-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Radboud Repository

Radboud Repository Radboud University Nijmegen ;@r

S

PDF hosted at the Radboud Repository of the Radboud University
Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/163041

Please be advised that this information was generated on 2017-12-07 and may be subject to
change.


https://core.ac.uk/display/79165867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/163041

Parameterized Complexity Resultsfor a Model of Theory of
Mind Based on Dynamic Epistemic L ogic*

Iris van de Pol Iris van Rooij Jakub Szymanik
Institute for Logic, Language Donders Institute for Brain, Institute for Logic, Language
and Computation Cognition, and Behaviour and Computation
University of Amsterdam Radboud University University of Amsterdam

i.p.a.vandepol@uva.nl i.vanrooij@donders.ru.nl j-k.szymanikQuva.nl

In this paper we introduce a computational-level model ebtly of mind (ToM) based on dynamic
epistemic logic (DEL), and we analyze its computational ptaxity. The model is a special case of
DEL model checking. We provide a parameterized complexilysis, considering several aspects
of DEL (e.g., number of agents, size of preconditions, ets)parameters. We show that model
checking for DEL is PSPACE-hard, also when restricted tglsipointed models and S5 relations,
thereby solving an open problem in the literature. Our apphhas aimed at formalizing current
intractability claims in the cognitive science literatwegarding computational models of ToM.

1 Introduction

Imagine that you are in love. You find yourself at your deskt ymu cannot stop your mind from
wandering off. What is she thinking about right now? And miongortantly, is she thinking about you
and does she know that you are thinking about her? Reasobmg ather people’s knowledge, belief
and desires, we do it all the time. For instance, in tryingaiguier the love of one’s life, to stay one step
ahead of one’s enemies, or when we lose our friend in a crowtés and we find them by imagining
where they would look for us. This capacity is known as thedrgnind (ToM) and it is widely studied
in various fields (see, e.gl.,|[8.]11,123] 34/ 36,[38/ 47, 48]).

We seem to use ToM on a daily basis and many cognitive sdiemimsider it to be ubiquitous in
social interaction[]1]. At the same time, however, it is alddely believed that computational cognitive
models of ToM are intractable, i.e., that ToM involves sotyproblems that humans are not capable of
solving (cf. [1/27] 31, 50]). This seems to imply a contréidic between theory and practice: on the one
hand we seem to be capable of ToM, while on the other handheuarits tell us that this is impossible.
Dissolving this paradox is a critical step in enhancing tb&cal understanding of ToM.

The question arises what it means for a computational—lmmielﬂ of cognition to be intractable.
When looking more closely at these intractability claimgameling ToM, it is not clear what these re-
searchers mean exactly, nor whether they mean the same liithigeoretical computer science and logic
there are a variety of tools to make precise claims aboutthad bf complexity of a certain problem. In
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cognitive science, however, this is a different story. With exception of a few researchers, cognitive
scientists do not tend to specify formally what it means fdheory to be intractable. This makes it
often very difficult to assess the validity of the variousirta in the literature about which theories are
tractable and which are not.

In this paper we adopt thEractable-cognition thesiésee [42]) that states that people have limited
resources for cognitive processing and human cognitivaaags are confined to those that can be
realized using a realistic amount of tileMore specifically we adopt thEPT-cognition thesi$42]
that states that computationally plausible computatibmad! cognitive theories are limited to the class
of input-output mappings that are fixed-parameter traetédy one or more input-parameters that can
be assumed to be small in practice. To be able to make mores@relaims about the (in)tractability
of ToM we introduce a computational-level model of ToM baseddynamic epistemic logic (DEL),
and we analyze its computational complexity. The model vesgnmt is a special case of DEL model
checking. Here we include an informal description of the gidThe kind of situation that we want
to be able to model, is that of an observer that observes omor agents in an initial situation. The
observer then witnesses actions that change the situatttha observer updates their knowledge about
the mental states of the agents in the new situation. Suchupds often found in experimental tasks,
where subjects are asked to reason about the mental statgsra$ in a situation that they are presented.

DBU (informal) — DvNAMIC BELIEF UPDATE

Instance: A representation of an initial situation, a sequence ofoasti- observed by an ob
server — and a (belief) statemeahf interest.

Question:ls the (belief) statement true in the situation resulting from the initial situationch
the observed actions?

We prove that DBU is PSPACE-complete. PSPACE-completewassalready shown by Aucher
and Schwarzentrubelr|[3] for DEL model checking in generaheyl considered unrestricted relations
and multi-pointed event models. Since their proof does mid for the special case of DEL model
checking that we consider, we propose an alternative pioaf. proof solves positively the open ques-
tion in [3] whether model checking for DEL restricted to S%atmns and single-pointed models is
PSPACE-complete. Bolander, Jensen and Schwarzentiu@eindependently considered an almost
identical special case of DEL model checking (there callellan verification problem). They also
prove PSPACE-completeness for the case restricted toespaghted models, but their proof does not
settle whether hardness holds even when the problem igtedtto S5 models.

