hold for alternative NrfA 

proteins. Nevertheless, the genomes of Kuenenia and Scalindua species do not contain the 

alternative nrfA gene either. However, they do encode an HAO-like protein (kustd2021), 
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which is absent in Brocadia and Jettenia, and consequently might substitute for an 

ammonium-producing nitrite reductase. 

 

Hydrazine Synthesis 

Inspection of the genome of K. stuttgartiensis, suggested a unique set of genes (kuste2859-61) 

to code for HZS [27]. These genes are part of a larger gene cluster (kuste2854-61) (Figure 

4A). Direct purification from K. stuttgartiensis, in which HZS comprised no less than ∼20% 

of the protein complement, substantiated this prediction and confirmed that the proposed 

reaction is catalyzed by HZS as shown in Figure 1 (reaction 2) [28]. The recent resolution of 

the crystal structure provided a clue how HZS might work [70]. Most strikingly, while the 

overall reaction is completely new, HZS seems to take advantage of the functionality of two 

well-studied types of enzymes that both deal with hydrogen peroxide: cytochrome c 

peroxidases (CCPs) and catalases. 

 

HZS was crystallized as a crescent-shaped dimer of heterotrimers (α2β2γ2) in which the α, β 

and γ subunits stand for kuste2861, kuste2860, and kuste2859, respectively (Figures 4B-C). 

The α subunit is mainly structured by six-bladed β propeller sheets and the β subunit by a 

seven-bladed β propeller (Figure 4D). Such β propeller architecture is seen in numerous 

proteins where this structuring provides a solid platform for protein-protein interactions as 

well as for the binding of cofactors that direct activity in diverse enzymes such as NirS nitrite 

reductase, NO reductases, methanol- and methylamine dehydrogenases [71,72]. The structure 

of the γ subunit highly resembles those of CCPs [73,74] and the MauG protein involved in the 

synthesis of tryptophan tryptophylquinone cofactor of methylamine dehydrogenase [75,76]. 

As it is the case for CCPs and MauG, the HZS γ subunit contains two c-type hemes. The first 

one, which is His/His ligated, as opposed to the His/Met ligation in CCPs, is located at the 
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protein surface and the second one, a pentacoordinated heme c, is buried inside the protein, 

representing a catalytic site (Figure 4E). The His/His-ligated heme would then function in 

electron transfer, as has been established for CCPs [73,74]. The edge-to-edge distances 

between these two hemes (15 Å) readily permit the rapid transfer of electrons between both. 

The α subunit is also a diheme protein with a His/His ligated c-type heme near the protein 

surface and a pentacoordinated heme deep inside (Figure 4E). The distance between both 

hemes (31 Å) is too large to permit electron electron transfer between these centers at 

appreciable rate and the function of the His/His-ligated heme is unknown. However, the 

pentacoordinated heme provides a second catalytic site. A peculiar feature of this heme is that 

its proximal ligand is not the histidine of the CXXCH heme-binding motif, but a tyrosine of 

the amino acid backbone. The histidine of the CXXCH heme-binding motif is instead moved 

away by a zinc atom. Tyrosine ligation is common in many catalases that split hydrogen 

peroxide into oxygen and water by an intramolecular redox reaction (“disproportionation”) 

[77,78]. The α and γ subunits are interconnected by a system of tunnels, including one that 

gives access to the protein surface (Figure 4F). The latter would allow the entry and exit of 

substrate and product, respectively, whose trafficking is mostly likely directed by a flexible 

loop derived from the β subunit. 

 

CCPs catalyze the two-electron reduction of hydrogen peroxide to water: H2O2 + 2H+ + 2e- → 

2 H2O. In analogy, the γ subunit could mediate the three-electron reduction of NO to 

hydroxylamine, which is isoelectronic with H2O2 reduction to water by CCPs. The 

observation that HZS is able to oxidize hydroxylamine [28], as HOX does (Figure 1, reaction 

4), supports the idea of NH2OH and NO being reactants. The transfer of hydroxylamine to the 

α subunit catalytic heme and its subsequent combination with ammonia (NH3), which is 

associated with the reduction and oxidation of the nitrogen atoms of NH2OH and NH3, 
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respectively (a so-called “comproportionation” reaction) then would yield hydrazine (Figure 

4F). Ammonia could be supplied via another, minor tunnel in the protein. Intriguingly, this 

mechanism highly resembles the Raschig process used in industrial hydrazine synthesis. In 

this process, ammonia is oxidized to chloramine- reflected in HZS in hydroxylamine -or a 

hydroxylamine-derived amine group ligated to the heme iron- that reacts with a second 

ammonia to produce hydrazine. A consequence of the anticipated process is that 

hydroxylamine would have access to the catalytic sites, but also might escape from the 

protein. Upon its loss, the HOX protein could come into play by neatly regenerating 

hydroxylamine into NO and three electrons that are required for the hydrazine synthase 

reaction, resolving the enigmatic question of its physiological role (Figure 1, reaction 4). 

