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Abstract

Let F be a non-archimedean local field. We establish the local Langlands
correspondence for all inner forms of the group SLn(F). It takes the form of a bijection
between, on the one hand, conjugacy classes of Langlands parameters for SLn(F)
enhanced with an irreducible representation of an S-group and, on the other hand, the
union of the spaces of irreducible admissible representations of all inner forms of SLn(F)
up to equivalence. An analogous result is shown in the archimedean case. For p-adic
fields, this is based on the work of Hiraga and Saito. To settle the case where F has
positive characteristic, we employ the method of close fields. We prove that this
method is compatible with the local Langlands correspondence for inner forms of
GLn(F), when the fields are close enough compared to the depth of the representations.
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1 Background
Let F be a local field and let D be a division algebra with centre F , of dimension d2 ≥ 1
over F . Then G = GLm(D) is the group of F-rational points of an inner form of GLmd .
We will say simply thatG is an inner form of GLn(F ), where n = md. It is endowed with a
reduced normmapNrd: GLm(D) → F×. The groupG� := ker(Nrd : G → F×) is an inner
form of SLn(F ). (The split caseD = F is allowed here.) In this paper, we will complete the
local Langlands correspondence for G�.
We sketch how it goes and which part of it is new. For any reductive group over a local

field, say H , let Irr(H ) denote the set of (isomorphism classes of) irreducible admissi-
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provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
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ble H-representations. Let �(H ) be the collection of (equivalence classes of) Langlands
parameters for H , as defined in [13].
The local Langlands correspondence (LLC) for GLn(F ) was established in the important

papers [26,28,37,38,44,52]. Together with the Jacquet–Langlands correspondence [7,19,
43], this provides the LLC for inner forms G = GLm(D) of GLn(F ), see [4,29]. Recall that
�(GLm(D)) � �(GLn(F )) if GLm(D) is not split. For these groups, every L-packet �φ(G)
is a singleton and the LLC is a canonical bijective map

recD,m : Irr(GLm(D)) → �(GLm(D)). (1)

The LLC for inner forms of SLn(F ) is derived from the above, in the sense that every
L-packet for G� consists of the irreducible constituents of ResGG� (�φ(G)). Of course these
L-packets have more than one element in general. To parametrize the members of
�φ� (G�), one must enhance the Langlands parameter φ� with an irreducible represen-
tation of a suitable component group. This idea originated for unipotent representations
of p-adic reductive groups in [40, § 1.5]. For SLn(F ), φ� is a map from the Weil–Deligne
group of F to PGLn(C) and a correct choice is the group of components of the centralizer
of φ� in PGLn(C). Indeed, using this component group the enhanced Langlands corre-
spondence for SLn(F ) was already established by Gelbart and Knapp [22, § 4]—at that
time still assuming that it could be done for GLn(F ).
In general, more subtle component groups Sφ� are needed, see [3,32,48]. Our enhanced

L-parameters will be pairs (φ�, ρ) consisting of a Langlands parameter φ� forG�, enhanced
with a ρ ∈ Irr(Sφ� ). We consider such enhanced L-parameters forG� modulo the equiva-
lence relation coming from the natural PGLn(C)-action. When two L-parameters φ

�
1 and

φ
�
2 are conjugate, there is a canonical bijection Irr(S

φ
�
1
) → Irr(S

φ
�
2
), coming from conju-

gation by any g ∈ PGLn(C) with g−1φ�
1g = φ

�
2. With this in mind, it makes sense to speak

about Irr(Sφ� ) for φ� ∈ �(G�).
The LLC for G� should be an injective map

Irr(G�) → {
(φ�, ρ) : φ� ∈ �(G�), ρ ∈ Irr(Sφ� )

}
(2)

which satisfies several natural properties. The map will almost never be surjective, but for
every φ� which is relevant for G� the image should contain at least one pair (φ�, ρ). The
image should consist of all such pairs, which satisfy an additional relevance condition on
ρ. This form of the LLCwas proven for “GLn-generic” representations ofG� in [29], under
the assumption that the underlying local field has characteristic zero.
A remarkable aspect of Langlands’ conjectures [48] is that it is better to consider not

just one reductive group at a time, but all inner forms of a given group simultaneously.
Inner forms share the same Langlands dual group, so in (2) the right-hand side is the
same for all inner forms H of the given group. The hope is that one can turn (2) into a
bijection by defining a suitable equivalence relation on the set of inner forms and taking
the corresponding union of the sets Irr(H ) on the left-hand side. Such a statement was
proven for unipotent representations of simple p-adic groups in [41].
Let us make this explicit for inner forms of GLn(F ), respectively, SLn(F ). We define the

equivalence classes of such inner forms to be in bijection with the isomorphism classes of
central simple F-algebras of dimensionn2 viaMm(D) �→ GLm(D), respectively,Mm(D) �→
GLm(D)der. This equivalence relation can also be motivated with Galois cohomology, see
Sect. 2.
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As Langlands dual group, we take GLn(C), respectively, PGLn(C). Langlands parame-
ters for GLn(F ) (respectively, SLn(F )) take values in the dual group, and they must be
considered up to conjugation. The group with which we want to conjugate Langlands
parameters should be a central extension of the adjoint group PGLn(C), but apart from
that there is some choice. It does notmatter for the equivalence classes of Langlands para-
meters, but it is important for the component group of centralizers that we will obtain.
The interpretation of inner forms via Galois cohomology entails [3] that wemust consider
the conjugation action of the simply connected group SLn(C) on the dual groups and on
the collections of Langlands parameters for GLn(F ) or SLn(F ).
For any Langlands parameter φ� for SLn(F ), we define the groups

C(φ�) = ZSLn(C)(im φ�),

Sφ� = C(φ�)/C(φ�)◦,
Zφ� = Z(SLn(C))/Z(SLn(C)) ∩ C(φ�)◦ ∼= Z(SLn(C))C(φ�)◦/C(φ�)◦.

(3)

Notice that the centralizers are taken in SLn(C) and not in the Langlands dual group
PGLn(C), where the image of φ� lies. It is worth noting that our group C(φ�) coincides
with the group S+

φ� defined by Kaletha in [32] with Z taken to be equal to the centre of
SLn(F ).
More often one encounters the component group

Sφ� := ZPGLn(C)(im φ�)/ZPGLn(C)(im φ�)◦.

It related to (3) by the short exact sequence

1 → Zφ� → Sφ� → Sφ� → 1.

Given a Langlands parameter φ for GLn(F ), we can define C(φ), Sφ and Zφ by the same
formulas as in (3). Again C(φ) coincides with the group that Kaletha considers. It is easily
seen that ZGLn(C)(im φ) is connected, so Sφ

∼= Zφ . The usual component group Sφ is
always trivial for GLn(F ).
Hence, Sφ (resp. Sφ� ) has more irreducible representations than Sφ (resp. Sφ� ). Via

the Langlands correspondence, the additional ones are associated with irreducible rep-
resentations of non-split inner forms of GLn(F ) (resp. SLn(F )). For example, consider a
Langlands parameter φ for GL2(F ) which is elliptic, that is, whose image is not contained
in any torus of GL2(C). Then Sφ = Z(SL2(C)) ∼= {±1}. The pair (φ, trivSφ ) parametrizes
an essentially square-integrable representation of GL2(F ) and (φ, sgnSφ

) parametrizes an
irreducible representation of the non-split inner form D×, where D denotes a noncom-
mutative division algebra of dimension 4 over F .
For general linear groups over local fields, we prove a result which was already known

to experts, but which we could not find in the literature:

Theorem 1.1 (see Theorem 2.2) There is a canonical bijection between:

• pairs (G,π ) with π ∈ Irr(G) and G an inner form ofGLn(F ), considered up to equiva-
lence;

• pairs (φ, ρ) with φ ∈ �(GLn(F )) and ρ ∈ Irr(Sφ).

For these Langlands parameters, Sφ = Zφ and a character of Zφ determines an inner
form of GLn(F ) via the Kottwitz isomorphism [36]. In contrast to the usual LLC, our
packets for general linear groups need not be singletons. To be precise, the packet �φ
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contains the unique representation rec−1
D,m(φ) of G = GLm(D) if φ is relevant for G, and

no G-representations otherwise.
A similar result holds for special linear groups, but with a fewmodifications. Firstly, one

loses canonicity, because in general there is no natural way to parametrize the members
of an L-packet �φ� (G�) if there are more than one. Already for tempered representations
of SL2(F ), the enhanced LLC is not canonical, see [6, Example 11.3]. It is possible to
determine a unique parametrization of Irr(SLn(F )) by fixing a Whittaker datum and of
Irr(G�) by adding more data [32], but this involves non-canonical choices.
Secondly, the quaternion algebra H turns out to occupy an exceptional position. Our

local Langlands correspondence for inner forms of the special linear group over a local
field F can be stated as follows:

Theorem 1.2 (see Theorems 3.3 and 3.4)
There exists a correspondence between:

• pairs (G�,π ) with π ∈ Irr(G�) and G� an inner form of SLn(F ), considered up to
equivalence;

• pairs (φ�, ρ) with φ� ∈ �(SLn(F )) and ρ ∈ Irr(Sφ� ),

which is almost bijective, the only exception being that pairs (SLn/2(H),π ) correspond to
two parameters (φ�, ρ1) and (φ�, ρ2).

(a) The group G� determines ρ
∣
∣
Z

φ�
and conversely.

(b) The correspondence satisfies the desired properties from [13, § 10.3], with respect to
restriction from inner forms ofGLn(F ), temperedness and essential square integrabil-
ity of representations.

This theorem supportsmore general conjectures on L-packets and the LLC for non-split
groups, cf. [3, § 3] and [32, § 5.4].
In the archimedean case, the classification of Irr(SLm(D)) is well known, at least for

D 	= H. The main value of our result lies in the strong analogy with the non-archimedean
case. The reason for the lack of bijectivity for the special linear groups over the quaternions
is easily identified. Namely, the reduced norm map for H satisfies Nrd(H×) = R>0,
whereas for all other local division algebras D with centre F the reduced norm map is
surjective, that is, Nrd(D×) = F×. Of course, there are various ad hoc ways to restore the
bijectivity in Theorem 1.2, for example by decreeing that SLm(H) appears twice among
the equivalence classes of inner forms of SL2m(R). This can be achieved in a natural way
with strong inner forms, as in [1]. But one may also argue that for SLm(H) one would
actually be better off without any component groups.
For p-adic fields F , the above theorem can be derived rather quickly from the work of

Hiraga and Saito [29].
By far the most difficult case of Theorem 1.2 is that where the local field F has positive

characteristic. The paper [29] does not apply in this case, and it seems hard to generalize
the techniques from [29] to fields of positive characteristic.
Our solution is to use themethod of close fields to reduce it to the p-adic case. Let F be a

local field of characteristic p, oF its ring of integers and pF the maximal ideal of oF . There
exist finite extensions F̃ ofQpwhich are l-close toF , whichmeans thatoF/plF is isomorphic
to the corresponding ring for F̃ . Let D̃ be a division algebrawith centre F̃ , such thatD and D̃
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have the sameHasse invariant. LetKr be the standard congruence subgroup of level r ∈ N

in GLm(oD), and let Irr(G,Kr) be the set of irreducible representations of G = GLm(D)
with nonzero Kr-invariant vectors. Define K̃r ⊂ GLm(D̃) and Irr(GLm(D̃), K̃r) in the same
way.
For l sufficiently large compared to r, the method of close fields provides a bijection

Irr(GLm(D), Kr) → Irr(GLm(D̃), K̃r) (4)

which preserves almost all the available structure [7]. But this is not enough for Theorem
1.2; we also need to relate to the local Langlands correspondence. The l-closeness of F
and F̃ implies that the quotient of theWeil group of F by its l-th ramification subgroup is
isomorphic to the analogous object for F̃ [18]. This yields a natural bijection

�l(GLm(D)) → �l(GLm(D̃)) (5)

between Langlands parameters that are trivial on the respective l-th ramification groups.
We show that:

Theorem 1.3 (see Theorems 6.1 and 6.2)
Suppose that F and F̃ are l-close and that l is sufficiently large compared to r. Then the

maps (1), (4) and (5) form a commutative diagram

Irr(GLm(D), Kr) → Irr(GLm(D̃), K̃r)
↓ ↓

�l(GLm(D)) → �l(GLm(D̃)).

In the special case D = F and D̃ = F̃ , this holds for all l > 2n−1r.