Furthermore, we investigate how the different aspects éoarpeters, see Tallé 1) of our model
influence its complexity. We prove that for most combinagiaf parameters DBU is fp-intractable and
for one case we prove fp-tractability. See Figure 2 for amoe® of the results.

Besides the parameterized complexity results for DEL matiekcking that we present, the main
conceptual contribution of this paper is that it bridgesritige science and logic, by using DEL to
model ToM (cf. [28/ 47]). By doing so, the paper provides theams to make more precise statements
about the (in)tractability of ToM.

2There is general consensus in the cognitive science contyrthiai computational intractability is a undesirable tzatof
cognitive computational models, putting the cognitiveugidility of such models into question [13,124 | 26] 42, 46heTe are
diverging opinions about how cognitive science should detd this issue (see, e.gl, [12,126,41] 43]). It is beyondsitape
of this paper to discuss this in detail. In this paper we adopparameterized complexity approach as described in [42]

3 We pose the model in the form of a decision problem, as thisrigenient for purposes of our complexity analysis. Even
though ToM may be more intuitively modeled by a search pmblthe complexity of the decision problem gives us lower
bounds on the complexity of such a search problem, and tiverstiffices for the purposes of our paper.
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The paper is structured as follows. In Secfidon 2 we introchasic definitions from dynamic epis-
temic logic and parameterized complexity theory. Then,aent®n[3 we introduce a formal description
of our computational-level model and we discuss the pdaiathoices that we make. Next, in Sectidn 4
we present our (parameterized) complexity results. BinallSectior b we discuss the implications of
our results for the understanding of ToM.

2 Prdiminaries

2.1 Dynamic Epistemic Logic

Dynamic epistemic logic is a particular kind of modal logse€ [16] 5]), where the modal operators are
interpreted in terms of belief or knowledge. First, we deépestemic models, which are Kripke models
with an accessibility relation for every agemt <7, instead of just one accessibility relation.

DEFINITION 2.1 (Epistemic model)Given a finite sety of agents and a finite set P of propositions, an
epistemic model is a tupl@V,R V) where

- W is a non-empty set of worlds;
- Ris afunction that assigns to every agers &/ a binary relation R on W; and
- V is a valuation function from W P into {0, 1}.

The accessibility relationR, can be read as follows: for worldg v € W, wR,v means “in worldw,
agenta considers worlds possible.”

DEFINITION 2.2 ((Multi and single-)pointed epistemic modef pair (M,Wy) consisting of an epistemic
model M= (W,R,V) and a non-empty set of designated worlds®M is called a pointed epistemic
model. A pair(M,Wg) is called a single-pointed model whery\l8 a singleton, and a multi-pointed
epistemic model whely| > 1. By a slight abuse of notation, fgM, {w}), we also write (Mw).

We consider the usual restrictions on relations in episteanodels and event models, such as KD45
and S5 (se€ [16]). In KD45 models, all relations are trarssitEuclidean and serial, and in S5 models
all relations are transitive, reflexive and symmetric.

We define the following language for epistemic models. Wetheemodal belief operatds, where
for each agend € o7, B3¢ is interpreted as “agemtbelieves (that}”.

DEFINITION 2.3 (Epistemic language)The language%s over <7 and P is given by the following defi-
nition, where a ranges ove# and p over P:

¢=pl-¢[(¢AQ)[Bad.

We will use the following standard abbreviations,= pV —-p, L :==T, ¢V :==(—9p A—Y), ¢ —
Y =9 VY,Byi=—Bamg.
The semantics for this language is defined as follows.
DEFINITION 2.4 (Truth in a (single-pointed) epistemic model)et M = (W,R V) be an epistemic
model, we W, ac &7, and ¢, € Z5. We define Mw |= ¢ inductively as follows:
M,w = p iff V(wp)=1
M,w = —¢ iff notM,w ¢

MW (pAY) iff M.wk ¢ and Mw =
M,w = Bad iff for all v with wRyv: M,v = ¢
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When Mw = ¢, we say that is true in w or¢ is satisfied in w.

DEFINITION 2.5 (Truth in a multi-pointed epistemic model)et (M,Wy) be a multi-pointed epistemic
model, ac <7, and ¢ € Zg. MWy = ¢ is defined as follows:

MWy =¢ iff M,wl=¢ forallw e Wy
Next we define event models.

DEFINITION 2.6 (Event model) An event model is a tupl& = (E, Q, pre, post), where E is a non-empty
finite set of events; Q is a function that assigns to every tagens’ a binary relation R on W ; pre is
a function from E inta%g that assigns to each event a precondition, which can be amyula in .g;
and post is a function from E int& that assigns to each event a postcondition. Postconditizas
conjunctions of propositions and their negations (inchgdir and _L).

DEFINITION 2.7 ((Multi and single-)pointed event model / actiom) pair (&', Eq) consisting of an event
model& = (E,Q, pre,post and a non-empty set of designated evenis_E is called a pointed event
model. A pair(&,Eq) is called a single-pointed event model whepi€a singleton, and a multi-pointed
event model whefiy| > 1. We will also refer to &, Eq) as an action.

