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Abstract. The Mumford–Tate conjecture is a precise way of saying
that the Hodge structure on singular cohomology conveys the same
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1 Introduction

The main result of this paper is the following theorem. The next paragraph
recalls the Mumford–Tate conjecture; and §1.5 gives an outline of the proof.

1.1 Theorem. — Let K be a finitely generated subfield of C. If A is an abelian
surface over K and X is a K3 surface over K, then the Mumford–Tate conjec-
ture is true for H2(A×X)(1).

1.2 The Mumford–Tate conjecture. — Let K be a finitely generated field
of characteristic 0; and let K →֒ C be an embedding of K into the complex
numbers. Let K̄ be the algebraic closure of K in C. Let X/K be a smooth
projective variety. One may attach several cohomology groups to X . For the
purpose of this article we are interested in two cohomology theories: Betti
cohomology and ℓ-adic étale cohomology (for a prime number ℓ). We will write
Hw

B(X) for the Q-Hodge structure Hw
sing(X(C),Q) in weight w. Similarly, we

write Hw
ℓ (X) for the Gal(K̄/K)-representation HW

ét (XK̄ ,Qℓ).
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1692 Johan Commelin

The Mumford–Tate conjecture was first posed for abelian varieties, by Mumford
in [22], and later extended to general algebraic varieties. The conjecture is a
precise way of saying that the cohomology groups Hw

B(X) and Hw
ℓ (X) contain

the same information about X . To make this precise, let GB(H
w
B(X)) be the

Mumford–Tate group of the Hodge structure Hw
B(X), and let G◦

ℓ (H
w
ℓ (X)) be

the connected component of the Zariski closure of Gal(K̄/K) in GL(Hw
ℓ (X)).

The comparison theorem by Artin, comparing singular cohomology with étale
cohomology, canonically identifies GL(Hw

B(X)) ⊗ Qℓ with GL(Hw
ℓ (X)). The

Mumford–Tate conjecture (for the prime ℓ, and the embedding K →֒ C) states
that under this identification

GB(H
w
B(X))⊗Qℓ

∼= G◦
ℓ (H

w
ℓ (X)).

1.3 Notation and terminology. — Like above, letK be a finitely generated
field of characteristic 0; and fix an embedding K →֒ C. In this article we
use the language of motives in the sense of André, [2]. To be precise, our
category of base pieces is the category of smooth projective varieties over K,
and our reference cohomology is Betti cohomology, HB(_). We stress that
HB(_) depends on the chosen embedding K →֒ C, but the resulting category of
motives does not depend on K →֒ C, see proposition 2.3 of [2]. We write Hw(X)
for the motive of weight w associated with a smooth projective variety X/K.
The Mumford–Tate conjecture naturally generalises to motives, as follows:
Let M be a motive. We will write HB(M) for its Hodge realisation; Hℓ(M) for
its ℓ-adic realisation; GB(M) for its Mumford–Tate group (i.e., the Mumford–
Tate group of HB(M)); and G◦

ℓ (M) for G◦
ℓ (Hℓ(M)). We will use the notation

MTCℓ(M) for the conjectural statement

GB(M)⊗Qℓ
∼= G◦

ℓ (M),

and MTC(M) for the assertion ∀ℓ : MTCℓ(M).
The following remark allows us to take finitely generated extensions of the base
field, whenever needed. If K ⊂ L is an extension of finitely generated subfields
of C, and if M is a motive over K, then MTC(M) ⇐⇒ MTC(ML); see
proposition 1.3 of [19].
In this paper, we never use specific properties of the chosen embedding K →֒ C,
and all statements are valid for every such embedding. In particular, we will
speak about subfields of C, where the embedding is implicit.
In this paper, we will use compatible systems of ℓ-adic representations. For
more information we refer to the book [27] by Serre, the letters of Serre to
Ribet (see [28]), or the work of Larsen and Pink [16, 17].
Throughout this paper, A is an abelian variety, over some base field. (Outside
section 5, it is even an abelian surface.) Assume A is absolutely simple; and
choose a polarisation on A. Let (D, †) denote its endomorphism ring End0(A)
together with the Rosati involution associated with the polarisation. The sim-
ple algebra D together with the positive involution † has a certain type in the

Documenta Mathematica 21 (2016) 1691–1713



Mumford–Tate for Product of Abelian Surface and K3 1693

Albert classification that does not depend on the chosen polarisation (see the-
orem 2 on page 201 of [23]). We say that A is of type x if (D, †) is of type x,
where x runs through {i, . . . , iv}. If E denotes the center of D, with degree
e = [E : Q], then we also say that A is of type x(e).
Whenever we speak of simple groups or simple Lie algebras, we mean non-
commutative simple groups, and non-abelian simple Lie-algebras.
Let T be a type of Dynkin diagram (e.g., An, Bn, Cn or Dn). Let g be a
semisimple Lie algebra over K. We say that T does not occur in the Lie type
of g, if the Dynkin diagram of gK̄ does not have a component of type T . For a
semisimple group G over K, we say that T does not occur in the Lie type of G,
if T does not occur in the Lie type of Lie(G).

1.4 — Let K be a finitely generated subfield of C. Let A/K be an abelian
surface, and let X/K be a K3 surface. Since H1(X) = 0, Künneth’s theorem
gives H2(A×X) ∼= H2(A)⊕H2(X). Recall that the Mumford–Tate conjecture
for A is known in degree 1, and hence in all degrees. (This is classical, but see
corollary 4.4 of [18] for a reference.) The Mumford–Tate conjecture for X (in
degree 2) is true as well, by [30, 31, 1]. Still, it is not a formal consequence that
the Mumford–Tate conjecture for A ×X is true in degree 2: for two motives
M1 and M2, it is a formal fact that GB(M1 ⊕ M2) →֒ GB(M1) × GB(M2),
with surjective projections onto GB(M1) and GB(M2). However, this inclusion
need not be surjective. For example, if M1 =M2, then map in question is the
diagonal inclusion. Similar remarks hold for G◦

ℓ (_).

1.5 Outline of the proof. — Roughly speaking, the proof of theorem 1.1
as presented in this paper, is as follows:

1. We replace H2(A)(1) and H2(X)(1) by their transcendental parts MA

and MX . It suffices to prove MTC(MA ⊕MX), see lemma 7.2.
2. It suffices to show that G◦

ℓ (MA⊕MX)der ∼= G◦
ℓ (MA)

der×G◦
ℓ (MX)der, see

lemma 7.3.
Write gA for Lie(GB(MA)

der). There exists a number field FA acting on gA,
such that gA viewed as FA-Lie algebra is a direct sum of absolutely simple
factors. Analogously we find gX and FX ; see §6.4. We explicitly compute gA,
gX , FA, and FX in remark 6.3 and remark 6.6.

3. Using Čebotarëv’s density theorem, we show that (2.) can be applied if
FA 6∼= FX ; see lemma 7.4.

4. By Goursat’s lemma, (2.) can also be applied if gA ⊗ C and gX ⊗ C do
not have a common simple factor; see lemma 7.6.

5. The previous two items cover almost all cases. The remaining cases (listed
in §7.5) fall into two subcases.
(a) If dim(MX) ≤ 5, we show that we may replaceX by its Kuga–Satake

abelian variety B. We then prove MTC(A×B) using techniques of
Lombardo, developed in [18]; see lemma 7.7. Note: In this case the
condition in (2.) might not hold (for example if X is the Kummer
variety associated with A).

