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ABSTRACT
This article discusses the use of 3D technologies in digital earth applications
(DEAs) to study complex sites. These are large areas containing objects
with heterogeneous shapes and semantic information. The study
proposes that DEAs should be modular, have multi-tier architectures,
and be developed as Free and Open Source Software if possible. In
DEAs requiring high reliability in the 3D measurements, point clouds are
proposed as basis for the 3D Digital digital earth representation. For the
development of DEAs, we propose to follow a workflow with four
components: data acquisition and processing, data management, data
analysis and data visualization. For every component, technological
challenges of using 3D technologies are identified and solutions applied
for a case study are presented. The case study is a modular 3D DEA
developed for the archaeological project Mapping the Via Appia. The 3D
DEA allows archaeologists to virtually analyze a complex study area.
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1. Introduction

Over the last decade, the use of 3D technologies in digital earth applications (DEAs) has grown con-
siderably. The need to study complex areas in virtual 3D environments has been identified by many,
for example, Basanow et al. (2008), Krüger and Meinel (2008), Stoter et al. (2011), von Schwerin et al.
(2013), Zhang et al. (2014), Hu et al. (2015) and Hunter et al. (2015). These works propose solutions
that place objects in large 3D spatial contexts, such as buildings in cities or structures in archaeological
sites. However, these solutions are usually stand-alone applications with limited sharing capabilities or
are relatively difficult to reuse since they are not developed as Free and Open Source Software (FOSS).

As indicated by Craglia et al. (2012), the future for DEAs in general moves away from a single
system infrastructure into multiple and highly connected infrastructures. These infrastructures
should be openly accessible, serving multiple users with various backgrounds and skill levels. For
these developments to thrive and to turn this vision into reality, both organizational and technologi-
cal challenges need to be addressed (Craglia et al. 2012; Goodchild et al. 2012).

This article contributes to addressing these technological challenges, and aims to provide techno-
logical insights for the development of future DEAs. We believe that the future of DEAs is in
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modularity, i.e. in creating DEAs that are composed of multiple applications. These applications
integrate state-of-the-art technologies, can interface between each other, and, if possible, are devel-
oped as FOSS. Moreover, following the recommendation by Craglia et al. (2012), we propose that
such DEAs have multi-tier architectures to serve, through various interfaces, multiple users with
different aims and technological skills levels. In multi-tier architectures, the functions regarding
data management and regarding data analysis and data visualization are physically separated.

We focus on the use of 3D technologies in DEAs for the study of relatively large and complex
sites. These sites are areas containing objects that have heterogeneous shapes and that are enriched
with semantic information.

We propose to use point clouds as the basis for the 3D representations of the digital earth. Point
clouds are more reliable than other detailed 3D representations such as polygonal models which
require interpolation or modeling methods for their generation. If any interpolation or modeling
method is used in a 3D digital earth representation, users will be inclined to interpret the represen-
tation as fact, where reality might be different. The reliability of the 3D digital earth representation is
crucial in 3D DEAs that require the highest accuracy in measurements and analysis.

As a case study, this article uses the archaeological project Mapping the Via Appia (www.
mappingtheviaappia.nl; Mols, Moormann, and Pelgrom 2013; de Kleijn et al. 2015; de Kleijn, de
Hond, and Martinez-Rubi 2016). This project studies two miles of the Via Appia Antica containing
over 2000 archaeological objects and structures of interest. For this project, we have developed a
modular 3D DEA. This is mostly based on FOSS components, thus our efforts can be replicated
and improved upon by others. The technological characteristics of the solution are in line with a
Spatial Data Infrastructure (SDI) approach. In fact, we have used this term in an article published
in the journal for Digital Applications in Archaeology and Cultural Heritage (de Kleijn, de Hond,
and Martinez-Rubi 2016). In that article, we discussed the implications of the 3D DEA specifically
on the field of archaeology and architectural history. From a more technical perspective, the term
SDI does cover the approach presented; however, the consensus on what an SDI defines also entail
organizational aspects (Hendriks, Dessers, and van Hootegem 2012; de Kleijn et al. 2014). Since this
study does not address the organizational aspects, we have decided to use the term DEA instead.

For the development of any DEA in general, and in particular of the Via Appia 3D DEA, we pro-
pose to follow a technological workflow with four components: (i) data acquisition and processing,
(ii) data management, (iii) data analysis, and (iv) data visualization. This workflow must be seen as
an iterative process which is depicted in Figure 1. The major direction of development flows clock-
wise, building the next component based on the outcome of the previous. However, in reality chal-
lenges are encountered that required direct feedback between the various components.