We define the notion of a product update, that is used to umgaseemic models with actions|[4].

DEFINITION 2.8 (Product update)The product update of the statM,Wy) with the action(&’,Ey) is
defined as the statM,Wy) ® (£, Eq) = (W',R,V’),W}) where

- W ={(we) eWxE; M,w=pree)};

- R ={((we),(v,f)) eW xW'; wRyv and eQf};

- V/(p) = 1iff either (M,w = p and poste) |~ —p) or post(e) = p; and
- Wi ={(w,e) eW'; we Wy and ec Eg4}.

Finally, we define when actions are applicable in a state.

DEFINITION 2.9 (Applicability). An action(&,Eg) is applicable in statéM,Wy) if there is some € Eg
and some v Wy such that Mw = pre(e). We define applicability for a sequence of actions indulstive
The empty sequence, consisting of no actions, is alwayscapf@d. A sequenceia..,a of actions is
applicable in a statéM,Wg) if (1) the sequencesa .., a1 is applicable in(M,Wy) and (2) the action
a is applicable in the statéM Wy) @ a1 ® - - - @ a_1.

2.2 Parameterized Complexity Theory

We introduce some basic concepts of parameterized coryptlxeiory. For a more detailed introduction
we refer to textbooks on the topic [17./18] 22| 35].

DEFINITION 2.10 (Parameterized problemlet = be a finite alphabet. Avarameterized problerh
(overZ) is a subset oE* x N. For aninstance(x, k), we call x themain partand k theparameter

The complexity class FPT, which stands for fixed-parametatdble, is the direct analogue of the
class P in classical complexity. Problems in this class arsidered efficiently solvable, because the
non-polynomial-time complexity inherent in the problenc@nfined to the parameter and in effect the
problem is efficiently solvable even for large input sizespvided that the value of the parameter is
relatively small.

DEFINITION 2.11 (Fixed-parameter tractable / the class FREBLZ be a finite alphabet.
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1. An algorithmA with input (x,k) € Z x N runs infpt-time if there exists a computable function f
and a polynomial p such that for alk, k) € ~ x N, the running time oA on (x,k) is at most

f (k) - p(IX)).-

Algorithms that run in fpt-time are callefpt-algorithms

2. A parameterized problem L fixed-parameter tractabl&there is an fpt-algorithm that decides L.
FPTdenotes the class of all fixed-parameter tractable problems

Similarly to classical complexity, parameterized comfilexalso offers a hardness framework to
give evidence that (parameterized) problems are not fizedrmpeter tractable. The following notion of
reductions plays an important role in this framework.

DEFINITION 2.12 (Fpt-reduction)Let LC = x Nand I/ C 3’ x N be two parameterized problems. An
fpt-reductionfrom L to L’ is a mapping RZ x N — ¥’ x N from instances of L to instances dfduch
that there is a computable functiort f — N such that for all(x,k) € X x N:

1. (X,K') = R(x,k) is a yes-instance of lif and only if (x,k) is a yes-instance of L;
2. Ris computable in fpt-time; and
3. K<g(k).

Another important part of the hardness framework is thermpatarized intractability class W[1]. To
characterize this class, we consider the following pararzgd problem.

{k}-WSAT[2CNF]

Instance:A 2CNF propositional formulg and an integek.

Parameter: k

Question:Is there an assignment : var(¢) — {0,1}, that setk variables invar(¢) to true,
that satisfieg?

The class W[1] consists of all parameterized problems thate fpt-reduced tk}-W SAT[2CNF].
A parameterized problem is hard for W[1] if all problems in A)/fan be fpt-reduced to it. It is widely
believed that W[1]-hard problems are not fixed-parametaetaible [[18]. Another parameterized in-
tractability class, that can be used in a similar way, is fthescpara-NP. The class para-NP consists of
all parameterized problems that can be solved by a nondietistim fpt-algorithm. To show para-NP-
hardness, it suffices to show that DBU is NP-hard for a cohst@ne of the parameters [21]. Problems
that are para-NP-hard are not fixed-parameter tractablessif—= NP [22, Theorem 2.14].

3 Computational-level Model of Theory of Mind

Next we present a formal description of our computatioraél model. Our aim is to capture, in a
gualitative way, the kind of reasoning that is necessaryaable to engage in ToM. Arguably, the
essence of ToM is the attribution of mental states to angikeson, based on observed behavior, and
to predict and explain this behavior in terms of those mestates. The aspect of ToM that we aim to
formalize with our model is the attribution of mental stat&here is a wide range of different kinds of
mental states such as epistemic, emotional and motivatitaizs. In our model we focus on epistemic
states, in particular on belief.
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To be cognitively plausible, our model needs to be able tdaurapa wide range of (dynamic) sit-
uations, where all kinds of actions can occur, not just astithat change beliefs (epistemic actions),
but also actions that change the state of the world (ontiorzgt This is why, following Bolander and
Andersen|[[9], we use postconditions in the product updaf@&if (in addition to preconditions).

