
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/163078

Please be advised that this information was generated on 2017-12-07 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/79165904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/163078

Analyzing Students’ Software Redesign Strategies

Sylvia Stuurman
Open University
the Netherlands

Sylvia.Stuurman@ou.nl

Harrie Passier
Open University
the Netherlands

Harrie.Passier@ou.nl

Erik Barendsen
Radboud University & Open
University, the Netherlands
e.barendsen@cs.ru.nl

ABSTRACT
The design of software is known to be difficult for novice
computer scientists. In this paper, we focus on software
redesign and on the refactoring necessary to implement a
redesign. Redesigning an application aims to improve non-
functional aspects such as extensibility, without changing
the functionality. Redesign is a complex task, involving
knowledge and skills from software design in general and
the use of design patterns in particular. This study is part
of an educational design research project aiming at develop-
ing scaffolding for students’ software redesign activities in
the form of procedural guidance. We investigated students’
strategies and usage of concepts during a software redesign
assignment using students’ reports and team colllaboration
recordings as data sources, thus focusing on the process in-
stead of on the design results, in contrast with existing stud-
ies. We identified several difficulties that can serve as start-
ing points for procedural guidance. For instance, students
seem to avoid using a structured analysis method. Our find-
ings indicate that students’ activities were mainly directed
towards the code rather than the design problem.

CCS Concepts
•Social and professional topics → Computer science
education; •Software and its engineering → Designing
software;

Keywords
Redesign; Refactoring; Design patterns; Procedural guide-
lines; Education

1. INTRODUCTION
Designing software is a complex task, requiring knowledge

about programming and design as well as problem solv-
ing skills. Design problems are complex in the sense that
these involve many interrelated concepts on various levels

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Koli Calling 2016, November 24-27, 2016, Koli, Finland
© 2016 ACM. ISBN 978-1-4503-4770-9/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2999541.2999559

of abstraction. Moreover, design problems are usually ill-
structured and therefore require reasoning with incomplete
knowledge [22]. In order to carry out a design task in an
effective and structured way, students need to be able to ab-
stract from a particular case and view it as an instance of a
general problem [44].
These observations are consistent with research findings

about students’ difficulties. Many graduating students turn
out to be unable to create a proper software design [14,
25]. Students struggle with the application of concepts such
as abstraction and polymorphism [28] and information hid-
ing [16]. These findings suggest that a form of scaffolding
of students’ learning is in order, so the question arises what
kind of scaffolding is appropriate.
One particular method to implement scaffolding is to re-

duce the degrees of freedom in a task: to put constraints
on the task, so students know where to focus [30]. A sec-
ond form of scaffolding is to provide a student not only with
conceptual knowledge, but also with procedural guidance re-
garding the steps to take to solve the problem, and ways to
recognize an acceptable solution [12, 24].
As students often indicate that they are uncertain about

how to apply the conceptual knowledge while solving de-
sign tasks, we focus on developing procedural guidance as a
scaffolding approach. Such guidance appears to be scarce in
traditional textbooks.
Our study is part of an educational design research [31]

project aiming at developing procedural guidance strategies
and suitable teaching materials for software design. The
project is carried out in the context of a Master’s program
at the Open University in the Netherlands. In this project,
we focus on the increasingly relevant subtopic of software
redesign.
This study can be viewed as the first analysis step in

our educational design research. In order to identify stu-
dents’ procedural difficulties as input for our development of
scaffolding materials, we analyzed students’ strategies while
working on a redesign assignment. In this respect the study
complements existing research analyzing the students’ soft-
ware design products or conceptual understanding [43, 15].
Instead, we focus on the design process.
As students’ strategies have not been extensively inves-

tigated in the context of software design (cf. [2] for engi-
neering) we chose to conduct a qualitative and small-scale
exploratory study. Moreover, our aim was to experiment
with ‘non-obtrusive’ data sources, that is, using data that
was available in the course without additional instruments
or interventions.

110

In the remainder of this section, we discuss the concep-
tual background of our study, as well as related research on
students’ difficulties concerning software design.

1.1 Software design and redesign
With respect to the problems that students face while

designing a software system, it has been observed that they
do not try to describe the desired behaviour of the system to
design: their analysis of the problem is far from complete.
Not analyzing the problem well enough appears to be the
main problem in designing the desired system [25].
The differences between novice and expert programmers

have been researched extensively. Experts have a top-down,
breadth-first approach to decomposition and understanding,
while novices approach a problem line-by-line, local and con-
crete [33].
Expert designers seem to be very good at ‘problem set-

ting’, naming every part or aspect of a problem to be solved.
Experts appear not to analyse the problem extensively, but
rather scope the problem adequately [10]. More experienced
designers tend to state more assumptions and ask for clarifi-
cation more frequently [2]. Often, experts choose a solution
path from which they do not like to deviate, in contrast to
outstanding designers (the best among the experts), who like
to maintain parallel lines of thought [10]. In a multi-national
study, Tenenberg et al. [43] observed a higher recognition of
ambiguity and stronger use of non-textual representations
among more experienced students.
When design is performed in a team, ‘setting’ the problem

is an additional hindrance for novices, since this requires the
designers to use a common vocabulary: “The task of design
is as much a matter of getting different people to share a
common perspective, to agree on the most significant issues,
and to shape consensus on what must be done next, as it is
a matter for concept formation, evaluation of alternatives,
costing and sizing – all the things we teach.” [5].
Problems of students with respect to software design can

be categorised using the taxonomy of Soloway [37], who dis-
cerns five phases in problem solving in the case of a program-
ming problem: (1) Understand the problem, (2) Decompose
the problem, in order to identify the solution components
that will solve the problem components, (3) Select and com-
pose plans to solve problems, composing the components
to a functioning system, (4) Implement plans into language
constructs, (5) Reflect and evaluate the final system and the
overall design process.
In programming tasks, novices’ procedural difficulties ap-