The special case was also proven by Ganapathy [20,21], but without an explicit lower
bound on l.
Theorem 1.3 says that the method of close fields essentially preserves Langlands para-

meters. The proof runs via the only accessible characterization of the LLC for general
linear groups: by means of ε- and γ -factors of pairs of representations [27].
To apply Henniart’s characterization with maximal effect, we establish a result with

independent value. Given a Langlands parameter φ, we let d(φ) ∈ R≥0 be the smallest
number such thatφ /∈ �d(φ)(GLn(F )). That is, the smallest number such thatφ is nontrivial
on the d(φ)-th ramification group of the Weil group of F with respect to the upper
numbering. For a supercuspidal representation π of GLn(F ), let d(π ) be its normalized
level, as in [14].

Proposition 1.4 (see Proposition 4.2) The local Langlands correspondence for supercus-
pidal representations of GLn(F ) preserves depths, in the sense that

d(π ) = d(recF,n(π )).

2 Inner forms of GLn(F)
Let F be a local field and letD be a division algebra with centre F , of dimension dimF (D) =
d2. The F-group GLm(D) is an inner form of GLmd(F ), and conversely every inner form
of GLn(F ) is isomorphic to such a group.
In the archimedean case, there are only three possible division algebras: R,C and H.

The group GLm(H) is an inner form of GL2m(R), and (up to isomorphism) that already
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accounts for all the inner forms of the groups GLn(R) and GLn(C). One can parametrize
these inner forms with characters of order at most two of Z(SLn(C)), such that GLn(F ) is
associated with the trivial character and

GLm(H) corresponds to the character of order two of Z(SL2m(C)). (6)

Until further notice we assume that F is non-archimedean. Let us make our equivalence
relation on the set of inner forms of GLn(F ) precise. Following [29], we consider inner
twists of GLn, that is, pairs (G, ξ ) where G is an inner form of GLn and ξ : GLn → G is
an isomorphism defined over F̄ , such that ξ−1 ◦ σ ◦ ξ ◦ σ−1 is an inner automorphism of
GLn for every σ in the absolute Galois group of F . Equivalence classes of inner twists are
classified by the first Galois cohomology group of F with values in the adjoint group of
GLn, H1(F,PGLn).
For a more explicit interpretation, we note that H1(F,PGLn) also parametrizes the

isomorphism classes of central simple F-algebras of dimension n2. In other words, we
have defined that our equivalence classes of inner forms ofGLn(F ) are in bijectionwith the
isomorphism classes of central simple F-algebras of dimension n2 viaMm(D) �→ GLm(D).
By [36, Proposition 6.4], there exists a natural bijection

H1(F,PGLn) → Irr
(
Z(SLn(C))

) = Irr
({z ∈ C× : zn = 1}). (7)

In fact, such a map exists on general grounds [36, § 6.5], in characteristic 0 it is bijective
by [33, Satz 2] and in positive characteristic by [47]. Clearly, the map

Irr
({
z ∈ C× : zn = 1

}) → {
z ∈ C× : zn = 1

}
: χ �→ χ (exp(2π

√−1/n))

is bijective. The composition of these twomaps can also be interpreted in terms of classical
number theory. For Mm(D) with md = n, the Hasse invariant h(D) (in the sense of
Brauer theory) is a primitive d-th root of unity. The element of H1(F,PGLn) associated
with Mm(D) has the same image h(D) in {z ∈ C× : zn = 1}. In particular, 1 ∈ C×

is associated with Mn(F ) and the primitive n-th roots of unity correspond to division
algebras of dimension n2 over their centre F .
We warn the reader that our equivalence relation on the set of inner forms of GLn(F )

is rougher than isomorphism. Namely, if h(D′) = h(D)−1, then Mm(D′) is isomorphic to
the opposite algebra of Mm(D) and

GLm(D) → GLm(Dop) ∼= GLm(D′) : x �→ x−T

is a group isomorphism. Since x �→ x−T is the only nontrivial outer automorphismofGLn,
all isomorphisms between groups GLm(D) arise in this way (up to inner automorphisms).
Furthermore, there is a standard presentation of the division algebras D, which is espe-

cially useful in relation to the method of close fields. Let L be the unique unramified
extension of F of degree d, and let χ be the character of Gal(L/F ) ∼= Z/dZ, which sends
the Frobenius automorphism to h(D). If F is a uniformizer of F , then D is isomorphic
to the cyclic algebra [L/F,χ ,F ], see Definition IX.4.6 and Corollary XII.2.3 of [50]. We
will call a group of the form

GLm
(
[L/F,χ ,F ]

)
(8)

a standard inner form of GLn(F ).
The local Langlands correspondence for G = GLm(D) has been known to experts

for considerable time, although it did not appear in the literature until recently [4,29].
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We need to understand it well for our later arguments, so we recall its construction. It
generalizes and relies on the LLC for general linear groups:

recF,n : Irr(GLn(F )) → �(GLn(F )).

The latter was proven for supercuspidal representations in [26,28,38] and extended from
there to Irr(GLn(F )) in [52].
As G is an inner form of GLn(F ), Ǧ = GLn(C) and the action of Gal(F/F ) on GLn(C)

determined by G is by inner automorphisms. Therefore, we may take as Langlands dual
group LG = Ǧ = GLn(C).
Let us recall the notion of relevance of Langlands parameters for non-split groups. Let

φ ∈ �(GLn(F )), and let M̌ ⊂ GLn(C) be a Levi subgroup that contains im(φ) and is
minimal for this property. As for all Levi subgroups,

M̌ ∼= GLn1 (C) × · · · × GLnk (C) (9)

for some integersniwith
∑k

i=1 ni = n. Thenφ is relevant forG if andonly if M̌ corresponds
to a Levi subgroup M ⊂ G. This is equivalent to mi := ni/d being an integer for all i.
Moreover, in that case

M ∼= GLmi (D) × · · · × GLmk (D). (10)

By definition, �(G) consists of the G-relevant elements of �(GLn(F )). Consider any φ ∈
�(G). Conjugating by a suitable element of Ǧ, we can achieve that

• M̌ = ∏l
i=1 GLni (C)ei and M = ∏l

i=1 GLmi (D)ei are standard Levi subgroups of
GLn(C) and GLm(D), respectively;

• φ = ∏l
i=1 φ

⊗ei
i with φi ∈ �(GLmi (D)) and im(φi) not contained in any proper Levi

subgroup of GLni (C);
• φi and φj are not equivalent if i 	= j.

Then rec−1
F,ni (φi) ∈ Irr(GLni (F )) is essentially square-integrable. Recall that the Jacquet–

Langlands correspondence [7,19,43] is a natural bijection

JL : IrressL2 (GLm(D)) → IrressL2 (GLn(F ))

between essentially square-integrable irreducible representations of G = GLm(D) and
GLn(F ). It gives

ωi := JL−1(rec−1
F,ni (φi)

) ∈ IrressL2 (GLmi (D)),

ω :=
l∏

i=1
ω

⊗ei
i ∈ IrressL2 (M).

(11)

We remark that ω is square-integrable modulo centre if and only all rec−1
F,ni (φi) are

so, because this property is preserved by the Jacquet–Langlands correspondence. The
Zelevinsky classification for Irr(GLni (F )) [52] (which is used for recF,ni ) shows that, in the
given circumstances, this is equivalent to φi being bounded. Thus, ω is square-integrable
modulo centre if and only φ is bounded.
The assignment φ �→ (M,ω) sets up a bijection

�(G) ←→ {
(M,ω) : M a Levi subgroup of G,ω ∈ IrressL2 (M)

}
/G. (12)

It is known from [19, Theorem B.2.d] and [8] that for inner forms of GLn(F ) normalized
parabolic induction sends irreducible square-integrable (modulo centre) representations
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to irreducible tempered representations and that every irreducible tempered representa-
tion can be obtained in that way. This shows that the tempered part of Irr(G) is naturally
in bijection with the tempered part (i.e. ω tempered) of the right-hand side of (12).
Now we analyse the non-tempered part of Irr(G). Let M1 be a Levi subgroup of G

containing M such that ω is square-integrable modulo the centre of M1, and such that
M1 is maximal for this property. Let P1 be a parabolic subgroup of M1 with Levi factor
M. Then ω1 = IM1

P1 (ω) is irreducible and independent of P1, while by the aforementioned
results the restriction of ω1 to the derived group of M1 is tempered. Furthermore, the
absolute value of the character of ω1 on Z(M1) is regular in the sense that no root of
(G,Z(M1)) annihilates it. Hence, there exists a unique parabolic subgroup P2 of G with
Levi factor M1, such that (P2,ω1) satisfies the hypothesis of the Langlands classification
[34,37]. That result says that IGP2 (ω1) has a unique irreducible quotient L(P2,ω1) and that
every irreducibleG-representation can be obtained in this way, from data that are unique
up to G-conjugation. This provides a canonical bijection between Irr(G) and the right-
hand side of (12).
To summarize the above constructions, let P be a parabolic subgroup of G with Levi

factor M, such that PM1 = P2. By the transitivity of parabolic induction, IGP (ω) has a
unique irreducible quotient, say L(P,ω), and it is isomorphic to L(P2,ω1). The composite
map

�(G) → Irr(G)
φ �→ (M,ω) �→ L(P,ω) = L(P2,ω1)

(13)

is the local Langlands correspondence for GLm(D). Since it is bijective, all the L-packets
�φ(G) = {L(P,ω)} are singletons.
By construction, L(P,ω) is essentially square-integrable if and only ifM = P = G, which

happens precisely when the image of φ is not contained in any proper Levi subgroup of
GLn(C). By the uniqueness part of the Langlands classification [34, Theorem 3.5.ii] L(P,ω)
is tempered if and only if ω is square-integrable modulo centre, which by the above is
equivalent to boundedness of φ ∈ �(G).
We denote the inverse of (13) by

recD,m : Irr(G) → �(G). (14)

Because both the LLC for IrressL2 (GLni (F )), the Jacquet–Langlands correspondence and
IGP respect tensoring with unramified characters, recD,m(L(P,ω ⊗ χ )) and recD,m(L(P,ω))
differ only by the unramified Langlands parameter forM which corresponds to χ .
In the archimedean case, Langlands [37] himself established the correspondence

between the irreducible admissible representations of GLm(D) and Langlands parame-
ters. The paper [37] applies to all real reductive groups, but it completes the classification
only if parabolic induction of tempered representations of Levi subgroups preserves irre-
ducibility. That is the case for GLn(C) by the Borel–Weil theorem and for GLn(R) and
GLm(H) by [11, § 12].
The above method to go from essentially square-integrable to irreducible admissible

representations is essentially the same over all local fields and stems from [37]. There also
exists a Jacquet–Langlands correspondence over local archimedean fields [19, Appen-
dix D]. Actually it is very simple, the only nontrivial cases are GL2(R) and H. Therefore,
it is justified to say that (11)–(14) hold in the archimedean case.
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With the S-groups from [3], we can build amore subtle version of (14). Since ZGLn(C)(φ)
is connected,

Sφ = C(φ)/C(φ)◦ = Z(SLn(C))ZSLn(C)(φ)
◦/ZSLn(C)(φ)

◦

∼= Z(SLn(C))/
(
Z(SLn(C)) ∩ ZSLn(C)(φ)

◦). (15)

Let χG ∈ Irr
(
Z(SLn(C))

)
be the character associated with G via (7) or (6).

Lemma 2.1 A Langlands parameter φ ∈ �(GLn(F )) is relevant for G = GLm(D) if and
only if ker χG ⊃ Z(SLn(C)) ∩ C(φ)◦.

Proof This can be derived with [2, Corollary 2.2] and [29, Lemma 9.1]. However, we prefer
a more elementary proof.
Replacing φ by a suitable GLn(C)-conjugate L-parameter, we may assume that a Levi

subgroup minimally containing φ is

L = GLn1 (C) × · · · × GLnk (C), where n1 + · · · + nk = n.

As explained in (10), φ is relevant for GLm(D) if and only d divides every nj .
Let us determine Z(SLn(C)) ∩ C(φ)◦. The factor of φ in GLnj (C) is an irreducible nj-

dimensional representation of WF × SL2(C), so any element of ZGLn(C)(im φ) must also
centralize GLnj (C) ⊂ L. As ZGLn(C)(L) = L, we obtain

ZGLn(C)(im φ)◦ = ZL(im φ)◦ = Z(GLn1 (C)) × · · · × Z(GLnk (C)).