 

The view presented so far is primarily based on what the protein structure tells us. Many 

details regarding the HZS reaction mechanism remain to be established, which will not be an 

easy task. As isolated HZS is an extremely slow enzyme (specific activity, 20 nmol h-1 mg 

protein-1) and well over 90% of the activity is already lost by disrupting the cells [28]. This 

loss might be due to an inactivation of HZS itself, but also could also be the result of the 

disruption of a multicomponent enzyme system. Such system might include other gene 

products found the HZS gene cluster (Figure 4A) as there are a membrane-bound, heme b-

containing electron transfer module (kuste2855-56) and a soluble triheme protein (kuste2854), 

potentially involved in the gathering of electrons derived from menaquinol oxidation and their 

delivery to HZS [29,30] (Figure 1). However, this plunges us into another wide-open field in 

anammox research, which only has been explored conceptually [29]: the coupling at the 

anammoxosome membrane between catabolism and the generation of a proton-motive force 

for ATP synthesis. A small corner of the veil has only been raised very recently by the 

elucidation of a series of exceptional membrane-bound protein complexes (Figure 1) [30]. 
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Concluding remarks 

A survey into the progress in the research on anammox biochemistry, even though in its 

infancy, leaves us with an amazing view into the way these microorganisms took advantage of 

common biochemical processes and mechanisms. Enzymic reactions were directed so that 

they offered anammox bacteria their unique ecological space. The HAO-like octaheme 

proteins are excellent examples of this. These multiheme proteins are broadly used for the 

interconversion of nitrogenous and sulfurous compounds. Here, highly diverse octaheme 

proteins convergently evolved into common structures (Figure 3). In anammox bacteria the 

opposite might be the case; a divergent evolution may have resulted in different 

functionalities, most of which are still elusive. Future research, as done for HOX [47] and 

HDH [48], has to establish the unknown functions and, more importantly, may reveal how 

each protein is tuned to a specific function by the presence common catalytic sites and 

conserved, c-type heme-based electron transfer pathways. In general, the structure-function 

relationship is only partially understood regarding multiheme proteins. The anammox HAO-

like proteins offer a grand opportunity to address this issue systematically. Hydrazine 

synthase, the only enzyme besides N2O-forming NO reductase that is capable of forging an N-

N bond, is a second example. Here, two functionalities seem to be combined to make 

something new: hydrazine. However, the reaction mechanism by which hydrazine is 

produced, is largely unknown, but it most certainly will involve a delicate interplay and 

timing of redox reactions and substrate tunneling. Hydrazine is the most powerful reductant in 

nature. In connection with its oxidation at the anammoxosome a proton-motive force has to be 

established that drives ATP synthesis (Figure 1 and Box 1). These respiratory processes 

depend on membrane-bound respiratory systems, including novel bc1-like complexes [30]. 

Their study merits further attention not only from the bio-energetic point of view but also 

because genes coding for similar protein complexes are found in the (meta)genomes of many 
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anaerobic microorganisms that play an often unknown, but possibly crucial role in anaerobic 

microbial processes. 

 

Anammox bacteria are found as different species and in an enormous range of subspecies. 

Genomes sequenced thus far indicate that all species rely on a common inventory of enzymes 

described in this paper, albeit with notable variations. The key intermediate NO and 

ammonium as a primary substrate appear to be formed from nitrite by different and also 

unknown nitrite reductases. A differential use and expression of these enzymes may provide a 

(sub)species its own ecological niche. The reason for this differential use is unclear, but the 

finding of answers regarding anammox may reveal new concepts as to the way biochemical 

diversification underlies biological diversity, ultimately reflected in the millions [93,94] or 

even a trillion [95] of microbial species that are found on earth. 
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Legends to the Figures 

Figure 1. Current view of the anammox metabolism and the role of heme proteins 

herein. Substrates (ammonium, nitrite) and product (N2) are highlighted light blue. Reactions 

are numbered (black circles with white numbers) as described in the text and are catalyzed by 

the following enzymes (kust numbers in parentheses refer to the gene identifiers of Kuenenia 

stuttgartiensis): 1. Nir, nitrite reductase, in anammox bacteria represented by heme d 

containing NirS, copper-containing NirK, or still to be identified new enzyme species. 2. 