pear mainly in Phase 1 (concerning the ablity to set the
problem), in Phase 2 (lack of strategies to decompose the
problem into parts), and in Phase 3 (regarding plan compo-
sition) [33]. In view of the related research discussed above,
we expect similar hindrances in design tasks.
Some experts regard software redesign as more complex

than software design. Indeed, the starting point is an exist-
ing application that has generally been designed by others,
often with non-documented requirements and design deci-
sions.
It is helpful to view software redesign as a case of problem

solving. A problem solving process starts from a certain
initial state, while rules help to arrive at a goal state [1].
A problem solving strategy is a method to apply rules in a
specific sequence.
In the case of a redesign problem, the initial state is spe-

cial, namely the source code belonging to a working applica-
tion. In the ideal case, the requirements for the software are
explicit. One might also have access to the original descrip-
tion of the problem that the software tries to solve. The goal
state in the case of redesign is what the developers want to
achieve. In general, the goal state is not well-defined, and
developers may differ in what they see as the purpose of re-
design. In our course, the purpose of redesign is to improve
maintainability with respect to future changes, which is not
measurable in a direct way.
With respect to rules to reach the goal state from the ini-

tial state, one can discern strong and weak methods. Strong
methods are domain-specific, problem-specific, and guaran-
tee a solution. Weak methods are procedures that are impre-
cise and do not guarantee a solution. Instead, they serve as
general-purpose problem-solving strategies or rules of thumb
that solvers can fall back on when they do not know what
to do directly to solve the problem [32]. An example is the
following four-stage problem solving framework: orientation
(assess and understand a problem), organization (planning
and choice of actions), execution (conform to plans), and
verification (evaluation of orientation and organization and
evaluation of execution) [20]. Soloway’s five phases can also
be viewed as a weak method [37].
Giving procedural guidance for a complex task can be seen

as providing a strong method for the task at hand. There are
not many procedural guidelines for the task of redesigning
a system. In fact, only weak methods seem to be available
in textbooks, for example [34].

1.2 Refactoring
Refactoring is the process of changing source code to im-

prove its internal structure without changing the external
behavior of the code [18, 26]. After a system has been re-
designed, refactorings are necessary to make the code com-
pliant with the new design.
Refactorings are described in the form of catalogues [18].

Advices about how to refactor to patterns take the same
shape [23]. As for redesign in general, there seems to be
a lack of procedural guidance for applying them to code.
Moreover, refactoring catalogues tend to include an over-
whelming number of refactorings. As a consequence, few
courses have refactoring as an explicit learning goal. Teach-
ing a clear sequence of refactorings might help overcoming
the hindrances [36, 38].
Mens and Tourwé [26] present refactoring guidelines, but

these are highly abstract and therefore can be seen as a weak
method: (1) identify where the software should be refac-
tored, (2) determine which refactoring should be applied, (3)
guarantee that the applied refactoring preserves behaviour,
(4) apply the refactoring, (5) assess the effect of the refactor-
ing on the quality characteristics of the software (in terms of
for example complexity and maintainability), and (6) main-
tain the consistency between the refactored program code
and the other software artifacts.
Design smells are often used as indicators for the choice

of refactorings in Step (1) [42]. However, the connection be-
tween design smells and refactoring does not take the form
of guidelines, but is rather presented (again) as a large cat-
alogue of design smells and their remedies.
In our case, the leading force for the refactoring steps is

the redesign. Given a specific redesign, however, the partic-
ular sequence of refactoring steps leading to compliant code

111

is not obvious. Apparently, no guidelines exist to find such
a sequence.

1.3 Design patterns
Design patterns offer general solutions to general (design

and code related) problems [19]. Design patterns are dis-
cussed in several textbooks [4, 19, 34].
In postgraduate courses, students appear to find it dif-

ficult to relate design patterns to specific design problems,
and to explain why certain metrics (for instance regarding
low coupling) change as a result of design pattern applica-
tion. Chatzigeorgiou et al. [6] conjecture that this is due
to the fact that most patterns are presented in textbooks
and courses as solutions to known implementation problems
rather than as a treatment for design quality issues.
Gestwicki and Sun [21] observe that students find it dif-

ficult to comprehend patterns from isolated examples (e.g.,
[21]).
Like refactorings, design patterns tend to be characterized

in the form of a catalogue. For each pattern, the applica-
bility is explained in the form of a design problem, or a
problem in the code. This makes it difficult for students
to determine when and where to apply a pattern to solve a
problem. There have been attempts to provide tools to help
developers to apply design patterns, for instance, using a
recommendation system [29] that checks whether one of the
general problems applies by asking the developer questions
about the code. In some courses, the task of determining
which patterns could be applied where is scaffolded by pro-
viding a framework of interfaces, indirectly prescribing the
choice of patterns [13]. An additional problem of design
patterns is that it appears hard for students to identify the
problems that they can solve [6]. A possible approach is to
let students first experience the consequences of an ad-hoc
design and afterwards teach them the benefits of a design
pattern that forms a general solution to the specific prob-
lem [35].
To support understanding the problem, decomposing the

solution into parts and to decide where variability can be en-
closed using patterns, the commonality-variability analysis
(cva) [8, 9] is a method intended to help identifying varia-
tion in software systems and thus determine where patterns
can be applied in a meaningful way to encapsulate this vari-
ation. The essence of the cva is to determine which struc-
tures are unlikely to change over time (the commonalities)
and which structures are likely to change (the variabilities).
Design patterns often factor out the variability. For exam-
ple, the strategy pattern factors out changing algorithm im-
plementations from a common interface. Therefore, finding
the commonalities and the variabilities in a domain helps in
finding suitable design patterns. The cva-method is suited
for designing as well as for redesigning a software system.

1.4 This paper
This paper is structured as follows. We describe the edu-

cational context of our study and formulate specific research
questions in Section 2. In Section 3, we describe our research
method. The results are shown in Section 4. We formulate
our conclusions in Section 5. Finally, we discuss our find-
ings, our method, and the implications for both educational
development and future research in Section 6.