Figure 1. Technological workflow for developing DEAs.
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For the components of the workflow, we identify sets of technological challenges that arise when
using 3D technologies in the development of DEAs for the study of complex sites. These challenges
are rather generic and shared across domains. Since in the context of this research the analysis and
visualization components are, from a technological perspective, strongly related to each other, we
decided to discuss them as one. Thus, the set of technological challenges becomes:

. Data acquisition and processing. In order to obtain a reliable reality-based 3D digital earth rep-
resentation (point cloud), the study area has to be measured and the objects of interest have to
be identified. The identification of an object consists of the assignment of a unique identifier
and the registration of its 3D position within the study area. Once identified, specific data for
the objects of interest need to be added and related, i.e. semantic information and additional
data such as pictures, paintings and alternative 3D representations (e.g. polygonal meshes).
Some of these additional 3D data may be manually generated instead of acquired by sensors.
In our case study, for instance, archaeological reconstructions are generated with 3D modeling
software. Additionally, in some cases the generation of a complete 3D digital earth representation
is not possible or the data cannot be collected at once. In our case study, for example, the archae-
ological objects of interest need to be cleaned before detailed reality-based models can be
obtained. The process of acquiring and processing data therefore needs to be dynamic, allowing
to update the 3D digital earth representation at different moments in time using various methods.

. Data management. A system is required to deal with 3D digital earth representations which may
be incomplete or consist of multiple parts. The system has to deal with different types of data, its
object-oriented nature or division and its dynamic acquisition process. Moreover, data can also be
updated. To allow multiple users to access the data at the same time, the data must be stored in an
online infrastructure. Additionally, in order to perform queries based on the spatial location and
the structured semantic information, the data must be clearly structured so that it can be handled
by database and spatial querying tools.

. Data analysis and data visualization. In order to make 3D DEAs useful for users, tools for knowl-
edge extraction are essential. Users need to be able to visualize and analyze the study area and the
objects of interest while making use of the semantic and spatial query functionality provided by
the data management system. This enables users to identify and explore in the virtual 3D environ-
ment the objects that fulfill their selection criteria.

The remainder of the article has the following structure. In Section 2 a short description of the Via
Appia case study is provided. Sections 3–5 extend and take up the challenges in the components of
the technological workflow and present the implementation details of the developed 3D DEA for the
case study. Section 6 lists the conclusions of this article and discusses future work. Finally, the appen-
dix contains additional implementation details of the developed 3D DEA.

2. Case study: Mapping the Via Appia

The Via Appia Antica, which runs from Rome south to Brindisi (Italy), is known as Europe’s first
paved long-distance road. The road originates from the Roman times, was constructed from the
late 4th century BC onwards and had important commercial, military, religious and funerary func-
tions. After the Roman period, the road fell into decay until it was reshaped as an archaeological park
at the end of the 19th century. This setting of more than 2300 years of history encapsulates a complex
multi-layered landscape containing remains of funerary monuments, villas, farmsteads, small indus-
tries and sanctuaries from antiquity, but also structures built on top of the monuments from the
medieval period and reconstructions from the 19th century which are nowadays considered to be
of doubtful archaeological quality.

Within the Mapping the Via Appia project the area between the 5th and the 6th mile of the Via
Appia Antica is studied. In this area there are over 2000 archaeological objects of interest, ranging
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from fragments and blocks ex situ to largein situ ancient ruins. Note that within the project we also
refer to sites of interest, which are small areas that contain one or more objects of interest. The main
aim of the project is to reconstruct how the structures alongside the road have changed over time.
One of the biggest challenges is to analyze, in the large 3D spatial context, the more than 2000 objects
scattered around the road.

Systems for the 3D study of archaeological areas have already been proposed in Forte et al. (2012),
Dell’Unto et al. (2013) and von Schwerin et al. (2013); however, they present one or more of the fol-
lowing limitations: they are limited to small areas, they cannot handle semantic information or they
can only use oversimplified 3D models.

3. Data acquisition and processing

In the data acquisition and processing component, we have identified three technological challenges.
The first challenge regards the methods to obtain reality-based 3D digital earth representations. The
second concerns the identification of the objects of interest and the attachment of their semantic
information and other additional data. Finally, the third challenge deals with the level of automation
that is required in order to foster efficient data acquisition and processing. Sections 3.1–3.3 extend
the identified challenges and Section 3.4 presents our solutions for the case study.