(b) In the final case FA
∼= FX is totally real quadratic. We show that
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1694 Johan Commelin

if the condition in (2.) does not hold, then there is a prime num-
ber ℓ for which Hℓ(MX) is not an irreducible Galois representation.
However, by assembling results from [4], [6], and [34], we see that
there exist places for which the characteristic polynomial of Frobe-
nius acting on Hℓ(MX) is an irreducible polynomial. This leads to
a contradiction, and thus (2.) can be applied in this final case; see
lemma 7.9.

1.6 Acknowledgements. — I first and foremost thank Ben Moonen, my
supervisor, for his inspiration and help with critical parts of this paper. Part
of this work was done while I was visiting Matteo Penegini at the University
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man for useful discussions about parts of the proof. I thank Ronald van Luijk
for telling me about [6]. All my colleagues in Nijmegen who provided encourag-
ing or insightful remarks during the process of research and writing also deserve
my thanks. Further thanks goes to grghxy, Guntram, and Mikhail Borovoi on
mathoverflow.net1. I sincerely thank the referee for all the valuable comments
and structural remarks that helped improve this article.
This research has been financially supported by the Netherlands Organisation
for Scientific Research (NWO) under project no. 613.001.207 (Arithmetic and
motivic aspects of the Kuga–Satake construction).

2 Galois theoretical preliminaries

Recall the following elementary result from finite group theory.

2.1 Lemma. — Let T be a set with a transitive action by a finite group G.
Fix n ∈ Z≥0, and let C ⊂ G be the set of elements g ∈ G that fix at least n
points of T . If n · |C| ≥ |G|, then |T | = n.
Proof. By computing the cardinality of {(g, t) ∈ G×T | gt = t} in two distinct
ways, one gets the formula |G| · |G\T | =

∑

g∈G|T
g|. From this we derive,

1 = |G\T | =
1

|G|

∑

g∈G

|T g| ≥
n · |C|

|G|
≥ 1.

Hence n · |C| = |G| and all elements in C have exactly n fixed points. In
particular the identity element has n fixed points, which implies |T | = n. �

Note that, in the setting of the previous lemma, if the action of G on T is
faithful, then |G| = n, and T is principal homogeneous under G.

2.2 Lemma. — Let F1 be a Galois extension of Q. Let F2 be a number field
such that for all prime numbers ℓ, the product of local fields F1⊗Qℓ is a factor
of F2 ⊗Qℓ. Then F1

∼= F2.

1A preliminary version of lemma 2.2 arose from a question on MathOverflow titled “How
simple does a Q-simple group remain after base change to Qℓ?” (http://mathoverflow.net/
q/214603/78087). The answers also inspired lemma 2.1.
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Proof. Let L be a Galois closure of F2, and let G be the Galois group Gal(L/Q),
which acts naturally on the set of field embeddings Σ = Hom(F2, L). Let n be
the degree of F1, and let C be the set

{

g ∈ G
∣

∣ |Σg| ≥ n
}

of elements in G that
have at least n fixed points in Σ.
By Čebotarëv’s density theorem (Satz VII.13.4 of [24]), the set of primes that
split completely in F1/Q has density 1/n. Therefore, the set of primes ℓ for
which F2⊗Qℓ has a semisimple factor isomorphic to (Qℓ)

n must have density ≥
1/n. In other words, n · |C| ≥ |G|. By lemma 2.1, this implies |Σ| = n, and
since G acts faithfully on Σ, we find that F2/Q is Galois of degree n. Because
Galois extensions of number fields can be recovered from their set of splitting
primes (Satz VII.13.9 of [24]), we conclude that F1

∼= F2. �

2.3 Lemma. — Let F1 be a quadratic extension of Q. Let F2 be a number field
of degree ≤ 5 over Q. If for all prime numbers ℓ, the products of local fields
F1 ⊗Qℓ and F2 ⊗Qℓ have an isomorphic factor, then F1

∼= F2.
Proof. Let L be a Galois closure of F2, and let G be the Galois group Gal(L/Q),
which acts naturally on the set of field embeddings Σ = Hom(F2, L). Observe
that G acts transitively on Σ, and we identify G with its image in S(Σ). Write
n for the degree of F2 over Q, which also equals |Σ|. The order of G is divisible
by n. Hence, if n is prime, then G must contain an n-cycle.
Suppose that G contains an n-cycle. By Čebotarëv’s density theorem there
must be a prime number ℓ that is inert in F2/Q. By our assumption F2 ⊗ Qℓ

also contains a factor of at most degree 2 over Qℓ. This shows that n = 2.
If n = 4, then G does not contain an n-cycle if and only if it is isomorphic
to V4 or A4. If G ∼= V4, then only the identity element has fixed points, and
by Čebotarëv’s density theorem this means that the set of primes ℓ for which
F2 ⊗ Qℓ has a factor Qℓ has density 1/4, whereas the set of primes splitting
in F1/Q has density 1/2. On the other hand, if G ∼= A4, then only 3 of the 12
elements have a 2-cycle in the cycle decomposition, and by Čebotarëv’s density
theorem this means that the set of primes ℓ for which F2 ⊗ Qℓ has a factor
isomorphic to a quadratic extension of Qℓ has density 1/4, whereas the set of
primes inert in F1/Q has density 1/2. This gives a contradiction. We conclude
that n must be 2; and therefore F1

∼= F2, by lemma 2.2. �

3 A result on semisimple groups over number fields

Throughout this section K is a field of characteristic 0.

3.1 Remark. — Let h ⊂ g1 ⊕ g2 be Lie algebras over K such that h projects
surjectively onto g1 and g2. Assume that g1 and g2 are finite-dimensional and
semisimple. Then there exist semisimple Lie algebras s1, t, and s2 such that
g1 ∼= s1 ⊕ t, g2 ∼= t ⊕ s2, and h ∼= s1 ⊕ t ⊕ s2. (To see this, recall that a
finite-dimensional semisimple Lie algebra is the sum of its simple ideals.)

3.2 Lemma. — Let K ⊂ F be a finite field extension, and let G/F be an
algebraic group. If Lie(G)K denotes the Lie algebra Lie(G) viewed as K-algebra,
then Lie(ResF/K G) is naturally isomorphic to Lie(G)K .
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Proof. The Lie algebra Lie(G) is the kernel of the natural mapG(F [ε]) → G(F );
where the Lie bracket may be described as follows: Consider the map

G(F [ε1])×G(F [ε2]) −→ G(F [ε1, ε2])
(X1, X2) 7−→ X1X2X

−1
1 X−1

2

If (X1, X2) ∈ Lie(G) × Lie(G), then a calculation shows that its image lands
in G(F [ε1 · ε2]) ∼= G(F [ε]). What is more, it lands in Lie(G) ⊂ G(F [ε]). We
denote this image with [X1, X2], the Lie bracket of X1 and X2.
Let GF/K denote ResF/K G. The following diagram shows that Lie(GF/K) is
canonically identified with Lie(G)K asK-vector space, and that the Lie bracket
is preserved.

0 Lie(GF/K) GF/K(K[ε]) GF/K(K) 0

0 Lie(G) G(F [ε]) G(F ) 0

≃ ≃

�

3.3 — Let F/K be a finite field extension. Let g be a Lie algebra over F , and
write (g)K for the Lie algebra g viewed as K-algebra. If g is an F -simple Lie
algebra, then (g)K is K-simple: indeed, if (g)K ∼= h ⊕ h′, and X ∈ h, then
[fX,X ′] = 0 for all f ∈ F and X ′ ∈ h′. This implies fX ∈ h, hence h = g.