The determinant of a typical element
(
ez1 In1 , . . . , ezk Ink

)
is exp(n1z1+· · ·+nkzk ). Hence,

the Lie algebra of ZSLn(C)(im φ) is determined by the equation n1z1 + · · · + nkzk = 0 and

C(φ)◦ = ZSLn(C)(im φ)◦ = {(
ez1 In1 , . . . , ezk Ink

) |zi ∈ C, n1z1 + · · · + nkzk = 0} .
For any integer l, we have

(
ez1 In1 , . . . , ezk Ink

) = e2π il/nIn if and only if zj
2π i ∈ Z + l

n for all
j. This lies in C(φ)◦ if and only if there are integers lj such that

k∑

j=1
nj(l/n + lj) = l +

k∑

j=1
njlj

is zero. That is only possible if l is a multiple of the greatest common divisor g of the nj .
Hence, Z(SLn(C)) ∩ C(φ)◦ is generated by e2π ig/n = exp(2π i/n)g .
Reconsider GLm(D) as above. As discussed after (7), the character χGLm(D) has order d.

In particular, its kernel consists of the d-th powers in Z(SLn(C)). Now we can conclude
with some equivalences:

Z(SLn(C)) ∩ C(φ)◦ ⊂ ker χGLm(D)

⇐⇒ d divides g

⇐⇒ dZ ⊃ gZ = n1Z + · · · + nkZ

⇐⇒ d divides nj for all j

⇐⇒ φ is relevant for GLm(D).

��
We regard

�e(inn GLn(F )) :=
{
(φ, ρ) : φ ∈ �(GLn(F )), ρ ∈ Irr(Sφ)

}
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as the collection of enhanced Langlands parameters for all inner forms of GLn(F ). With
this set, we can establish the local Langlands correspondence for all such inner forms
simultaneously. To make it bijective, we must choose one group in each equivalence
class of inner forms of GLn(F ). In the archimedean case it suffices to say that we use the
quaternions, and in the non-archimedean case we take the standard inner forms (8).

Theorem 2.2 Let F be a local field. There exists a canonical bijection

�e(inn GLn(F )) → {
(G,π ) : G standard inner form of GLn(F ),π ∈ Irr(G)

}
,

(φ,χG) �→ (G,�φ(G)).

It extends the local Langlands correspondence for GLn(F ), which can be recovered by con-
sidering only pairs (φ, trivSφ ).

Proof The elements of �e(inn GLn(F )) with a fixed φ ∈ �(GLn(F )) are
{
(φ,χ ) : χ ∈ Irr

(
Z(SLn(C))

)
, ker χ ⊃ Z(SLn(C)) ∩ C(φ)◦

}
. (16)

First, we consider the non-archimedean case. By Lemma 2.1 and (7), (16) is in bijection
with the equivalence classes of inner forms of GLn(F ) for which φ is relevant. In each
such equivalence class, there is a unique standard inner form G = GLm([L/F,χ ,F ]).
Hence, �e(inn GLn(F )) contains precisely one element for every pair (G,φ) with G a
standard inner form of GLn(F ) and φ a Langlands parameter, which is relevant for G.
Now we apply the LLC for G (13) and define that the map in the theorem sends (φ,χ ) to
�φ(G) := rec−1

[L/F,χ ,F ],m(φ) ∈ Irr(G). As rec[L/F,χ ,F ],m is a canonical bijection, so is the
thus obtained map.
In the archimedean case, the above argument does not suffice, because some charac-

ters of Z(SLn(C)) do not parametrize an inner form of GLn(F ). We proceed by direct
calculation, inspired by [37, § 3].
Suppose that F = C. Then WF = C× and im(φ) is just a real torus in GLn(C). Hence,

ZGLn(C)(φ) is a Levi subgroup of GLn(C) and C(φ) = ZSLn(C)(φ) is the corresponding Levi
subgroup of SLn(C). All Levi subgroups of SLn(C) are connected, so Sφ = C(φ)/C(φ)◦ =
1. Consequently, �e(inn GLn(C)) = �(GLn(C)), and the theorem for F = C reduces to
the Langlands correspondence for GLn(C).
Now we take F = R. Recall that its Weil group is defined as

WR = C× ∪ C×τ , where τ 2 = −1 and τzτ−1 = z.

Let M be a Levi subgroup of GLn(C) which contains the image of φ and is minimal for
this property. Then φ(C×) is contained in a unique maximal torus T ofM. By replacing φ

by a conjugate Langlands parameter, we can achieve that

M =
n∏

i=1
GLi(C)ni

is standard and that T is the torus of diagonal matrices. Then the projection of φ(WR)
on each factor GLi(C) of M has a centralizer in GLi(C), which does not contain any
torus larger than Z(GLi(C)). On the other hand, φ(τ ) normalizes ZM(φ(C×)) = T , so
ZGLn(C)(φ) = ZT (φ(τ )). It follows that ni = 0 for i ≥ 2.
The projection of φ(τ ) on each factor GL2(C) of M is either

( 0 1−1 0
)
or

( 0 −1
1 0

)
. Hence,

ZGLn(C)(φ) contains the torus
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Tφ := (C×)n1 × Z(GL2(C))n2 .

Suppose that n1 > 0. Then the intersection Tφ ∩ SLn(C) is connected, so

Z(SLn(C))/
(
Z(SLn(C)) ∩ ZSLn(C)(φ)

◦) = 1.

Together with (15) this shows that Sφ = 1 if n is odd or if n is even and φ is not relevant
for GLn/2(H).
Now suppose n1 = 0. Then n = 2n2, φ is relevant for GLn2 (H) and Tφ = {

(zjI2)n2j=1 :
zj ∈ C×}

. We see that Tφ ∩ SLn(C) has two components, determined by whether
∏n2

j=1 zj
equals 1 or −1. Write φ = ∏n2

j=1 φj with φj ∈ �(GL2(R)). We may assume that φ is
normalized such that, whenever φj is GL2(C)-conjugate to φj′ , actually φj′ = φj = φk for
all k between j and j′. Then ZMn(C)(φ) is isomorphic to a standard Levi subalgebra A of
Mn2 (C), via the ring homomorphism

Mn2 (C) → Mn(C) = Mn2 (M2(C)) induced by z �→ zI2.

Hence, ZSLn(C)(φ) ∼= {a ∈ A : det(a)2 = 1}, which clearly has two components. This
shows that |Sφ | = [C(φ) : C(φ)◦] = 2 if φ is relevant for GLn/2(H).
Thus, we checked that for every φ ∈ �(GLn(R)), Irr(Sφ) parametrizes the equivalence

classes of inner formsG of GLn(R) for which φ is relevant. To conclude, we apply the LLC
for G. ��

3 Inner forms of SLn(F)
As in the previous section, letD be a division algebra over dimension d2 over its centre F ,
with reduced norm Nrd: D → F . We write

GLm(D)� :=
{
g ∈ GLm(D) : Nrd(g) = 1

}

Notice that it equals the derived group of GLm(D). It is an inner form of SLmd(F ), and
every inner form of SLn(F ) is isomorphic to such a group. We use the same equivalence
relation and parametrization for inner forms of SLn(F ) as for GLn(F ), as described by (7)
and (6).
As Langlands dual group of G� = GLm(D)�, we take

LG� = Ǧ� = PGLn(C).

In particular, every Langlands parameter for G = GLm(D) gives rise to one for G�. In
line with [13, § 10], the L-packets for G� are derived from those for G in the following
way. It is known [49] that every φ� ∈ �(G�) lifts to a φ ∈ �(G). The L-packet �φ(G)
from (13) consists of a singleG-representation, which we will denote by the same symbol.
Its restriction to G� depends only on φ�, because a different lift φ′ of φ� would produce
�φ′ (G), which only differs from �φ(G) by a character of the form

g �→ |Nrd(g)|zF with z ∈ C.

We call the restriction of �φ(G) toG� πφ(G)�. In general it is reducible, and with it one
associates the L-packet

�φ� (G�) := {
π� ∈ Irr(G�) : π� is a constituent of πφ(G)�

}
.

Thegoal of this section is an analogueofTheorem2.2. Firstwenote that every irreducible
G�-representation (say π ) is a member of an L-packet �φ� (G�), because it appears in a
G-representation (for example in IndGG�π ).
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Lemma 3.1 [29, Lemma 12.1], see also [22, Theorem 4.1] when G� = SLn(F ).
Two L-packets �

φ
�
1
(G�) and �

φ
�
2
(G�) are either disjoint or equal, and the latter happens

if and only if φ�
1 and φ

�
2 are PGLn(C)-conjugate (i.e. equal in �(G�)).

Thus, themain problem is the parametrization of the L-packets. Such a parametrization
of �φ� (G�) was given in [29] in terms of S-groups, at least when F has characteristic zero
and �φ(G) is “GLn-generic”. After recalling this method, we will generalize it. Put

XG(�φ(G)) = {
γ ∈ Irr(G/G�) : �φ(G) ⊗ γ ∼= �φ(G)

}
.

Notice that every element ofXG(�φ(G)) is a character, which by Schur’s lemma is trivial
on Z(G). Since G/G�Z(G) is an abelian group and all its elements have order dividing n,
the same goes for XG(�φ(G)). Moreover, XG(�φ(G)) is finite, as we will see in (21). On
general grounds [29, Lemma 2.4], there exists a 2-cocycle κφ� such that

C[XG(�φ(G)), κφ� ] ∼= EndG� (�φ(G)). (17)

More explicitly, by [29, Lemma 2.4] there are elements

Iγ ∈ HomG(�φ(G), �φ(G) ⊗ γ ) for γ ∈ XG(�φ(G)), (18)

which together form a basis of EndG� (�φ(G)). The map γ �→ Iγ is in general not multi-
plicative, but it is multiplicative up to scalars, and that accounts for the cocycle κφ� . By
[29, Corollary 2.10], the decomposition of πφ(G)� as a representation ofG� ×XG(�φ(G))
is

πφ(G)� ∼=
⊕

ρ∈Irr(C[XG(�φ (G)),κ
φ� ])

Hom
C[XG(�φ (G)),κ

φ� ](ρ,πφ(G)�) ⊗ ρ. (19)

Let us compare C(φ�) with C(φ) = ZSLn(C)(φ). Since the kernel of the projection
GLn(C) → PGLn(C) is central and φ� is the projection of φ, the subgroups C(φ) ⊂ C(φ�)
of SLn(C) have the same Lie algebra. Consequently,

C(φ) = Z(SLn(C))C(φ)◦ = Z(SLn(C))C(φ�)◦.

We also note that
C(φ�)/C(φ) ∼= Sφ�/Zφ� , where

Zφ� = Z(SLn(C))C(φ�)◦/C(φ�)◦ ∼= Z(SLn(C))/Z(SLn(C)) ∩ C(φ�)◦.
(20)

Assume for the moment that D � H, so Nrd: D → F is surjective by [50, Proposi-
tion X.2.6]. Let γ̂ : WF → C× ∼= Z(GLn(C)) correspond to γ ∈ Irr(F×) ∼= Irr(G/G�)
via local class field theory. By the LLC for G, φ is GLn(C)-conjugate to φγ̂ for all
γ ∈ XG(�φ(G)). As (φγ̂ )� = φ�, φ and φγ̂ are in fact conjugate by an element of
C(φ�) ⊂ SLn(C). This gives an isomorphism

C(φ�)/C(φ) ∼= XG(�φ(G)), (21)

showing in particular that the left-hand side is abelian. SinceC(φ�)/C(φ) is the component
group of the centralizer of the subset im(φ�) of the algebraic group PGLn(C), the groups
in (21) are finite. Thus, we obtain a central extension of finite groups

1 → Zφ� → Sφ� → XG(�φ(G)) → 1. (22)

The algebra (17) can be described with the idempotent

eχG := |Zφ� |−1
∑

z∈Z
φ�

χG(z−1)z ∈ C[Zφ� ].
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Theorem 3.2 Let G = GLm(D) with D � H. There exists an isomorphism

C
[
XG(�φ(G)), κφ�

]
= C[Sφ�/Zφ� , κφ� ] ∼= eχGC[Sφ� ]

such that for any s ∈ Sφ� the subspacesCsZφ� on both sides correspond. Moreover, any two
such isomorphisms differ only by a character of Sφ�/Zφ� .