Furthermore, we want to model the (internal) perspectivihefobserver (on the situation). There-
fore, the god perspective, also called the perfect extappioach by Aucher [2] — that is inherent to
single-pointed epistemic models — will not suffice for alkea that we want to be able to model. This
perfect external approach supposes that the modeler is ais@ent observer that is perfectly aware of
the actual state of the world and the epistemic situatiorafughgoing on in the minds of the agents). The
cognitively plausible observers that we are interesteceie lwill not have infallible knowledge in many
situations. They are often not able to distinguish the detwald from other possible worlds, because
they are uncertain about the facts in the world and the matasts of the agent(s) that they observe.
That is why, again following Bolander and Andersgh [9], wWiewalfor multi-pointed epistemic models
(in addition to single-pointed models), which can modeluheertainty of an observer, by representing
their perspective as a set of worlds. How to represent tleenat or fallible perspective of an agent in
epistemic models is a conceptual problem that has not betedsget in the DEL-literature. There have
been several proposals to deal with this (see, €.d., [2,5]}, 2

Also, since we do not assume that agents are perfectly kdgesble, we allow the possibility of
modeling false beliefs of the observers and agents, by usib5 models (rather than S5 models).
Even though KD45 models present an idealized form of beligth(perfect introspection and logical
omniscience), we argue that at least to some extent theyogretively plausible, and that therefore, for
the purpose of this paper, it suffices to focus on KD45 modeis.complexity results (which we present
in the next section) do not depend on this choice; they haldDBU restricted to KD45 models and
restricted to S5 models, and also for the unrestricted case.

We define our computational-level model of ToM as follows.

DBU (formal) — DyNAMIC BELIEF UPDATE

Instance: A set of propositions P, and set of Agents. An initial states,, wheres, =
((W,V,R),Wy) is a pointed epistemic model. An applicable sequence obmrgty,...,a,
wherea; = ((E,Q, pre, post), Eq) is a pointed event model. A formullae .
Question:Doesy, @ a1 ®...Qax = ¢?

The model can be naturally used to formalize ToM tasks tretarployed in psychological exper-
iments. The classical ToM task that is used by (developrijepsychologists is the false belief task
[5,149]. The DEL-based formalization of the false beliekthy Bolander[[8] can be seen as an instance
of DBU. For more details on how DBU can be used to model ToMdagke refer to[[3]7].

4 Complexity Results

4.1 PSPACE-completeness

We show that DBU is PSPACE-complete. For this, we considerdicision problem TQBF. This
problem is PSPACE-complete [45].
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TQBF
Instance:A quantified Boolean formulg = Q1x1Q2Xz. .. QnXm- .
Question:ls ¢ true?

THEOREM 1. DBU is PSPACEhard.

PrRoOOF. To show PSPACE-hardness we specify a polynomial-timeatimhuR from TQBF to DBU.
Let ¢ be a Boolean formula. First, we sketch the general idea Hehareduction. We use the reduction
to list all possible assignmentsvar(y). To do this we use groups of worlds (which &gequivalence
classes) to represent particular truth assignments. Eacip gonsists of a string of worlds that are fully
connected by equivalence relati®y. Except for the first world in the string, all worlds represarrue
variablex; (under a particular assignment).

We give an example of such a group of worlds that represestgrasento = {x; — T,Xp — F, X3 —
T,xa— T,x5 — F,xs — T}. Each world has a reflexive loop for every agent, which wedeast for the
sake of presentation. More generally, in all our drawingseyace each relatioR, with a minimalR},
whose transitive reflexive closure is equalRg ® marks the designated world. Since all relations are
reflexive, we draw relations as lines (leaving out arrow$iatand).

oY 'Y oY [ 3%
1 3 s 6
(—a—e—a—e—a—e—a—e
W1 Wo W3 Wy

We refer to worldsw, . .., wy as thebottom worldof this group. If a bottom world has d® relation
to a world that makes propositigrtrue, we say that it represents variakile

The reduction makes sure that in the final updated model (thaehthat results from updating the
initial state with the actions — which are specified by thauatidn) each possible truth assignment to the
variables ing will be represented by a group of worlds. Between the diffegroups, there are fg,-
relations (onlyR;-relations for 1< i < m). By ‘jumping’ from one group (representing a particulartkr
assignment) to another group with relatign the truth value of variablg can be set to true or false. We
can now translate a quantified Boolean formula into a coomrding formula of.4g by mapping every
universal quantifieQ; to B; and every existential quantifi€; to Bj.

To illustrate how this reduction works, we give an exampliguFe[1 shows the final updated model
for a quantified Boolean formula with variablesandx,. In this model there are four groups of worlds:
{wq,wWo, w3}, {wag,ws}, {ws, w7} and{wg}. Worldsws, ..., wg are what we refer to as the bottom worlds.
The gray worlds and edges can be considered a byproduct g&tluetion; they have no particular
function.

