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Abstract: We study quantum gravity signatures emerging from phenomenologi-
cally motivated multiscale models, spectral actions, and Causal Set Theory within
the detector approach to the Unruh effect. We show that while the Unruh tem-
perature is unaffected, Lorentz-invariant corrections to the two-point function leave
a characteristic fingerprint in the induced emission rate of the accelerated detector.
Generically, quantum gravity models exhibiting dynamical dimensional reduction ex-
hibit a suppression of the Unruh rate at high energy while the rate is enhanced in
Kaluza-Klein theories with compact extra dimensions. We quantify this behavior
by introducing the “Unruh dimension” as the effective spacetime dimension seen by
the Unruh effect and show that it is related, though not identical, to the spectral
dimension used to characterize spacetime in quantum gravity. We comment on the
physical origins of these effects and their relevance for black hole evaporation.
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1 Introduction

Dimensional flows are a feature commonly encountered in virtually all approaches to
quantum gravity and quantum gravity inspired models [1, 2]. The most prominent
example of a dimensional flow occurs in Kaluza-Klein theories where the dimension-
ality of spacetime increases below the compactification scale. An even more intrigu-
ing phenomenon of this form is dynamical dimensional reduction where a specific
dimensionality of spacetime decreases at short distances. The prototypical exam-
ple for this mechanism is provided by Causal Dynamical Triangulations [3] where a
random walk sees a two-dimensional spacetime at short distances while long walks
exhibit a four-dimensional behavior [4]. Similar features are encountered in Asymp-
totic Safety [5–9], Loop Quantum Gravity [10–15], Hořava-Lifshitz gravity [16, 17],
Causal Set Theory [18–20], κ-Minkowski space [21–23], non-commutative geometry
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[24, 25], non-local gravity theories [26, 27], minimal length models [28], and based
on the Hagedorn temperature seen by a gas of strings [29].

The indicator commonly used to study dimensional flows is the spectral dimen-
sion. The (typically Euclidean) quantum spacetime is equipped with an artificial
diffusion process for a test particle. One then studies the return probability Pσ of
the particle as a function of the diffusion time σ. The mathematical definition of the
spectral dimension is obtained in the limit of infinitesimal diffusion time

ds = −2 lim
σ→0

d lnPσ
d lnσ

. (1.1)

On a manifold the spectral dimension agrees with the topological dimension d. In
the context of quantum gravity where the properties of the underlying spacetime
may depend on the length scales probed by the diffusing particle, it is useful to
define a generalized spectral dimension Ds(σ) where the limit σ → 0 is omitted.
The most common behavior of Ds(σ) encountered in quantum gravity interpolates
between Ds = 4 on macroscopic scales and Ds = 2 at short distances. This ob-
servation has also triggered the investigation of multi-scale geometries serving as a
phenomenological model of quantum gravity inspired spacetimes [30].

The spectral dimension bears a close relation to the two-point correlation func-
tion G̃ of the diffusing particle. For a massless scalar particle propagating on a four-
dimensional Euclidean space one has G̃ = p−2, which leads to a scale-independent
spectral dimension Ds = 4. Non-trivial Ds-profiles are created if the two-point cor-
relation function acquires an anomalous dimension. Based on this close connection,
the interpretation of the spectral dimension as the Hausdorff dimension of the mo-
mentum space has been advocated in [31]. Note that a non-trivial spectral dimension
does not necessarily involve the breaking of Lorentz invariance, since G̃(p2) may be a
function of the momentum four-vector squared and thus a Lorentz invariant quantity.
However, this function can in principle have more general forms than those allowed
in a local quantum field theory. One relevant example is a two-point function arising
in a nonlocal field theory, defined as a theory whose equations of motion have an
infinite number of derivatives. This form is ubiquitous in Causal Set studies [32].

The fictitious nature of the diffusion process underlying the spectral dimension
then raises the crucial question whether the flow of the spectral dimension can be
seen in a physical observable quantity. The main goal of this paper is to explicitly
demonstrate that this is indeed the case: the non-trivial momentum profiles leave
an imprint in the Unruh effect felt by an accelerated detector. More precisely, the
effective dimension of spacetime seen by the Unruh detector is determined by the
spectral dimension.

The Unruh effect [33–35] (also see [36–38] for reviews) is one of the most intrigu-
ing phenomena occurring within quantum field theory in Minkowski space. Essen-
tially, it predicts that to an accelerated observer (Rindler observer) the Minkowski
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vacuum appears as a thermal state whose temperature is proportional to the ac-
celeration parameter. This acceleration radiation can leave imprints in a variety of
phenomenological contexts: for instance in the transverse polarization of electrons
and positrons in particle storage rings (Sokulov-Ternov effect) [40, 41], at the onset
of quark gluon plasma formation due to heavy ions collisions [42], on the dynamics
of electrons in Penning traps, of ultra-intense lasers, and atoms in microwave cavities
(see [36] and references therein), or in the Berry phase acquired by the accelerated
detector [43]. Recently it has also been shown that the low energy signatures of
Unruh radiation are very sensitive to high energy nonlocality [44].

On theoretical grounds the Unruh effect can be derived by defining creation and
annihilation operators with respect to the positive and negative frequency modes
associated with the Minkowski and Rindler space and relating them through a Bo-
goliubov transform, see e.g. [45] for a pedagogical exposition. The origin of the
thermal spectrum is essentially geometrical, in the sense that it depends solely on
the presence of an horizon in the Rindler frame. As a geometric effect, the Unruh
temperature is insensitive to the specific form of the Lagrangian or the interactions
under consideration and thermality of the spectrum is essentially ensured by Lorentz
invariance [46]. We show that this also holds for the broad class of quantum gravity
corrections considered in this work.1 While not affecting the thermal nature of the
Unruh radiation, quantum gravity induced modifications of the two-point function
affect the profile functions multiplying the thermal distribution in a more or less
radical way.

In order to make the connection between dimensional flows and modifications
in the Unruh effect as close as possible, we follow the detector approach [49]. The
central idea is to consider a detector made from a two-level system with an upper,
excited state 2 and a lower state 1 being separated by the energy ∆E ≡ E2−E1 > 0

coupled to a scalar field. The transition probabilities induced by the scalar can be
expressed in terms of the positive-frequency Wightman function of the Minkowski
vacuum state. The emission rates of the detector can be computed by evaluating
a Fourier transform of the two-point function along the worldline of an accelerated
observer. For a standard massless scalar field, it is then rather straightforward to
show that the Green’s function evaluated on the worldline satisfies a Kubo-Martin-
Schwinger (KMS) condition where the periodicity in Euclidean time depends on the
properties of the worldline only. The resulting Unruh temperature is proportional
to the acceleration a. This setup also makes clear that corrections to the two-point
functions, e.g. induced by quantum fluctuations at small scales, may leave their fin-
gerprints in the transition rate of the Unruh detector. Both, a dynamical dimensional
flow and corrections to the transition rate, can be traced back to the same source: a

1For similar studies in the context of anisotropic dispersion relations and a minimal length scale
see [47–50]
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non-trivial momentum dependence of the two-point function.
In this work we will focus on the asymptotic structure of the detector-induced

emission rates in a fixed Minkowski background.2 We will show that different types
of dimensional flows leave distinct signatures in the detector rates. In particular, in
the case of dimensional reduction at high energies, one finds a suppression of the
rates, whereas for a dimensional enhancement at high energies, as in Kaluza-Klein
models, the rate increases. Since the transition probability of the Unruh detector is
clearly a signature which is observable at least in principle, we expect that it can be
used to make phenomenological predictions from quantum gravity allowing a direct
comparison between various approaches.

The rest of the work is organized as follows. Sect. 2 briefly reviews the detector
approach to the Unruh effect. Dimensional flows entail specific modifications of the
two-point correlation functions entering into the detector approach and we derive
the master formula capturing the resulting corrections to the Unruh effect in Sect.
3. In Sect. 4 we define the Unruh dimension as the effective dimension seen by the
detector and relate it to the spectral dimension. In Sect. 5 we apply this formula to
specific examples taken from phenomenologically motivated multiscale models (Sect.
5.1), Kaluza-Klein theory (Sect. 5.2), spectral actions (Sect. 5.3), and Causal Set
Theory (Sect. 5.4). We close with a brief discussion of our findings in Sect. 6. For
completeness, technical details are relegated to two appendices.

2 Rates from correlators

In this work we follow the detector approach to the Unruh effect [37, 49, 53, 54]. The
advantage of this approach is that it considers observable quantities, namely emission
and absorption rates of the accelerated detector. The response of the accelerated
detector then indicates that it is immersed in a thermal bath of particles. This
framework is ideally suited for studying corrections to the Unruh effect by using
effective two-point correlation functions incorporating quantum gravity effects. We
first review the formalism following [49] before applying it to dimensional flows in
Sects. 3, 4, and 5.