2. AIM OF THE STUDY

To prepare for our development of scaffolding materials,
we intend to investigate what strategies students use when
solving a substantial redesign and refactoring task. Our
study will involve activities and hindrances, as well as their
usage of conceptual knowledge.
In this section, we describe the course in terms of central

concepts and course assignments. Finally we formulate our
research questions.

2.1 Context
We performed our explorative research during a half sem-

ester 5 EC course on advanced object oriented software de-
sign for graduate students taught by the first and second
author[41]. The course is part of the master’s program
Software Engineering at the Open University (OU) in the
Netherlands. The OU offers part-time studies and distance
learning for bachelor’s and master’s programs.
The central conceptual content of the course consists of

design patterns and the underlying object-oriented design
principles. The emphasis in the course is on improving sys-
tems with respect to improving maintainability.
We use a textbook that explains several design patterns in

detail [34], as well as the classic Gang-of-Four book [19] as
background material. We wrote a workbook describing more
patterns and emphasizes the underlying design principles
(for example, design to an interface, prefer delegation over
inheritance, or the Open-Closed principle).
Procedural guidance in software design is scarce. The

textbook by Shalloway [34] proposes a procedure for soft-
ware design consisting of six steps: (1) analyse the problem
using a commonality-variability analysis (cva) [9], (2) ap-
ply design patterns to encapsulate the variations that the
cva shows, by designing at the conceptual level, postponing
the creation of objects, (3) design at the specification level,
still postponing the creation of objects, (4) apply creational
patterns to create objects, (5) implement, and (6) evalu-
ate. This procedure can be considered strong in that it is
domain-specific. At the same time, it is weak: it is a high-
level procedure without any details or criteria to determine
correctness of a solution, see Section 1.1.
The procedure can be used both for design and for re-

design. During the course, we teach students how to use the
procedure by showing them examples, but we do not check
whether they actually apply this procedure in their redesign
tasks.
The assignments in the course constitute a sequence of

tasks with an increasing level of complexity. During the
whole course, students make small, ‘closed’ exercises, with
solutions they can check themselves. The course comprises
three bigger assignments. This paper focuses on the second
assignment.
At about one-third of the course, students complete As-

signment 1, in which they design a citation management
system consisting of about ten classes using a fixed set of
design patterns. They receive extensive feedback from the
teachers.
At the end of the course there are two assignments, that

are performed by teams of two students, to stimulate dis-
cussion and reflection.
In Assignment 2, the students redesign and refactor an

existing system (JabberPoint, a slide show application, con-

112

sisting of fifteen Java classes [11, 40]). Students are expected
to apply at least the following patterns in their solution:
Command, Composite, Builder, Model-view-control and Ob-
server. The teams submit their results of this assignment
in the form of uml class diagrams representing their re-
design, the refactored source code, and a working program.
Moreover, the students write a process report of about one
page. In this report, the students reflect on the way they
approached the redesign and refactoring of Jabberpoint, the
problems they encountered and what they have learned. We
do not prescribe a specific format for the process report.
Assignment 3 involves designing and implementing an ad-

ditional feature to JabberPoint. The specification of the fea-
ture is handed to the students only after they have finished
the refactoring – the idea is that the teams will maximize
the maintainability (and thus flexibility) of their redesign.

2.2 Research questions
As a first step in developing procedural guidance, we in-

vestigate how students tackle the complex task to redesign
and refactor an existing system, with a higher degree of
maintainability as a redesign goal. In particular, we investi-
gate to what extent they use the high-level Shalloway guide-
lines and what difficulties they encounter. Special attention
is given to the use of cva as the key element of the Shal-
loway guidelines. We also analyze the students’ use of the
core concepts of the course, namely design patterns and un-
derlying design principles. Our research question are:

Q1 What specific activities do students perform and in
which order? To what extent do students deviate from
the Shalloway guidelines?

Q2 In what way do students use the cva in their redesign
process?

Q3 How do students use the design patterns and underly-
ing design principles?

3. METHOD

3.1 Participants
All our students have a bachelor degree in Computer sci-

ence. Most students study alongside a full-time job, usually
IT-related. Students either live in the Netherlands or in
Belgium.
The students formed teams by themselves. There were

nine teams in total, with six teams of two students and two
teams of one individual.

3.2 Data collection and analysis
We used two data sources in the context of Assignment

2: the students’ process reports and recordings of teamwise
collaboration sessions. Since we were interested in the pro-
cess rather than the outcome of the redesign, we did not
analyze the resulting applications.
Below, we describe the details of our research method,

organized by data sources.

3.2.1 Process reports
The reports were subjected to qualitative analysis aiming

at unraveling the students’ activities and in particular the
construction and use of the cva.

Activities. During a first open coding phase [7] we iden-
tified text segments describing students’ activities in the de-
sign process. In a second, more analytic [39] coding phase we
merged similar activity labels into more general codes until
a stable set of distinct activities was obtained. For example,
“We generated class diagrams out of the original code” and
“We made uml of the application as we received it” were
mapped onto the activity code ‘generate uml’. The cod-
ing was done by the first two authors using Atlas-ti. Each
report was coded by one of the researchers and reviewed
by the other, and differences were resolved when necessary.
The final codes resulted from a joint discussion.
Using the final coding, we identified the order of activities

for each team. Moreover, we looked for similarities and dif-
ferences between the students’ strategies and the Shalloway
guidelines.

CVA use. We checked whether students reported about
the construction of a cva, which was coded as an activity in
the above analysis. Subsequently, we looked for indicators
for the usage of the cva while deciding which patterns are
useful in which places. These indicators were coded.
In the case of a redesign, a pitfall is to base the cva on the

source code, instead of on the problem domain. In each case
where this activity was mentioned, we identified whether
students mentioned that they based the cva on the code or
on the problem domain.