We represent variabl® by By and variablex, by Boy. Then, in the model above, checking
whetherdx;Vxz.x; V X2 is true can be done by checking whether formi|®,(B,B1y \V BaByy) is true,
which is indeed the case. Also, checking whethg{vx,.x;1 V X is true can be done by checking
whetherB; B (BaB1y v BaByy) is true, which is not the case.

Now, we continue with the formal details. Lét= QiX1...QmXm. be a quantified Boolean for-
mula with quantifierQ,...,Qm andvar(y) = {Xa,...,Xn}. We define the following polynomial-time
computable mappings. Fordi < m, let[x] = By, and

L [BifQ=V
[Q']_{Bi if Q =3.
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oY oYy
/1/ /2/

X1—=> T, Xo—T}: 0 a ° a °
{ ! "2 } Wlo\ Wz‘ W3

1 2 \ oy

s/

\ ‘ 12

{x1—FXo—T}: 2 W“I a " °
2 l/oy

{X1>—>T,X2I—>F}Z e —a o/

SN m
N

{X1— F,x2— F}: .
Wg

Figure 1. Example for the reduction in the proof of Theorena final updated model for a quantified
Boolean formula with variableg;, andxo.

Iformula [Y] is the adaptation of formulay where every occurrence of in ¢ is replaced
by Ba[X%]. Then [¢] = [Qa]...[Qm|[y]. We formally specify the reductiolR. We let R(¢) =
(P<,%,81,...,a8m,[9]), where:

-P={y},#={al,...,m}

oy [ D% [ 3%
7z ’ /
%: 1 /2 /m

(9—a— e —a e—-a—--—a—e

All relations insy, a1, ...,am are equivalence relations. Note that all worldssinay, . ..,am have
reflexive loops for all agents. We omit all reflexive loops fioe sake of readability.

(®——1

e (T, T) e:(-ByvyT)

.
- =

(®——m

M= o (T T) e (-BryVy. T)

We show thatp € TQBF if and only if R(¢) € DBU. We prove that for all ki < m+1 the
following claim holds. For any assignmeatto the variablexy,...,%_1 and any bottom worldv of a
group that agrees withr, the formulaQ;x; ... QnXm. Y is true undera if and only if [Qi]... [Qm]|[Y] IS
true in worldw. In the case for = m—+ 1, this refers to the formulgp].

We start with the case far=m+ 1. We show that the claim holds. Letbe any assignment to the
variablesxy, ..., Xm, and letw be any bottom world of a groupthat representa. Then, by construction
of [¢], we know thaty is true undem if and only if [] is true inw.

Assume that the claim holds for= j+ 1. We show that then the claim also holdsifer j. Leta be
any assignment to the variables ..., x;_; and letw be a bottom world of a group that agrees wath
We show that the formul®; ... Qm.y is true undeir if and only if [Q;]... [Qm|[¢] is true inw.
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First, assume tha®;j...Qm.y is true undera. Consider the case whef@ = V. Then for both
assignments’ D a to the variablexq, ..., x;, formulaQj1 ... Qm.y is true undewr’. Now, by assump-
tion, we know that for any bottom world’ of a group that agrees witlh — so in particular for all bottom
worldsw' that areR;-reachable fronw — formula[Q;j1] ... [Qm][y] is true inw. Since[Q;] = Bj, this
means thafQ;] ... [Qm|[{] is true inw. The case wher®; = 3 is analogous.

Next, assume thaD; ... Qm.y is not true undenr. Consider the case whe@ = V. Then there is
some assignmert’ D o to the variables, . ..,X;j, such thaQj1...Qm.y is not true undeo’. Now,
by assumption, we know that for any bottom wowitlof a group that agrees witth — so in particular
for some bottom worldv that is Rj-reachable fromw — formula [Qj1]...[Qm|[¢] is not true inw'.
Since[Qj] = Bj, this means tha;] ... [Qm|[y] is not true inw. The case wher®; = 3 is analogous.

Hence, the claim holds for the case that j. Now, by induction, the claim holds for the case
thati = 1, and hence it follows that € TQBF if and only ifR(¢) € DBU. Since this reduction runs in
polynomial time, we can conclude that DBU is PSPACE-hard. O

THEOREM 2. DBU is PSPACEcomplete.

PrROOF. In order to show PSPACE-membership for the problem DBU, arernodify the polynomial-
space algorithm given by Aucher and Schwarzentruber [3kirTdlgorithm works for the problem of
checking whether a given (single-pointed) epistemic mougtes a given DEL-formula true, where the
formula contains event models that can be multi-pointed,that have no postconditions. In order to
make the algorithm work for multi-pointed epistemic modele can simply call the algorithm several
times, once for each of the designated worlds. Also, a madiific is needed to deal with postconditions.
The algorithm checks the truth of a formula by inductivellling itself for subformulas. In order to deal
with postconditions, only the case where the formula is @@sdional variable needs to be modified.
This modification is rather straightforward. For more detaie refer to[[377]. O

4.2 Parameterized Complexity Results

Next, we provide a parameterized complexity analysis of DBU

421 Parametersfor DBU

We consider the following parameters for DBU. For each sukse {a,c,e, f,0, p,u} we consider the
parameterized variam-DBU of DBU, where the parameter is the sum of the values feralements
of k as specified in Tablel 1. For instance, the problahDBU is parameterized by the number of
agents. Even though technically speaking there is only @ranpeter, we will refer to each of the
elements ok as parameters.