2.1 Particle detectors and two-point functions

The simplest model of a particle detector [49, 53, 54] is a quantum mechanical system
with two internal energy states |E2〉 and |E1〉, with energies E2 > E1. The detector
moves along a worldline x(τ) parameterized by the detector’s proper time τ and
interacts with a scalar field Φ(x) by absorbing or emitting its quanta. The coupling
of Φ to the detector is modeled by a monopole moment operator m(τ) acting on the

2Throughout the work we will not take into account effects related to the “switching function”
χ, which controls the time dependence of the detector coupling strength, see [51, 52] for details.
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internal detector eigenstates through the Lagrangian

LI = g m(τ)Φ(x(τ)) . (2.1)

We will consider in the following the two cases of a detector moving inertially
in Minkowski space, and one moving along a uniformly accelerated trajectory, which
defines the Rindler space (see Appendix A). Let us denote the Minkowski vacuum by
|0M〉, the Rindler vacuum by |0R〉, and the one-particle state of the field Φ with spa-
tial momentum ~k by |~k〉. There are three possible processes giving a non-zero rate.
Following the nomenclature used in [49] we can also give them a thermodynamic
interpretation, since it will turn out that Rindler correlators are thermal. First, the
inertial detector can be in the excited state with energy E2. This is a spontaneous
emission process and corresponds to the transition |E2〉|0M〉 → |E1〉|~k〉 for an ob-
server comoving with the detector. Second, the accelerating detector can be in the
excited state with energy E2. This is an induced emission process and instead cor-
responds to the transition |E2〉|0R〉 → |E1〉|~k〉 for an inertial observer in Minkowski
space (or equivalently |E2〉|0M〉 → |E1〉|~k〉 for an accelerating one). Finally, an
accelerating detector in the ground state E = E1 corresponds to absorption, or the
transition |E1〉|0M〉 → |E2〉|~k〉. Notice that the term absorption here is meant purely
as an analogy with two state systems, since the one-particle state |~k〉 still appears as
a final state.

The transition probability can be expressed in terms of the two-point function
of the field. To first order in time-dependent perturbation theory, the amplitude for
the detector-field interaction takes the form

A(~k) = ig〈Ef |m(0)|Ei〉
ˆ
dτei(Ef−Ei)τ 〈~k|Φ(x(τ))|0M〉 . (2.2)

The transition probability is the square of the amplitude, integrated over all possible
final states

Pi→f =

ˆ
d3k|A(~k)|2 . (2.3)

For Ef = E1 and Ei = E2 this gives the total, spontaneous plus induced, emission
probability.

The field Φ can be expanded in its normal mode basis, according to the choice of
vacuum. If we define the annihilation operators in Minkowski space as a~k|0M〉 = 0,
and those in Rindler space (we work implicitly in the right wedge) as b~k|0R〉 = 0,
then the field has the expansions:

Φ(x) =

ˆ
d3k

(
u~ka~k + u∗~ka

†
~k

)
=

ˆ
d3k

(
vω~k⊥bω~k⊥ + v∗

ω~k⊥
b†
ω~k⊥

)
. (2.4)

We used the notation ~k⊥ = (ky, kz), these coordinates are left untouched by the
Rindler coordinate transformation. Here the mode functions in the Minkowski basis

– 5 –



are
u~k =

1√
2(2π)3w

e−i(wt−
~k~x) , (2.5)

where w ≡
√
~k2 +m2, whereas in the Rindler basis with coordinates (τ, ξ, ~x⊥) they

are given in terms of a modified Bessel function Kν(x) as [36]

vω~k⊥ =

[
sinh(πω/a)

4π2a

]1/2

Kiω/a




√
~k2
⊥ +m2

a
eaξ


 e−i(ωτ−

~k⊥·~x⊥) . (2.6)

The sum over all possible one-particle states needed to obtain the transition proba-
bilities leads to a sum over modes

∑
~k u~k(x1)u∗~k(x2). Upon using the completeness of

states this gives rise to the two-point function for the Minkowski vacuum. Defining
C ≡ g2|〈Ef |m(0)|Ei〉|2, one finds

Pi→f = C

ˆ
d3k

ˆ ∞
−∞

dτ1

ˆ ∞
−∞

dτ2 e
i(Ef−Ei)(τ1−τ2)〈~k|Φ(x(τ1))|0M〉〈0M |Φ(x(τ2))|~k〉

= C

ˆ ∞
−∞

dτ1

ˆ ∞
−∞

dτ2 e
i(Ef−Ei)(τ1−τ2)〈0M |Φ(x(τ2))Φ(x(τ1))|0M〉. (2.7)

Performing the integration over all the final states first, the expression for the
transition probabilities then becomes [49]

Pi→f = C F (∆E) , (2.8)

where F (∆E) is the so-called response function

F (∆E) =

ˆ ∞
−∞

dτ1

ˆ ∞
−∞

dτ2 e
−i(Ef−Ei)∆τGM(∆τ − iε) . (2.9)

Here ∆τ ≡ τ1 − τ2 (from now on the limit ε → 0+ is understood). The response
function is essentially given by the Fourier transform of the Wightman two-point
function GM(∆τ − iε) evaluated on the detector’s trajectory.

In the following we will be interested in the emission case, with Ei = E2 and
Ef = E1 and ∆E ≡ E2−E1 is taken positive by definition. For the case of the detec-
tor undergoing constant acceleration the total transition probability (2.8) contains
contributions from spontaneous and induced emission. Subtracting the spontaneous
emission probability one arrives at the following formula for the induced emission
response function

FI(∆E) =

ˆ ∞
−∞

dτ1dτ2 e
i∆E∆τ [GM(∆τ − iε)−GR(∆τ − iε)] . (2.10)

Here GM is the vacuum (Wightman) two-point function for an observer on the ac-
celerated trajectory in the Minkowski vacuum,

GM (x, x′) = 〈0M |Φ (x) Φ (x′) |0M〉 , (2.11)
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and GR is the vacuum two-point function of an accelerated observer in the Rindler
vacuum,

GR (x, x′) = 〈0R|Φ (x) Φ (x′) |0R〉 . (2.12)

Practically, it is convenient to work with the induced transition rate per unit
time given by

Ṗi→f = g2 |〈Ef |m(0)|Ei〉|2 ḞI(∆E) , (2.13)

with

ḞI(∆E) =

ˆ +∞

−∞
d∆τ ei∆E∆τ [GM(∆τ − iε)−GR(∆τ − iε)] . (2.14)

This equation is the relation between physical rates and two-point functions that
we will use in the following. In order to ease our notation we will set ∆τ = τ and
∆E = E from now on.

The Wightman function for a massive scalar field with mass m in Minkowski
space entering into eq. (2.14) is given by

G+(~x, t) = −i
ˆ

d3~p

(2π)3

˛
γ+

dp0

2π
G̃(p2) ei~p·~x−ip

0t , (2.15)

where
G̃(p2) =

1

p2 −m2
=

1

(p0 +
√
~p2 +m2)(p0 −

√
~p2 +m2)

. (2.16)

The contour γ+ encircles the first order pole located at p0 =
√
~p2 +m2. Carrying out

the Fourier integral the positive-frequency Wightman function in Minkowski space
is given by (see, e.g., [37])

GM(x, x′) = − im
4π2

K1

(
im
√

(t− t′ − iε)2 − (~x− ~x′)2

)

√
(t− t′ − iε)2 − (~x− ~x′)2

. (2.17)

Here K1 is the modified Bessel function of the second kind. In the massless limit
(2.17) reduces to the Wightman function of a massless scalar field in position space
[37, 49]

GM(x, x′) = − 1

4π2

1

(t− t′ − iε)2 − (~x− ~x′)2 . (2.18)

The Wightman function in Rindler space is just the same evaluated on the world-
line of the uniformly accelerated detector

t = a−1 sinh(aτ) , x = a−1 cosh(aτ) , y = 0 , z = 0 . (2.19)

For a thermal system, the induced emission probability coincides with the absorption
probability. We can then turn to the proof that the Minkowski vacuum corresponds
to a thermal state when probed by an accelerated detector.
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2.2 Emergence of thermality

The advantage of working with Rindler geometry is that it shows how the Unruh
thermal spectrum is a geometric effect. It arises for a generic Lorentz-invariant
matter theory simply because of the properties of the Rindler frame (see App. A for
more details).