3.1. Reality-based 3D digital earth representation

When obtaining a reality-based 3D digital earth representation, one must choose which type of 3D
representation is going to be used, and which 3D scanning technologies and acquisition methods are
going to be employed.

3.1.1. Types of 3D representation
All methods to capture reality-based 3D representations are based on point clouds. There are two
options to represent the reality in 3D: to use derived models or to directly use point clouds.

. Derived models, such as polygonal meshes, usually present closed virtual surfaces (without holes).
However, interpolation or modeling methods are required to create these surfaces (e.g. with the
Poisson surface reconstruction as described in Kazhdan, Bolitho, and Hoppe 2006). By using
interpolation or modeling methods, we are prone to model the surfaces unrealistically. This
can be problematic and lead to significant errors when performing measurements in the 3D vir-
tual scene.

. The direct use of point clouds provides the most reliable representation of reality. The represen-
tation is what was sensed, without interpolation or modeling errors. Measurements in point
clouds are more reliable when compared to derived models. However, there can be interpretation
issues caused by the discrete nature of the data (holes, point density variation, etc.).

Both options have advantages and disadvantages, but in this study we focus on 3D DEAs in which
the reliability of the measurements in the 3D models is crucial. Therefore, we propose to use point
clouds directly rather than derived models.

3.1.2. 3D scanning technologies and acquisition methods
There are several 3D scanning technologies, the most popular ones are Lidar techniques and photo-
grammetric methods. The former are based on measuring distances using laser, and the latter are
based on acquiring images from different viewing angles which are combined and processed into
point clouds. Photogrammetric methods are sometimes referred to as Structure from Motion
(SfM) techniques. For a more detailed comparison of Lidar and photogrammetric techniques, we
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refer the reader to Baltsavias (1999) and Gil et al. (2013). In addition to the choice in technology,
there is also the choice in the acquisition method, for example, aerial, car-mounted and terrestrial.

Since the different 3D scanning technologies and the various acquisition methods have their own
limitations, the combination of multiple scanning technologies and acquisition methods is often
required in order to get a proper 3D digital earth representation of a relatively large and complex
area. The most obvious limitation is that an optical sensor can only scan surfaces that are visible
from its location. For example, sensors mounted on cars will not be able to scan roofs or surfaces
of buildings and structures not visible from the road. Furthermore, when scanning distant surfaces
the areas which are parallel to the line of sight of the sensors cannot be scanned. For the scan of a city,
aerial sensors will not be able to scan most of the facades of buildings. Only scanning within short
distances when covering large areas is usually not feasible due to the amount of time it would take.
The solution that we propose is to use acquisition methods that allow to cover the whole area from a
relatively large distance, thus limited to what is seen from the sensor. Then, these scans are combined
with short-range scans of the missing parts that are relevant for the study. The various scans can be
done with the same or with different 3D scanning technologies. However, when integrating 3D data
from different sensors one should be aware of issues with differently calibrated scales and the use of
different spatial reference systems.

3.2. Object identification and attachment of semantic and additional data

There are multiple methods for automatic or semi-automatic object detection or extraction such as
the ones presented in Bae, Belton, and Lichti (2007), Richter, Behrens, and Döllner (2013), Oude
Elberink and Kemboi (2014), Yang, Xu, and Yao (2014) and Xiao et al. (2015). Although these
studies have made significant contributions targeting at specific types of objects (e.g. trees, cars,
building, etc.), the current solutions and algorithms are poorly applicable to automatically detect
objects with heterogeneous shapes in large and complex areas. In some cases, automatic approaches
can assist the users by highlighting or suggesting certain shapes. However, this becomes difficult in
areas which also contain a high number of uninteresting objects that also have heterogeneous shapes.
The most feasible strategy is therefore to use manual identification either in the real world or in the
3D digital earth representations.

Subsequently to identify objects of interest, assign unique identifiers and register their 3D pos-
itions, the data with the characteristics for the objects of interest need to be attached. Regarding
this semantic information (or attributive data), we propose to use a structured data format. In
this manner, the data can be imported in database systems whose rich query functionality can be
exploited for advanced semantic analysis.

In addition, for each object of interest other types of data may need to be integrated. This includes
the scans required to complement the 3D digital earth representation of the area as described in Sec-
tion 3.1, and maybe their repetition in different moments in time. Other types of data that may need
to be integrated are pictures, paintings, 3D models (polygonal meshes) of reconstructions of the
objects, etc.