3.2.2 Team collaboration recordings
We asked the teams, on a voluntary basis, to use Black-

board Collaborate as a collaboration tool, with the restric-
tion that their sessions would be recorded and used in our
research. Blackboard Collaborate serves as an online con-
ferencing tool, with the possibility to share documents, ap-
plications or the desktop. Four teams made use of this op-
portunity.
Collaborate records audio as well as screen events, which

means that we are able to see everything the team members
share (uml diagrams, code, etc.) and hear everything they
say. Such a recording can be compared to a think-aloud ses-
sion [17]. The advantage over classic individual think-aloud
sessions is that the students naturally tend to share their
thoughts with the other team members, so there is no need
for continuous monitoring and prompting by a researcher.
In particular, the sessions were not influenced by a teacher’s
presence or a teacher’s intervention.
All recordings were transcribed verbatim. We analyzed

the sessions with respect to design activities and the use of
cva, and moreover the use of the core concepts of the course,
including possible misconceptions. Each of these aspects
was analyzed using a coding procedure followed by a more
in-depth qualitative analysis, using the codes as pointers to
relevant text segments. We were interested in the students’
reasoning and paid special attention to the the discussions,
decisions and difficulties within the teams. We compared
the students’ strategies with the Shalloway guidelines when
applicable.
Below, we describe the coding of each of the analysis as-

pects.
Activities. We categorized the activities the team mem-

bers carried out during the sessions, as well as the activities
discussed by the team (that were carried out at another
time). We took the final codes of the process report analy-
sis as initial categories in this analytic coding process. We

113

added codes when necessary. The researchers reviewed and
discussed the codings like in the process report analysis.

CVA use. We coded usage of the term cva as part of the
coding of activities. Like in the case of the process reports,
we classified whether the cva was based on the problem
domain or the program code, and whether the cva was used
to decide which design patterns could be used.

Use of design principles. We coded the students’ usage
of the design principles that were discussed in the course. We
distinguished between explicit usage (i.e., the design princi-
ple was named) and implicit usage (i.e., the principle was
used without explictly naming it).

Use of design patterns. We identified the use of design
patterns by coding which design patterns were mentioned
explicitly.

Misconceptions. We coded the occurrence of miscon-
ceptions concerning design principles and design patterns.

4. RESULTS

4.1 Process reports
Activities. The following activities were identified:

- Create a cva. Four teams mentioned that they constructed
a cva.
- Generate uml. Sometimes, students literally stated that
they generated class diagrams from the original code; some-
times, they wrote that they constructed class diagrams based
on the original code. We categorized both as Generate uml.
- Discuss code. In two cases, students mentioned that they
discussed the original code, for instance, “First took a look
at the code. Obviously, a lot of spaghetti code”.
- Conceptual design. Two teams explicitly mentioned that
they first made a design at the conceptual level.
- Design. Three teams wrote that they ‘designed’ as an ac-
tivity. We distinguished ‘design’ from ‘conceptual design’
because the course emphasized designing at the conceptual
level first, followed by designing at the specification level.
- Divide code. Four teams mentioned that they divided the
code in packages, according to the mvc pattern.
- Desired patterns. Five teams explicitly stated that they
looked for places to use the patterns that we mention in the
assignment. Sometimes, they use the term ‘desired patterns’
or ‘compulsory patterns’, in other cases they mention these
five patterns by name.
- Extra patterns. Two teams literally stated that they looked
for places to use ‘extra patterns’.
- Add factories. Three teams mentioned that they added
factories to the code, to separate use and creation of ob-
jects.
- Implement. Obviously, all teams implemented their design,
but seven teams explicitly mentioned implementation as one
of their activities.
- Experiment. One team wrote that they ‘experimented with
the code’, during their refactoring process.
- Adjust uml. Three teams wrote that they adjusted the
uml to reflect the changes they made in the code. This
means that they coded first, and reviewed the design after-
wards.
- Detect bad smells. When students discussed bad smells in
the code, they invariably talked about their own code, after
refactoring (“During the last phase, we changed the remain-
ing bad smells in our code”). Therefore, we separated this

activity from discussing the original code.
- Test. One team explicitly stated that they tested the code
after each change.
In Table 1, we show which activities each team reported,

and in which sequence. The teams are labeled A to I. The
numbers show the order in which the activity took place.
In those cases where a column shows identical numbers (for
instance, the column under ‘A’ shows the number 3 three
times), these activities took place simultaneously.

Table 1: Occurrences and order of team activities

Activity A B C D E F G H I
Create cva 1 - 1 2 - - - 2 -
Generate uml - - - 1 1 - - - 2
Discuss code - - - - - - - 1 1
Conceptual design 2 - - 4 - - - - -
Design - - 2 - - - 1 - 3
Divide code - 1 - 3 2 1 - - -
Desired patterns 3 2 - - 3 2 - 3 -
Extra patterns - - - - 4 - - 4 -
Add factories - - 3 5 - - - 5 -
Implement - - 4 5 3 1 2 2 4
Experiment 3 - - - - - - - -
Adjust uml 4 - 5 6 - - - - -
Detect bad smells 5 3 6 - - - 3 - -
Test - - - - - - 4 - -

Notably, every team followed a different path. The se-
quences of activities are very diverse. The only pattern that
emerges is that students work rather code-oriented: they
generate uml, discuss the current code, and the activities
‘desired patterns’ and ‘extra patterns’ are expressed in the
form of “We looked in the code where we could place the pat-
terns”.
When comparing these activities with the Shalloway guide-

lines, we observe that six out of nine teams mention that
they paid attention to problem analysis (i.e., the topmost
three rows in Table 1). However, only one team performed
a problem analysis in the strict sense, namely focusing on the
problem domain instead of on the current code (see cva use
below). Two of the nine teams mentioned to have designed
at the conceptual level, while none of the teams appears to
have worked at the specification level: we did not detect
any activity of this type. Three of the nine teams explicitly
mentioned the creation of objects.

CVA use. In their process reports, four out of nine teams
mentioned creating a cva, and three of those teams explic-
itly stated that they based their cva on the code instead of
on the problem. Only Team D stated to have constructed a
cva based on the problem.
None of the teams discussed how they used their cva to

find patterns that could implement the variations in the cva
in a flexible manner.