3.4 Lemma. — For i = 1, 2, let K ⊂ Fi be a finite field extension, and let
gi/Fi be a product of absolutely simple Lie algebras (cf. our conventions in §1.3).
If (g1)K and (g2)K have an isomorphic factor, then F1

∼=K F2.
Proof. By the remark before this lemma, the K-simple factors of (gi)K are all
of the form (ti)K , where ti is an Fi-simple factor of gi. So if (g1)K and (g2)K
have an isomorphic factor, then there exist Fi-simple factors ti of gi for which
there exists an isomorphism f : (t1)K → (t2)K . Let K̄ be an algebraic closure
of K. Observe that

(ti)K ⊗K K̄ ∼=
⊕

σ∈HomK(Fi,K̄)

ti ⊗Fi,σ K̄,

and note that Gal(K̄/K) acts transitively on HomK(Fi, K̄). By assumption,
the ti are absolutely simple, hence the ti⊗Fi,σ K̄ are precisely the simple ideals
of (ti)K⊗K K̄. Thus the isomorphism f gives a Gal(K̄/K)-equivariant bijection
between the simple ideals of (t1)K⊗K K̄ and (t2)K⊗K K̄; and therefore between
HomK(F1, K̄) and HomK(F2, K̄) as Gal(K̄/K)-sets. This proves the result.�

3.5 Lemma. — For i = 1, 2, let Fi be a number field, and let Gi/Fi be an
almost direct product of connected absolutely simple Fi-groups. Let ℓ be a
prime number, and let ιℓ : G →֒ (ResF1/QG1)Qℓ

× (ResF2/QG2)Qℓ
be a sub-

group over Qℓ, with surjective projections onto both factors. If ιℓ is not an
isomorphism, then F1 ⊗Qℓ and F2 ⊗Qℓ have an isomorphic simple factor.
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Proof. Note that (ResFi/QGi) ⊗ Qℓ
∼=

∏

λ|ℓ ResFi,λ/Qℓ
(Gi ⊗Fi

Fλ). By re-
mark 3.1 there exist places λi of Fi over ℓ such that Lie(ResF1,λ1

/Qℓ
(G1 ⊗F1

F1,λ1
)) and Lie(ResF2,λ2

/Qℓ
(G2 ⊗F2

F2,λ2
)) have an isomorphic factor. By lem-

mas 3.2 and 3.4, this implies that F1,λ1

∼=Qℓ
F2,λ2

, which proves the lemma. �

4 Several results on abelian motives

4.1 Definition. — A motive M over a field K ⊂ C is abelian (or an abelian
motive) if it satisfies one of the following three equivalent conditions:

1. M is isomorphic to an object in the Tannakian subcategory generated by
all abelian varieties over K.

2. There exists an abelian variety A over K such that M is isomorphic to an
object in the Tannakian subcategory 〈H(A)〉⊗ generated by H(A). (Note
that 〈H(A)〉⊗ = 〈H1(A)〉⊗.)

3. There is an isomorphism M ∼=
⊕

iMi, and for each Mi there exists an
abelian variety Ai such that Mi is a subobject of H(Ai)(ni).

4.2 Theorem. — The Hodge realisation functor HB(_) is fully faithful on the
subcategory of abelian motives over C. As a consequence, if K is a finitely
generated subfield of C, and if M is an abelian motive over K, then the natural
inclusion GB(M) ⊂ G(M)◦ is an isomorphism, and G◦

ℓ (M) ⊂ GB(M)⊗Qℓ.
Proof. This is an immediate consequence of théorème 0.6.2 of [2]. �

4.3 Remark. — All the motives in this article are abelian motives. For the
motives coming from abelian varieties, this is obvious. The motive H2(X),
where X is a K3 surface, is also an abelian motive, by théorème 0.6.3 of [2].

4.4 Proposition. — The Mumford–Tate conjecture on centres is true for
abelian motives. In other words, let M be an abelian motive. Let ZB(M)
be the centre of the Mumford–Tate group GB(M), and let Zℓ(M) be the centre
of G◦

ℓ (M). Then Zℓ(M) ∼= ZB(M)⊗Qℓ.
Proof. The result is true for abelian varieties (see theorem 1.3.1 of [33] or
corollary 2.11 of [32]).
By definition of abelian motive, there is an abelian variety A such that M is
contained in the Tannakian subcategory of motives generated by H(A). This
yields a surjection GB(A) ։ GB(M). Since GB(A) is reductive, ZB(M) is the
image of ZB(A) under this map. The same is true on the ℓ-adic side. (Note
that G◦

ℓ (A) is reductive, by Satz 3 in §5 of [10].) Thus we obtain a commutative
diagram with solid arrows

Zℓ(A) Zℓ(M) G◦
ℓ (M)

ZB(A) ⊗Qℓ ZB(M)⊗ Qℓ GB(M)⊗Qℓ

≃ ≃

which shows that the dotted arrow exists and is an isomorphism. (The vertical
arrow on the right exists and is an inclusion, by theorem 4.2.) �
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4.5 Lemma. — Let M be an abelian motive. Assume that the ℓ-adic realisa-
tions of M form a compatible system of ℓ-adic representations. If there is one
prime ℓ for which the absolute rank of G◦

ℓ (M) is equal to the absolute rank
of GB(M), then the Mumford–Tate conjecture is true for M .
Proof. The absolute rank of G◦

ℓ (M) does not depend on ℓ (see proposition 6.12
of [16] or Serre’s letter to Ribet). Since M is an abelian motive, we have
G◦

ℓ (M) ⊂ GB(M) ⊗ Qℓ (see theorem 4.2). The Mumford–Tate conjecture
follows from Borel–de Siebenthal theory2: since G◦

ℓ (M) ⊂ GB(M) ⊗ Qℓ has
maximal rank, it is equal to the connected component of the centraliser of its
centre. By proposition 4.4, we know that the centre of G◦

ℓ (M) equals the centre
of GB(M)⊗Qℓ. Hence G◦

ℓ (M) ∼= GB(M)⊗Qℓ. �

4.6 — Let K be a finitely generated subfield of C. A pair (A,X), consisting of
an abelian surface A and a K3 surface X over K, is said to satisfy condition 4.6
for ℓ if

G◦
ℓ

(

H2(A×X)(1)
)der

−֒→ G◦
ℓ

(

H2(A)(1)
)der

×G◦
ℓ

(

H2(X)(1)
)der

is an isomorphism.

4.7 — Let ℓ be a prime number. Let G1 and G2 be connected reductive
groups over Qℓ. By a (G1, G2)-tuple over K we shall mean a pair (A,X),
where A is an abelian surface over K, and X is a K3 surface over K such
that G◦

ℓ (H
2(A)(1)) ∼= G1 and G◦

ℓ (H
2(X)(1)) ∼= G2. We will show in section 7

that there exist groups G1 and G2 that satisfy the hypothesis of the following
lemma, namely that condition 4.6 for ℓ is satisfied for all (G1, G2)-tuples over
number fields.

4.8 Lemma. — Let ℓ be a prime number. Let G1 and G2 be connected reductive
groups over Qℓ. If for all number fields K, all (G1, G2)-tuples (A,X) over K
satisfy condition 4.6 for ℓ, then for all finitely generated subfields L of C, all
(G1, G2)-tuples (A,X) over L satisfy condition 4.6 for ℓ.
Proof. Let (A,X) be a (G1, G2)-tuple over a finitely generated field L. Then
there exists a (not necessarily proper) integral scheme S/Q, with generic point η,
an abelian scheme A/S, and a K3 surface X/S, such that L is isomorphic to
the function field of S, Aη

∼= A, and Xη
∼= X .