3.3. Automation

This challenge concerns efficiency issues that may occur when manual intervention is required
during the acquisition and processing of data. For example, Section 3.1 pointed out that the combi-
nation of multiple datasets from various scanning technologies and methods is often required to
obtain a proper 3D digital earth representation. For the combination, these datasets need to be
aligned and resized into a common spatial reference system. If the process for the alignment and
the resizing of each dataset requires user interaction, this will significantly affect the efficiency
and required time of the whole process. This can be critical when the number of datasets to combine
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becomes high. Therefore, we propose to use methods that minimize the manual user intervention as
much as possible.

3.4. Via Appia implementation

This subsection explains how the described challenges have been addressed in the case study. To
obtain a georeferenced reality-based 3D point cloud of the study area Fugro’s DRIVE-MAP system
(http://www.drive-map.eu/) is used. This technology uses a car with a Lidar scanner combined with a
differential GPS and a photo camera. Although this point cloud contains a scan of the entire study
area, it is limited to the surfaces visible from the road. To identify the different sites and objects of
interest their 2D georeferenced footprints are collected in the field using a differential global posi-
tioning system (DGPS) manufactured by Topcon (https://www.topconpositioning.com/). In order
to complement the DRIVE-MAP dataset and to obtain a complete 3D digital earth representation
of the study area we use SfM. This method requires multiple pictures for each site of interest
from different viewing angles and based on patterns in the pictures it generates a point cloud for
each site. Additionally, a polygonal mesh can be generated from each point cloud. Since the number
of sites of interest is relatively high, we have developed an automatic image-based modeling tool
chain (Drost, Spaaks, and Maassen 2016) by integrating FOSS tools developed by other researchers,
concretely SIFT (Lowe 2004), Bundler (Snavely, Seitz, and Szeliski 2006) and CMVS/PMVS2 (Fur-
ukawa et al. 2010; Furukawa and Ponce 2010). However, the used photogrammetry methods pro-
duced point clouds which are relatively scaled and not referenced to the earth’s surface.

In order to align the point clouds of the sites generated using SfM with the georeferenced point
cloud acquired by DRIVE-MAP (referred to as background point cloud), an automatic registration
(alignment) tool has been developed (Attema et al. 2016). The tool uses the footprints, the DRIVE-
MAP point cloud and the SfM point clouds as input. For each SfM point cloud of a site, the regis-
tration is performed in the following way: first, the registration tool applies the dbscan (Ester et al.
1996) algorithm to filter out noise and select the densest parts of the point cloud. In most cases, this
corresponds to the object of interest since it is at the focal point of all the images; second, the SfM
point cloud is roughly situated in the DRIVE-MAP reference system using the footprint; third, the
scale is estimated by using known image features in the SfM point cloud (range rods whose length is
known); Finally, the generalized iterative closest point algorithm (Segal, Haehnel, and Thrun 2009) is
used to refine the alignment. Even though the photogrammetric and registration methods usually
require a high degree of manual intervention, our developed tools have managed to automate the
processing in approximately 50% of the cases.

Semantic information (or attributive data) is gathered by field observations for the various sites
and objects. This information consists of archaeological and architectural relevant information such
as type of material, decoration type, dating, condition, etc. 3D archaeological reconstructions (poly-
gonal meshes) are created with known 3D modeling software tools such as 3ds Max, SketchUp, or
Blender. These reconstructions show the archaeological interpretation of how the different sites
might have looked in antiquity and how they possibly transformed in later periods. Additionally,
contemporary and historical pictures, drawings and paintings derived from archival research are
collected.

An overview of the data acquisition and processing for the Via Appia 3D DEA is depicted in
Figure 2. Initially, the default (‘raw’) formats of the different types of data as obtained from the acqui-
sition methods and registration tools are used. For the point cloud data this is the LAS format, OBJ/
PLY for the polygonal meshes and PNG/JPEG for the pictures. The attributive data of sites and
objects are collected by the archaeologists in the field using Microsoft Access and the MDB file for-
mat, while the 2D footprints are provided as an ESRI ShapeFile.