Consider a generic Lorentz invariant Green’s function GM(x, x′) = GM(x−x′) for
an interacting theory in Minkowski space. When evaluated on the worldline (2.19)
of a uniformly accelerated observer, it will be a function of the Rindler coordinates
(~x⊥, τ) and (~x′⊥, τ

′). Since the theory is Lorentz invariant, GM can only depend on
(x− x′)2. Using the relation

(t− t′)2 − (x− x′)2 = a−2
[
(sinh aτ − sinh aτ ′)2 − (cosh aτ − cosh aτ ′)2

]

= 2a−2 (cosh(a∆τ)− 1) ,
(2.20)

with ∆τ = τ − τ ′, the Rindler Green’s function has a τ dependence of the form
GR(cosh a∆τ). Focusing for simplicity on τ ′ = 0, a Wick rotation t = itE will
induce, through t = a−1 sinh aτ , a corresponding Wick rotation in Rindler time,
τ = iτE. But this then means that a general Rindler two-point function will be
periodic in Rindler time, since GR(cosh aτ)→ G

(E)
R (cos aτE) = G

(E)
R (cos(aτE + 2π)).

We thus see3 that the periodicity β = 2π/a implies a temperature T = a/2π.
Undoing the Wick rotation we obtain the KMS condition in the form (with

obvious change of notation)

GR(τ) = GR(−τ − iβ) . (2.21)

This can be put in another equivalent form, which is more natural when dealing with
detector rates [38]. Since the rate is a Fourier transform of the Wightman function,
assuming that GR(τ) is analytic in the strip −β < Imτ < 0, we have

Ḟ (E) =

ˆ +∞

−∞
dτe−iEτGR(τ − iε)

=

ˆ +∞

−∞
dτe−iE(τ−iβ+2iε)GR(τ − iβ + iε)

= e−(β−2ε)E

ˆ +∞

−∞
dτeiEτGR(τ − iε) . (2.22)

Here in the second line we made use of the analyticity assumption to push down
the contour in the complex τ -plane by i(β − 2ε), and in the third line we changed
variable of integration to −τ . Taking ε to zero, the KMS condition becomes

Ḟ (E) = e−βEḞ (−E) . (2.23)
3 There is a subtlety in the Wick rotation when working with Wightman functions. Due to

the different domains of analyticity of G+ and G− in the complex τ -plane, one actually identifies
GE(τE) = G+(iτE) for −2π < τE < 0 and GE(τE) = G−(iτE) for 0 < τE < 2π. This is responsible
for the change of sign of τ in the KMS condition.
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This relation can also be derived directly in the free massive case from the parity
properties of the integrands appearing in the rates.4 A general proof of the KMS
condition for an interacting field theory in any dimension was given in [39].

The Unruh temperature is thus only determined by the Euclidean periodicity,
and is protected against corrections as long as the Lorentz invariance of GM is pre-
served. In particular, if one computes the average number density 〈n〉 in Rindler
space from thermal considerations alone, one can obtain the usual Planckian dis-
tribution with temperature T = a/2π. As a simple illustration of this fact, in the
next section we will derive the Planckian thermal spectrum for a massive scalar field,
showing as a byproduct that the temperature is independent of the mass.

2.3 Detector response for massive scalars

Let us start with the massless case for illustration purposes. In this case the rate
integral can be computed directly, by closing the contour with a large semicircle in
the upper complex-τ half-plane. The contour can be deformed to infinity into a sum
over the infinite number of poles of the integrand located along the imaginary axis.
This sum then gives rise to the Matsubara thermal sum that generates the Planckian
thermal factor.

One can also recover the same result from the KMS condition. With reference
to the nomenclature previously introduced, let us call ḞA the absorption rate and
ḞE the emission rate. This last one is the sum of spontaneous and induced emission,
ḞE = ḞS + ḞI . From the derivation of the formulas for the detector rates in Sect.
2.1, one immediately finds that ḞA(−E) = ḞE(E). This is ensured by the fact that
the one-particle state |~k〉 always appears as a final state, and thus the Wightman
function has the same frequency for both processes. The difference then just amounts
to the sign of the Fourier exponential term. Using the KMS condition eq. (2.23), this
gives

ḞA(E) = e−βEḞA(−E) = e−βEḞE(E) = e−βE[ḞI(E) + ḞS(E)] . (2.24)

If the induced emission and absorption rates coincide

ḞA(E) = ḞI(E) (2.25)

it follows that

ḞI(E) =
ḞS(E)

eβE − 1
. (2.26)

Thus one only needs to compute the spontaneous rate to obtain that for induced
emission. In the massless case this is easily computed to give ḞS(E) = E/2π.

4We thank J. Louko for pointing this out to us.
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Condition (2.25) unfortunately does not strictly hold for a free massive scalar
field. An explicit calculation in this case [38] gives for the total rate

Ḟ (E) =

ˆ +∞

−∞
dτe−iEτGR(τ − iε)

= 2π

ˆ
d2k⊥

∣∣∣vω~k⊥
∣∣∣
2

[θ(E)N(E/a) + θ(−E)(1 +N(|E|/a))] , (2.27)

where
N(x) =

1

e2πx − 1
. (2.28)

If we interpret the different terms in eq. (2.27) following the language of Sect.
2.1, the first term corresponds to the absorption case, while the second is the sum of
induced emission plus the contribution from an accelerated detector in the Rindler
vacuum, with ξ = 0 and ~x⊥ = 0. An explicit calculation of this term following [49]
(see eq. (3.11) in that reference) gives indeed

ḞS(E) = 2π

ˆ
d2k⊥dω

∣∣∣∣∣∣
Kiω/a




√
~k2
⊥ +m2

a



∣∣∣∣∣∣

2

sinh(πω/a)

4π4a
δ(ω − E) (2.29)

which, using eq. (2.6), precisely reproduces the "spontaneous" term in eq. (2.27).
Unfortunately, this does not in general coincide with the true spontaneous rate,
defined as the rate of a detector at rest in Minkowski space. Intuitively, the two
notions should coincide, but in this case the difference lies in the absence of a mass
gap in Rindler space.

To show this, consider a detector at rest in the Minkowski vacuum, in general
dimension d [37]. The simplest way to compute the rate is to start from eq. (2.9)
and substitute the explicit form of the two-point function:

F (∆E) =

ˆ ∞
−∞

dτ1

ˆ ∞
−∞

dτ2 e
i∆E∆τ

ˆ
ddk

(2π)d
1

2ω
e−iω(t(τ1)−t′(τ2))+i~k·(~x(τ1)−~x′(τ2)) . (2.30)

Inverting the τ and k integrations we find

ḞS(E) =

ˆ
dd−1k

(2π)d−1

1

2
√
k2 +m2

ˆ +∞

−∞
dτe−i(

√
k2+m2−E)τ

=
π
d−1
2

Γ(d−1
2

)(2π)d−2

(
E2 −m2

) d−3
2 θ(E −m) . (2.31)

The relations (2.29) and (2.31) coincide in the limit where E � m. A crucial
difference between the two results is that (2.31) exhibits a mass gap which is absent
in (2.29). The numerical integration of (2.29), displayed in Fig. 1, shows that this
expression well approximates (2.31) when E < m. Thus we will use this approxi-
mation in the sequel. Incidentally, this also shows that condition (2.25), though not
exact, is approximately satisfied in the massive case.
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Figure 1. Numerical integration of eq. (2.29), as a function of the dimensionless ratios
E/a,m/a.

Exploiting now relation (2.26), the induced rate function per unit time of the
accelerated detector in d = 4 becomes

Ḟ =
1

2π

√
E2 −m2 θ(E −m)

1

e
2πE
a − 1

. (2.32)

The rate function constitutes the main result of this subsection. Taking the limit
m → 0, it agrees with the derivation for the massless case given in [37, 49]. The
structure of (2.32) then motivates the definition of a profile function F(E) via

Ḟ =
1

2π
F(E)

1

e
2πE
a − 1

. (2.33)

For a massless and massive scalar field obeying the Klein-Gordon equation one then
has

Fmassless(E) = E , Fmassive(E) =
√
E2 −m2 θ(E −m) . (2.34)

For general dimension the profile function is

F(E) =
π
d−1
2

Γ(d−1
2

)(2π)d−3

(
E2 −m2

) d−3
2 θ(E −m) . (2.35)

As we will show in the subsequent section, it is this profile function that actually
carries information about quantum gravity corrections to the Unruh rate.

As stressed before, the Planckian thermal factor is independent of the details of
the field considered. The fact that the mass dependence enters through the prefactor
tells us that the signatures of the fields involved will only be present in physical rates,
and not in number densities 〈n〉.
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3 Master formulas for modified detector rates

In the presence of a dimensional flow, G̃(p2) entering into (2.15), acquires a non-trivial
momentum dependence.5 It is useful to distinguish the two cases where [G̃(p2)]−1 is a
polynomial in p2 or given by a more general function with a finite number (typically
one) of zeros in the complex p0-plane. These two cases will be discussed in Sects. 3.1
and 3.2, respectively.