4.2 Team collaboration recordings
Table 2 displays the number and the durations of the

recorded collaboration sessions. The team names (A–D) cor-
respond to those of the process reports.
For each of the analysis aspects we describe our general

findings, followed by examples of our more in-depth analysis
of the considerations, discussions and decisions within the
teams, illustrated by quotes taken from the transcripts.

Activities. Table 3 summarizes the activities we ob-
served during the team collaboration sessions.

114

Table 2: Collaboration session recordings per team

Session A B C D
1 1 h 1 h 1.5 h 0.5 h
2 1.5 h 0.5 h

Table 3: Activities per team

Team Activities
A evaluate redesign
B fit patterns in

evaluate redesign
C discuss code

fit patterns in
D discuss code

fit patterns in

Table 4 shows which explicit decisions about activities
were observed.

Table 4: Decisions per team

Team Decisions
B compare designs conceptually

divide into modules
apply desired patterns

C analyse the code instead of problem
D analyse the code instead of the problem

create implementation design
fit patterns in

Team A had a session rather at the end of their design
process. They both had constructed a redesign for the appli-
cation, and discussed the merits of these designs in terms of
design principles. In fact, the whole session could be called
an instance of ‘Evaluate redesign’, which was not mentioned
in any of the process reports.
The discussion within Team C was mainly centered around

the code:

“Ok, the next class, MenuController. I see in-
stances that are all protected. That is totally un-
neccassary. MenuController does not have sub-
classes, as far as I know. So why would you use
protected? And static?”

The first session of Team B was after both team mem-
bers had created an initial design. The students explicitly
decided to compare both designs at the conceptual level. At
the end of this session, they decided to divide the application
into modules together, and to divide those modules between
them, to work out individually. In the next session, they
decided where to apply the ‘desired’ patterns.
Team C discussed, in the first (and only) session, how

to start. One of the team members wished to analyze the
problem and redesign the system; the other one preferred
to analyze the code and start from there. The decision was
made to analyze the code.
Team D also decided to analyze the code. After that,

the students divided the code and made conceptual designs
which were subsequently implemented.

CVA use. In none of the sessions we found evidence
of cva usage to decide which patterns could be applied to
implement variations.

Team A did not mention the cva at all.
We could observe that Team B created a cva based on

the problem:

“What are the concepts? In the first place, the
presentation. You can load and save a presenta-
tion, clone it, navigate throught it, and the vari-
ation is that you can save it into xml.”

Team C did create a cva based on the code:

“Shall we first look at Jabberpoint, and then to
the cva? Because then we have the base, and
the cva is based on what we have seen in the
code.”

The same applies to Team D :

“I do not have Slide in my cva, and yesterday
evening I discovered that I also forgot Style.”

Team D discussed whether to use the cva to analyze the
problem:

“You could check, for each pattern, how you could
use it. That is one method. Another method is
the cva-method. Then you analyze the problem.
In fact, you are going to redesign the whole pro-
gram.”

The cva-method was abandoned:

“Let us consider that we have this system and
that it is built with these objects, that someone
has been thinking about it. Then we just have to
think about how we can change it to get it more
dynamic.”

One of the team members even says:

“The approach with the cva is only of interest to
the teachers.”

At the end of the session, the team decided to create,
each individually, a design at the implementation level, and
to compare those designs in the next meeting.
In the next session they discussed possible strategies to

approach the problem of redesigning the system again:

“I have looked again at the original code, and I
notice that you get overwhelmed by details very
easily. And then I thought that it would be possi-
ble to tackle the problem like the book says. You
could take each pattern, and look for each pattern
whether you can apply it. I think you then should
analyze how it works at this moment, and try to
discover weaknesses, and try to solve them. But
another method is to take the cva-method. Then
you can check how the program functions, and
how you can redesign it from scratch.”

They decide to try to fit in patterns.
The teams C and D started their sessions by comparing

the cvas they both had created, based on the code. They use
these cvas to discuss the original code. The screen captures
provided additional evidence of code-based cva construc-
tion. These captures tend to show an Eclipse code view
rather than an uml design diagram during the students’
work.

115

Use of design principles. Table 5 shows, for each prin-
ciple, how often a principle was mentioned, We distinguish
explicit (by name) use and implicit use. An example of an
implicit usage of a design principle, in this case cohesion, is
the following:

“Yes, this is not, ehh, you do too many things.
You are creating Styles, and you create a Pre-
sentation, that is not really good.”

Table 5: Use of design principles

principle total expl impl
low coupling 19 4 15
high cohesion 19 - 19
separate creation 12 5 7
encapsulate variation 11 4 7
design to an interface 11 2 9
single responsibility 5 - 5
information hiding 5 - 5
locality 3 - 3
abstraction 1 1 -
open-closed 1 1 -
prefer delegation 1 - 1

Use of design patterns. In many cases, students men-
tioned a pattern by name.

“And next, I will examine the application of the
Observer pattern on the commands.”
“What we had, but is probably wrong, is that slide
items are the leaves in the Composite pattern.”

In Table 6, we show how many times each team mentioned
each pattern. In the assignment, we mention five patterns
that we at least expect to see in the solution. We discern
these patterns from other patterns by marking them grey.

Table 6: Use of patterns

pattern A B C D total

mvc 7 24 7 3 41
command 6 9 8 4 27
composite 10 7 5 5 27
observer 6 7 4 2 19
builder 4 14 - - 18
factory - - 7 7 14
visitor 5 13 - - 13
abstract factory 5 2 - 1 8
bridge - 3 2 - 5
iterator - 2 3 - 5
object pool - - 3 - 3
singleton 2 - - - 2
strategy - - - 2 2
null object - - 1 - 1
template - - 1 - 1

The first session of Team B was after both team members
had created an initial design. When discussing patterns in
both designs, there was no distinction between factory pat-
terns and other patterns: they did not adhere to the advice
to postpone decisions about object creation. One of the
members said he had first ‘extended’ the cva (which proba-
bly means that he added more detail), and then had checked
at which places he could ‘fit in’ design patterns:

“And after that, I have thought about which pat-
terns we can apply, and how.”