In order to visualize and analyze the data with the developed client applications, which will be
elaborated in Section 5.3, the point clouds, polygonal meshes and pictures are converted to specific
formats used by those tools. This is done in the last phase of the data processing stage.
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4. Data management

In the data management component of the workflow, we have identified four technological chal-
lenges. The first challenge concerns how to manage a 3D digital earth representation that is the com-
bination of multiple point clouds that, additionally, can be updated. The second challenge regards the
integration of the multiple point clouds with other types of data. The third challenge deals with find-
ing the most suitable architecture to provide multi-user support. Finally, the fourth challenge is to
provide analytic and semantic functionality. Sections 4.1–4.4 extend the identified challenges and Sec-
tion 4.5 shows the approach we took to address the challenges in the Via Appia case study.

4.1. Multiple point clouds

From the data acquisition and processing, we stated that multiple reality-based datasets (point
clouds) need to be integrated in order to generate a complete and reliable 3D digital earth represen-
tation of the study area. There are studies (van Oosterom et al. 2015a; Martinez-Rubi et al. 2015a)
that deal with how to manage single point clouds with many points. However, the difference with the
current research is that this consists of multiple relatively small point clouds. We propose to keep the
various point clouds separated instead of merging them for two reasons: (i) it facilitates manual
registration (the tools to re-align and re-scale the 3D models sometimes fail) and (ii) it allows to
easily add new scans of the objects.

4.2. Data integration

In order to enhance data exploration and be able to access the available data per object, the multiple
point clouds that form the 3D digital earth representation have to be related to other types of data
into a single infrastructure. Examples of other types of data are meta data, pictures or derived models
from the point clouds such as polygonal meshes. For the integration of the data, we propose to use a
relational database management system (RDBMS). The relational aspect of RDBMS is crucial to
establish the relationship between the multiple point clouds, other 3D models and other types of
data. However, current database solutions do not provide efficient support to visualize 3D data
such as point clouds directly from the database, nor are the available visualization tools compatible

Figure 2. Data acquisition and processing flow chart with the different types of data (point clouds, polygonal meshes, pictures, 2D
footprints and sites/objects attributes) and their various formats, i.e. the raw formats and the different formats required by the
client applications. *For sites for which the automatic registration tool does not work manual registration tools are implemented.
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with database systems as data back end. As identified in van Oosterom et al. (2015b), databases with
point cloud functionality lack efficient level-of-detail (LoD) support, which is required for visualiza-
tion. Therefore, we propose to use a hybrid data management system (HDMS) that keeps the data in
the most optimal format for the tools that have to use it while still using a database to handle the data
relations. In the database only the references (i.e. file locations) of the data are stored.

4.3. Multi-user architecture

In order to allow users to simultaneously access and change the data on different locations, the inter-
action must be synchronized. We therefore propose a two-tier architecture with the data centralized
in a cloud-based server. The concept of storing and disseminating large point cloud datasets making
use of cloud computing resources had already been suggested by Kodde (2010). The client layer of
the proposed architecture contains the front-end applications where the users can interact with the
system (see details in Section 5.3). For the analysis and visualization, the client applications down-
load copies of the data from the server. Ideally this is done on demand so not all data are downloaded
but only this required by the user. Any change to the data made by the users, like adding new data,
must be consistently synchronized from the server to all clients.

4.4. Analytic and semantic functionality

Beyond the interfaces to visualize the 3D data, including identified objects with attributes as well as
other additional data, it is necessary to include analytic functionality to query the dataset based on
the geospatial locations. However, and most important, it is also required to enable semantic queries,
i.e. to retrieve only certain objects that match a user-defined criterion based on the semantic attri-
butes of the objects. We therefore propose to import the semantic information into the RDBMS
in order to exploit its SQL query functionality.

4.5. Via Appia implementation

This subsection explains how the challenges related to data management have been addressed for the
case study. The developed 3D DEA forMapping the Via Appia has a two-tier architecture where the
(Linux) server uses a HDMS to manage the data (Figure 3). The multiple point clouds and other
related data for the various sites of interest are kept separated in their raw formats but also in the for-
mats required by the front-end applications that have to use them (see Section 5.3). They are stored in
directory structures and their references (file locations) are imported into the RDBMS component of
the HDMSwhich is implemented in PostgreSQL-PostGIS and is called viaappiadb. In the database we
also import the semantic information (sites/objects attributes) and the 2D footprints. Appendix 1
contains more technical details of the viaappiadb, concretely of its entity–relationship diagram.

All manipulations of the data in the directory structures as well as in the database are performed
using a set of Python scripts (Martinez-Rubi et al. 2016) and must be done while connected to the
server. This ensures data consistency within the described system. The scripts allow adding and delet-
ing data, exchanging the data in the various formats, updating the database with changes in the direc-
tory structures and updating the database with new semantic information and 2D footprints.