HZS, hydrazine synthase The alpha, beta and gamma subunits are gene products of 

kuste2861, kuste2860 and kuste2859, respectively 3. HDH, hydrazine dehydrogenase 

(kustc0694, kustd1340) 4. HOX, hydroxylamine oxidase (kustd1061) 5. NXR, nitrite:nitrate 

oxidoreductase comprising the alpha (kustd1700), beta (kustd1703) and gamma (kustd1704) 

subunits [30,51,52] 6. Nrf, nitrite reductase forming ammonium, which is represented in 

anammox bacteria by a variant of NrfA or by a novel enzyme. Note that reactions occur in the 

anammoxosome (Box 1). Substrate and electron flows are indicated by black and red arrows, 

respectively. Dashed lines denote reactions and processes that have to be established. 

Standard midpoint redox potentials at pH 7 (E0’) of redox reactions are indicated in 

parentheses and the number of electrons involved in these reactions are mentioned in the red 

diamonds that represent yet to be identified electron carriers (c-type hemes, blue copper 

proteins) that shuttle the electrons between the different enzymes. Heme b, c-type octaheme 

and other c-type multiheme proteins are marked red, purple and orange, respectively. The 

(four) electrons derived from hydrazine oxidation (reaction 3) are branched to two novel 

Rieske-heme b complexes (R/b; bc1 complexes), R/b-2 (kustd1480-85) and R/b-3 (kuste4569-

74); the third complex, R/b-1 (kuste3096-97) is only lowly expressed and is not shown [30]. 

These R/b complexes may have a crucial but poorly understood complex role in energy 

metabolism as there are the reduction of menaquinone-7 (MQ), pumping of protons (“H+”) 
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across the anammoxosome membrane to create the proton-motive force that drives ATP 

synthesis by the ATP synthase (ATPase), and the reduction of NAD(P)+ to NAD(P)H at one 

of the subunits that form part of the complexes [30]. R/b-3 also might catalyze the reduction 

of nitrite to NO by an associated octaheme protein (kuste4574). The reduction of NAD(P)+ 

withdraws electrons from the cyclic electron flow, which have to be replenished by the 

oxidation of nitrite to nitrate by NXR (reaction 5). The three electrons needed for hydrazine 

synthesis (reaction 2) are thought to be provided by the oxidation of reduced menaquinone 

(MQH2), which is catalyzed by an electron transfer module (ETM) composed of heme b-

containing kuste2856 and the heptaheme protein kuste2855 [30].  

Figure 2. Hydoxylamine oxidoreductase (HAO)-related octaheme proteins in Kuenenia 

stuttgartiensis. (A) HAO-like proteins in the Kuenenia stuttgartiensis (kust) genome. Highly 

homologous proteins are boxed by dashed lines. Lengths of the polypeptides are drawn to scale (aa, 

amino acids) and homologous cytochrome c-rich parts are vertically aligned. Redox partners represent 

(potential) electron transfer companions found in the same gene cluster. Expression values are given 

as n–fold coverage of Solexa RNA sequencing of the K. stuttgartiensis transcriptome [27,28]. 

Structural motifs: TMH, transmembrane-spanning helix; cleavage site, N-terminal cleavage site; 

multi-copper oxidase, multicopper oxidase domain; Catalysis, catalytic heme; CXXCH, heme c-

binding motif; CXXXXCH, unusual heme c-binding motif in hydrazine dehydrogenases (kustc0694 

and kustc1340); Tyrosine, tyrosine covalently linking subunits; laminin, laminin sequence. It should 

be noted that these HAO-like proteins are conserved in all sequenced genomes of anammox bacteria, 

except for kustd2021. (B) Overall architecture of the homotrimeric hydroxylamine oxidase 

from Kuenenia stuttgartiensis (KsHOX) (PDB ID code 4N4L) [47]. Its three subunits are 

displayed in different colors. The localization of the catalytic site is indicated by the square. 

(C) Arrangement of the c-type hemes in homotrimeric hydroxylamine oxidase from K. 

stuttgartiensis (KsHOX). The Figure shows the outline of the structure of KsHOX (PDB ID 

code 4N4J) seen from the bottom along the 3-fold symmetry axis featuring the 24 hemes. The 
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8 hemes present in the same monomer have the same color and are numbered as indicated. 