The other team member also started the design by trying
to fit patterns in; it was not clear whether he did this by
looking at the code or based on something else. Implicitly,
he says he has designed at the conceptual level:

“I have been tinkering too, and I have written
down which patterns we could apply. But I did
not look at the level of methods, so to speak.”

In summary, we observed this team evaluating redesign,
while they spoke about having ‘fitted design patterns in’, at
the conceptual level.
Team C discussed each class of the original code, in the

sequence that the file manager showed, and tried to point
out what was wrong or “ugly”. Obviously, there was no
postponing of object creation.

“Well, you are right, two things are tangled here.
That is how I see it. You have parts of the model
and parts of the view. And yes, there should be
some image here somehow, but the presentation
should be left out of it.”

The students also discussed which patterns they could use
in which places:

“Yes, I have been playing with patterns too, and
yes, for that part I also had mvc, and then, also
the same as you have, use Command pattern model
to view, yes. You probably mean, for instance,
next slide and previous slide, and so on, you prob-
ably want to put that in a Command pattern, I
suppose?”’

Misconceptions. We encountered the following miscon-
ceptions while analyzing the group collaboration sessions.
- The commonality-variability analysis is considered as a
product of code inspection:

“Shall we first look at Jabberpoint, and then to
the cva? Because then we have the base, and
the cva is based on what we have seen in the
code.”

- How to create objects is included in a textsccva:

“I extended the cva by adding create in the sys-
tem.”

- A Bridge is considered to be an alternative for Observer.
When talking about Observer using events or using Observ-
able:

“I had thought of events for Observer, but I un-
derstood that you would solve that using a Bridge,
and that is fine.”

- Composite leads to a loss of performance because it ‘cre-
ates’ lots of ‘webbing objects’:

“We have to pay attention, that with that Com-
posite, that we do not overdo it, and make an
absurd number of webbing objects, because that
hurts, and is very bad for performance.”

- One should start with factories, in contrast to what is
advised in the course:

116

“There is a very interesting part in the Design
patterns book, about refactoring as simple as pos-
sible, that the best way to do that is to start with
that factory. So that is what we should do first.
Then the rest is easier.”

5. CONCLUSIONS

In this section we recapitulate our research questions and
formulate our conclusions as answers to these questions.

Q1: What specific activities do students perform and in
which order? To what extent do students deviate from the
Shalloway guidelines?
Students appear to carry out a range of activities, in which

‘implement’ and ‘apply desired patterns’ prevail. Activities
focused on conceptual design scarcely appear. In contrast,
many activities, such as those connected to problem anal-
ysis, are directed at the code rather than at the problem
domain.
Students appear to carry out their activities in different

orders. We did not find any universal pattern. However,
we observed a tendency to concentrate on the code almost
directly. The Shalloway guidelines were never followed. In
particular, the creation of objects is not always postponed.
Students appear to either skip the cva or perform the cva
on the basis of the code.
We could observe that students find it difficult to reason

and decide about the sequence of events. When students
decide to deviate from the Shalloway guidelines, their rea-
soning appears not to be technical, but instead based on
their perception about the practical (‘real-world’) value of
the guidelines, the intention of the teachers, or the necessity
of a thorough analysis for the particular case at hand.

Q2: In what way do students use the cva in their redesign
process?
The students tend to base their cva’s predominantly on

the application code. We have not found any usage of the
cva results for choosing design patterns.
In some cases, student contemplated to use a cva, but

decided at the last moment to abandon it anyway. In line
with our observations about the Shalloway guidelines in gen-
eral, some students appear not to take the cva as a serious
(re)design method (“that is something for the teachers”).

Q3: How do students use the design patterns and under-
lying design principles?
With respect to design principles, we observed that stu-

dents often mention and use these principles in their discus-
sions. Implicit usage appears slightly more frequent than
explicit usage.
The principles playing a major role in the course, i.e., low

coupling, high cohesion, separate the creation of an object
from its use, encapsulate variation and design to an inter-
face, are all frequently mentioned, both implicit and explicit.
Students use design principles extensively in discussions

about the value of candidate solutions.
Patterns are mentioned and use extensively by the stu-

dents. The patterns that were mentioned in the assignment
appear more often than the other patterns. As mentioned
above, factory patterns are used in an early stage.
Deciding which patterns to apply was never done on the

basis of a cva. Instead, the reasoning appears ad-hoc, tak-
ing place while browsing through the code looking for spots
where patterns might be applied.

Misconceptions regarding design principles and patterns
turn out to be scarce.

6. DISCUSSION

In this section we reflect on the findings and the method-
ology of our study. We also discuss the implications for ed-
ucational development and our plans for follow-up research.

6.1 Reflection on the findings
Our conclusion that the activities of students are rather

code-oriented (as opposed to problem-oriented) is in line
with the observation that students tend to produce a prob-
lem analysis that is far from complete [25].
In terms of the solo taxonomy [3], software design re-

quires students’ response at the highest aggegration level,
that is, extended abstract. We often observed students dis-
cussing at a unistructural level (when discussing details in
the code), or at the multistructural level (when discussing
classes); sometimes, they discussed at the relational level
(discussion the division of responsibilities between classes
for instance). The extended abstract level (in this case, that
would be discussing how an aspect of the problem could be
solved using a design pattern) appeared to be absent.
Our students lack the top-down, breadth-first approach

of experts, and sometimes show the line-by-line, local and
concrete approach of novices [33]. This can be seen as an
indication that more procedural guidance is needed, as well
as more practice in applying the procedures, cf. [27].
In one case we observed that a team made a choice be-

tween refactoring the code without a redesign and redesign
using a cva. This suggests that these students find high
level redesigning too difficult, and therefore try to refactor
without redesign. This observation can be seen as another
indication that more practice is needed.
The observation that students appear skillful in reasoning

about design principles is consistent with a finding by Tenen-
berg et al. [43] about the relative stability (throughout their
studies) of students’ knowledge about design principles.
It is difficult to interpret the fact that students often use

design principles implicitly instead of referring to them ex-
plicitly. One could argue that the direct use of design prin-
ciples, by name, indicates a more mature understanding of
those principles, but the fact that they do not need to name
a principle might also mean that they are very familiar with
the meaning of a principle.
Our students talked far more often about the ‘compul-

sory’ patterns then about other patterns. Also, five out
of nine teams mentioned that they first looked for places
where they could use the patterns we prescribe. A possible
explanation is that students interpreted our mentioning of
those patterns as a form of procedural guidance (“first try
to see where those patterns can be of help, and then check
whether the design still lacks maintainability, and try to use
other patterns to enhance this maintainability”). Of course,
the fact that students want to create a design and code that
will satisfy the teachers plays a role as well. On the other
hand, students might be aware of the fact that the teachers
would like to see a cva, but this did not lead to all process
reports mentioning a cva, which indicates that ‘pleasing the
teachers’ does not play a big role.