3.1 Detector rates from the Ostrogradski decomposition

We start by considering the case in which
[
G̃(p2)

]−1

≡ Pn(p2) is an inhomogeneous
polynomial of order n. This covers the class of theories with a general quadratic
effective Lagrangian L = 1

2
φPn(−∂2)φ where Pn is a local function of the flat space

d’Alembertian operator that admits a Taylor expansion around zero momentum.
This comprises all local theories in which higher order corrections come in definite
powers of momenta. The limiting case n → ∞ can also be considered. In this
case the profile function F(E), eq. (2.33), can be constructed from the Ostrogradski
decomposition for a higher-derivative field theory.

The polynomial Pn(z) has n roots, µi, i = 1, . . . , n in the complex z-plane. It
can then be factorized according to

Pn(z) = c
n∏

i=1

(z − µi) (3.1)

where c is a normalization constant. In order to connect to the case of a massive
scalar field, the momentum space propagator is decomposed according to

[Pn(z)]−1 =
1

c

n∑

i=1

Ai
(z − µi)

(3.2)

where the coefficients Ai are functions of the roots µi. Assuming that z 6= µi, eqs.
(3.1) and (3.2) can be multiplied to obtain the condition

n∑

i=1

Ai
∏

j 6=i

(z − µj) = 1 . (3.3)

This condition must hold for any value z 6= µi. Since the left-hand-side is a polyno-
mial in z of order n − 1, (3.3) gives rise to n equations determining the coefficients
Ai. Defining the vector Z ≡ [1, z, . . . , zn−1] and introducing the coefficient matrix C
via Cij Zj ≡

∏
j 6=i (z − µj), eq. (3.3) entails

n∑

i=1

Ai Cij = δ1j , (3.4)

5As noted before, this does not necessarily entail the breaking of Lorentz symmetry since G̃(p2)
may still be a Lorentz invariant function depending on the square of the momentum four-vector
only.
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where δij is the Kronecker symbol. This equation can be solved for Ai if C is invertible,
i.e. det C 6= 0. The general condition for the two-point function to be factorizable
then is µi 6= µj, i 6= j, i.e., all roots of the polynomial have order one.

Assuming that these conditions are met, the solution for the Ai is given by the
first row of the inverse matrix C, Ai = (C−1)1i. The explicit solution for the Ai is
then given by

Ai =

(∏

j 6=i

(µi − µj)

)−1

. (3.5)

For future reference, it is convenient to give the coefficients Ai entering the decom-
position (3.2) for the cases n = 2 and n = 3 explicitly. For n = 2,

A1 =
1

µ1 − µ2

, A2 =
1

µ2 − µ1

, (3.6)

while for n = 3 one has

A1 =
1

(µ1 − µ2)(µ1 − µ3)
, A2 =

1

(µ2 − µ1)(µ2 − µ3)
, A3 =

1

(µ3 − µ1)(µ3 − µ2)
.

(3.7)
At this stage the following remark is in order. On mathematical grounds the

decomposition (3.2) works as long as all roots of the polynomial have order one. On
physical grounds there are extra conditions on the roots: comparing eqs. (3.2) and
(2.16) establishes that µi = m2 should be identified with the square of the particle
mass. This implies that roots located at the negative real axis correspond to modes
with a negative mass squared. In this case the isolated poles at p0 = ±

√
~p2 + µi are

turned into branch cuts and we will not consider this tachyonic case in the following.
Moreover, complex roots always come in pairs µ, µ̄. This implies that the positive
frequency Wightman function contains unstable modes which grow exponentially in
the far past and far future (also see [32] for a detailed discussion of this feature). On
this basis, we restrict ourselves to polynomials Pn(p2) whose roots are located at the
positive real axis, see Fig. 2.

Since the rate function (2.14) is linear in the Wightman function, it is rather
straightforward to obtain the detector response function for the case (3.2). Following
the steps of Sect. 2.3, we can compute the profile function F(E) determining the rate
(2.33). Substituting the explicit form of the Ai from (3.5) the result reads

F(E) =
1

c

n∑

i=1

(∏

j 6=i

(µi − µj)

)−1 √
E2 − µi θ(E −

√
µi) . (3.8)

The rate function is completely determined by the roots of the polynomial Pn(p2).
It receives new contributions once new channels become available, i.e., if the energy
gap E crosses a threshold µi where new degrees of freedom enter. Ordering the roots
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Figure 2. Integration contours for the positive frequency Wightman function based on
the Ostrogradski decomposition (3.2) of the function G̃(p2).

µi by their magnitude, i.e., µj > µi for j > i, one sees that the sector with µj, j > i

does not affect the “low-energy” part of the rate function with E < µi: the energy gap
E of the detector is not large enough to absorb a particle of mass √µj, j > i. This,
in particular, implies that if the polynomial (3.1) arises from an effective field theory
description of a system, there are no corrections to the massless Unruh effect below
the first threshold µ2 > 0, provided that the polynomial Pn is properly normalized.
The master formula (3.8) then constitutes the main result of this section.

3.2 Detector rates from the Källen-Lehmann representation

Notably, not all two-point functions proposed in the context of quantum gravity fall in
the class where the Ostrogradski-type decomposition is admissible. A prototypical
example is provided by Causal Set Theory. Here G̃(p2) interpolates between the
standard propagator for a massive scalar field for momenta p2 below the discretization
scale and a nonlocal expression without giving rise to additional poles in the complex
p0-plane [19, 20]. In these cases it is still possible to obtain an explicit formula for the
profile function F(E) based on the Källen-Lehmann representation of the two-point
function.

The Källen-Lehmann representation of the positive frequency Wightman func-
tion in position space is given by

G+(t, ~x) =

ˆ ∞
0

dm2 ρ(m2)G
(0)
+ (t, ~x;m) . (3.9)

Here ρ(m2) denotes a spectral density and G
(0)
+ (t, ~x;m) is the positive-frequency

Wightman function given in eq. (2.17). Substituting the Källen-Lehmann represen-
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tation into (2.14) and exchanging the order of integration, the computation of the
rate function reduces to the one for the massive scalar field carried out in Sect. 2.3.
The resulting profile function F(E), eq. (2.33), is given by

F(E) =

ˆ E2

0

dm2 ρ(m2)
√
E2 −m2 . (3.10)

Hence the profile function obtained from the Källen-Lehmann representation is given
by the superposition of contributions with mass m weighted by the spectral density
ρ(m2). Only excitations with mass below the energy gap of the detector contribute
to the rate function, which is consistent with the expectation that contributions with
m2 > E2 will not excite the detector. The result from the Ostrogradski decomposi-
tion, eq. (3.8), can then be understood as a special case where ρ(m2) is given by a
sum of δ-distributions located at m2 = µi.

Dimensional reduction in general seems to be at odd with unitarity. On a man-
ifold with spectral dimension ds, the asymptotic form of the two-point function in
momentum space is

G(p2) ∼ (p2)d/ds . (3.11)

Expressing a general two-point function through the Källen-Lehmann representation
as in the previous section, we see that, as soon as ds < d, its fall-off properties can
only be consistent with the p−2 behavior of the spectral representation if we relax
the positivity properties of the spectral function ρ(m2). This automatically entails
the presence of negative-normed states and thus a departure from unitarity.

This signals the fact that these types of higher derivative toy models shouldn’t
be taken too fundamentally. It is likely that dimensional reduction, together with
(local) Lorentz invariance, signals the presence of a fundamentally nonlocal theory at
small scales. The issue of unitarity for nonlocal theories then is more subtle, see [56]
for a more detailed discussion. The higher-derivative toy models can be considered
as approximations to a full nonlocal theory, in which unitarity is preserved.

4 Scaling dimensions

The two-point function G̃(p2) serves as the essential input for computing both the
spectral dimension Ds seen by a scalar field propagating on the spacetime as well
as the rate function of the Unruh detector. Thus, it is conceivable that there is a
relation between the rate function of the Unruh detector and the spectral dimension.
This section introduces the definitions needed to make this relation precise.