By a result of Serre (using Hilbert’s irreducibility theorem, see Serre’s letters
to Ribet [28], or section 10.6 of [26]), there exists a closed point c ∈ S such that
G◦

ℓ (H
2
ℓ (Ac×Xc)(1)) ∼= G◦

ℓ (H
2
ℓ (A×X)(1)). Since G◦

ℓ (H
2
ℓ (A×X)(1)) surjects onto

G◦
ℓ (H

2
ℓ (A)(1)), we find that G◦

ℓ (H
2
ℓ(Ac)(1)) ∼= G◦

ℓ (H
2
ℓ(A)(1)), and similar for X .

The following diagram shows that shows that (A,X) satisfies condition 4.6 for ℓ

2The original article [5], by Borel and de Siebenthal deals with the case of compact Lie
groups. See http://www.math.ens.fr/~gille/prenotes/bds.pdf for a proof in the case of
reductive algebraic groups.
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if (Ac,Xc) satisfies it.

G◦
ℓ (H

2(Ac ×Xc)(1))
der G◦

ℓ (H
2(Ac)(1))

der ×G◦
ℓ (H

2(Xc)(1))
der

G◦
ℓ (H

2(A×X)(1))der G◦
ℓ (H

2(A)(1))der ×G◦
ℓ (H

2(X)(1))der

≃ ≃

�

5 Some remarks on the Mumford–Tate conjecture for

abelian varieties

5.1 — For the convenience of the reader, we copy some results from [18]. Be-
fore we do that, let us recall the notion of the Hodge group, HdgB(A), of an
abelian variety. Let A be an abelian variety over a finitely generated field
K ⊂ C. By definition, the Mumford–Tate group of an abelian variety is
GB(A) = GB(H

1
B(A)) ⊂ GL(H1

B(A)), and we put

HdgB(A) = (GB(A) ∩ SL(H1
B(A)))

◦ and Hdgℓ(A) = (Gℓ(A) ∩ SL(H1
ℓ (A)))

◦.

The equivalence

MTCℓ(A) ⇐⇒ HdgB(A)⊗Qℓ
∼= Hdgℓ(A).

is a consequence of proposition 4.4.

5.2 Definition (1.1 in [18]). — Let A be an absolutely simple abelian vari-
ety of dimension g over K. The endomorphism ring D = End0(A) is a division
algebra. Write E for the centre of D. The ring E is a field, either tr (totally
real) or cm. Write e for [E : Q]. The degree of D over E is a perfect square d2.
The relative dimension of A is

reldim(A) =

{

g
de , if A is of type i, ii, or iii,
2g
de , if A is of type iv.

Note that d = 1 if A is of type i, and d = 2 if A is of type ii or iii.
In definition 2.22 of [18], Lombardo defines when an abelian variety is of general
Lefschetz type. This definition is a bit unwieldy, and its details do not matter
too much for our purposes. What matters are the following results, that prove
that certain abelian varieties are of general Lefschetz type, and that show why
this notion is relevant for us.

5.3 Lemma. — Let A be an absolutely simple abelian variety over a finitely
generated subfield of C. Assume that A is of type i or ii. If reldim(A) is odd,
or equal to 2, then A is of general Lefschetz type.
Proof. If reldim(A) is odd, then this follows from theorems 6.9 and 7.12 of [3].
Lombardo notes (remark 2.25 in [18]) that the proof of [3] also works if
reldim(A) = 2, and also refers to theorem 8.5 of [7] for a proof of that fact. �
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5.4 Lemma. — Let K be a finitely generated subfield of C. Let A1 and A2 be
two abelian varieties over K that are isogenous to products of abelian varieties
of general Lefschetz type. If D4 does not occur in the Lie type of Hdgℓ(A1)
and Hdgℓ(A2), then either

HomK(A1, A2) 6= 0, or Hdgℓ(A1 ×A2) ∼= Hdgℓ(A1)× Hdgℓ(A2).

Proof. This is remark 4.3 of [18], where Lombardo observes that, under the
assumption of the lemma, theorem 4.1 of [18] can be applied to products of
abelian varieties of general Lefschetz type. �

5.5 Lemma. — Let A be an abelian variety over a finitely generated field K ⊂
C. Let L ⊂ C be a finite extension of K for which AL is isogenous over L to a
product of absolutely simple abelian varieties

∏

Aki

i . Assume that for all i the
following conditions are satisfied:
(a) either Ai is of general Lefschetz type or Ai is of cm type;
(b) the Lie type of Hdgℓ(Ai) does not contain D4;
(c) the Mumford–Tate conjecture is true for Ai.

Under these conditions the Mumford–Tate conjecture is true for A.
Proof. Recall that MTC(A) ⇐⇒ MTC(AL). Note that MTC(AL) is equiv-
alent to MTC(

∏

Ai), since H1(AL) and H1(
∏

Ai) =
⊕

H1(Ai) generate the
same Tannakian subcategory of motives. Observe that

Hdgℓ(
∏

Ai) ⊂ HdgB(
∏

Ai)⊗Qℓ ⊂
∏

HdgB(Ai)⊗Qℓ =
∏

Hdgℓ(Ai),

where the first inclusion is Deligne’s “Hodge = absolute Hodge” theorem (see
proposition 2.9 and theorem 2.11 of [9], or see theorem 4.2); the second inclusion
follows from the fact that the Hodge group of a product is a subgroup of the
product of the Hodge groups (with surjective projections); and the last equality
is condition (c).
If we ignore the factors that are cm, then an inductive application of the pre-
vious lemma yields Hdgℓ(A) =

∏

Hdgℓ(Ai). If we do not ignore the factors
that are cm, then we actually get Hdgℓ(A)

der =
∏

Hdgℓ(Ai)
der. Together with

proposition 4.4, this proves Hdgℓ(A) = HdgB(A)⊗Qℓ. �

As an illustrative application of this result, Lombardo observes in corollary 4.5
of [18] that the Mumford–Tate conjecture is true for arbitrary products of
elliptic curves and abelian surfaces.

6 Hodge theory of K3 surfaces and abelian surfaces

6.1 — In this section we recall some results of Zarhin that describe all possible
Mumford–Tate groups of Hodge structures of K3 type, i.e., Hodge structures
of weight 0 with Hodge numbers of the form (1, n, 1).
The canonical example of a Hodge structure of K3 type is the Tate twist of
the cohomology in degree 2 of a complex K3 surface X . Namely the Hodge
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structure H2
B(X)(1) has Hodge numbers (1, 20, 1). Another example is provided

by abelian surfaces, which is the content of remark 6.6 below.

6.2 Theorem. — Let (V, ψ) be a polarised irreducible Hodge structure of
K3 type.

1. The endomorphism algebra E of V is a field.
2. The field E is tr (totally real) or cm.
3. If E is tr, then dimE(V ) ≥ 3.
4. Let E0 be the maximal totally real subfield of E. Let ψ̃ be the unique

E-bilinear (resp. hermitian) form such that ψ = trE/Q ◦ψ̃ if E is tr
(resp. cm). The Mumford–Tate group of V is

GB(V ) ∼=

{

ResE/Q SO(ψ̃), if E is tr;

ResE0/Q U(ψ̃), if E is cm.

(Here U(ψ̃) is the unitary group over E0 associated with the hermitian
form ψ̃.)