117

6.2 Reflection on the methods used
Our analysis method appeared to be useful to investigate

various aspects of the students’ strategies, including the stu-
dents’ reasoning and decision making processes. The data
turned out to be surprisingly rich. The non-obtrusive char-
acter of the analysis makes it worthwhile to apply in other
contexts.
The number of students involved in this exploratory study

is small, which can be seen as a weakness of the method.
However, we appeared to reach theoretical saturation after
analyzing the data of 2–3 teams. We expect that, in our
homogeneous student group, a larger sample would not have
brought up much more detail. However, we are planning to
repeat the research with a bigger sample, as well as in other
universities. Moreover, the analysis method will be used in
follow-up studies in the bigger design research project.
Discussions between the coders mainly concerned charac-

terizations for merged sets of activity codes. After deciding
upon the final categories, inter-coder agreement in our anal-
ysis turned out high. In follow-up research we will investi-
gate the reliability of the method in more detail.
We have seen that students do not mention every activity

they perform in their process report (for instance, evaluate
a redesign was never mentioned in the process reports, but
we observed it twice during the collaboration sessions). This
means that process reports do not give a complete image of
the process that students followed. It might be possible that
students report activities they did not perform, to ‘please
the teachers’, but the absence of many ‘Shalloway-activities’
in many reports does not make that likely. One the other
hand, the collaboration sessions also do not give a complete
image, because they form a small portion of the whole pro-
cess. Therefore our triangulation is sensible: the evidence
is strongest where both forms of data show the same ten-
dencies. Moreover, the recorded collaboration sessions show
only part of the whole process, because team members, in
general, divide the work, work individually, and collaborate
by mail, Skype, phone, face-to-face, and in some cases us-
ing Collaborate. We plan to extend the analysis method to
other data sources.

6.3 Implications for educational development
Our findings suggest that students find it difficult to grasp

the value of a cva. The reason can be threefold. First, it
might be the case that students have to explicitly practice re-
design: the problem with redesign is that there is an escape
in the form of refactoring without any redesign. Second, we
might have to give students more opportunity to practice in
general using the cva. Third, it might be the case that the
cva in itself does not give enough guidance to be of use for
students.

6.4 Future work
We would like to expand this study by observing more

students, and compare process reports and observations to
the designs and implementations they hand in. We could
compare the design patterns students really used to the de-
sign patterns that we could hear them speak about, and we
could relate the quality of their work with the activities they
mentioned.

We will use the results of our study to develop procedu-
ral guidance for scaffolding students’ redesign activities. For
the development of procedural guidance it is relevant that
Shalloway’s guidelines appeared not to be helpful for the
students. Besides the need to provide more details, it might
be worthwhile to construct more specific guidelines that are
closer to how students proceed naturally. Moreover, sys-
tematic practice seems to be in order, as suggested by the
developers of the 4C/ID model [27].
We are planning to make the research methods of the

present exploratory study more robust and extendible to
other environments. Thus, future procedural guidance can
be tested by colleagues in partner universities.

7. REFERENCES
[1] J. R. Anderson. Problem solving and learning.

American Psychologist, 48(1):35, 1993.
[2] C. J. Atman, J. R. Chimka, K. M. Bursic, and H. L.

Nachtmann. A comparison of freshman and senior
engineering design processes. Design Studies,
20(2):131–152, 1999.

[3] J. B. Biggs and K. F. Collis. Evaluating the quality of
learning: The SOLO taxonomy (Structure of the
Observed Learning Outcome). Academic Press, New
York, USA, 1982.

[4] E. J. Braude. software design, from programming to
architecture. John Wiley & Sons, 2006.

[5] L. L. Bucciarelli. Reflective practice in engineering
design. Design studies, 5(3):185–190, 1984.

[6] A. Chatzigeorgiou, N. Tsantalis, and I. Deligiannis.
An empirical study on students’ ability to comprehend
design patterns. Computers and Education, 51(3):1007
– 1016, 2008.

[7] L. Cohen, L. Manion, and K. Morrison. Research
methods in education. London, New York: Routledge,
2013.

[8] J. O. Coplien. Multi-Paradigm Design. PhD thesis,
Vrije Universiteit Brussel, Faculteit Wetenschappen,
Departement Informatica, 7 2000.

[9] J. O. Coplien, D. Hoffman, and D. Weiss.
Commonality and variability in software engineering.
Software, IEEE, 15(6):37–45, 1998.

[10] N. Cross. Expertise in design: an overview. Design
studies, 25(5):427–441, 2004.

[11] I. Darwin. Gui development with Java. Linux Journal,
1999(61es):4, 1999.

[12] S. P. Davies. Models and theories of programming
strategy. International Journal of Man-Machine
Studies, 39(2):237–267, 1993.

[13] C. Denzler and D. Gruntz. Design patterns: Between
programming and software design. In Proceedings of
the 30th International Conference on Software
Engineering, ICSE ’08, pages 801–804, New York, NY,
USA, 2008. ACM.

[14] A. Eckerdal, R. McCartney, J. E. Moström,
M. Ratcliffe, and C. Zander. Can graduating students
design software systems? ACM SIGCSE Bulletin,
38(1):403–407, 2006.