Note that hemes are arranged in a ring-like structure. Arrows indicate the routes electrons can 

take to exit heme 1 following substrate oxidation at the catalytic site (heme 4). The spatial 

arrangement of these hemes is fully conserved in hydroxylamine oxidoreductase from N. 

europaea (NeHAO) [43,44,47]. (D) X-ray structure of the heme 4 (P460) catalytic center of 

KsHOX soaked with hydrazine seen from the same axis as in (B). A dinitrogen species, a 

putative diazene (HN=NH) (blue) is seen on top of the heme. Structural images were made 

using PyMOL (http://www.pymol.org). Panel A was adapted from [29] and panels BCD were 

adapted from [48]. 

 

Figure 3. Structural features of multiheme proteins involved in the conversion of 

nitrogen and sulfur compounds. Structures of the monomers that are rainbow-colored in 

going from the N- to the C-terminal protein sequences are shown on the left, heme 

arrangements with the central iron atoms colored orange are in the middle and quaternary 

structures with one of the subunits in blue are displayed on the right. Hemes are numbered in 

the order as found in the protein sequence. Catalytic hemes are circled in red. Hemes that 

constitute the electron entry or exit points are circled blue. Hemes circled green are at the 

contact site with a neighboring subunit, enabling electron wiring in between different subunits 

as shown in Figure 2C. Note the conservation in heme spatial arrangements despite the 

substantial divergence in overall protein structures (and protein sequences). (A) Homotrimeric 

HAO-like hydroxylamine oxidase from Kuenenia stuttgartiensis (KsHOX; PDB ID code 

4N4J) [45] also shown in Figures 2B-D. (B) Ammonium-forming homodimeric pentaheme 

nitrite reductase (NrfA) from) Sulfurospirillum deleyianum, PDB ID code 1QDB [53,79]. (C) 

Hexameric octaheme nitrite reductase (ONR) from Thioalkalivibrio nitratireducens (PDB ID 

code 2OT4) [57]. (D) Homotrimeric octaheme sulfite reductase MccA from Wolinella 
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succinogenes (PDB ID code 4RKM). In this protein, electron-entry heme 8 is bound by the 

non-canonical (CX15CH) binding motif, which gives this heme a different orientation, 

possibly facilitating the better interaction with the putative electron donor, iron-sulfur protein 

MccC [66]. (E) Monomeric octaheme tetrathionate reductase from Shewanella oneidensis 

(PDB code 1SP3) [67]. This protein also performs reduction of nitrite to ammonium [68]. 

Modified from [66] with permission. 

  

Figure 4. Gene cluster organization and structural properties of the hydrazine synthase 

(HZS) system from Kuenenia stuttgartiensis. (A) Structural organization of its gene 

products. Lengths of the gene products and the position of structural motifs are drawn to scale 

(aa, amino acids). Structural motifs are specified in the Figure. Numbers refer to the kuste 

gene numbers. Abbreviations: cleavage site, N-terminal cleavage site; TMH, transmembrane-

spanning helix. (B) Overall structure of the HZS complex; α subunits are colored green, β 

subunits are blue, and γ subunits are grey (PDB ID code 5C2V) [70]). (C) Surface 

representation highlighting the heme (sticks) and metal cofactors; Ca, calcium, Zn, zinc. 

Edge-to-edge distances between the hemes within a subunit are indicated in Ångströms. 

Subunits are colored as in (B). (D) Structure of the seven-bladed propeller β subunit. (E) 

Structure of the catalytic heme (γII) of the γ subunit. Note that this heme is covalently bound 

to protein by three thioether bonds, two (γCys102 and γCys105) derived from the canonical 

CXXCH heme-binding motif and a unique binding to the C1 porphyrin methyl derived from 

γCys165. The heme iron binds water (red sphere) as its upper (distal) ligand. (F) Structure of 

the catalytic heme (αI) of subunit α. Note that this heme has a tyrosine (αTyr591) as its 

proximal ligand. The histidine (αHis587) of the CXXCH binding motif is moved away by a 

zinc atom (blue sphere) that also coordinated with one of the heme propionyl groups, with a 

water molecule (red sphere) and with a cysteine (αCys303). (G) Cartoon showing the 
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proposed reaction mechanism (see text for further details) as suggested by the crystal structure 

of HZS. Structural images were made using PyMOL (http://www.pymol.org). Panel A was 

adapted from [29], and panels B, C and G were adapted from [70]. 