Proof First we determine the difference of two such isomorphisms. Their composition
is an algebra automorphism of C[Sφ�/Zφ� , κφ� ], which preserves each of the subspaces
CsZφ� . The multiplication rules

sZφ� · s′Zφ� = κφ� (s, s′)ss′Zφ�

in this algebra show that the automorphism is the C-linear extension of sZφ� �→ λ(s)sZφ�

for a character λ of Sφ�/Zφ� .
Now we suppose that char(F ) = 0 and that the representation �φ(G) is tempered. In

the archimedean case, the cocycle κφ� is trivial by [29, Lemma 3.1 and p. 69]. In the non-
archimedean case, the theorem is a reformulation of [29, Lemma 12.5]. We remark that
this is a deep result, and its proof makes use of endoscopic transfer and global arguments.
Next we consider the case where char(F ) = 0 and we have a possibly unbounded Lang-

lands parameter φ� ∈ �(G�), with a lift φ ∈ �(G). Let Y be a connected set of unramified
twists φχ of φ, such that C(φχ ) = C(φ) and C(φ�

χ ) = C(φ�) for all φχ ∈ Y . It is easily
seen that we can always arrange that Y contains bounded Langlands parameters, confer
[5, Proposition 3.2]. The reason is that for any element (here the image of a Frobenius
element of WF under φ) of a torus in a complex reductive group, there is an element of
the maximal compact subtorus which has the same centralizer.
The construction of the intertwining operators

Iγ ∈ HomG(�φ(G),�φ(G) ⊗ γ ), γ ∈ XG(�φ(G))

from (18) is similar to that for R-groups. It determines the 2-cocycle κφ� by

Iγ Iγ ′ = κφ� (γ , γ ′)Iγ γ ′ .

The Iγ can be chosen independently of χ ∈ Xnr(M), so the κ
φ

�
χ
do not depend on χ . For

φ
�
χ tempered, we already have the required algebra isomorphisms, and now they extend

by constancy to all φ�
χ ∈ Y . This concludes the proof in the case char(F ) = 0. ��

The proof of the case char(F ) > 0 requires more techniques; we dedicate Sects. 4–6 to
it.
For a character χ of Zφ� or of Z(SLn(C)), we write

Irr(Sφ� ,χ ) := Irr
(
eχC[Sφ� ]

) = {(π , V ) ∈ Irr(Sφ� ) : Zφ� acts on V as χ}. (23)

We will use this with the characters χG = χG� from Lemma 2.1.
We still assume that D � H. As shown in [29, Corollary 2.10], the isomorphism (17)

and Theorem 3.2 imply that

π (φ�, ρ) := HomS
φ� (ρ,�φ(G)) (24)

defines an irreducible G�-representation for every ρ ∈ Irr(Sφ� ,χG� ). More precisely, (24)
determines a bijection

Irr(Sφ� ,χG� ) → {
[π ] ∈ Irr(G�) : π is a constituent of �φ(G)

}
, (25)
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where [π ] denotes the isomorphism class of π . In general π (φ�, ρ) is not canonical, it
depends on the choice of an algebra isomorphism as in Theorem 3.2. Hence, the map
ρ �→ π (φ�, ρ) is canonical up to an action of

Irr
(Sφ�/Zφ�

) ∼= Irr
(
XG(�φ(G))

)

on Irr
(
eχGC[Sφ� ]

)
. Via (19) and Theorem 3.2, this corresponds to an action of

Irr
(
XG(�φ(G))

)
on �φ� (G), which can be described explicitly. Since XG(�φ(G)) is a

subgroup of Irr
(
G/G�Z(G)

)
, Irr

(
XG(�φ(G))

)
is a quotient of G/G�Z(G), say G/H for

someH ⊃ G�Z(G). This means that every c ∈ Irr
(
XG(�φ(G))

)
determines a coset gcH in

G. Now the formula

c · π = gc · π , where (gc · π )(g) = π
(
g−1
c ggc

)
(26)

defines the action of Irr
(
XG(�φ(G))

)
on �φ� (G�). In other words, the representation

π (φ�, ρ) ∈ �φ� (G�) is canonical up to the action ofG onG�-representations. Since�φ(G)
is irreducible, the action of G on �φ� (G�) is in fact transitive, which means that with
suitable choices one can arrange that π (φ�, ρ) is any element of this L-packet.
ForD = H, somemodifications must be made. In that case,G = G�Z(G), so ResGG� pre-

serves irreducibility of representations and XG(�φ(G)) = 1. Moreover, G/G� ∼= R×
>0 �

R×, which causes (21) and (22) to be invalid for D = H. However, (23) still makes sense,
so we define

π (φ�, ρ) := �φ(GLm(H)) for all ρ ∈ Irr
(Sφ� ,χH×

)
. (27)

As mentioned before, Hiraga and Saito [29] have established the local Langlands corre-
spondence for irreducible “GLn-generic” representations of inner forms of SLn(F ), where
F is a local field of characteristic zero. We will generalize this on the one hand to local
fields F of arbitrary characteristic and on the other hand to all irreducible admissible
representations. We will do so for all inner forms of SLn(F ) simultaneously, to obtain an
analogue of Theorem 2.2.
Like for GLn(F ) we define

�e(inn SLn(F )) = {
(φ�, ρ) : φ� ∈ �(SLn(F )), ρ ∈ Irr(Sφ� )

}
.

Notice that the restriction of ρ to Zφ�
∼= Z(SLn(C))/Z(SLn(C)) ∩ C(φ�)◦ determines an

inner formGρ of GLn(F ) (up to equivalence) via (7) and Lemma 2.1. Its derived groupG�
ρ

is the inner form of SLn(F ) associated with ρ.
We note that the actions of PGLn(C) on the various �e(G�) combine to an action

on �e(inn SLn(F )). With the collection of equivalence classes �e(inn SLn(F )), we can
formulate the local Langlands correspondence for all such inner forms simultaneously.
First we consider the non-archimedean case. As for GLn(F ), we fix one group in

every equivalence class of inner forms. We choose the groups GLm([L/F,χ ,F ])� with
[L/F,χ ,F ] as in (8) and call these the standard inner forms of SLn(F ).

Theorem 3.3 Let F be a non-archimedean local field. There exists a bijection

�e(inn SLn(F )) → {
(G�,π ) : G� standard inner form of SLn(F ),π ∈ Irr(G�)

}

(φ�, ρ) �→ (
G�

ρ ,π (φ�, ρ)
)

with the following properties:



Aubert et al. Res Math Sci (2016) 3:32 Page 15 of 34

(a) Suppose that ρ sends exp(2π i/n) ∈ Z(SLn(C)) to a primitive d-th root of unity z.
Then G�

ρ = GLm([L/F,χ ,F ])�, where md = n and χ : Gal(L/F ) → C× sends the
Frobenius automorphism to z.

(b) Suppose that φ� is relevant for G� and lifts to φ ∈ �(G). Then the restriction of�φ(G)
to G� is

⊕
ρ∈Irr(S

φ� ,χG� ) π (φ
�, ρ) ⊗ ρ.

(c) π (φ�, ρ) is essentially square-integrable if andonly ifφ�(WF×SL2(C)) is not contained
in any proper parabolic subgroup of PGLn(C)).

(d) π (φ�, ρ) is tempered if and only if φ� is bounded.

Proof Let φ� ∈ �(SLn(F )) and lift it to φ ∈ �(GLn(F )). Then C(φ�)◦ = C(φ)◦ and
Zφ� = Zφ , so

Zφ� = Zφ = Z(SLn(C))/Z(SLn(C)) ∩ C(φ)◦ = Z(SLn(C))/Z(SLn(C)) ∩ C(φ�)◦.

By this and Lemma 2.1, the set of standard inner forms of SLn(F ) for which φ� is relevant
is in natural bijection with

Irr(Zφ� ) = Irr
(
Z(SLn(C))/Z(SLn(C)) ∩ C(φ�)◦

)
.

Hence, the collection of (φ�, ρ) ∈ �e(inn SLn(F )) with φ� fixed is
{
(φ�, ρ) : ρ ∈ Irr(Sφ� ,χG� ) with φ� relevant for G�

}
. (28)

The description ofG�
ρ in part (a) is a reformulation of (7) and our choice of standard inner

forms of SLn(F ). By (25), the map of the theorem provides a bijection between (28) and
the set of pairs (G�,π ) whereG� is a standard inner form of SLn(F ) for which φ� is relevant
and π ∈ Irr(G�) is a constituent of �φ(G). Now we see from Lemma 3.1 and Theorem 2.2
that the map of the theorem is bijective.
Part (b) is a consequence of (17) and Theorem 3.2, see [29, Corollary 2.10]. Parts (c) and

(d) follow from the analogous statements for inner forms of GLn(F ) (whichwere discussed
after (13)) in combination with [46, Proposition 2.7]. ��
Let us formulate an archimedean analogue of Theorem 3.3, that is, for the groups

SLn(C), SLn(R) and SLm(H). In view (27), we cannot expect a bijection, and part (b) has
to be adjusted.

Theorem 3.4 Let F be R or C. There exists a canonical surjection

�e(inn SLn(F )) → {
(G�,π ) : G� standard inner form of SLn(F ),π ∈ Irr(G�)

}

(φ�, ρ) �→ (
G�

ρ ,π (φ�, ρ)
)

with the following properties:

(a) The preimage of Irr(SLn(F )) consists of the (φ�, ρ) with Zφ� ⊂ ker ρ, and the map
is injective on this domain. The preimage of Irr(SLn/2(H)) consists of the (φ�, ρ) such
that ρ is not trivial on Zφ� , and the map is two-to-one on this domain.

(b) Suppose that φ� is relevant for G� = SLm(D) and lifts to φ ∈ �(G). Then the
restriction of �φ(G) to G� is irreducible if D = C or D = H and is isomorphic
to

⊕
ρ∈Irr(S

φ� /Z
φ� ) π (φ

�, ρ) ⊗ ρ in case D = R.
(c) π (φ�, ρ) is essentially square-integrable if and only if φ�(WF ) is not contained in any

proper parabolic subgroup of PGLn(C)).
(d) π (φ�, ρ) is tempered if and only if φ� is bounded.
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Proof Theorem 2.2 and the start of the proof of Theorem 3.3 show that (28) is also valid in
the archimedean case. To see that themap thus obtained is canonical, wewill of course use
that the LLC for GLm(D) is so. For SLn(F ), the intertwining operators admit a canonical
normalization in terms ofWhittaker functionals [29, pp. 17 and 69], so the definition (24)
of π (φ�, ρ) can be made canonical. For SLm(H), the definition (27) clearly leaves no room
for arbitrary choices.
Part (a) and part (b) for D = R follow as in the non-archimedean case, except that for

D = H the preimage of π (φ�, ρ) is in bijection with Irr(Sφ , eH× ). To prove part (b) for
D = C andD = H, it suffices to remark thatResGG� preserves irreducibility, asG = G�Z(G).
The proof of parts (c) and (d) carries over from Theorem 3.3.
It remains to check that the map is two-to-one on Irr(SLm(H)). For this, we have to

compute

Sφ�/Zφ� = C(φ�)/C(φ�)◦ = C(φ�)/C(φ). (29)

Consider φ� ∈ �(SLm(H)) with two lifts φ,φ′ ∈ �(GLm(H)) that are conjugate under
GL2m(C). The restriction of φ−1φ′ to C× ⊂ WR is a group homomorphism c : C× →
Z(GL2m(C)). Clearly φ and φ′ can only be conjugate if c = 1, so φ′ can only differ from φ

on τ ∈ WR. Since

φ′(τ )2 = φ′(−1) = φ(−1) = φ(τ )2,

either φ′(τ ) = −φ(τ ) or φ′ = φ. Recall the standard form of φ exhibited in the proof of
Theorem 2.2, with image in the Levi subgroup GL2(C)m of GL2m(C). It shows that the
Langlands parameter φ′ determined by φ′(τ ) = −φ(τ ) is always conjugate to φ, for exam-
ple by the element diag(1,−1, 1, . . . ,−1) ∈ GL2m(C). Therefore, (29) has precisely two
elements. Now eH×C[Sφ� ] is a two-dimensional semisimple C-algebra, so it is isomorphic
to C ⊕ C. We conclude that Irr(Sφ� , eH× ) has two elements, for every φ� ∈ �(SLm(H)).

��

4 Characterization of the LLC for some representations of GLn(F)
In this section, F is any local non-archimedean field. It is known from [27] that generic
representations of GLn(F ) can be characterized in terms of γ -factors of pairs, where
the other part of the pair is a representation of a smaller general linear group. We will
establish a more precise version for irreducible representations that have nonzero vectors
fixed under a specific compact open subgroup.
Let Fs be a separable closure of F , and let Gal(Fs/F )l be the l-th ramification group of

Gal(Fs/F ), with respect to the upper numbering. We define

�l(G) :=
{
φ ∈ �(G) : Gal(Fs/F )l ⊂ ker(φ)

}
.