In the computation of the spectral dimension, p2 ≡ (p0)2 − ~p 2 is analytically
continued to Euclidean signature p2

E ≡ (p0
E)2 + ~p 2 > 0. Subsequently, one introduces

a fiducial diffusion process based on a (modified) diffusion equation

∂σK(x, x′;σ) = −F (−∂2
E)K(x, x′;σ) , (4.1)
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subject to the boundary condition K(x, x′, 0) = δd(x− x′). Here σ is the (external)
diffusion time, K(x, x′;σ) is the diffusion kernel and F (−∂2

E) is determined by the
equations of motion of the propagating field. In terms of Fourier-modes F (p2

E) =

(G̃(−p2
E))−1. The solution of Eq. (4.1) is readily obtained in Fourier-space and reads

K(x, x′;σ) =

ˆ
ddp

(2π)d
eip(x−x

′) e−σF (p2E) . (4.2)

The return probability after diffusion time σ is given by

P (σ) =

ˆ
ddp

(2π)d
e−σF (p2E) , (4.3)

and the scale-dependent spectral dimension Ds(σ) is defined as

Ds(σ) = −2
d lnP (σ)

d lnσ
. (4.4)

This definition generalizes the standard definition of the spectral dimension ds which
is recovered by evoking the limit of infinitesimal random walks σ → 0. This frame-
work yields the spectral dimension associated with the two-point function G̃(p2)

commonly used to assess the dimensionality of spacetime in quantum gravity.
Analyzing the scaling behavior in (4.3) one finds that for the case where F (p2

E) ∝
p2+η
E the spectral dimension is given by [6]

Ds =
2d

2 + η
. (4.5)

The case of a massless scalar field with G̃(p2) = p−2 corresponds to η = 0 and the
spectral dimension agrees with the topological dimension d of the spacetime. In case
of a multiscale geometry the scaling law F (p2

E) ∝ p2+η
E is obeyed for a certain interval

of momenta only. In this case the spectral dimension will depend on the diffusion
time σ. If the scaling regime extends over a sufficiently large order of magnitudes,
Ds(σ) will be approximately constant in this regime, realizing a plateau structure.
Typically, such plateaus where Ds(σ) is approximately constant are connected by
short transition regions where Ds changes rather rapidly, see Fig. 3 for an explicit
example illustrating this type of crossover.

In a similar spirit, one can define the effective dimension of spacetime seen by the
Unruh detector. Eq. (2.35) indicates that the profile function for a massless scalar
field obeying the Klein-Gordon equation in a d-dimensional spacetime scales as

F(E) ∝ Ed−3 . (4.6)

This motivates defining the effective dimension seen by the Unruh rate, the Unruh
dimension DU , according to

DU(E) ≡ d lnF(E)

d lnE
+ 3 . (4.7)
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For a massless scalar field with G̃(p2) = p−2 or a massive scalar field with energy
E2 � m2, DU is independent of E and coincides with the classical dimension d of
the underlying spacetime. Paralleling the discussion of the spectral dimension, this
feature changes, however, if G̃(p2) has a non-trivial momentum profile. The examples
presented in Sect. 5 indicate thatDU may agree with the spectral dimension in certain
cases, but in general the two are different quantities. The Unruh dimension may yield
a characterization of quantum spacetimes which is accessible by experiment, at least
in principle. Note that the dimensions are only well-defined in plateau regions of
sufficient extent and have to be taken with caution during crossovers [6].

A direct comparison between DU and Ds requires an identification of E and the
diffusion time σ. The matching of dimensions in the classical case suggests using

σ = E−2n , (4.8)

where 2n is the mass-dimension of G̃(p2). We will use this relation in the sequel.
The emission/absorption rates can be related to the density of states of the sys-

tem interacting with the detector. The density of states as a function of momentum
can be defined as ρ(k) = dΩ(k)/dk, where Ω(k) is the volume of momentum space.
Since the spectral dimension ds is the Hausdorff dimension of momentum space, we
can assume that Ω will scale as Ω(k) ∼ ckds . Then we see that ρ(k) ∝ kds−1, and
a smaller value of ds entails a suppression of the density of states. This in turn will
imply a suppression of the various transition rates. Due to the relation between this
density of states and the transition rates, we expect a relation between the spectral
and Unruh dimensions, Ds and DU . This relation will indeed be made more precise
in the next sections.

5 Unruh rates and dimensional flows

We illustrate the general formalism devised in Sect. 3 by first studying corrections to
the Unruh rate arising within quantum gravity inspired multiscale models in Sect. 5.1.
The connection to Kaluza-Klein theories, spectral actions, and Causal Set Theory
will be made in Sects. 5.2, 5.3, and 5.4, respectively.

5.1 Dynamical dimensional reduction

In this subsection we investigate modifications of the Unruh rate arising from a
particular class of quantum-gravity inspired two-point functions G̃(p2) typically en-
countered when discussing the flows of the spectral dimension.

Two-scale models

The simplest way to obtain a system exhibiting dynamical dimensional reduction is
based on a polynomial, eq. (3.1) with n = 2, containing a single mass scale m:

P2(p2) = − 1

m2
p2
(
p2 −m2

)
. (5.1)
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Figure 3. Profile function F(E), eq. (5.4), for m = 1 (left panel). The asymptotics given
in eq. (5.5) are illustrated by the dashed lines. The right panel shows the dimensions Ds

(dashed line) and DU (solid line) resulting from the two-point function (5.3).

Here the normalization c has been chosen such that the model gives rise to a canoni-
cally normalized two-point function at low energy. The scaling of this ansatz is given
by

P2(p2) ∝

{
p2 , p2 � m2

p4 , p2 � m2 ,
(5.2)

with the crossover occurring at m2. Evaluating (4.5), the spectral dimension based
on this model interpolates between a classical regime with Ds = 4 for long diffusion
times and Ds = 2 for short diffusion times.

The Ostrogradski decomposition (3.2) of (5.1) yields

G̃(p2) =
1

p2
− 1

p2 −m2
. (5.3)

The master formula (3.8) gives the following expression for the profile function

F(E) = E −
√
E2 −m2 θ(E −m) . (5.4)

Expanding F for small and large E leads to the scaling behavior

E < m : F(E) = E ⇐⇒ DU = 4 ,

E � m : F(E) = 1
2E

+O(E−2) ⇐⇒ DU = 2 .
(5.5)

This expansion implies that a kinetic term including higher-derivative contributions
leads to detector rates which are suppressed at high energies. In particular, whereas
for a massless (free or interacting) scalar field with a standard kinetic term the pref-
actor of the rate grows linearly with energy, the profile function vanishes proportional
to E−1 at high energies. This also entails that the Unruh dimension DU interpolates
between the classical dimension DU = 4 for small energy and DU = 2 for E � m.

For m = 1 this profile function is shown in the left panel of Fig. 3. Despite the
inclusion of modes with a wrong sign kinetic term (poltergeists) in (5.3) the Unruh
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Figure 4. Illustration of the Unruh effect in a n = 3 multiscale model with m1 = 0,
m2 = 0.1 and m3 = 10. The resulting profile function F(E) is shown in the left panel
while DU and Ds are displayed in the right panel. The horizontal gray lines indicate the
plateau values of the dimensions at 4, 2, 4/3 and 0. Notably, DU and Ds exhibit different
asymptotics for E � m3.

rate is positive definite, indicating that the model is stable in this respect. The right
panel of Fig. 3 shows the spectral dimension (dashed line) and effective dimension
seen by the Unruh effect (solid line) where the construction of the spectral dimension
is based on the identification (4.8). Both dimensions interpolate between D = 4 for
E < m and D = 2 for E � m. DU displays a discontinuity at E2 = m2 which can
be tracked back to the derivative of the square-root becoming singular at this point.

Multi-scale models

At this stage it is instructive to consider a multiscale model which may exhibit more
than two scaling regions. The simplest model of this form is build from a third order
polynomial P3(p2) with vanishing mass m1 = 0

P3(p2) =
1

m2
2m

2
3

p2 (p2 −m2
2) (p2 −m2

3) , m3 > m2 . (5.6)

Provided that m3 � m2 this ansatz exhibits three scaling regimes

P3(p2) ∝





p2 , p2 � m2
2 , Ds = 4

p4 , m2
2 � p2 � m2

3 , Ds = 2

p6 , m3
2 � p2 , Ds = 4

3
,

(5.7)

where the spectral dimension has been determined by evaluating (4.5).
Performing the Ostrogradski decomposition for P3(p2) gives

G̃(p2) =
1

p2
− m2

3

m2
3 −m2

2

1

p2 −m2
2

+
m2

2

m2
3 −m2

2

1

p2 −m2
3

. (5.8)
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The resulting profile function then reads

F(E) = E − m2
3

m2
3 −m2

2

√
E2 −m2

2 θ(E −m2) +
m2

2

m2
3 −m2

2

√
E2 −m2

3 θ(E −m3) .

(5.9)
Expanding F for small and large E leads to the scaling behavior

E < m2 : F(E) = E ⇐⇒ DU = 4 ,

E � m3 : F(E) = −m2
2m

2
3

8E3 +O(E−4) ⇐⇒ DU = 0 .
(5.10)

At this stage two remarks are in order. In contrast to the two-scale model,
the n = 3 case exhibits regions where the profile function F(E) actually becomes
negative. This is illustrated in the example shown in Fig. 4. The form where
limE→∞ F (E) → 0 from below then indicates that this feature holds for all val-
ues m2 and m3. Thus the Unruh rate exhibits an instability for a generic n = 3

model.
Furthermore, the spectral and Unruh dimensions shown in the right panel of

Fig. 4 show that, contrary to the two-scale model, the asymptotics for DU and Ds

do not agree for E � m2
3. In the general case, this may be understood as follows.