Proof. The first (resp. second) claim is theorem 1.6.a (resp. theorem 1.5) of [35];
the third claim is observed by Van Geemen, in lemma 3.2 of [13]; and the final
claim is a combination of theorems 2.2 and 2.3 of [35]. (We note that [35]
deals with Hodge groups, but because our Hodge structure has weight 0, the
Mumford–Tate group and the Hodge group coincide.) �

6.3 Remark. — Let V , E and ψ̃ be as in theorem 6.2. If E is cm, and
dimE(V ) = 1, then U(ψ̃)der = SU(ψ̃) = 1; while if dimE(V ) > 1, then
U(ψ̃)der = SU(ψ̃) is absolutely simple over E0. If E is tr and dimE(V ) 6= 4,
then SO(ψ̃) is absolutely simple over E. Assume E is tr and dimE(V ) = 4. In
this case SO(ψ̃) is not absolutely simple over E: it has Lie type D2 = A1 ⊕A1.
In this remark we will take a close look at this special case, because a good
understanding of it will play a crucial rôle in the proof of lemma 7.9.
Geometrically we find SO(ψ̃)Ē

∼= (SL2,Ē × SL2,Ē)/〈(−1,−1)〉. We distinguish
the following two cases:

1. SO(ψ̃) is not simple over E. The fact most relevant to us is the existence
of a quaternion algebra D/E such that SO(ψ̃) ∼= (N ×Nop)/〈(−1,−1)〉
where N is the group over E of elements in D⋆ that have norm 1, and
likewise for Nop ⊂ (Dop)⋆. One can read more about the details of this
claim in section 8.1 of [19]. This situation is also described in section 26.B
of [15], where the quaternion algebra is replaced by D × D viewed as
quaternion algebra over E × E. This might be slightly more natural,
but it requires bookkeeping of étale algebras which makes the proof in
section 7 more difficult than necessary.

2. SO(ψ̃) is simple over E. This means that the action of Gal(Ē/E)
on SO(ψ̃)Ē interchanges the two factors SL2,Ē . The stabilisers of these
factors are subgroups of index 2 that coincide. This subgroup fixes a
quadratic extension F/E. From our description of the geometric sit-
uation, together with the description of the stabilisers, we see that
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Spin(ψ̃) = ResF/E G is a (2 : 1)-cover of SO(ψ̃), where G is an abso-
lutely simple, simply connected group of Lie type A1 over F .

What we have gained is that in all cases we have a description (up to isogeny)
of GB(V )der as Weil restriction of a group that is an almost direct product of
groups that are absolutely simple. This allows us to apply lemma 3.4, which
will play an important rôle in section 7.

6.4 Notation and terminology. — Let V , E and ψ̃ be as in theorem 6.2.
To harmonise the proof in section 7, we unify notation as follows:

F =



















E0 if E is cm,
E if E is tr and dimE(V ) 6= 4,
E if E is tr, dimE(V ) = 4, and we are in case 6.3.1,
F if E is tr, dimE(V ) = 4, and we are in case 6.3.2.

Similarly

G =



















U(ψ̃) if E is cm,
SO(ψ̃) if E is tr and dimE(V ) 6= 4,
SO(ψ̃) if E is tr, dimE(V ) = 4, and we are in case 6.3.1,
G if E is tr, dimE(V ) = 4, and we are in case 6.3.2.

We stress that G der is an almost direct product of absolutely simple groups
over F . In section 7, most of the time it is enough to know that GB(V ) is
isogenous to ResF/Q G . When we need more detailed information, it is precisely
the case that E is tr and dimE(V ) = 4. For this case we gave a description
of G in the previous remark.

6.5 — Let V , E and ψ̃ be as in theorem 6.2. Write n for dimE(V ). If E is tr,
then we say that the group SO(ψ̃) over E is a group of type SOn,E . We also
say that GB(V ) is of type ResE/Q SOn,E . Similarly, if E is cm, with maximal
totally real subfield E0, then we say that the group U(ψ̃) over E0 is a group of
type Un,E0

, and that GB(V ) is of type ResE0/Q Un,E0
.

6.6 Remark. — Let A be an abelian surface over C. Recall that H2
B(A)(1) has

dimension 6. Let H be the transcendental part of H2
B(A)(1) and let ρ denote

the Picard number of A, so that dimQ(H) + ρ = 6. Observe that H is an
irreducible Hodge structure of K3 type. In this remark we explicitly calculate
what Zarhin’s classification (theorem 6.2) means for H . If A is simple, then
the Albert classification of endomorphism algebras of abelian varieties states
that End(A)⊗Q can be one of the following:

1. The field of rational numbers, Q. In this case ρ = 1 and GB(H) is of
type SO5,Q.

2. A real quadratic extension F/Q. In this case ρ = 2 and GB(H) is of
type SO4,Q. By exemple 3.2.2(a) of [11], we see that NmF/Q(H

1(A)) →֒
∧2

H1(A) ∼= H2(A), where Nm(_) is the norm functor studied in [11].
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This norm map identifies NmF/Q(H
1(A))(1) with the transcendental

part H . Observe that consequently the Hodge group HdgB(H
1(A)) =

ResF/Q SL2,F is a (2 : 1)-cover of GB(H).
3. An indefinite quaternion algebra D/Q. (This means D ⊗Q R ∼= M2(R).)

In this case ρ = 3 and GB(H) is of type SO3,Q.
4. A cm field E/Q of degree 4. In this case ρ = 2 and GB(H) is of

type ResE0/Q U1,E0
.

(Note that the endomorphism algebra of A cannot be an imaginary quadratic
field, by theorem 5 of [29].) If A is isogenous to the product of two elliptic
curves Y1 × Y2, then there are the following options:

5. The elliptic curves are not isogenous, and neither of them is of cm type,
in which case ρ = 2 and GB(H) is of type SO4,Q. Indeed, HdgB(Y1)
and HdgB(Y2) are isomorphic to SL2,Q. Note that H = H2

B(A)(1)
tra is

isomorphic to the exterior tensor product
(

H1
B(Y1)⊠H1

B(Y2)
)

(1). We find
that GB(H) is the image of the canonical map SL2,Q × SL2,Q → GL(H).
The kernel of this map is 〈(−1,−1)〉.

6. The elliptic curves are not isogenous, one has endomorphism algebra Q,
and the other has cm by an imaginary quadratic extension E/Q. In this
case ρ = 2 and GB(H) is of type U2,Q.

7. The elliptic curves are not isogenous, and Yi (for i = 1, 2) has cm by an
imaginary quadratic extension Ei/Q. Observe that E1 6∼= E2, since Y1
and Y2 are not isogenous. Let E/Q be the compositum of E1 and E2,
which is a cm field of degree 4 over Q. In this case ρ = 2 and GB(H) is
of type ResE0/Q U1,E0

.
8. The elliptic curves are isogenous and have trivial endomorphism algebra.

In this case ρ = 3 and GB(H) is of type SO3,Q.
9. The elliptic curves are isogenous and have cm by an imaginary quadratic

extension E/Q. In this case ρ = 4 and GB(H) is of type U1,Q.

7 Main theorem: the Mumford–Tate conjecture for

the product of an abelian surface and a K3 surface

7.1 — Let K be a finitely generated subfield of C. Let A be an abelian surface
over K, and let MA denote the transcendental part of the motive H2(A)(1).
(The Hodge structure H in remark 6.6 is the Betti realisation HB(MA) of MA.)
Let X be a K3 surface over K, and let MX denote the transcendental part of
the motive H2(X)(1). Let EA (resp. EX) be the endomorphism algebra of MA

(resp. MX).
Recall from §6.4 that we associated a field F and a group G with every Hodge
structure V of K3 type. The important properties of F and G are that

» G
der is an almost direct product of absolutely simple groups over F ; and

» ResF/Q G is isogenous to GB(V ).
Let FA and GA be the field and group associated with HB(MA) as in §6.4.
Similarly, let FX and GX be the field and group associated with HB(MX).
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Concretely, for FA this means that

FA
∼=











End(A)⊗Q in case 6.6.2 (so FA is tr of degree 2)
EA,0 in cases 6.6.4 and 6.6.7 (so FA is tr of degree 2)
Q otherwise.