Notice that

�l′ (G) ⊂ �l(G), if l′ ≤ l.

It is known that the set of l’s at which Gal(Fs/F )l jumps consists of rational numbers
and is discrete [45, Chap. IV, § 3]. In particular, there exists a unique rational number d(φ)
such that

φ /∈ �d(φ)(GLn(F )) and φ ∈ �l(GLn(F )) for any l > d(φ). (30)

We will say that φ ∈ �(GLn(F )) is elliptic if its image is not contained in any proper Levi
subgroup of GLn(C). Recall the Swan conductor swan(φ) from [25, § 2].
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Lemma 4.1 Let φ ∈ �(GLn(F )), such that φ is elliptic and SL2(C) ⊂ ker(φ). Then

d(φ) =
⎧
⎨

⎩
0 if IF ⊂ ker(φ),

swan(φ)/n otherwise.
(31)

Proof Recall that the filtration of Gal(Fs/F ) with the lower numbering only has jumps at
integer values of the index. Let c(φ) denote the smallest integer such that

Gal(Fs/F )c(φ)+1 ⊂ ker(φ),

if IF = Gal(Fs/F )0 is not contained in ker(φ), and −1 otherwise. Recall the Herbrand
function ϕFs/F [45, Chap. IV, § 3] that allows us to pass from the lower number to the
upper ones:

Gal(Fs/F )l = Gal(Fs/F )ϕFs/F (l).

Leta(φ) denote theArtin conductor ofφ. Becauseφ is assumed tobe elliptic, the restriction
of φ toWF is irreducible. The equality

a(φ) = n
(
ϕFs/F (c(φ)) + 1

)

was shown for n = 1 in [45, Chap. VI, § 2, Proposition 5]. The proof for arbitrary n is
similar, see [25, § 2]. By the very definition of the Swan conductor

ϕFs/F (c(φ)) = a(φ)
n

− 1 = swan(φ)
n

.

Then it follows from the definition of c(φ) that d(φ) is the largest rational number such
that

Gal(Fs/F )d(φ) 	⊂ ker(φ).

��
LetA be a hereditary oF -orderA in Mn(F ). LetP denote the Jacobson radical ofA, and

let e(A) denote the oF -period of A, that is, the integer e defined by pFA = Pe. Define a
sequence of compact open subgroups of GLn(F ) by

U0(A) = A×, and Um(A) = 1 + Pm, m ≥ 1.

Letm,m′ be integers satisfyingm > m′ ≥ �m/2�. There is a canonical isomorphism

Um′+1(A)/Um+1(A) → Pm′+1/Pm+1,

given by x �→ x − 1. This leads to an isomorphism from p−1P−m/p−1P−m′ to the Pon-
tryagin dual of Um′+1(A)/Um+1(A), explicitly given by

β + p−1P−m′ �→ ψβ β ∈ p−1P−m,

with ψβ (1 + x) = (ψ ◦ trMn(F ))(βx), for x ∈ P−m′ .
We recall from [16, (1.5)] that a stratum is a quadruple [A, m,m′,β] consisting of a

hereditary oF -order A in Mn(F ), integers m > m′ ≥ 0, and an element β ∈ Mn(F ) with
A-valuation νA(β) ≥ −m. A stratum of the form [A, m,m − 1,β] is called fundamental
[16, (2.3)] if the coset β + p−1P1−m does not contain a nilpotent element of Mn(F ). We
remark that the formulation in [14] is slightly different because thenotionof a fundamental
stratum there allowsm to be 0.
Fix an irreducible supercuspidal representation π of GLn(F ). According to [14, Theo-

rem 2], there exists a hereditary order A in Mn(F ) such that either
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(a) π contains the trivial character of U1(A), or
(b) there is a fundamental stratum [A, m,m − 1,β] in Mn(F ) such that π contains the

character ψβ of Um(A).

Moreover, in case (b), if a stratum [A1, m1, m1 − 1,β1] is such that β1 occurs in the
restriction of π to Um1 (A1), then m1/e(A1) ≥ m/e(A), and we have equality here if and
only [A1, m1, m1 − 1,β1] is fundamental [14, Theorem 2′].
The above provides a useful invariant of the representation, called the depth (or nor-

malized level) of π . It is defined as

d(π ) := min
{
m/e(A)

}
, (32)

where (m,A) ranges over all pairs consisting of an integerm ≥ 0 and a hereditary oF -order
in Mn(F ) such that π contains the trivial character of Um+1(A).
The following result was claimed in [51, Theorem 2.3.6.4]. Although Yu did not provide

a proof, he indicated that an argument along similar lines as ours is possible.

Proposition 4.2 Let π ∈ Irr(GLn(F )) be supercuspidal and φ := recF,n(π ). Then

d(φ) = d(π ).

Proof We have

ε(s,φ,ψ) = ε(0,φ,ψ) q−a(φ)s with ε(0,φ,ψ) ∈ C×. (33)

It is known that the LLC for GLn(F ) preserves the ε-factors:

ε(s,φ,ψ) = ε(s,π ,ψ),

where ε(s,π ,ψ) is the Godement–Jacquet local constant [24]. It takes the form

ε(s,π ,ψ) = ε(0,π ,ψ) q−f (π )s, where ε(0,π ,ψ) ∈ C×. (34)

Recall that f (π ) is an integer, called the conductor of π . It follows from (33) and (34) that

a(φ) = f (π ). (35)

In the case when π is an unramified representation of F×, the inertia subgroup IF is
contained in ker φ, with φ = recF,1(π ). Hence, (31) implies that a(φ) = 0. On the other
hand, π is trivial on o×

F , and a fortiori trivial on 1 + pF = U1(A), with A = oF . Then (32)
implies that d(π ) = 0 = d(φ).
From now on, we will assume that we are not in the above special case, that is, we

assume that n 	= 1 or that π is ramified. Let A be a principal oF -order in Mn(F ) such
that e(A) = n/ gcd(n, f (π )), and let K(A) denote the normalizer in GLn(F ) of A. By [14,
Theorem 3], the restriction of π to K(A) contains a nondegenerate (in the sense of [14,
(1.21)]) representation � of K(A), and we have [14, (3.7)]

d(�) = e(A)
(
f (π )
n

− 1
)
, (36)

where d(�) ≥ 0 is the least integer such that

Ud(�)+1(A) ⊂ ker(�).

Moreover, if the irreducible representation �′ of K(A) occurs in the restriction of π to
K(A), then d(�′) = d(�) if and only if �′ is nondegenerate [14, (5.1) (iii)]. Hence, we obtain
from (35) and (36) that
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d(�′)
e(A)

= f (π )
n

− 1 = a(φ)
n

− 1 = d(φ) (37)

for every nondegenerate irreducible representation ρ′ ofK(A) which occurs in the restric-
tion of π to K(A).
It follows from the definition (32) of d(π ), that

d(π ) ≤ d(�′)
e(A)

, (38)

for every nondegenerate irreducible representation ρ′ ofK(A) which occurs in the restric-
tion of π to K(A).
We will check that (38) is actually an equality. The case where d(π ) = 0 is easy, so we

only consider d(π ) > 0.
Let A′ be any hereditary oF -order A′ in Mn(F ), and define mA′ (π ) to be the least non-

negative integerm such that the restriction ofπ toUm+1(A′) contains the trivial character.
Then choose A′ so thatmA′ (π )/e(A′) is minimal, and let [A′, mA′ (π ), mA′ (π ) − 1,β] be a
stratum occurring in π . By [14, Theorem 2′], this is a fundamental stratum. By [14, (3.4)],
we may assume that the integers e(A′) and mA′ (π ) are relatively prime. Hence, we may
apply [14, (3.13)]. We find that A′ is principal and that every irreducible representation �

of K(A′) which occurs in the restriction of π to K(A′), and such that the restriction of �

to UmA′ (π )(A′) contains ψβ , is nondegenerate. In particular, we have d(�′) = mA′ (π ).
It remains to check that the principal order A′ satisfies

e(A′) = n/ gcd(n, f (π )). (39)

Let b = gcd(n, f (π )). Set n = n′b and f (π ) = f ′(π )b. By using [14, (3.9)], we obtain that
n′ divides e(A′). LetP′ denote the Jacobson radical ofA′. Then [15, (3.3.8)] and [14, (3.8)]
assert that

qf (π ) =
[
A′ : pF (P′)d(�′)

]1/n
.

That is, since pFA′ = (P′)e(A′),

qf (π ) =
[
A′ : (P′)d(�′)+e(A′)

]1/n = qn(d(�
′)+e(A′))/e(A′) = qn(1+d(�′)/e(A′)).

Hence, we get

f (π ) = n
(
1 + d(�′)

e(A′)

)
,

that is,

d(�′) = e(A′)f (π )
n

− e(A′) = e
(
A′) f ′(π )
n′ − e(A′).

Hence, we have

n′d(�′) = e(A′)f ′(π ) − e(A′)n′.

Since e(A′) and d(ρ′) = mA′ (π ) are relatively prime, we deduce that e(A′) divides n′. Thus,
we have e(A′) = n′, which means that (39) holds.
We conclude that (38) is indeed an equality, which togetherwith (37) shows that d(�′) =

d(π ). ��
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As congruence subgroups are the main examples of groups likeUm(A) above, they have
a link with depths. This can be made precise. Let K0 = GLn(oF ) be the standard maximal
compact subgroup of GLn(F ) and define, for r ∈ Z>0:

Kr = ker
(
GLn(oF ) → GLn(oF/prF )

) = 1 + Mn(prF ).

We denote the set of irreducible smooth GLn(F )-representations that are generated by
their Kr-invariant vectors by Irr(GLn(F ), Kr ). To indicate the ambient group GLn(F ), we
will sometimes denote Kr by Kr,n.

Lemma 4.3 For π ∈ Irr(GLn(F )) and r ∈ Z>0, the following are equivalent:

• π ∈ Irr(GLn(F ), Kr),
• d(π ) ≤ r − 1.

Proof For this result, it is convenient to use the equivalent definition of depth provided
by Moy and Prasad [42]. In their notation, the group Kr is Po,(r−1)+, where o denotes
the origin in the standard apartment of the Bruhat–Tits building of GLn(F ). From the
definition in [42, § 3.4], we read off that any π ∈ Irr(GLn(F ), Kr ) has depth ≤ r − 1.
Conversely, suppose that d(π ) ≤ r − 1. Then π has nonzero vectors fixed by the group

Px,(r−1)+, where x is some point of the Bruhat–Tits building. Since we may move x within
its GLn(F )-orbit and there is only one orbit of vertices, we may assume that x lies in the
star of o. As r − 1 ∈ Z≥0, there is an inclusion

Px,(r−1)+ ⊃ Po,(r−1)+ = Kr,

so π has nonzero vectors fixed by Kr . ��
Let us recall some basic properties of generic representations, from [31, Section 2]. Let

ψ : F → C× be a character which is trivial on oF but not on −1
F oF . We note that ψ is

unitary because F/oF is a union of finite subgroups. LetU = Un be the standard unipotent
subgroup of GLn(F ), consisting of upper triangular matrices. We need a character θ of
U , which does not vanish on any of the root subgroups associated with simple roots. Any
choice is equally good, and it is common to take

θ
(
(ui,j)ni,j=1

) = ψ

(n−1∑

i=1
ui,i+1

)

.

Let (π , V ) ∈ Irr(GLn(F )). One calls π generic if there exists a nonzero linear form λ on
V such that

λ(π (u)v) = θ (u)λ(v) for all u ∈ U, v ∈ V.

Such a linear form is called aWhittaker functional, and the space of those has dimension
1 (if they exist). LetW (π , θ ) be the space of all functionsW : G → C of the form

Wv(g) = λ(π (g)v) g ∈ G, v ∈ V.