Considering the general expression (3.8) for m1 = 0, DU is given by the classical
dimension as long as E < m2. Each additional term in the sum creates a new scaling
region where DU decreases by two compared to its previous value. In contrast the
pattern for the spectral dimension follows from (4.5). Combining these relations
allows to express the effective dimension seen by the Unruh effect in terms of the
spectral dimension

DU = 6− 8

Ds

. (5.11)

Thus, while there is a clear relation between DU and Ds, the effective dimensions
seen by a random walk and the Unruh effect generically do not coincide within the
class of multiscale models studied here.

Logarithmic correlation functions

An interesting model which does not fall into the class of multiscale models where
the Ostrogradski decomposition can be applied arises from

G̃(p2) = p−4 . (5.12)

This is the typical fall-off behavior of correlation functions in quantum gravity models
which lead to Ds = 2 in the ultraviolet. In this case the positive-frequency Wightman
function is

G+(~x, t) = −i
ˆ

d3k

(2π)3

˛
γ+

dk0

2π

ei
~k·~x−ik0t

(k0 + |~k|)2(k0 − |~k|)2
. (5.13)
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Picking up the double pole at k0 = |~k|, and setting ~x = 0 before carrying out the
angular momentum integral, one obtains

G+(~x, t) = −4π

ˆ ∞
0

dk

(2π)3
k2

[
2

(2k)3
+

it

(2k)2

]
e−ik(t−iε) = I1 + I2 . (5.14)

The second integral is simply

I2 = − 1

8π2
. (5.15)

The first integral can be written as a regularized Laplace transform and gives

I1 = lim
ε→0+

lim
ε̃→0+

Γ(ε̃) (ε+ it)−ε̃ =
1

8π2
(log t+ const) . (5.16)

Thus the resulting positive frequency Wightman function has a logarithmic depen-
dence on the proper distance. Restoring Lorentz invariance, we get

G+(~x, t) =
1

8π2

[
log

(√
(t− t′ − iε)2 − (~x− ~x′)2

)
+ const

]
. (5.17)

Substituting the Wightman function into the formula for the Unruh rate, eq.
(2.14), yields

Ḟ (E) =
1

8π2

ˆ ∞
−∞

dτeiEτ
[
log

(
2 sinh(aτ

2
)

aτ

)
+ const

]
. (5.18)

The constant terms give rise to terms proportional to δ(E), indicating an infrared
instability of the setup. Since the propagator (5.12) is thought of describing the
asymptotic behavior of the system at high energies we will ignore these terms in the
following. Since the argument of the logarithm is an even function in τ the integral
can be expressed as a (regularized) Fourier cosine transform

Ḟ (E) = lim
ε→0+

1

2aπ2

ˆ ∞
0

dxe−εx log

(
sinh(x)

x

)
cos(ωx) . (5.19)

written in terms of the new variables x = aτ/2 and ω = 2E/a. This integral can
now be written as I = I1 − I2, where

I1 = lim
ε→0+

1

2aπ2

d

dα

ˆ ∞
0

dxe−εx (sinh(x))α cos(ωx)

∣∣∣∣
α→0

= −
π coth(πω

2
)

2ω
,

I2 = lim
ε→0+

1

2aπ2

d

dα

ˆ ∞
0

dxe−εxxα cos(ωx)

∣∣∣∣
α→0

= − π

2ω
.

(5.20)

Combining the two contributions, the resulting detector rate is given by

Ḟ (E) =
1

4πE

1

1− e 2πE
a

, (5.21)
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implying that the profile function resulting from a p−4 propagator is given by

F(E) =
1

2E
⇐⇒ DU = 2 . (5.22)

This is precisely the asymptotic behavior (5.5) found in the two-scale model in the
limit E � m. Thus the direct computation of the detector rate in the p4-case
confirms the drop of the Unruh rate at high energies and constitutes an independent
verification of the rate function found in the two-scale case.

5.2 Kaluza-Klein theories

A scenario where the dimensional reduction occurs when going towards the infrared
is provided by Kaluza-Klein theories.6 In this case the (classical) spacetime is as-
sumed to possess four non-compact and a number of compact spatial dimensions
whose typical extension is given by the compactification scale R. At length scales
l � R the effect of the extra-dimensions is invisible and physics is effectively four-
dimensional. We demonstrate that also in this situation the dimensional reduction
entails a suppression in the Unruh effect. In the case of Kaluza-Klein theories where
the number of effective dimensions increases when going to high energies this im-
plies that the detector rates for energies above the inverse compactification scale are
actually enhanced as compared to the four-dimensional rate.

For concreteness we will focus on the case of a five-dimensional spacetime R4×S1
R

where the extra dimension is given by a compact circle of radius R. A scalar field φ
living on this spacetime has a Fourier-expansion in the circle coordinate x5

φ(x, x5) =
+∞∑

n=−∞

φn(x) ei
n
R
x5 , x5 ∈ [0, 2πR[ . (5.23)

The Fourier coefficients φn(x) depend on the coordinates on R4 and are called Kaluza-
Klein modes. For a real scalar field φ they obey the reality condition φ−n = φ∗n. Sub-
stituting this mode expansion into the action of a free scalar field in five dimensions
yields
ˆ
d5x 1

2

[
(∂µφ)2 − (∂5φ)2

]
= 2πR

ˆ
d4x

+∞∑

n=−∞

1
2

[
|∂µφn|2 −

n2

R2
|φn|2

]
. (5.24)

Each Kaluza-Klein mode φn has a two-point function of a scalar field with mass
mn = n/R. Taking into account the entire tower of modes, the resulting function
G̃(p2) is given by

G̃(p2) =
1

2πR

∞∑

n=−∞

(
p2 − n2

R2

)−1

. (5.25)

6A related discussion of the Unruh detector in Kaluza-Klein theories appeared in Ref. [57] during
the final stage of preparing the manuscript.
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Figure 5. Profile function F(E) for a 5-dimensional Kaluza-Klein theory (5.26) with
R = 1/(2π) (blue, solid line). For guidance the lines F(E) = E (black, dashed line) and
F(E) = E2/4 (red line, right diagram) have been included. For E < R−1 the profile
function is linear in E, while for E � R−1 it increases proportional to E2.

Applying the master formula (3.8) to this case then yields the profile function

F(E) =
1

2πR

(
E + 2

∞∑

n=1

√
E2 − (n/R)2 θ(E − n/R)

)
. (5.26)

The shape of this profile function is illustrated in Fig. 5. In contrast to the case of a
dynamical dimensional reduction at high energies, all Kaluza-Klein modes contribute
to the profile function with the same sign. This leads to an effective enhancement of
the profile function for E > R−1. Explicitly,

E < 1/R : F(E) ∝ E ⇐⇒ DU = 4 ,

E � 1/R : F(E) ∝ E2 ⇐⇒ DU = 5 .
(5.27)

The profile function (5.26) interpolates between these two behaviors. Thus also the
presence of extra dimensions leaves its imprint on the Unruh rate, adapting the scal-
ing law of the profile function once the energy E exceeds the inverse compactification
scale.

5.3 Spectral actions

A framework which naturally gives rise to two-point functions G̃(p2) with the proper-
ties discussed above are spectral actions. The basic idea is that the action describing
the dynamics of the theory is generated by the trace of a suitable differential operator,
typically the Dirac operator D

Sχ,Λ = Tr
[
χ(D2/Λ2)

]
. (5.28)

Here χ is a positive function and Λ sets the typical scale of the theory. Spectral
actions provide the core ingredient for setting up a geometrical formulation of the
standard model of particle physics based on almost-commutative geometries [58, 59],
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also see [60–62] for reviews. Here we focus on the case where D2 is given in terms
of the Laplace operator on flat Euclidean space supplemented by an endomorphism
including a real scalar field φ:7

D2 = −
(
∇21 + E

)
, E = −iγµγ5∂µ φ− φ2 . (5.29)

The definition of the model is then completed by specifying the function χ.