We summarise the notation for easy review during later parts of this section:
K finitely generated subfield of C
A abelian surface over K

MA transcendental part of the motive H2(A)(1)
FA field associated with the Hodge structure HB(MA), as in §6.4
GA group over FA such that ResFA/Q GA is isogenous to GB(MA), as in §6.4
X K3 surface over K

MX transcendental part of the motive H2(X)(1)
FX field associated with the Hodge structure HB(MX), as in §6.4
GX group over FX such that ResFX/Q GX is isogenous to GB(MX), as in §6.4
EX the endomorphism algebra of MX

The proof of the main theorem (1.1) will take the remainder of this article.
There are four main parts going into the proof, which are lemmas 7.4, 7.6, 7.7
and 7.9. The lemmas 7.2, 7.3 and 7.8 and corollary 7.10 are small reductions
and intermediate results. Together lemmas 7.4, 7.6 and 7.7 deal with almost
all combinations of abelian surfaces and K3 surfaces. Lemma 7.9 is rather
technical, and is the only place in the proof where we use that MX really is a
motive coming from a K3 surface.

7.2 Lemma. — » The Mumford–Tate conjecture for H2(A×X)(1) is equiv-
alent to MTC(MA ⊕MX).

» The ℓ-adic realisations of MA ⊕MX form a compatible system of ℓ-adic
representations.

Proof. The first claim is because H2(A×X)(1) andMA⊕MX generate the same
Tannakian subcategory of motives. By théorème 1.6 of [8], the H2

ℓ(A ×X)(1)
form a compatible system of ℓ-adic representations and we only remove Tate
classes to obtain Hℓ(MA⊕MX); hence the ℓ-adic realisations of MA⊕MX also
form a compatible system of ℓ-adic representations. �

7.3 Lemma. — If for some prime ℓ, the natural morphism

ιℓ : G
◦
ℓ (MA ⊕MX)der −֒→ G◦

ℓ (MA)
der ×G◦

ℓ (MX)der

is an isomorphism (that is, if condition 4.6 holds), then the Mumford–Tate
conjecture for MA ⊕MX is true.
Proof. The absolute rank of GB(MA⊕MX) is bounded from above by the sum
of the absolute ranks of GB(MA)

der, GB(MX)der, and the centre of GB(MA ⊕
MX). By proposition 4.4, we know that the Mumford–Tate conjecture for
MA ⊕MX is true on the centres of GB(MA ⊕MX) ⊗ Qℓ and G◦

ℓ (MA ⊕MX).
Hence if ιℓ : G◦

ℓ (MA ⊕MX)der →֒ G◦
ℓ (MA)

der ×G◦
ℓ (MX)der is an isomorphism,
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then the absolute rank of G◦
ℓ (MA ⊕MX) is bounded from below by the sum of

the absolute ranks of GB(MA)
der, GB(MX)der, and the centre of GB(MA⊕MX).

The result follows from lemma 4.5. �

7.4 Lemma. — If FA 6∼= FX , then MTC(MA ⊕MX) is true.
Proof. By lemma 7.3 we are done if there is some prime number ℓ, for which
ιℓ : G

◦
ℓ (MA ⊕MX)der →֒ G◦

ℓ (MA)
der × G◦

ℓ (MX)der is an isomorphism. Hence
assume that for all ℓ, the morphism ιℓ is not an isomorphism. This will imply
that FA

∼= FX .
By lemma 3.5, we see that FA,ℓ = FA ⊗ Qℓ and FX,ℓ = FX ⊗ Qℓ have an
isomorphic factor. If FA is isomorphic to Q, then FX,ℓ has a factor Qℓ for
each ℓ, and we win by lemma 2.2.
Next suppose that FA 6∼= Q, in which case FA is a real quadratic extension
of Q. If G der

X is not an absolutely simple group, then it is of type SO4,EX
. In

particular dimEX
(MX) = 4 and FX

∼= EX . Since dimQ(MX) ≤ 22 we find
[FX : Q] ≤ 5, and we conclude by lemma 2.3.
Finally, suppose that G der

X is an absolutely simple group over FX . We want to
apply lemma 2.2, so we need to show that FA,ℓ is a factor of FX,ℓ, for all prime
numbers ℓ. For the primes that are inert in FA,ℓ this is obvious. We are thus
left to show that FX,ℓ has at least two factors Qℓ for every prime ℓ that splits
in FA.
Note that G der

A is an absolutely simple group over FA of Lie type A1. Using
remark 3.1 we find, for each prime ℓ, semisimple Lie algebras sA,ℓ, tℓ and sX,ℓ

such that

Lie(G der
A ) ∼= Lie(G◦

ℓ (MA)
der) ∼= sA,ℓ ⊕ tℓ

Lie(G der
X ) ∼= Lie(G◦

ℓ (MX)der) ∼= tℓ ⊕ sX,ℓ

Lie(G◦
ℓ (MA ⊕MX)der) ∼= sA,ℓ ⊕ tℓ ⊕ sX,ℓ.

The absolute ranks of G◦
ℓ (MA)

der, G◦
ℓ (MX)der, and G◦

ℓ (MA ⊕MX)der do not
depend on ℓ, by proposition 4.4 and remark 6.13 of [16] (or the letters of Serre
to Ribet in [28]).3 Since the matrix





1 1 0
0 1 1
1 1 1





is invertible, we find that the absolute ranks of the Lie algebras sA,ℓ, tℓ, and sX,ℓ

do not depend on ℓ,
If ℓ is a prime that is inert in FA, then G der

A ⊗FA
FA,ℓ is an absolutely simple

group. Since tℓ 6= 0, we conclude that sA,ℓ = 0. By the independence of the
absolute ranks, sA,ℓ = 0 for all primes ℓ. Consequently, if ℓ is a prime that splits
in FA, then tℓ has two simple factors that are absolutely simple Lie algebras

3More generally, Hui proved that for every semisimple system of compatible representa-
tions the semisimple rank does not depend on ℓ, see theorem 3.19 of [14].
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over Qℓ of Lie type A1. Since G der
X is an absolutely simple group over FX , we

conclude that FX,ℓ has at least two factors Qℓ, for every prime ℓ that splits
in FA. �

7.5 — From now on, we assume that FA
∼= FX , which we will simply de-

note with F . We single out the following cases, and prove the Mumford–Tate
conjecture for MA ⊕MX for all other cases in the next lemma.

1. GB(MA) and GB(MX) are both of type SO5,Q;
2. GB(MA) is of type SO3,Q, or SO4,Q, or U2,Q, and the type of GB(MX) is

also one of these types;
3. F is a real quadratic extension of Q, A is an absolutely simple abelian

surface with endomorphisms by F (so GA
∼= SL2,F ), and

1. GB(MX) is of type SO3,F or U2,F ; or
2. GB(MX) is non-simple of type SO4,F as in case 6.3.1 of remark 6.3.

Note that in the third case we did not forget case 6.3.2, since that is covered
in case 2. We point out that in the first two cases dim(MX) ≤ 5, which can be
deduced from theorem 6.2.