ThenW (π , θ ) is stable under right translations, and the representation thus obtained is
isomorphic toπ via v ↔ Wv .Most irreducible representations ofGLn(F ), and in particular
all the supercuspidal ones, are generic [23].
We consider one irreducible generic representation π of GLn(F ) and another one, π ′,

of GLn−1(F ). ForW ∈ W (π , θ ) andW ′ ∈ W (π ′, θ ) one defines the integral

�(s,W,W ′) =
∫

Un−1\GLn−1(F )
W

(
g 0
0 1

)
W ′(g) | det(g)|s−1/2

F dμ(g), (40)
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whereμ denotes the quotient of Haarmeasures onGLn−1(F ) and onUn−1. This integral is
known to converge absolutely when Re(s) is large [31, Theorem 2.7.i]. The contragredient
representations π̌ and π̌ ′ are also generic. We define W̌ ∈ W (π̌ , θ ) by

W̌ (g) = W (wng−T ) g ∈ GLn(F ),

where g−T is the transpose inverse of g and wn is the permutation matrix with ones on
the diagonal from the lower left to the upper right corner.
We denote the central character of π ′ by ωπ ′ . With these notations the L-functions,

ε-factors and γ -factors of the pair (π ,π ′) are related by

�(s,W,W ′)
L(s,π × π ′)

ε(s,π × π ′,ψ) = ωπ ′ (−1)n−1�(1 − s, W̌ , W̌ ′)
L(1 − s, π̌ × π̌ ′)

, (41)

γ (s,π × π ′,ψ) = ε(s,π × π ′,ψ)
L(1 − s, π̌ × π̌ ′)
L(s,π × π ′)

, (42)

see [31, Theorem 2.7.iii]. We regard these equations as definitions of the ε- and γ -factors.

Theorem 4.4 Let π be a supercuspidal representation in Irr(GLn(F ), Kr,n), with r ∈ Z>0.
Let φ ∈ �(GLn(F )) be an elliptic parameter such that SL2(C) ⊂ ker(φ) and d(φ) ≤ r − 1.
Suppose that det φ corresponds to the central character of π via local class field theory and
that

ε(s,π × π ′,ψ) = ε(s,φ ⊗ recF,n′ (π ′),ψ)

holds in one of the following cases:

(a) for n′ = n − 1 and every generic π ′ ∈ Irr(GLn′ (F ), K2r−1,n′ );
(b) for every n′ such that 1 ≤ n′ < n, and for every supercuspidal representation π ′ in

Irr(GLn′ (F ), K2r−1,n′ ).

Then φ = recF,n(π ).

Proof (b) By Proposition 4.2 d(recF,n(π )) ≤ r − 1. By Lemma 4.3, the assumption applies
to every supercuspidal π ′ ∈ Irr(GLn′ (F )) of depth ≤ 2r − 2. The point is that

2r − 2 ≥ 2max
{
d(π ), d(rec−1

F,n(φ))
}
,

which is a condition needed for [21, Theorem 7.5]. Its other conditions are among our
assumptions, so from [21, Theorem 7.5] we see that indeed φ = recF,n(π ).
(a) We would like to show that

ε(s,π × π ′,ψ) = ε
(
s, rec−1

F,n(φ) ⊗ π ′,ψ
)

(43)

for every generic representation π ′ of GLn−1(F ). Since π and rec−1
F,n(φ) are supercuspidal

L(s,π × σ ) = L
(
s, rec−1

F,n(φ) × σ
)

= L (s, π̌ × σ̌ ) = L
(
s, rec−1

F,n(φ̌) × σ̌
)

= 1 (44)

for any generic representation σ of a general linear group of smaller size [31, Theorem8.1].
So we might just as well check (43) with γ -factors instead of ε-factors. We proceed as in
the proof of [27, (3.3.4)]. First we write γ (s,π × τ ,ψ) as a product of γ (s,π × 〈�i〉t ,ψ),
where 〈�i〉t is a Zelevinsky segment. Next we write γ (s,π × 〈�i〉t ,ψ) itself as a product

∏

h
γ (s,π × π ′

i | |h,ψ),
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with π ′
i supercuspidal. The multiplicativity of γ -factors also gives the equality

γ (s, rec−1
F,n(φ) ⊗ π ′,ψ) =

∏

i,h
γ

(
s, rec−1

F,n(φ) × π ′
i | |h,ψ

)
.

Hence, to establish (43) it suffices to show that

γ (s,π × σ ,ψ) = γ
(
s, rec−1

F,n(φ) × σ ,ψ
)

(45)

whenever σ is a supercuspidal. In the case d(σ ) > 2r − 2, this is the content of [21,
Theorem 7.4]. We note that this result uses both the assumption on the central character
of π and Proposition 4.2.
Consider a supercuspidal σ ∈ GLn′ (F ) of depth ≤ 2r − 2. By Lemma 4.3 has nonzero

K2r−1,n′-fixed vectors, so any constituent π ′ of

IGLn(F )GLn′ (F )×GLn−1−n′ (σ × triv)

lies in Irr(GLn−1(F ), K2r−1,n−1). One of these subquotients π ′ is generic, and then

γ (s,π × σ ,ψ) = γ (s,π × π ′,ψ).

By the assumption of the theorem, the right-hand side equals

γ
(
s, rec−1

F,n(φ) × π ′,ψ
)

= γ
(
s, rec−1

F,n(φ) × σ ,ψ
)
.

This finishes the proof of (45) and of (43). Now we can apply [27, Théorème 1.1], which
says that π ∼= rec−1

F,n(φ). ��

5 Themethod of close fields
Kazhdan’s method of close fields [18,35] has proven useful to generalize results that are
known for groups over p-adic fields to groups over local fields of positive characteristic.
It was worked out for inner forms of GLn(F ) by Badulescu [7].
Let F and F̃ be two local non-archimedean fields, which we think of as being similar in a

way that will be made precise below. LetG = GLm(D) be a standard inner form of GLn(F )
and let G̃ = GLm(D̃) be the standard inner form of GLn (̃F ) with the same Hasse invariant
as G.
In this section, an object with a tilde will always be the counterpart over F̃ of an object

(without tilde) over F , and a superscript � means the subgroup of elements with reduced
norm 1. Then G̃� = G̃der is an inner form of SLn (̃F ) with the same Hasse invariant as G�

and
χG̃ = χG̃� = χG� = χG.

Let oD be the ring of integers of D, D a uniformizer and pD = DoD its unique
maximal ideal. The explicit multiplication rules in D [50, Proposition IX.4.11] show that
we may assume that a power of D equals F , a uniformizer of F .
Generalizing the notation for GLn(F ), let K0 = GLm(oD) be the standard maximal

compact subgroup of G and define, for r ∈ Z>0:
Kr = ker

(
GLm(oD) → GLm(oD/prD)

) = 1 + Mm(prD).
We denote the category of smooth G-representations that are generated by their Kr-

invariant vectors by Mod(G,Kr). Let H(G,Kr) be the convolution algebra of compactly
supported Kr-biinvariant functions G → C. According to [12, Corollaire 3.9]

Mod(G,Kr) → Mod(H(G,Kr)),
V �→ VKr

(46)

is an equivalence of categories. The same holds for (G̃, K̃r).
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From now on, we suppose that F and F̃ are l-close for some l ≥ r, that is,

oF/plF
∼= oF̃/plF̃ (47)

as rings. As remarked in [18], for every local field of characteristic p > 0 and every l ∈ N

there exists a finite extension of Qp which is l-close to F .
Notice that (47) induces a group isomorphism o×

F /1 + plF
∼= o×

F̃ /1 + plF̃ . A choice of
uniformizers F and F̃ then leads to

F×/1 + plF
∼= Z × o×

F /1 + plF
∼= Z × olF̃/1 + plF̃

∼= F̃×/1 + plF̃ . (48)

With [7, Théorème 2.4], (47) also gives rise to a ring isomorphism

λr : oD/prD → oD̃/prD̃, (49)

which in turn induces a group isomorphism

GLm(λr) : K0/Kr = GLm(oD/prD) → K̃0/K̃r = GLm
(
oD̃/prD̃

)
.

We note that, whenever r ≤ r′ ≤ l, one choose λr′ such that it induces λr . Then

GLm(λr′ ) : K0/Kr′ → K̃0/K̃r′ (50)

refines GLm(λr). Recall that the Cartan decomposition for G says that K0\G/K0 can be
represented by

A+ := {
diag( a1

D , . . . , am
D ) ∈ GLm(D) : a1 ≤ · · · ≤ am

}
.

Clearly A+ is canonically in bijection with the analogous set Ã+ of representatives for
K̃0\G̃/K̃0 (which of course depends on the choice of a uniformizer D̃). Since Kr\G/Kr
can be identified with Kr\K0 × A+ × K0/Kr , that and GLm(λr) determine a bijection

ζr : Kr\G/Kr → K̃r\G̃/K̃r . (51)

Most of the next result can be found in [7,10].

Theorem 5.1 Suppose that F and F̃ are sufficiently close, in the sense that the l in (47) is
large. Then the map 1KrgKr �→ 1ζr (KrgKr ) extends to a C-algebra isomorphism

ζG
r : H(G,Kr) → H(G̃, K̃r).

This induces an equivalence of categories

ζG
r : Mod(G,Kr) → Mod(G̃, K̃r)

such that:

(a) ζG
r respects twists by unramified characters and its effect on central characters is that
of (48).

(b) For irreducible representations, ζG
r preserves temperedness, essential square integra-

bility and cuspidality.
(c) Let be P a parabolic subgroup of G with a Levi factor M which is standard, and let P̃

and M̃ be the corresponding subgroups of G̃. Then

Mod(G,Kr)
ζGr−−→ Mod(G̃, K̃r)

↑ IGP ↑ I G̃P̃
Mod(M,Kr ∩ M)

ζMr−−→ Mod(M̃, K̃r ∩ M̃)

commutes.
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(d) ζG
r commutes with the formation of contragredient representations.

(e) ζG
r preserves the L-functions, ε-factors and γ -factors.

Proof The existence of the isomorphism ζG
r is [7, Théorème 2.13]. The equivalence of

categories follows from that and (46).
(a) Let G1 be the subgroup of G generated by all compact subgroups of G, that is, the
intersection of the kernels of all unramified characters ofG. Since Kr and K̃r are compact,
ζr restricts to a bijection

Kr\G1/Kr → K̃r\G̃1/K̃r .

Moreover, because A+ → Ã+ respects the group multiplication whenever it is defined,
the induced bijection G/G1 → G̃/G̃1 is in fact a group isomorphism. Hence, ζr induces
an isomorphism

ζ
G/G1
r : Xnr(G) = Irr(G/G1) → Irr(G̃/G̃1) = Xnr(G̃),

which clearly satisfies, for π ∈ Mod(G,Kr) and χ ∈ Xnr(G):

ζG
r (π ⊗ χ ) = ζG

r (π ) ⊗ ζ
G/G1
r (χ ).

The central characters can be dealt with similarly. The characters of Z(G) appearing in
Mod(G,Kr) are those of

Z(G)/Z(G) ∩ Kr = F×/1 + prF .

Now we note that ζG
r and (48) have the same restriction to the above group.

(b) By [7, Théorème 2.17], ζG
r preserves cuspidality and square integrability modulo cen-

tre. Combining the latter with part (a), we find that it also preserves essential square
integrability. A variation on the proof of [7, Théorème 2.17.b] shows that temperedness is
preserved as well. Alternatively, one can note that every irreducible tempered representa-
tion inMod(G,Kr) is obtained with parabolic induction from a square-integrable modulo
centre representation in Mod(M,M ∩ Kr), and then apply part (c).
(c) This property, and its analogue for Jacquet restriction, are proven in [10, Proposi-
tion 3.15]. We prefer a more direct argument. The constructions in [7, § 2] apply equally
well to (M,Kr ∩ M), so ζr induces an algebra isomorphism ζM

r and an equivalence of
categories ζM

r . By [17, Corollary 7.12] the parabolic subgroup P determines an injective
algebra homomorphism

tP : H(M,Kr ∩ M) → H(G,Kr).

This in turn gives a functor

(tP)∗ : Mod(H(M,Kr ∩ M)) → Mod(H(G,Kr)),
V �→ HomH(M,Kr∩M)(H(G,Kr), V ),

whereH(G,Kr) andV are regarded asH(M,Kr ∩M)-modules via tP . This is a counterpart
of parabolic induction, in the sense that

Mod(G,Kr) → Mod(H(G,Kr))
↑ IGP ↑ (tP)∗

Mod(M,Kr ∩ M) → Mod(H(M,Kr ∩ M))
(52)
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commutes [17,Corollary 8.4].The constructionof tP in [17, § 7] dependsonly onproperties
that are preserved by ζG

r (and its counterparts for other groups), so

H(G,Kr) → H(G̃, K̃r)
↑ (tP)∗ ↑ (tP̃)∗

H(M,Kr ∩ M) → H(M̃, K̃r ∩ M̃)
(53)

commutes. Now we combine (53) with (52) for G and G̃.
(d) The contragredient of aG-representation (π , V ) is the representation π̌ , on the smooth
part of the dual vector space of V , defined by π̌ (g)(λ) = λ ◦ π (g−1). Similarly, the contra-
gredient of aH(G,Kr)-moduleW isW ∗ with the action

f · λ = λ ◦ f ∗ λ ∈ W ∗, f ∈ H(G,Kr),

where the involution on H(G,Kr) is given by f ∗(g) = f (g−1). Furthermore, (V ∗)Kr ∼=
(VKr )∗, so the equivalence of categories (46) commutes with the formation of contragre-
dients. The map ζG

r does so because ζG
r commutes with the involution *.