For the modal depth of a formula we count the maximum numberesfed occurrences of opera-
torsB,. Formally, we define the modal depdli¢ ) of a formula¢ (in -Zg) recursively as follows.

0 if ¢ = p <€ Pis a proposition;
d(g) — max{d(¢1),d(¢2)} if ¢ =¢1A¢;
| d(é) if ¢ =—u;

1+d(¢y) it ¢ = Bads.
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Param. Description

a number of agents
c maximum size of the preconditions
e maximum number of events in the event models
f size of the formula
0 modal depth of the formula,
i.e., the order parameter
p number of propositions iR
u number of actions, i.e., the number of updates

Table 1: Overview of the different parameters for DBU.

For the size of a formula we count the number of occurrencesopfositions and logical connectives.
Formally, we define the siz€¢) of a formula¢ (in -£) recursively as follows.

1 if § = p € Pis a proposition;
S(¢) = 1+s(¢1) +5(¢2) if ¢ = ¢1A P2

1+s(¢1) if ¢ =—¢1;

1+s(¢1) if ¢ = Bag.

4.2.2 Intractability Results

In the following, we show fixed-parameter intractability &everal parameterized versions of DBU. We
will mainly use the parameterized complexity classes W[ para-NP to show intractability, i.e., we
will show hardness for these classes. Note that we couldiaddily use the class para-PSPACE][21]
to give stronger intractability results. For instance, fpineof of Theoreni !l already shows thigb}-
DBU is para-PSPACE hard, since the reduction in this proekus constant number of propositions.
However, since in this paper we are mainly interested in trddr between fixed-parameter tractability
and intractability, we will not focus on the subtle diffeoes in the degree of intractability, and restrict
ourselves to showing W[1]-hardness and para-NP-hardnébss is also the reason why we will not
show membership for any of the (parameterized) intradtalilasses; showing hardness suffices to
indicate intractability. For the following proofs we useettvell-known satisfiability problem & for
propositional formulas. The problemagis NP-complete[[14, 30]. Moreover, hardness far $iolds
even when restricted to propositional formulas that areGINE.

PropPOSITION3. {a,c,e, f,0}-DBU is para-NPhard.

PrROOF. To show para-NP-hardness, we specify a polynomial-tintigéion R from SaT to DBU,
where parameters, ¢, e f, and o have constant values. Lgt be a propositional formula with
var(¢) = {xa,...,Xm}. Without loss of generality we assume tlfais a 3CNF formula with clauses
citog.

The general idea behind this reduction is that we use thedwanl the final updated model (that
results from updating the initial state with the actions -ickhare specified by the reduction) to list all
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possible assignments t@r(¢ ), by setting the propositions (corresponding to the vageslihvar(¢))

to true and false accordingly. Then checking whether foanguis satisfiable can be done by checking
whether¢ is true in any of the worlds. Actiong; to a;,, are used to create a corresponding world for
each possible assignmentvar(¢ ). Furthermore, to keep the formula that we check in the finelatgxa
model of constant size, we sequentially check the truth o eausec; and encode whether the clauses
are true with an additional variablg,, 1. This is done by actionay,. 1 to an.y. In the final updated
model, variablex, .1 will only be true in a world, if it makes clausas to ¢ true, i.e., if it makes
formula ¢ true.

For more details, we refer to [37]. O

PropPOSITION4. {c,e, f,0,p}-DBU is para-NRhard.

PrROOF. To show para-NP-hardness, we specify a polynomial-tintigion R from SaT to DBU,
where parameters, e, f, 0, and p have constant values. Ldt be a propositional formula with
var(¢) = {x1,...,Xn}. The general idea behind this reduction is similar to theicédn in the proof
of Theoren]L. Again we use groups of worlds to representqéati assignments to the variables in
¢. Here, there is only relatioR, between the different groups. Furthermore, to keep the dtarhat
we check in the final updated model of constant size, we sé¢iallgrcheck the truth of each clause
and encode whether the clauses are true with an additionalbl@z. This is done by actiongy 1

to amy. Action am,j (corresponding to clausg marks each group of worlds (which represents a par-
ticular assignment to the variablesg that ‘satisfies’ clauses 1 tp (This marking happens by means
of an R.-accessible world whereis true.) Then, in the final updated model, there will only betsa
marked group if all clauses, and hence the whole formulatisfable.

For more details, we refer to [37]. O

PrRoOPOSITIONS. {a,e f,0, p}-DBU is para-NRhard.

PrROOF. To show para-NP-hardness, we specify a polynomial-tinteigion R from SAT to DBU,
where parameteis e, f, 0 andp have constant values. Létbe a propositional formula withar(¢) =
{X1,...,Xm}. The reduction is based on the same principle as the one osk iproof of Proposi-
tion[4. To keep the number of agents constant, we use a diffeomstruction to represent the variables
in var(¢). We encode the variables by a string of worlds that are cdadduy alternating relation®,
andRy.