7.6 Lemma. — If MA and MX do not fall into one of the cases listed in §7.5,
then the Mumford–Tate conjecture for MA ⊕MX is true.
Proof. By lemma 7.3 we are done if there is some prime number ℓ, for which
ιℓ : G

◦
ℓ (MA ⊕MX)der →֒ G◦

ℓ (MA)
der ×G◦

ℓ (MX)der is an isomorphism.
Recall that C ∼= Qℓ, as fields. If the Dynkin diagram of Lie(G◦

ℓ (MA)
der)C

and the Dynkin diagram of Lie(G◦
ℓ (MX)der)C have no common components,

then ιℓ must be an isomorphism, and we win. Recall that MTC(MA)
and MTC(MX) are known. Thus ιℓ is an isomorphism if the Dynkin dia-
gram of Lie(GB(MA)

der)C and the Dynkin diagram of Lie(GB(MX)der)C have
no common components. By inspection of theorem 6.2 and remark 6.6, we see
that this holds, except for the cases listed in §7.5. �

7.7 Lemma. — The Mumford–Tate conjecture for MA ⊕ MX is true if
dim(MX) ≤ 5. In particular, the Mumford–Tate conjecture is true for the
first two cases listed in §7.5.
Proof. If dim(MX) = 2, then GB(MX) is commutative, and we are done by
lemma 7.3. Let B be the Kuga–Satake variety associated with HB(MX). This
is a complex abelian variety of dimension 2dim(MX )−2. Up to a finitely gener-
ated extension of K, we may assume that B is defined over K. (In fact, B is
defined over K, by work of Rizov, [25].) We may and do allow ourselves a finite
extension of K, to assure that B is isogenous to a product of absolutely simple
abelian varieties over K. By proposition 6.4.3 of [1] we deduce that MX is
a submotive of End(H1(B)). (Alternatively, see proposition 6.3.3 of [12] for a
direct argument that HB(MX) is a sub-Q-Hodge structure of End(H1

B(B)); and
use that MX is an abelian motive together with theorem 4.2.) Consequently,
MTC(A × B) implies MTC(MA ⊕MX), for if the Mumford–Tate conjecture
holds for a motive M , then it holds for all motives in the Tannakian subcate-
gory 〈M〉⊗ generated by M .
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Recall that the even Clifford algebra C+(MX) = C+(HB(MX)) acts faithfully
on B. Theorem 7.7 of [12] gives a description of C+(MX); thus describing a
subalgebra of End0(B).

» If dim(MX) = 3, then dim(B) = 2 and C+(MX) is a quaternion algebra
over Q.

» If dim(MX) = 4, then dim(B) = 4 and C+(MX) is either a productD×D,
where D is a quaternion algebra over Q; or C+(MX) is a quaternion
algebra over a totally real quadratic extension of Q.

» If dim(MX) = 5, then dim(B) = 8 and C+(MX) is a matrix alge-
bra M2(D), where D is a quaternion algebra over Q.

We claim that A × B satisfies the conditions of lemma 5.5. First of all, ob-
serve that A satisfies those conditions, which can easily be seen by reviewing
remark 6.6. We are done if we check that B satisfies the conditions as well.

» If dim(MX) = 3, then B is either a simple abelian surface, or isogenous
to the square of an elliptic curve. In both cases, B satisfies the conditions
of lemma 5.5.

» If dim(MX) = 4, and C+(MX) is D ×D for some quaternion algebra D
over Q, then B splits (up to isogeny) as B1×B2. In particular dim(Bi) =
2, sinceD cannot be the endomorphism algebra of an elliptic curve. Hence
both Bi satisfy the conditions of lemma 5.5.
On the other hand, if dim(MX) = 4 and C+(MX) is a quaternion algebra
over a totally real quadratic extension of Q, then there are two options.

» If B is not absolutely simple, then all simple factors have dimension
≤ 2; since End0(B) is non-commutative. Indeed, the product of
an elliptic curve and a simple abelian threefold has commutative
endomorphism ring (see, e.g., section 2 of [21]).

» If B is absolutely simple, then it has relative dimension 1. This
abelian fourfold must be of type ii(2), since type iii(2) does not
occur (see proposition 15 of [29], or table 1 of [20] which also
proves MTC(B)).

In both of these cases, B satisfies the conditions of lemma 5.5.
» If dim(MX) = 5, then B is the square of an abelian fourfold C whose

endomorphism algebra contains a quaternion algebra over Q.
» If C is not absolutely simple, then all simple factors must have di-

mension ≤ 2; since End0(C) is non-commutative.
» If C is simple, then we claim that C must be of type ii. Indeed, the

Mumford–Tate group of B surjects onto GB(MX), because HB(MX)
is a sub-Q-Hodge structure of End(H1

B(B)). Now dim(MX) = 5,
hence GB(MX) is of type SO5,Q, with Lie type B2. But §6.1 of [20]
shows that if C is of type iii, then GB(C) has Lie type D2

∼= A1⊕A1.
This proves our claim. Since End0(C) is a quaternion algebra and
C is an abelian fourfold, table 1 of [20] shows that MTC(C) is true
and D4 does not occur in the Lie type of GB(C).

We conclude that MTC(A×B) is true, and therefore MTC(MA ⊕MX) is true
as well. �

Documenta Mathematica 21 (2016) 1691–1713



1708 Johan Commelin

The only cases left are those listed in case 7.5.3 of §7.5. Therefore, we may
and do assume that F is a real quadratic field extension of Q; and that A is an
absolutely simple abelian surface with endomorphisms by F (i.e., case 6.6.2).
In particular GA = SL2,F .

7.8 Lemma. — If X falls in one of the subcases listed in case 7.5.3, then there
exists a place λ of F such that G der

X ⊗F Fλ does not contain a split factor.
Proof. In case 7.5.3.1, G der

X is of Lie type A1. In case 7.5.3.2, GX ∼ N ×Nop,
where N is a form of SL2,F , as explained in remark 6.3. By theorem 26.9 of [15],
there is an equivalence between forms of SL2 over a field, and quaternion alge-
bras over the same field. We find a quaternion algebra D over F corresponding
to G der

X , respectively N , in case 7.5.3.1, respectively case 7.5.3.2. In particular
G der
X contains a split factor if and only if the quaternion algebra is split.

Let {σ, τ} be the set of embeddings Hom(F,R). Since F acts on HB(MX), we
see that F ⊗Q R ∼= R(σ) ⊕ R(τ) acts on

HB(MX)⊗Q R ∼=W (σ) ⊕W (τ).

Here W (σ) and W (τ) are R-Hodge structures of dimension dimF (MX). Observe
that the polarisation form is definite on one of the terms, while it is non-definite
on the other. Without loss of generality we may assume that the polarisation
form is definite on W (σ), and non-definite on W (τ).
Thus, the group GB(MX) ⊗Q R is the product of a compact group and a non-
compact group; and therefore, ResF/Q GX ⊗Q R is the product of a compact
group and a non-compact group. Indeed GX ⊗F R(σ) is compact, while GX ⊗F

R(τ) is non-compact. By the first paragraph of the proof, this means that
D ⊗F R(σ) is non-split, while D ⊗F R(τ) is split.
Since the Brauer invariants of D at the infinite places do not add up to 0, there
must be a finite place λ of F such that Dλ is non-split. At this place λ, the
group G der

X ⊗F Fλ does not have a split factor. �

7.9 Lemma. — Assume that K is a number field. If X falls in one of the
subcases listed in case 7.5.3, then there is a prime number ℓ for which the
natural map

ιℓ : G
◦
ℓ (MA ⊕MX)der −֒→ G◦

ℓ (MA)
der ×G◦

ℓ (MX)der

is an isomorphism.
Proof. The absolute rank of G◦

ℓ (MA⊕MX)der does not depend on ℓ, by propo-
sition 4.4 and lemma 7.2 and remark 6.13 of [16] (or the letters of Serre to Ribet
in [28], or theorem 3.19 of [14]). We now show that this absolute rank must be
even, by looking at a prime ℓ that is inert in F . At such a prime ℓ all simple
factors of Lie(G◦