(e) For the γ -factors, see [7, Théorème 2.19].
Consider the L-function of a supercuspidal σ ∈ Irr(G,Kr). By [24, Proposi-

tions 4.4 and 5.11] L(s, σ ) = 1 unless m = 1 and σ = χ◦Nrd with χ : F× → C×

unramified. This property is preserved by ζG
r , so L

(
s, ζG

r (σ )
) = 1 if the condition is ful-

filled. In the remaining case

L(s, σ ) = L(s + (d − 1)/2,χ ) = (
1 − q−s+(1−d)/2χ (F )

)−1.

The proof of part (a) shows that ζG
r (σ ) = χ ◦ ζ F×

r ◦ Nrd, so

L
(
s, ζG

r (σ )
) = (

1 − q−s+(1−d)/2χ (ζ F×
r (F̃ ))

)−1 = (
1 − q−s+(1−d)/2χ (F )

)−1.

Thus, ζG
r preserve the L-functions of supercuspidal representations. By [30, § 3], the

L-functions of general π ∈ Irr(G,Kr) are determined by the L-functions of supercuspidal
representations of Levi subgroups of G, in combination with parabolic induction and
twisting with unramified characters. In view of parts (a),(c) and the above, this implies
that ζG

r always preserves L-functions.
Now the relation

ε(s,π ,ψ) = γ (s,π ,ψ)
L(s,π )

L(1 − s, π̌ )

and part (d) show that ζG
r preserves ε-factors. ��

For r ≤ r′ ≤ l, Mod(G,Kr) is a subcategory of Mod(G,Kr′ ) and it follows from (50) that

ζG
r′ = ζG

r on Mod(G,Kr). (54)

In [9], Badulescu showed that Theorem 5.1 has an analogue for G� and G̃�, which can
easily be deduced from Theorem 5.1. We quickly recall how this works. Note thatM is a
central extension ofM� = {m ∈ M : Nrd(m) = 1}. A few properties of the reduced norm
[50, § IX.2 and equation IX.4.9] entail

Nrd(Kr ∩ M) = Nrd(1 + prD) = 1 + prF ,

M�(Kr ∩ M) = {
m ∈ M : Nrd(m) ∈ 1 + prF

}
. (55)

Choose theHaarmeasures onM andM� so that vol(Kr∩M) = vol(Kr∩M�). The inclusion
M� → M induces an algebra isomorphism



Aubert et al. Res Math Sci (2016) 3:32 Page 26 of 34

H(M�, Kr ∩ M�) → H(M�(Kr ∩ M), Kr ∩ M)

:= {
f ∈ H(M,Kr ∩ M) : supp(f ) ⊂ M�(Kr ∩ M)

}
.

In view of (55) and the isomorphism oF/prF
∼= oF̃/prF̃ , ζM

r yields a bijection

H(M�(Kr ∩ M), Kr ∩ M) → H(M̃�(K̃r ∩ M̃), K̃r ∩ M̃).

Hence, it induces an algebra isomorphism

ζM�

r : H(M�, Kr ∩ M�) → H(M̃�, K̃r ∩ M̃�).

Corollary 5.2 Theorem 5.1 (except part e) also holds for the corresponding subgroups of
elements with reduced norm 1.

Proof Using the isomorphisms ζM�

r , this can be proven in the same way as Theorem 5.1
itself. For part (b) one can use that an irreducible G-representation is tempered (resp.
essentially square-integrable or cuspidal) if and only if all its G�-constituents are so [46,
Proposition 2.7].

As preparation for the next section,wewill show that in certain special cases the functors
ζG
r preserve the L-functions, ε-factors and γ -factors of pairs of representations, as defined
in [31].
Suppose that F̃ is l-close to F and that ψ̃ : F̃ → C× is a character which is trivial

on oF̃ . We say that ψ̃ is l-close to ψ if ψ̃
∣
∣
−l

F̃ oF̃ /oF̃
corresponds to ψ

∣
∣
−l

F oF /oF
under the

isomorphisms

−l
F̃ oF̃/oF̃

∼= oF̃/ l
F̃oF̃

∼= oF/ l
FoF

∼= −l
F oF/oF .

Theorem 5.3 Assume that F and F̃ are l-close for some l > r and that ψ̃ is l-close to ψ .
Let π ∈ Irr(GLn(F ), Kr,n) be supercuspidal and let π ′ ∈ Irr(GLn−1(F ), Kr,n−1) be generic.
Then

L
(
s, ζGLn(F )

r (π ) × ζ
GLn−1(F )
r (π ′)

)
= L(s,π × π ′) = 1,

ε

(
s, ζGLn(F )

r (π ) × ζ
GLn−1(F )
r (π ′), ψ̃

)
= ε(s,π × π ′,ψ),

γ

(
s, ζGLn(F )

r (π ) × ζ
GLn−1(F )
r (π ′), ψ̃

)
= γ (s,π × π ′,ψ).

Remark It will follow from Theorem 6.1 that the above remains valid with any natural
number instead of n − 1 (except that the L-functions need not equal 1).

After the first version of this paper was put on the arXiv, the authors were informed
that a similar result was proved in [20, Theorem 2.3.10]. See also [21, Theorem 7.6]. Our
proof differs from Ganapathy’s and yields a better bound on l, namely l > r compared to
l ≥ n2r + 4.

Proof Since π and π̌ are supercuspidal, whereas π ′ and π̌ ′ are representations of a general
linear group of lower rank, [31, Theorem 8.1] assures that all the L-functions appearing
here are 1. By (42) this implies that the relevant γ -factors are equal to the ε-factors of
the same pairs. Hence, it suffices to prove the claim for the ε-factors. We note that by
Theorem 5.1

ωπ ′ (−1)n−1 = ω
ζ
GLn−1(F )
r π ′ (−1)n−1, (56)
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so from (41) we see that it boils down to comparing the integrals �(s,W,W ′) and �(1 −
s, W̌ , W̌ ′) with their versions for F̃ .
Fix a Whittaker functional λ′ for (π ′, V ′) and a vector v′ ∈ VKr,n−1 . Then W ′ := Wv′ ∈

W (π ′, θ ) is rightKr,n−1-invariant. Similarly we pickW = Wv ∈ W (π , θ ), but nowwe have
to require only thatW is right invariant under Kr,n−1 on GLn−1(F ) ⊂ GLn(F ). Because θ

is unitary, the function

GLn−1(F ) → C : g �→ W
(
g 0
0 1

)
W ′(g)

is constant on sets of the formUn−1gKr,n−1. Since the subgroup Kr,n−1 is stable under the
automorphism g �→ g−T , the functions W̌ and W̌ ′ are also right Kr,n−1-invariant. Both
transform under left translations by Un−1 as θ , so

GLn−1(F ) → C : g �→ W̌
(
g 0
0 1

)
W̌ ′(g)

defines a functionUn−1\GLn−1(F )/Kr,n−1 → C. Since det(Kr,n−1) ⊂ o×
F and det(Un−1) =

1, the function | det |F can also be regarded as a map
Un−1\GLn−1(F )/Kr,n−1 → C.
Now the idea is to transfer these functions to objects over F̃ by means of the Iwasawa

decomposition as in [39, § 3], and to show that neither side of (41) changes.
Let AF ⊂ GLn′ (F ) be the group of diagonal matrices all whose entries are powers of

F . The Iwasawa decomposition states that

GLn(F ) =
⊔

a∈AF

UnaK0,n. (57)

This, the canonical bijection AF → AF̃ : a �→ ã and the isomorphism GLn(λr) from
(49) combine to a bijection

ζ ′
r : Un\GLn(F )/Kr,n → Ũn\GLn (̃F )/K̃r,n,

Un ak Kr,n �→ Ũn ãGLn(λr)(k) K̃r,n.
(58)

Because ψ̃ is l-close to ψ we may apply [39, Lemme 3.2.1], which says that there is a
unique linear bijection

ρn : W (π , θ )Kr,n → W
(

ζ
GLn(F )
r (π ), θ̃

)K̃r,n

(59)

which transforms the restriction of functions to AF K0,n according to ζ ′
r . We will use (58)

and (59) also with n − 1 instead of n.
Put W̃ = ρn(W ) and W̃ ′ = ρn−1(W ′). As (58) commutes with g �→ g−T ,

ˇ̃W = ρn(W̌ ) and ˇ̃W ′ = ρn−1(W̌ ′). (60)

These constructions entail that

GLn−1(̃F ) → C : g̃ �→ W̃
(
g̃ 0
0 1

)
W̃ ′ (̃g)

defines a function Ũn−1\GLn−1(̃F )/K̃r,n−1 → C, and that

W
(
g 0
0 1

)
W ′(g) = W̃

(
ζ ′
r (g) 0
0 1

)
W̃ ′(ζ ′

r(g)). (61)

It follows immediately from the definition of ζ ′
r that

| det(ζ ′
r(g))|F̃ = | det(g)|F . (62)
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For the computation of �(s,W,W ′), we may normalize the measure μ such that
every double coset Un−1\Un−1gKr,n−1 has volume 1, and similarly for the measure on
Ũn−1\GLn−1(̃F ). The equalities (61) and (62) imply

�(s,W,W ′) =
∑

g∈AF K0,n−1/Kr,n−1

W
(
g 0
0 1

)
W ′(g)| det(g)|s−1/2

F

=
∑

g̃∈AF̃
K̃0,n−1/K̃r,n−1

W̃
(
g̃ 0
0 1

)
W̃ ′ (̃g)| det(̃g)|s−1/2

F̃ = �(s, W̃ , W̃ ′).

An analogous computation, additionally using (60), shows that

�(s, W̌ , W̌ ′) = �(s, ˇ̃W, ˇ̃ ′W ).

The previous two equalities and (56) prove that all terms in (41), expect possibly the
ε-factors, have the same values as the corresponding terms defined over F̃ . To establish
the desired equality of ε-factors, it remains to check that �(s,W,W ′) is nonzero for a
suitable choice of right Kr,n−1-invariant functionsW andW ′.
Take v′ as above, but nonzero. Then W ′ = Wv′ is nonzero because V ′ ∼= W (π ′, θ ).

Choose g0 ∈ GLn−1(F ) withW ′(g0) 	= 0 and define H : GLn−1(F ) → C by H (g) = W ′(g)
if g ∈ Un−1g0Kr,n−1 andH (g) = 0 otherwise. According to [27, Lemme 2.4.1], there exists
W ∈ W (π ,ψ) such that W

(
g 0
0 1

)
= H (g) for all g ∈ GLn−1(F ). Notice that such a W

is automatically right invariant under Kr,n−1 on GLn−1(F ) ⊂ GLn(F ). Now we can easily
compute the required integral:

�(s,W,W ′) =
∫

Un−1\GLn−1(F )
|H (g)|2| det(g)|s−1/2

F dμ(g)

=
∫

Un−1\Un−1g0Kr,n−1
|W ′(g)|2| det(g)|s−1/2

F dμ(g)

= μ(Un−1\Un−1g0Kr,n−1)|W ′(g0)|2| det(g0)|s−1/2
F 	= 0.