Nonlocal analytic models

We first discuss the case where χ(z) = e−z. In this case the spectral action (5.28)
coincides with the heat-trace of the Laplace-type operator (5.29) which is a well-
studied mathematical object, see e.g., [63–68]. In particular the two-point function
of the model is given by

S
(2,φ)
χ,Λ =

Λ2

(4π)2

ˆ
d4x

[
φF0(−∂2

E/Λ
2)φ

]
. (5.30)

The structure function F0 is obtained from the heat-kernel result for the endomor-
phism E and reads [24]

F0 (z) = 2 z h (z)− 4 , (5.31)

with

h(z) =

ˆ 1

0

dα e−α(1−α)z. (5.32)

The function h(z) is an entire analytic function which is nowhere vanishing in the
complex plane. The momentum-dependent two-point function for this model is then
obtained by analytically continuing (5.30) to Lorentzian signature

G̃(p2) = −8π2

Λ2

1

F0(−p2/Λ2)
, (5.33)

where p2 is the Lorentzian momentum four-vector.
A careful study of the two-point function (5.33) reveals several remarkable fea-

tures. First, the model naturally gives rise to a Higgs mechanism for φ. The prop-
agator exhibits a pole at p2 ' −3.41Λ2 indicating that the expansion of φ around
vanishing field value corresponds to expanding at an unstable point in the potential.
Restoring the φ4 term8 leads to a scalar potential

V (φ) = −µ2
Hφ

2 + λφ4 + . . . , (5.34)
7The spectral dimension arising in this situation has recently been studied in [25], also see [24]

for a related discussion.
8For a discussion of the Higgs mechanism in almost-commutative geometry see Sect. 11.3.2 of

[62].
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with µ2
H = 2Λ2. Neglecting the higher-order terms, the potential gives a non-

vanishing vacuum expectation value 〈φ〉 = ± µH√
2λ
. Expanding the field around this

minimum leads to a potential for the fluctuation field φ̃

V (φ̃) = 2µ2
H φ̃

2 + . . . , (5.35)

Thus, when expanded around the minimum of the scalar potential, the structure
function entering into (5.33) should be given by

FH(z) = 2 z h(z) + 8 . (5.36)

FH(z) has a single real root located at p2 ' 2.56Λ2. This root corresponds to a
positive mass pole in (5.33). In addition there are complex roots located, e.g., at

p2 = − (1.32± 21.98i) Λ2 . (5.37)

These roots can be traced back to the mass-term contribution in F0 or FH and are
absent if one considers the zh(z) part only. The presence of complex roots signals
that the Wightman function contains modes which increase exponentially for large
times. These modes introduce an instability in the Unruh effect, which we will not
investigate further. It would be very interesting to see if there are functions χ which
give rise to a nonlocal theory avoiding this instability.

Ostrogradski-type models

By making a suitable choice for the function χ one can also generate spectral actions
which are local in the sense that the (inverse) two-point function is given by a finite
polynomial in p2.9 The simplest choice, leading to a two-scale model, uses

χ(z) = (a+ z) θ(1− z) , a > 0 . (5.38)

Replacing the polynomial multiplying the stepfunction by a polynomial of order n
leads to a multiscale model whose inverse propagator is given by a polynomial of
order n in p2.

The spectral action for these cases can be found explicitly by combining the
early-time expansion of the heat-kernel in s ≡ Λ−2

FH =
1

(4π)2

1

s

∞∑

m=0

am (p2
E s)

m ,

=
1

(4π)2

1

s

(
8 + 2 s p2

E −
1

3

(
s p2

E

)2
+ . . .

) (5.39)

9This is closely related to the zeta-function spectral action proposed in [69].
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Figure 6. Profile function (5.45) for a = 3.2.

with standard Mellin transform techniques [70]

S
(2,φ)
χ,Λ =

1

(4π)2

ˆ
d4p

(2π)4
φ

[∑

m=0

Qm+1[χ] am (p2
E)m

]
φ . (5.40)

The moments Qn depend on the function χ and, for n ∈ Z are given by

Qn[χ] = 1
Γ(n)

´∞
0
dz zn−1 χ(z) , n > 0 ,

Q−n[χ] = (−1)n χ(n)(0) , n ≥ 0 .
(5.41)

For the ansatz (5.38) the moments are

Q1[χ] = a+
1

2
, Q0[χ] = a, Q−1[χ] = −1, Q−2 = Q−3 = . . . = 0. (5.42)

Converting to Lorentzian signature, the inverse two-point function based on the
expansion of FH , eq. (5.36) is

P2(p2) = − 1

8π2

(
8a+ 4− 2ap2 +

1

3
p4

)
. (5.43)

The two roots of the system are located at

µ1,2 = 3a∓
√

9a2 − 24a− 12 . (5.44)

Provided that 2(2 +
√

7)/3 < a < (3 +
√

15)/2, both roots are on the positive real
axis. Thus the model falls into the class discussed in Sect. 5.1. The profile function
is readily obtained by applying the Ostrogradski decomposition to (5.43)

F(E) =
24π2

µ2 − µ1

(√
E2 − µ1 θ(E −

√
µ1)−

√
E2 − µ2 θ(E −

√
µ2)
)
. (5.45)

The behavior of this profile function is illustrated in Fig. 6.
For E2 < µ1 the profile function vanishes, indicating that the energy gap is too

small for the detector to interact with the two massive fields. For 7.77 < E2 < 12.77
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the profile corresponds to the standard Unruh rate for a field with mass m2 = 7.77.
Once E2 crosses the threshold at 12.77 the profile function decreases and falls of
asymptotically as E−1 for high energies. Thus spectral actions may give rise to
similar profile functions as the multiscale models discussed at the beginning of this
section.

5.4 Causal Set inspired theories

A second framework which naturally gives rise to corrections to the Unruh effect are
the nonlocal two-point functions emerging in the context of Causal Set Theory. In
this case the two-point functions extrapolate between a classical massless or mas-
sive propagator at energy scales well below the discretization scale and a discrete
D’Alembertian naturally associated with the Causal Set at high energies [32, 71]. In
this section we will derive the resulting Unruh signature arising from this setting as
well as from Causal Set inspired toy models.

Rate suppression in the full theory

The explicit form of the two point function reads10

G+(x2) = − i

2π3

ˆ ∞
0

dξξ2 K1(i
√
x2ξ)√

x2 ξ g(ξ2)
, (5.46)

where ξ is a momentum and

g(ξ2) = a+ 4πξ−1

3∑

n=0

bn
n!
Cn

ˆ ∞
0

s4(n+1/2)e−CsK1(ξs)ds . (5.47)

The parameters are determined based on the analytic properties of the two-point
function and given by a = − 4√

6
, b0 = 4√

6
, b1 = − 36√

6
, b2 = 64√

6
, b3 = − 32√

6
, C = π

24
.

The asymptotics of g(ξ2) has been determined in [32]

lim
ξ2→0

1

g(ξ2)
= − 1

ξ2
+ · · · ,

lim
ξ2→∞

1

g(ξ2)
= − 2

√
6π

ξ4
+ · · · .

(5.48)

We thus see that at high energies the two-point function has a characteristic p−4

behavior. The profile function will then asymptotically match the result we already
derived in Sect. 5.1, for the logarithmic case, displaying a 1/E fall off.

Using the two-point function as above, the equation for the detector rate gives

Ḟ =
−i
2π3

ˆ ∞
0

dξξ2

g(ξ2)

ˆ ∞
−∞

dτe−iEτ

(
K1(2iξ

a
sinh (a

2
(τ − iε)))

2ξ
a

sinh (a
2
(τ − iε))

− K1((τ − iε)ξ)
(τ − iε)ξ

)
,

(5.49)
10We set everywhere the sprinkling density ρ to one.
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from which we arrive at the profile function

F(E) = − 2

π

ˆ E

0

dξξ

√
E2 − ξ2

g(ξ2)
. (5.50)

In principle this relation gives the exact form of the profile function in Causal Set
Theory. Its evaluation requires the full form of g(ξ2) and cannot be based on the
asymptotic expansions (5.48) alone. Performing the resulting integral numerically is
beyond the scope of the present work. Instead we will focus on a simplified model
which allows for an analytic treatment.

A consistent toy model

The central properties of the two-point correlation function for Causal Sets (5.46)
are captured by the combination of a massless pole at zero mass combined with
a continuum of states with density ρ(m2) [72]. The resulting positive frequency
Wightman function is then given by the sum of the massless one, denoted by G(0)

+

and an integral over the continuum of states

G+(t, ~x) = G
(0)
+ (t, ~x;m = 0) +

ˆ ∞
0

dm2ρ(m2)G
(0)
+ (t, ~x;m) , (5.51)

where G(0)
+ (t, ~x;m) denotes the Wightman function for a scalar of mass m. Inspired

by [72] it is conceivable that all relevant physics of the Causal Set construction is
retained by approximating the density of states by

ρ(m2) = e−αm
2

N∑

n=0

bnm
2n . (5.52)

Here α is a parameter of order one, b0 is related to the nonlocality scale, and the
remaining bn’s are free parameters.

As a consistency requirement, the simplified model should recover the massless
theory in the infrared limit. This is ensured by requiring that the continuum contribu-
tion to (5.51) vanishes in the limit where the geodesic distance Z ≡ (t−t′)2−(~x−~x′)2

goes to infinity. Substituting (5.52) into (5.51) this condition entails

lim
Z→∞

N∑

n=0

bn

ˆ ∞
0

dme−αm
2

m2n+2 K1(im
√
Z)√

Z
= 0 . (5.53)

Applying the expansion of K1(x) for large argument the resulting integral reduces
to a representation of a Γ-function and falls off as Z−3/4 independent of n. From
this, it follows that imposing a classical asymptotic behavior in the infrared does not
constrain the parameters bn.11

11 Alternatively, one could notice that the limit in eq. (5.53) is formally of the same type as
considered in Appendix A of [32], and thus one can apply the same manipulations to conclude that
the limit gives zero irrespective of n.