[15] A. Eckerdal, R. McCartney, J. E. Moström,

118

M. Ratcliffe, and C. Zander. Categorizing student
software designs: Methods, results, and implications.
Computer Science Education, 16(3):197–209, 2006.

[16] P. Flores, N. Medinilla, and S. Pamplona. What do
software design students understand about
information hiding?: A qualitative case study. In
Proceedings of the 14th Koli Calling International
Conference on Computing Education Research, Koli
Calling ’14, pages 61–70, New York, NY, USA, 2014.
ACM.

[17] M. E. Fonteyn, B. Kuipers, and S. J. Grobe. A
description of think aloud method and protocol
analysis. Qualitative Health Research, 3(4):430–441,
1993.

[18] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the design of
existing programs. Addison-Wesley Reading, 1999.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Pearson Education, 1994.

[20] J. Garofalo and F. Lester. Metacognition, cognitive
monitoring, and mathematical performance. Journal
for Research in Mathematics Education,
16(3):163–176, May 1985.

[21] P. Gestwicki and F.-S. Sun. Teaching design patterns
through computer game development. J. Educ.
Resour. Comput., 8(1):2:1–2:22, Mar. 2008.

[22] D. H. Jonassen. Toward a design theory of problem
solving. Educational technology research and
development, 48(4):63–85, 2000.

[23] J. Kerievsky. Refactoring to patterns. Pearson
Deutschland GmbH, 2005.

[24] P. A. Kirschner, J. Sweller, and R. E. Clark. Why
minimal guidance during instruction does not work:
An analysis of the failure of constructivist, discovery,
problem-based, experiential, and inquiry-based
teaching. Educational psychologist, 41(2):75–86, 2006.

[25] C. Loftus, L. Thomas, and C. Zander. Can graduating
students design: revisited. In Proceedings of the 42nd
ACM technical symposium on Computer science
education, pages 105–110. ACM, 2011.

[26] T. Mens and T. Tourwé. A survey of software
refactoring. IEEE Transactions on Software
Engineering, 30(2):126–139, 2004.

[27] J. J. Merriënboer and P. A. Kirschner. Ten Steps to
Complex Learning. Taylor & Francis, New York, USA,
second edition, 2013.

[28] R. Or-Bach and I. Lavy. Cognitive activities of
abstraction in object orientation: an empirical study.
ACM SIGCSE Bulletin, 36(2):82–86, 2004.

[29] F. Palma, H. Farzin, Y.-G. Guéhéneuc, and N. Moha.
Recommendation system for design patterns in
software development: An dpr overview. In
Proceedings of the Third International Workshop on
Recommendation Systems for Software Engineering,
RSSE ’12, pages 1–5, Piscataway, NJ, USA, 2012.
IEEE Press.

[30] R. D. Pea. The social and technological dimensions of
scaffolding and related theoretical concepts for
learning, education, and human activity. The journal
of the learning sciences, 13(3):423–451, 2004.

[31] T. Plomp. Educational design research: An
introduction. In T. Plomp and N. Nieveen, editors,
Educational design research, pages 10–51. Enschede:
SLO, 2013.

[32] S. I. Robertson. Problem Solving. University of Luton,
UK, 2001.

[33] A. Robins, J. Rountree, and N. Rountree. Learning
and teaching programming: A review and discussion.
Computer science education, 13(2):137–172, 2003.

[34] A. Shalloway and J. R. Trott. Design patterns
explained: a new perspective on object-oriented design.
Pearson Education, 2004.

[35] D. Skrien. Learning appreciation for design patterns
by doing it the hard way first. Computer Science
Education, 13(4):305–313, 2003.

[36] S. Smith, S. Stoecklin, and C. Serino. An innovative
approach to teaching refactoring. In Proceedings of the
37th SIGCSE Technical Symposium on Computer
Science Education, SIGCSE ’06, pages 349–353, New
York, NY, USA, 2006. ACM.

[37] E. Soloway, J. Spohrer, and D. Littman. E unum
pluribus: Generating alternative designs. In Teaching
and Learning Computer Programming, pages 137–152.
Lawrence Erlbaum Associates, 1988.

[38] S. Stoecklin, S. Smith, and C. Serino. Teaching
students to build well formed object-oriented methods
through refactoring. In Proceedings of the 38th
SIGCSE Technical Symposium on Computer Science
Education, SIGCSE ’07, pages 145–149, New York,
NY, USA, 2007. ACM.

[39] A. Strauss, J. Corbin, et al. Basics of qualitative
research, volume 15. Newbury Park, CA: Sage, 1990.

[40] S. Stuurman and G. Florijn. Experiences with
teaching design patterns. ACM SIGCSE Bulletin,
36(3):151–155, 2004.

[41] S. Stuurman, F. J. Wester, and M. Witsier-Vogel.
Design patterns. Open Universiteit Nederland, 2002.

[42] G. Suryanarayana, G. Samarthyam, and T. Sharma.
Refactoring for Software Design Smells. Morgan
Kaufmann, Elsevier, Waltham, MA, USA, 2015.

[43] J. Tenenberg, S. Fincher, K. Blaha, D. Bouvier, T.-Y.
Chen, D. Chinn, S. Cooper, A. Eckerdal, H. Johnson,
R. McCartney, A. Monge, J. E. Moström, M. Petre,
K. Powers, M. Ratcliffe, A. Robins, D. Sanders,
L. Schwartzman, B. Simon, C. Stoker, A. E. Tew, and
T. VanDeGrift. Students designing software: a
multi-national, multi-institutional study. Informatics
in Education, 4(1):143–162, 2005.

[44] J. L. Whalley, R. Lister, E. Thompson, T. Clear,
P. Robbins, P. Kumar, and C. Prasad. An
Australasian study of reading and comprehension
skills in novice programmers, using the Bloom and
SOLO taxonomies. In Proceedings of the 8th
Australasian Conference on Computing
Education-Volume 52, pages 243–252. Australian
Computer Society, Inc., 2006.

119