Furthermore, we keep the size of the formula (and conselyuttre modal depth of the formula)
constant by encoding the satisfiability of the formula witkiagle proposition. We do this by adding
an extra actioran, 1. Action a1 makes sure that each group of worlds that represents aysagisf
assignment for the given formula, will have By relation from a world that i&R,-reachable from the
designated world to a world where propositiBnis true.

For more details, we refer to [37]. O

We consider the following parameterized problem, that wié wsie in our proof of Propositioh] 6.
This problem is W[1]-complete: [19].
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{k}-MuLTICOLORED CLIQUE

Instance:A graphG, and a vertex-coloring: V(G) — {1,2,...,k} for G.
Parameter: k

Question: DoesG have a clique of siz& including vertices of alk colors? That is, are there
V1,...,Vk € V(G) such that for all I<i < j <k: {v,v;} € E(G) andc(vi) # c(vj)?

PrROPOSITIONG. {a,c, f,0,u}-DBU is W[1]-hard.

PrROOF. We specify an fpt-reductioR from {k}-MuLTICOLORED CLIQUE to {a,c, f,o,u}-DBU. Let
(G,c) be an instance ofk}-MuULTICOLORED CLIQUE, whereG = (N,E). The general idea behind
this reduction is that we use the worlds in the model to listkkedized subsets of the vertices in the
graph withk different colors, where each individual world representsadiculark-subset of vertices
in the graph (withk different colors). Then we encode (in the model) the exjsgdges between these
nodes (with particular color endings), and in the final updahodel we check whether there is a world
corresponding to k-subset of vertices that is pairwise fully connected witgesd This is only the case
whenG has ak-clique withk different colors.

For more details, we refer to [37]. O

PROPOSITION7. {c,0, p,u}-DBU is W[1]-hard.

PROOF. We specify the following fpt-reductiofR from {k}-WSAT[2CNF] to {c,o, p,u}-DBU. We
sketch the general idea behind the reduction. #&ebe a propositional formula witlvar(¢) =
{X1,...,%n}. Then let¢’ be the formula obtained from, by replacing each occurrence xfwith —x;.
We note thatp is satisfiable by some assignmenthat setsk variables to true if and only i’ is sat-
isfiable by some assignmeat that setan— k variables to true, i.e., that sétsvariables to false. We
use the reduction to list all possible assignmentgaig¢’) = var(¢) that setm— k variables to true. We
represent each possible assignmentad¢) that setan— k variables to true as a group of worlds, like
in the proof of Theorerhl1. (In fact, due to the details of thduion, in the final updated model, there
will be several identical groups of worlds for each of thesgignments).

For more details, we refer to [37]. O

ProPOSITIONS. {a, f,0, p,u}-DBU is W[1]-hard.

PrROOF. We specify the following fpt-reductioR from {k}-WSAT[2CNF] to {a, f,0, p,u}-DBU. We
modify the reduction in the proof of Propositibh 7 to keep Hadues of parameters and f constant.
After these modifications, the value of parametewill no longer be constant. To keep the number
of agents constant, we use the same strategy as in the muirctihe proof of Propositiohl 5, where
variablesx, ..., xm are represented by strings of worlds with alternating i@hatR, andR,. Just like in
the proof of Propositioql5, the size of the formula (and cqosetly the modal depth of the formula) is
kept constant by encoding the satisfiability of the formuighva single proposition. Then each group
of worlds that represents a satisfying assignment for thengiormula, will have arR; relation from a
world that isRy-reachable from the designated world to a world where piitiposz® is true.

For more details, we refer to [37]. O
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4.2.3 Tractability Results

Next, we turn to a case that is fixed-parameter tractable.

THEOREM9. {e u}-DBU is fixed-parameter tractable.

PROOF. We present the following fpt-algorithm that runs in tirgé- p(|x|), for some polynomialp,
whereeis the maximum number of events in the actions af&lthe number of updates, i.e., the number
of actions.

As a subroutine, the algorithm checks whether a given basstesmic formulag holds in a given
epistemic modeM, i.e., whetheM = ¢. It is well-known that model checking for basic epistemigit
can be done in time polynomial in the Bf plus the size oty (see e.g/[7]).

Let x = (P «,i,%,a1,...,a1,¢) be an instance of DBU. First the algorithm computes the final
updated moded; = @ a1 ® --- ®as by sequentially performing the updates. For eachis defined
ass_1®@g. The size of eacly is upper bounded bP(|s| - €), so for each update checking the
preconditions can be done in time polynomialdh |x|. This means that computing can be done
in fpt-time.