– 28 –



Evaluating (3.10) for (5.51) yields the profile function for this model

F(E) = E +
N∑

n=0

bn

ˆ E2

0

dm2 e−αm
2

m2n
√
E2 −m2 . (5.54)

At this stage, it is instructive to study the case N = 1 in detail. Setting α = 1, the
two integrals can be carried out explicitly, giving rise to imaginary error functions

I0 ≡
ˆ E2

0

dx e−x
√
E2 − x = E −

√
π

2
e−E

2

Erfi(E) ,

I1 ≡
ˆ E2

0

dx e−x x
√
E2 − x = 3

2
E −

√
π

4
e−E

2

(3 + 2E2) Erfi(E) .

(5.55)

Expanding the integrals at E = 0 one has

I0 ' 2
3
E3 + . . . , I1 ' 4

15
E5 + . . . . (5.56)

Thus the low-energy behavior is governed by the massless contribution, indepen-
dently of the values b0 and b1. Looking at the asymptotics of the integrals (5.55) for
E2 � 1, one has

I0 ' E − 1

2E
+ . . . , I1 ' E − 3

4E
+ . . . . (5.57)

Hence, for generic values b0, b1 the asymptotic scaling for E � 1 and E � 1 is
identical. In these cases there is no change in the Unruh dimension. For the special
value b1 = −(b0 + 1), however, the leading term in the high-energy expansion cancels
and the asymptotics of the profile function reads

F(E) =
b0 + 3

4E
+ . . . . (5.58)

Thus, for this case the model matches the Unruh rate expected for Causal Set Theory.
Setting b0 = 1 the full profile function is shown in Fig. 7. Both the profile function
and the Unruh dimension undergo a transition when the energy scale meets the
discretization scale controlled by setting b0 = 1.

6 Conclusions and outlook

In this work we investigated the Unruh effect in quantum gravity inspired models
exhibiting dynamical dimensional flows. Since both the detector approach to the
Unruh effect and dimensional flows originate from a non-trivial momentum depen-
dence of the two-point correlation functions there is a natural connection between the
two. Explicitly, we focused on two-point functions arising within the context of phe-
nomenologically motivated models for dynamical dimensional reduction, multiscale

– 29 –



5 10 15 20
E

0.2

0.4

0.6

0.8

1.0

1.2

1.4
FHEL

0.1 1 10 100
E

1

2

3

4

5
DU

Figure 7. Profile function F(E) and Unruh dimensionDU arising from (5.54) with b0 = 1,
b1 = −2 and bn = 0, n ≥ 2.

models, Kaluza-Klein theories, spectral actions, and Causal Set Theory. From the
viewpoint of two-point functions, these models come in two distinguished classes. In
the first case the inverse two-point function has a polynomial expansion in momen-
tum space. This case is realized within dynamical dimensional reduction, multiscale
models, Kaluza-Klein theories, and certain classes of spectral actions. It is also real-
ized in theories that break Lorentz invariance, which we did not touch upon.12 The
models forming the second class possess two-point functions which are quasi-local in
the sense that their inverse consists of a first order polynomial multiplying a func-
tion which is analytic in the complex plane. This setup is realized by Causal Set
Theory. Our study of these models exhibits two universal features. First, despite
incorporating quantum (gravity) corrections in the two-point function, the Unruh
radiation remains thermal in all cases. Moreover, the low-energy spectrum is robust
with respect to corrections of the two-point functions at high energies, i.e., the re-
sponse of an Unruh detector is not modified below the characteristic scale where the
dimensional flow sets in.

The two-point functions occurring in the first class of models can be reduced to a
sum of (massive) second order propagators through an Ostrogradski-type decompo-
sition. In this case we derive a master formula which expresses the response function
of the Unruh detector as a function of the mass poles. As a generic feature, one finds
that dynamical dimensional reduction leads to a suppression of the Unruh effect at
high energies while the opening up of extra dimensions leads to an enhancement
above the compactification scale. In particular, models where the spectral dimension
asymptotes to Ds → 2 at high energies also exhibit a universal falloff in the rate
function (2.33) of the Unruh effect F(E) ∝ 1/E. We proposed here to quantify this
non-trivial asymptotic behavior of the profile function through a new parameter,
which we called the Unruh dimension of the system. This is defined through the
scaling of the profile function, as in eq. (4.7). Differently from other proposed pa-

12 There is a vast literature on this class of models. See for instance [47, 73–75]
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rameters characterizing the high energy behavior induced by quantum gravity effects,
this one is directly related to a physical quantity that is accessible experimentally,
at least in principle. Moreover, it is directly related to the spectral dimension via
the relation (5.11). The specific examples studied in this paper already indicate that
different quantum gravity models come with a very distinguished signature in terms
of their Unruh detector response function. This may serve as an interesting starting
point towards identifying universal features among different approaches to quantum
gravity. This requires the computation of positive-frequency Wightman functions
within different quantum gravity programs.

Obviously, it would be quite natural to apply the formalism developed in this pa-
per to the gravitational Asymptotic Safety program [70, 76–80]. In this context, the
momentum dependence of two-point functions has recently been studied in [81–83].
It is clear that an investigation of the Unruh effect should be based on the renor-
malized propagators where all quantum (gravity) fluctuations have been integrated
out. The corresponding expression for the positive-frequency Wightman function is
currently not available. Nevertheless, much progress has been made in recent years
towards the construction of renormalized two-point functions taking quantum fluc-
tuations into account [82–87]. On this basis, we expect that it is feasible to compute
the fingerprints of Asymptotic Safety in the Unruh effect. This may also be relevant
for understanding the fate of black holes within Asymptotic Safety [88–99] based on
first principles.

Another natural extension of our work is the application to Hawking radiation.
Here it was argued that the low-energy Hawking spectrum is actually insensitive to
Planck scale effects [100]. The situation is quite similar to the one encountered in the
present work, where the Unruh spectrum at energy scales below the scale where the
dimensional flow sets in is actually unaltered. At the same time there are indications
that quantum gravity effects could stop the black hole evaporation process and leave
a cold remnant. In particular, it was argued in [101] that the black hole evaporation
could come to an end once the spectral dimension drops to Ds = 3. This would be
relevant for the information problem as well [102]. Applying the techniques based
on two-point correlation functions used in the present work may actually allow one
to develop these ideas based on a first-principle calculation. We plan to come back
to this point in the near-future.

Finally, we have not analyzed the class of models displaying a minimal length.
These models are important for quantum gravity phenomenology, since this effect
is believed to appear quite generically [103]. It would be interesting to see if a
connection to our results can be made.
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A Uniformly accelerated frames

Throughout this paper we make repeated use of the worldline of an accelerated
observer. For reasons of self-completeness, we will give here a brief derivation of the
main formulas referenced in the text, mainly following [104].

A uniformly accelerated observer in special relativity is an observer having con-
stant acceleration in the frame in which its instantaneous velocity is zero. The
coordinate transformation to the uniformly accelerated frame defines the so called
Rindler frame.

Consider a frame K ′ moving with velocity v along the x direction with respect
to a reference frame K. The Lorentz boost to K ′ is thus t′ =

√
1− v2(t − vx),

x′ =
√

1− v2(x− vt), y′ = y, z′ = z. An object with velocity dx/dt in K will have a
relative velocity in K ′ equal to

dx′

dt′
=

dx/dt− v
1− vdx/dt

. (A.1)

The relative acceleration is then easily found to be
d2x′

dt′ 2
=

(1− v2)3/2

(1− vdx/dt)3

d2x

dt2
. (A.2)

Imposing the instantaneous velocity in K ′ to be zero implies v = dx/dt, which
substituted in eq. (A.2) gives, for constant d2x′/dt′ 2 = a, the equation

d2x

dt2
= a

(
1−

(
dx

dt

)2
)
. (A.3)

This is integrated to give x(τ)2 − t(τ)2 = a−2, or

x(τ) = a−1 cosh(aτ), t(τ) = a−1 sinh(aτ) . (A.4)

Defining ρ = a−1 and η = aτ , we can then go from Minkowski coordinates
(t, x, y, z) to Rindler coordinates (η, ρ, y, z), where the new line element is

ds2 = ρ2dη2 − dρ2 − dy2 − dz2 . (A.5)

Starting from this, the Unruh effect can also be derived using the methods of quantum
field theory in curved spacetime adapted to Rindler spacetime.
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