��

6 Close fields and Langlands parameters
This section is based onDeligne’s comparison of the Galois groups of close fields. Accord-
ing to [18, (3.5.1)], the isomorphism (47) gives rise to an isomorphism of profinite groups

Gal(Fs/F )/Gal(Fs/F )l ∼= Gal(̃Fs/F̃ )/Gal(̃Fs/F̃ )l , (63)

which is unique up to inner automorphisms. Since bothWF andWF̃ can be described in
terms of automorphisms of the residue field oF/pF ∼= oF̃/pF̃ , (63) restricts to an isomor-
phism

WF/Gal(Fs/F )l ∼= WF̃/Gal(̃Fs/F̃ )l . (64)

We fix such an isomorphism (63), and hence (64) as well. Another choice would corre-
spond to another separable closure of F , so that is harmless when it comes to Langlands
parameters. Take r < l and recall the mapWF/Gal(Fs/F )l → F×/1+ prF from local class
field theory. By [18, Proposition 3.6.1], the following diagram commutes:

F×/1 + prF
ζr−→ F̃×/1 + prF̃

↑ ↑
WF/Gal(Fs/F )l −→ WF̃/Gal(̃Fs/F̃ )l

. (65)
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Notice that G and G̃ have the same Langlands dual group, namely GLn(C). Hence, (64)
induces a bijection

�
ζ

l : �l(G) → �l(G̃). (66)

In fact, �ζ

l is already defined on the level of Langlands parameters without conjugation-
equivalence, and in that sense �

ζ

l (φ) and φ always have the same image in GLn(C). We
remark that �

ζ

l can be defined in the same way for G� and G̃�, because these groups have
the common Langlands dual group PGLn(C).
We will prove that �

ζ

l describes the effect that

ζG
r : Irr(G,Kr) → Irr(G̃, K̃r)

has on Langlands parameters, when l is large enough compared to r ∈ Z>0. First we do
so for general linear groups over fields. The next result improves on [21, Corollary 7.7]
and [20, Theorem 2.3.11] in the sense that it gives an explicit and better lower bound
(2n−1r + 1) on the l for which the statement holds. Indeed, the inductive definition of the
bound given in [21] shows that it is in O(2n−2n2r).
We remark that the obtained bound l > 2n−1r appears nevertheless to be much larger

than necessary. We expect that the result is valid whenever l > r, but we did not manage
to prove that.

Theorem 6.1 Suppose that r ∈ Z>0, and that F and F̃ are l-close for some l > 2n−1r.
Then the following diagram commutes:

Irr(GLn(F ), Kr)
ζ
GLn(F )
r−−−−→ Irr

(
GLn (̃F ), K̃r

)

↓ recF,n ↓ recF̃ ,n

�l(GLn(F ))
�

ζ

l−→ �l
(
GLn (̃F )

)

Proof The proof will be conducted with induction to n. For n = 1, the diagram becomes

Irr(F×/1 + prF )
ζ F×
r−−→ Irr

(
F̃×/1 + prF̃

)

↓ recF ↓ recF̃

Irr
(
WF/Gal(Fs/F )l

) �
ζ

l−→ Irr
(
WF̃/Gal(̃Fs/F̃ )l

)
, (67)

which commutes by Deligne’s result (65).
Now we fix n > 1 and we assume the theorem for all n′ < n. Consider a supercuspidal

π ∈ Irr(GLn(F ), Kr) with Langlands parameter φ = recF,n(π ) ∈ �l(GLn(F )). By the
construction of the local Langlands correspondence for general linear groups, SL2(C) ⊂
ker φ and φ is elliptic. By Theorem 5.1 ζ

GLn(F )
r (π ) ∈ Irr

(
GLn (̃F ), K̃r

)
is also supercuspidal

and its central character is related to that of π via (48).
Let φ̃l ∈ �l(GLn (̃F )) be the Langlands parameter of ζ

GLn(F )
r (π ) and write φl =

(�ζ

l )
−1(̃φl). Clearly SL2(C) ⊂ ker φl and φl is elliptic, so rec−1

F,n(φl) is supercuspidal. The
commutative diagram (67) says that rec−1

F,n(φl) has the same central character as π . By
Theorem 5.1.e

ε(s,π ,ψ) = ε

(
s, ζGLn(F )

r (π ), ψ̃
)

= ε
(
s, φ̃l , ψ̃

)
.

By [18, Proposition 3.7.1], the right-hand side equals

ε
(
s, φ̃l , ψ̃

) = ε(s,φl ,ψ) = ε
(
s, rec−1

F,n(φl),ψ
)
,
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so rec−1
F,n(φl) has the same ε-factor as π . Now we consider any generic π ′ ∈

Irr(GLn−1(F ), K2r,n−1) with Langlands parameter φ′. The induction hypothesis and The-
orem 5.3 apply to π ′ because 2n−22r < l. By Theorem 5.3, (54), the induction hypothesis
and [18, Proposition 3.7.1]:

ε(s,π × π ′,ψ) = ε

(
s, ζGLn(F )

2r (π ) × ζ
GLn−1(F )
2r (π ′), ψ̃

)

= ε

(
s, ζGLn(F )

r (π ) × rec−1
F̃ ,n−1(�

ζ

l (φ
′)), ψ̃

)

= ε
(
s, φ̃l ⊗ �

ζ

l (φ
′), ψ̃

)

= ε(s,φl ⊗ φ′,ψ) = ε
(
s, rec−1

F,n(φl) × π ′,ψ
)
. (68)

Together with Theorem 4.4 this implies π ∼= rec−1
F,n(φl). Hence, the diagram of the

theorem commutes for supercuspidal π ∈ Irr(GLn(F ), Kr).
For non-supercuspidal representations in Irr(GLn(F ), Kr), it is easier. As already dis-

cussed in Section 2, the extension of the LLC from supercuspidal representations to
Irr(GLn(F )) is based on the Zelevinsky classification [52]. More precisely, according to
[27, § 2] the LLC is determined by:

• the parameters of supercuspidal representations;
• the parameters of generalized Steinberg representations;
• compatibility with unramified twists;
• compatibility with parabolic induction followed by forming Langlands quotients.

By Theorem 5.1 the functor ζ
GLn(F )
r and its versions for groups of lower rank respect

unramified twists and parabolic induction. As a Langlands quotient is the unique irre-
ducible quotient of a parabolically induced representation, this operation is respected as
well.
Let us recall the construction of a generalized Steinberg representation. Start with a

supercuspidal representation π of GLd(F ), where dm = n. Let ν be the absolute value of
the determinant character of GLd(F ), let P be the standard parabolic subgroup of GLn(F )
with Levi factor GLd(F )m and consider

IGLn(F )P (π ⊗ νπ ⊗ · · · νm−1π ). (69)

By [27, § 2.6] it has a unique irreducible quotient, called Stm(π ). Every generalized Stein-
berg representation is of this form. By Theorem 5.1 ζ

GLn(F )
r sends (69) to

IGLn(F̃ )P̃

(
ζ
GLd (F )
r π ⊗ νζ

GLn(F )
r π ⊗ · · · νm−1ζGLn(F )

r π

)
.

Hence, ζ
GLn(F )
r (Stm(π )) = Stm

(
ζ
GLd (F )
r π

)
. By [27, § 2.7], the Langlands parameter of

Stm(π ) is recF,d(π ) ⊗ Rm, where Rm denotes the unique irreducible m-dimensional rep-
resentation of WF × SL2(C) which is trivial on WF . Since we already know the theorem
for the supercuspidal representation π , we deduce that

�
ζ

l (recF,d(π ) ⊗ Rm) = recF,d
(

ζ
GLd (F )
r π

)
⊗ Rm,

which is the Langlands parameter of Stm
(

ζ
GLd (F )
r π

)
. That is, the diagram of the theorem

commutes for generalized Steinberg representations.
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To determine the Langlands parameters of elements of Irr(GLn(F ), Kr ) via the above
method, one needs only representations (possibly of groups of lower rank) that have
nonzero Kr-invariant vectors. We checked that in every step of this method the effect of
ζ
GLn(F )
r on the Langlands parameters is given by �

ζ

l . Hence, the diagram of the theorem
commutes for all representations in Irr(GLn(F ), Kr). ��
Because the LLC for inner forms of GLn(F ) is closely related to that for GLn(F ) itself,

we can generalize Theorem 6.1 to inner forms.

Theorem 6.2 Let G = GLm(D) and G̃ = GLm(D̃), with the same Hasse invariant. For
any r ∈ N there exists l > r such that, whenever F and F̃ are l-close, the following diagram
commutes:

Irr(G,Kr)
ζGr−→ Irr(G̃, K̃r)

↓ recD,m ↓ recD̃,m

�l(G)
�

ζ

l−→ �l(G̃)

In other words, Theorem 6.1 also holds for inner forms ofGLn(F ), but without an explicit
lower bound for l.

Proof The bijection (13) shows that we can write any π ∈ Irr(G,Kr) as the Langlands
quotient L(P,ω) of IGP (ω), where P is a standard parabolic subgroup, M is Levi factor
of P and ω ∈ IrressL2 (M). Moreover, we may assume that M = ∏

j GLmj (D) and ω =
⊗jωj . The fact that π has nonzero Kr-invariant vectors implies ωj ∈ Irr(GLmj (D), Kr). By
construction (11)

recD,m(π ) =
∏

j
recD,mj (ωj) =

∏

j
recF,dmj (JL(ωj)). (70)

The right-hand side forces us to compare the Jacquet–Langlands correspondencewith the
method of close fields. In fact, this is howBadulescu proved this correspondence over local
fields of positive characteristic. It follows from [7, p. 742–744] that there exist l > r′ ≥ r
such that, whenever F and F̃ are l-close, the following diagram commutes for all k ≤ m:

IrressL2 (GLk (D), Kr)
ζ
GLk (D)r−−−−→ Irr(GLk (D̃), K̃r)

↓ JL ↓ JL

IrressL2 (GLkd(F ), Kr′ )
ζ
GLkd (F )r−−−−→ Irr(GLkd (̃F ), K̃r′ )

(71)

Enlarge l so that Theorem 6.1 applies to Irr(GLkd(F ), Kr′ ) for all k ≤ m. By Theorem 5.1.c

ζG
r (π ) = L

(
P̃, ζM

r (ω)
)

= L
(

P̃,⊗jζ
GLmj (D)
r (ωj)

)

.

Now (71) shows that

JL
(
ζM
r (ω)

)
= ⊗jJL

(

ζ
GLmj (D)
r (ωj)

)

= ⊗jζ
GLdmj (F )
r′ (JL(ωj)). (72)

By (11) and Theorem 6.1

recD̃,m
(
ζG
r (π )

) =
∏

j
recF̃ ,dmj

(

ζ
GLdmj (F )
r′ (JL(ωj))

)

=
∏

j
�

ζ

l
(
recF,dmj (JL(ωj))

)
.

Comparing this with (70) concludes the proof. ��
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Now we are ready to complete the proof of Theorem 3.2, and hence of our main result
Theorem 3.3.
Proof of Theorem 3.2 when char(F ) = p > 0.

Choose r ∈ N such that �φ(G) ∈ Irr(G,Kr) and choose l ∈ N such that Theorem 6.2
applies. Find a p-adic field F̃ which is l-close to F , fix a representative for φ and define
φ̃ as the map WF × SL2(C) → GLn(C) obtained from φ via (64). Thus, φ̃ is a particular
representative for�

ζ

l (φ) ∈ �l(G). By Theorem 6.2�φ̃(G̃) = ζG
r (�φ(G)) and by Theorem

5.1

EndG̃
(
�φ̃(G̃)

) ∼= EndG
(
�φ(G)

)
.

Let φ� ∈ �(G�) and φ̃� ∈ �(G̃�) be the Langlands parameters obtained from φ and φ̃ via
the quotient map GLn(C) → PGLn(C). By construction, φ� and φ̃� have the same image
in PGLn(C), so

Sφ̃� = Sφ� and Zφ̃� = Zφ� . (73)

With (22), this provides natural isomorphisms

XG(�φ(G)) ∼= Sφ�/Zφ� = Sφ̃�/Zφ̃�
∼= XG̃(�φ̃(G̃)).

In view of (67), the composite isomorphism XG̃(�φ̃(G̃)) ∼= XG(�φ(G)) comes from
F×/1 + prF

∼= F̃×/1 + prF̃ . For γ̃ ∈ XG̃(�φ̃(G̃)), choose

Iγ̃ ∈ HomG̃
(
�φ̃(G̃),�φ̃(G̃) ⊗ γ̃

)

as in [29, § 12]. Then Theorem 5.1 yields intertwining operators
Iγ ∈ HomG

(
�φ(G),�φ(G) ⊗ γ

)
. Consequently

κφ� (γ , γ ′) = Iγ Iγ ′ I−1
γ γ ′ = Iγ̃ Iγ̃ ′ I−1

γ̃ γ̃ ′ = κφ̃� (γ̃ , γ̃ ′). (74)

Because we already proved Theorem 3.2 for F̃ , this gives

C[Sφ�/Zφ� , κφ� ] = C[Sφ̃�/Zφ̃� , κφ̃� ] ∼= eχG̃C[Sφ� ] = eχGC[Sφ� ]. (75)

That the isomorphism C[Sφ�/Zφ� , κφ� ] ∼= eχGC[Sφ� ] is of the required form and that it is
unique up to twists by characters of Sφ�/Zφ� follows from the corresponding statements
over F̃ and (73). ��
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