ℓ (MA)
der×G◦

ℓ (MX)der) are Qℓ-Lie algebras with even absolute
rank (since [F : Q] = 2). By remark 3.1, the Lie algebra of G◦

ℓ (MA⊕MX)der is
a summand of Lie(G◦

ℓ (MA)
der ×G◦

ℓ (MX)der), and therefore the absolute rank
of G◦

ℓ (MA ⊕MX)der must be even.
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Let λ be one of the places of F found in lemma 7.8, and let ℓ be the place of Q
lying below λ. Since Lie(G◦

ℓ (MA ⊕MX)der) must surject to Lie(G◦
ℓ (MA)

der)
(which is split, and has absolute rank 2), and Lie(G◦

ℓ (MA ⊕MX)der) must also
surject onto Lie(G◦

ℓ (MX)der), which has a non-split factor, by lemma 7.8, we
conclude that the absolute rank of Lie(G◦

ℓ (MA ⊕MX)der) must be at least 3.
By the previous paragraph, we find that the absolute rank must be at least 4.
If dimEX

(MX) 6= 4 (case 7.5.3.1) then G der
X is a group of Lie type A1, and

therefore the product G◦
ℓ (MA)

der × G◦
ℓ (MX)der has absolute rank 4. Hence

G◦
ℓ (MA⊕MX)der must have absolute rank 4, which means that ιℓ is an isomor-

phism, by remark 3.1.
If dimEX

(MX) = 4 (case 7.5.3.2), then GX is a group of Lie type D2 = A1⊕A1.
(Note that in this final caseGB(MA) and GB(MX) are semisimple, and therefore
we may drop all the superscripts (_)der from the notation.) Since in this case
G◦

ℓ (MA)×G◦
ℓ (MX) has absolute rank 6, and the absolute rank of G◦

ℓ (MA⊕MX)
is ≥ 4, it must be 4 or 6 (since it is even).
Suppose G◦

ℓ (MA⊕MX) has absolute rank 4. We apply remark 3.1 to the current
situation, and find Lie algebras t and s2 over Qℓ such that Lie(G◦

ℓ (MA)) ∼= t

and Lie(G◦
ℓ (MA⊕MX)) ∼= Lie(G◦

ℓ (MX)) ∼= t⊕ s2. In particular, Lie(G◦
ℓ (MX)),

which is isomorphic to Lie(GX)⊗Q Qℓ, has a split simple factor. By lemma 7.8
this means that ℓ splits in F as λ · λ′. Observe that Fλ

∼= Qℓ
∼= Fλ′ .

The fact that EX,ℓ
∼= Fℓ factors as Fλ × Fλ′ has several implications. In the

case under consideration we have GB(MX) ∼= ResF/Q GX , and since MTC(MX)
holds, this implies G◦

ℓ (MX) ∼= GX,λ×GX,λ′ . Besides that, Hℓ(MX) decomposes
as Hλ(MX)⊕Hλ′(MX). The group Gal(K̄/K) acts on Hλ(MX) via GX,λ, and
on Hλ′ (MX) via GX,λ′ .
To summarise, our situation is now as follows. The prime number ℓ splits in F
as λ·λ′. The group GA is isomorphic to SL2,F , and is split and simply connected.
The group GX,λ′ is split, of type SO4,Qℓ

, with Lie algebra t. The group GX,λ is
non-split, of type SO4,Qℓ

, with Lie algebra s2. Recall the natural diagram:

G◦
ℓ (MA ⊕MX)

G◦
ℓ (MA)×G◦

ℓ (MX)

(SL2,Qℓ
× SL2,Qℓ

)/〈(−1,−1)〉 ∼= G◦
ℓ (MA) G◦

ℓ (MX) ∼= GX,λ′ × GX,λ

ιℓ

We are now set for the attack. We claim that the Galois representationsHℓ(MA)
and Hλ′(MX) are isomorphic. Indeed, from the previous paragraph we conclude
that G◦

ℓ (MA ⊕MX) ∼= Γ × GX,λ, where Γ is a subgroup of G◦
ℓ (MA) × GX,λ′

with surjective projections. Thus Hℓ(MA) and Hλ′(MX) are both orthogonal
representations of Gal(K̄/K), and the action of Galois factors via Γ(Qℓ). We
will now show that Hℓ(MA) and Hℓ(MX) are isomorphic as representations
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of Γ, which proves the claim.
The Lie algebra of Γ is isomorphic to t, and Lie(Γ) is the graph of an iso-
morphism Lie(G◦

ℓ (MA)) → Lie(GX,λ′). Since G◦
ℓ (MA) and GX,λ′ are both

covered by ResF/Q SL2,F
∼= Hdgℓ(A) with kernels {±1}, and Γ is a subgroup

of G◦
ℓ (MA) × GX,λ′ , we find that Γ also has a (2 : 1)-cover by ResF/Q SL2,F .

Hence Γ is the graph of an isomorphism G◦
ℓ (MA) → GX,λ′ . Because Hℓ(MA)

and Hλ′(MX) are 4-dimensional faithful orthogonal representations of Γ, they
must be isomorphic; for up to isomorphism, there is a unique such representa-
tion.
As a consequence, for all places v of K, the characteristic polynomial of Frobv

acting on Hℓ(MA) coincides with its characteristic polynomial when acting
on Hλ′(MX). We conclude that charpolFλ′

(Frobv|Hλ′(MX)) has coefficients
in Q. But then the same is true for charpolFλ

(Frobv|Hλ(MX)) since their
product is charpolQℓ

(Frobv|Hℓ(MX)), which has coefficients in Q. In conclusion,
charpolQℓ

(Frobv|Hℓ(MX)) factors over Q as

charpolFλ
(Frobv|Hλ(MX)) · charpolFλ′

(Frobv|Hλ′(MX)).

This leads to a contradiction with the following facts.
Since we assumed that K is a number field, the following results hold.

» The main theorem of [4], which tells us that (up to a finite extension
of K) there exists a set V of places of K with density 1 such that X has
good and ordinary reduction at places v ∈ V .

» Theorem 1 (item 1) of [6], which tells us that (up to another finite exten-
sion of K) there exists a set V of places of K with density 1 such that
X has good reduction at places v ∈ V , and the Picard number of the
reduction Xv is the same as that of X (which, in our case is 22− 8 = 14).

» Proposition 3.2 of [34], which says that if X has good and ordinary reduc-
tion at v, then the characteristic polynomial charpolQℓ

(Frobv|H
2
ℓ(Xv)

tra)
is an irreducible polynomial with coefficients in Q.

Thus charpolQℓ
(Frobv|Hℓ(MX)) is irreducible for a density 1 subset of places v;

which contradicts the factorisation found above. We conclude that the absolute
rank of G◦

ℓ (MA ⊕MX) cannot be 4 and therefore it must be 6, which implies
that ιℓ is an isomorphism. �

7.10 Corollary. — If X falls in one of the subcases listed in case 7.5.3, then
the Mumford–Tate conjecture is true for MA ⊕MX .
Proof. This result follows from lemmas 4.8 and 7.9. �

7.11 Proof of theorem 1.1. — By lemma 7.2 the main theorem reduces
to the Mumford–Tate conjecture for MA ⊕ MX . The theorem follows from
lemmas 7.4, 7.6 and 7.7 and corollary 7.10. �
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