Box 1. Cell Plan of Anammox Bacteria and the Anammoxosome 

Contrary to most Prokaryotes, anammox bacteria have a rather complicated cell plan (Figure 

IA) [80]. In essence, their cell plan consists of three membrane systems. The outermost 

membrane together with a thin peptidoglycan layer constitutes the cell wall, which may be 

covered by S-layer protein lattice [81,82].  The second membrane layer surrounds the 

cytoplasm, leaving a periplasmic space in between these two outer membrane systems like in 

Gram-negative bacteria. The nucleoid (DNA), transcription, translation and household 

machinery as well as anabolic enzymes are present in the cytoplasm. The largest part of the 

cell is comprised of a vacuolar cell organelle, the anammoxosome, which is fully enclosed by 

the third membrane layer [83,84]. Within this organelle, the enzymes involved in catabolism, 

such as the HAO-like proteins and HZS, discussed in this paper are found; the nitrite-nitrate 

oxidoreductase (NXR) system is typically associated with tubule-like structures that cross the 

anammoxosome [51]. An unusual feature of anammox cell membranes is their composition 

(Figure IB). Herein, C17-C20 saturated fatty acids and alcohols and fused by cis-junctions to 

make ladder-like (‘ladderane’) cyclobutane and cyclohexane ring systems [85,86]. 

 

Figure I.  Cell Plan and Lipid Structures of Anammox Bacteria. (A) Schematic overview 

(left) and transmission electron microscopy image (right) of a cell of the anammox bacterium 

Kuenenia stuttgartiensis. Within the central organelle, the anammoxosome, tubule-like 

structures are found (white arrow heads) as well as electron-dense iron-rich particles (black 

arrowheads). Note that not all tubule-like structures seen in the micrograph are represented in 

the schematic overview. Scale bar, 500 nm. (B) C17-C20 ladderane lipids containing 3-5 
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cyclobutane rings, with or without a cyclohexane ring. Fatty acids are esterified with 

methanol or the glycerol backbone, and alcohols are ether-linked to glycerol, all in different 

combinations. Adapted with permission from [49, 50]. 

Box 2. Heme proteins 

The chemical properties offered by iron protoporphyrins IX (heme, Fig. I) are exploited in 

numerous proteins that perform a wide array of functions, including electron transfer, redox 

catalysis, gas sensing and gas transport [36,87-89]. In these proteins, heme may be present as 

one of a number of derivatives, most notably heme c and heme b. By structural modifications, 

the reactivity of the heme can be directed. Heme d, for instance, is the catalytic cofactor of 

nitrite reductases producing NO [34-37] and of bd terminal oxidase [90], while siroheme is 

the catalytic center of assimilatory nitrite reductases as well as assimilatory and dissimilatory 

sulfite reductases, performing the 6-electron reduction of their substrates [60-63]. Heme c is a 

ubiquitous constituent of redox proteins [87-89]. Unlike the other derivatives, heme c is 

covalently bound to the protein backbone by two cysteine (C) thioethers, which is commonly 

seen in a protein sequence by the CXXCH binding motif (X stands for any amino acid). In 

this binding, the histidine (H) constitutes the fifth, so-called proximal, ligand to the iron heme. 

The sixth (“distal”) ligand position may be vacant, providing a side for substrate binding and/ 

or redox catalysis. The distal ligand position also may be taken by a protein amino acid, 

usually a histidine (His/His ligation) or methionine (His/Met ligation), making the heme an 

electron-transferring or electron-storing one [88,89]. By a combination of enzyme-structural 

factors, the oxidation-reduction potential of a c-type heme can be precisely poised over a 

range of more than 800 mV [88,91]. Multiheme proteins possess anywhere from two to more 

than 20 c-type hemes, which are spatially arranged with respect to another such that electrons 

can be transferred over a long range or stored in order to fine-tune reaction rates [88,91,92]. 
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Structures of Heme Molecules. 

 





What are the specific functions of different HAO-like proteins and how are they tuned for a 

specific function? 

Which proteins reduce nitrite to NO and ammonium in different anammox species? 

What is the catalytic mechanism of hydrazine synthase? 

How are proton-/ion-motive forces generated in the anammoxosome? 

How do different anammox species find their specific ecological niche using a common 

inventory of heme proteins? 



About 30-70% of all nitrogen that is released into the atmosphere is produced by 

microorganisms that have been considered impossible for a long-time, the anaerobic 

ammonium-oxidizing (anammox) bacteria. 

 

Anammox bacteria oxidize ammonium in the absence of oxygen with nitrite as the terminal 

electron acceptor. Substrate conversion proceeds through two highly toxic intermediates, 

nitric oxide and hydrazine. 

 

Anammox metabolism relies on multiheme proteins that structurally resemble ones known 

from other organisms, but that have new functions in the anammox bacteria. 

 

Anammox metabolism resides in a special and unique cell organelle, the anammoxosome. 

Here, energy released in the anammox reaction is used to generate proton-motive force that 

drives ATP synthesis. This respiratory process is supported by novel membrane-bound 

protein complexes.  
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