Then, the algorithm decides whetlgers true ins;. This can be done in time polynomial in the size of
st plus the size ofp. We know thatst |+ |¢| is upper bounded b®(|so| - €") + |¢|, thus upper bounded
by €. p(|x|), for some polynomialp. Therefore, deciding whethef is true ins; is fixed-parameter
tractable. Hence, the algorithm decides whetherDBU and runs in fpt-time. O

424 Overview of the Results

We showed that DBU is PSPACE-complete, we presented sewarameterized intractability results
(W[1]-hardness and para-NP-hardness) and we presentefixedgparameter tractable result, namely
for {e,u}-DBU. In Figure[2, we present a graphical overview of our lssand the consequent bor-
der between fpt-tractability and fpt-intractability fdnet problem DBU. We leavéa,c, p}-DBU and
{c, f, p,u}-DBU as open problems for future research.

5 Discussion & Conclusions

We presented the YINAMIC BELIEF UPDATE model as a computational-level model of ToM and ana-
lyzed its complexity. The aim of our model was to provide axial approach that can be used to in-
terprete and evaluate the meaning and veridicality of warimpmplexity claims in the cognitive science
and philosophy literature concerning ToM. In this way, weé&do contribute to disentangling debates in
cognitive science and philosophy regarding the complefifioM.

In Section[4.1l, we proved that DBU is PSPACE-complete. Thiémms that (without additional
constraints), there is no algorithm that computes DBU inasoeable amount of time. In other words,
without restrictions on its input domain, the model is cotagionally too hard to serve as a plausible
explanation for human cognition. This may not be surprising it is a first formal proof backing up this
claim, whereas so far claims of intractability in the liten@ remained informal.

Informal claims about what constitutes sources of intfaittg abound in cognitive science. For
instance, it seems to be folklore that the ‘order’ of ToM wrasg (i.e., that | think that you think that
I think ...) is a potential source of intractability. The fabat people have difficulty understanding
higher-order theory of mind [20, 29, 32,144] is not explaifgdthe complexity results for parameter
the modal depth of the formula that is being considered,heotvords, the order parameter. Already for
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Figure 2: Overview of the parameterized complexity resiatshe different parameterizations of DBU,
and the line between fp-tractability and fp-intractagiliinder the assumption that the cases{fc, p}
and{c, f, p,u} are fp-tractable).

a formula with modal depth one, DBU is NP-hard;{sg-DBU is not fixed-parameter tractable. On the
basis of our results we can only conclude that DBU is fixecypeater tractable for the order parameter in
combination with parameteesandu. But since DBU is fp-tractable for the smaller parameter sai},
this does not indicate that the order parameter is a sourceroplexity. This does not mean it may
not be a source of difficulty for human ToM performance. Afédly tractable problems can be too
resource-demanding for humans for other reasons than datigmal complexity (e.g., due to stringent
working-memory limitations).

Surprisingly, we only found one (parameterized) tractgbilesult for DBU. We proved that for
parameter sefe, u} —the maximum number of events in an event model and the nuofilbgdates, i.e.,
the number of event models — DBU is fixed-parameter tractaBigen a certain instanceof DBU,
the values of parameteesandu (together with the size of initial stasg) determine the size of the final
updated model (that results from applying the event modaetlsd initial state). Small values efandu
thus make sure that the final updated model does not blow uptib in relation to the size of the initial
model. The result thafe u}-DBU is fp-tractable indicates that the size of the final updanodel can
be a source of intractability (cf. [39, 40]).

The question arises how we can interpret parametarslu in terms of their cognitive counterparts.
To what aspect of ToM do they correspond, and moreover, caassgme that they have small values
in (many) real-life situations? If this is indeed the cadentrestricting the input domain of the model
to those inputs that have sufficiently small values for pai@nse andu will render our model tractable,
and we can then argue that (at least in terms of its compuatdt@mmplexity) it is a cognitively plausible
model.
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In his formalizations of the false belief task Bolander [Bii€éed used a limited amount of actions
with a limited amount of events in each action (he used a maxinof 4). This could, however, be
a consequence of the over-simplification (of real-life &itons) used in experimental tasks. Whether
these parameters in fact have sufficiently small valuesahlie, is an empirical hypothesis that can
(in principle) be tested experimentally. However, it is sthightforward how to interpret these formal
aspects of the model in terms of their cognitive countegparhe associations that the womlsentand
actiontrigger with how we often use these words in daily life, mighequately apply to some degree,
but could also be misleading. A structural way of interprgtthese parameters is called for. We think
this is an interesting topic for future research.

Besides the role that our results play in the investigatibfine complexity) of ToM our results are
also of interest in and of themselves. The results in Thesi®mand 2 resolve an open question in the
literature about the computational complexity of DEL. Aacland Schwarzentruber [3] already showed
that the model checking problem for DEL, in general, is PSPABGmMplete. However, their proof for
PSPACE-hardness does not work when the input domain isatestto S5 (or KD45) models and their
hardness proof also relies on the use of multi-pointed nsoflehich in their notation is captured by
means of a union operator). With our proof of Theofém 1, wevshat DEL model checking is PSPACE-
hard even when restricted to single-pointed S5 models.h&urtore, the novelty of our aproach lies in
the fact that we apply parameterized complexity analysidyttamic epistemic logic, which is still a
rather unexplored area.
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