Figure 4 illustrates the two-tier client/server architecture of the 3D DEA. As previously men-
tioned, the server contains the HDMS with the master copy of the data and the PostgreSQL-PostGIS
database. The client layer of the architecture contains the front-end applications that run on the
computers of the users. These applications require the generation of configuration files which is
also done in the server. Depending on the application we use the Xenon library (Maassen et al.
2015) or a NGINX HTTP server to download copies of the data required for the visualization
and the configuration files to the user’s computer. The former is used to synchronize a copy of a
data folder in the user’s computer with the master copy in the server, while the latter is used to
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download copies of specific files in the server into the user’s computer. Additionally, connections to
the database can be made from the client applications. This allows exploiting the analytic and seman-
tic functionality of the system. Section 5.3 provides more information on the developed client appli-
cations, including additional details regarding the data synchronization with the server.

Figure 3. Schematic overview of the HDMS using directory structures (file-based data structures) to store the data in various for-
mats and a database to store meta data of the directory structures (location of the files) as well as the 2D footprints and the seman-
tic information (attributes of the sites and objects). The latter is imported into the database after a conversion from Microsoft Access
to PostgreSQL using Bullzip Access to PostgreSQL (http://www.bullzip.com/products/a2p/info.php).

Figure 4. Two-tier client–server architecture of the Via Appia 3D DEA.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 1143

http://www.bullzip.com/products/a2p/info.php


5. Data analysis and data visualization

For the development of tools for data analysis and data visualization, we have identified two tech-
nological challenges. The first challenge encompasses the visualization of relatively large complex
sites composed of multiple point clouds, polygonal meshes and pictures. The second challenge
regards the provision of functionality to perform spatial and semantic analysis in a virtual 3D
environment. Sections 5.1 and 5.2 extend the identified challenges and Section 5.3 shows how we
addressed the challenges for the case study.

5.1. 3D visualization

In the past few years various desktop visualization applications for large point clouds have been
developed, e.g. Wimmer and Scheiblauer (2006), de Haan (2010), Richter and Döllner (2010),
Günther et al. (2013) and Richter, Discher, and Döllner (2015). However, these applications tend
to be limited. One of the main issues is that these applications need the data, which can easily
add up to hundreds of gigabytes, to be locally stored. This is problematic since users need to have
sufficient disc space available in their local machines. Additionally, this may be aggravated when
dealing with datasets that have multiple versions.

An alternative to desktop applications are web applications, which are gaining popularity thanks
to the recent developments in web 3D visualization. Renderers using WebGL have become available
for the visualization of point cloud data over the web, for example Plasio (http://plas.io/), Unity
(https://unity3d.com/) and Potree (http://potree.org/), the latter based on the previous work by
Wimmer and Scheiblauer (2006) and extended by Schütz and Wimmer (2015). These options are
compatible with the possibility to host the data remotely. However, currently they tend to be exper-
imental of nature, limiting their performance or requiring plug-ins to be installed. Work has been
done on extending the capabilities to visualize massive point clouds over the web (Martinez-Rubi
et al. 2015b). Nonetheless, the focus in these studies was on visualizing single (massive) point clouds,
rather than having multiple small ones.

An additional limitation that affects both desktop and web applications, is the fact that usually
they target at a specific type of data, for example to only visualize point cloud data, and they normally
do not include functionality to combine these with other data types.

5.2. Analytic and semantic functionality

In addition to the visualization of multiple types of data, the client applications must also have ana-
lytic and semantic functionality. This includes measuring tooling and a visual interface to the seman-
tic information stored in the data management layer of the centralized cloud-based server as
proposed in Section 4.4. The challenge here is to combine analytic and semantic functionality
with the visualization. Thus, the client-side applications must have a connection with the cloud-
based server and must allow the user to make selections of which data are visualized, based on spatial
and semantic criteria.

Since no solutions exist that simultaneously solve the challenges described in the previous and
current subsections, we propose to use easy-to-extend solutions to which the missing functionality
to address the challenges can be added.

5.3. Via Appia implementation

In this subsection we explain how the challenges related to data analysis and data visualization have
been addressed for the case study. Within the project we explored two front-end applications: a desk-
top application and a web application. They are both based on existing solutions that have been
extended to address the described challenges as much as possible. The next subsections provide
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more details about their features. How the tools developed relate to the user requirements has been
discussed in de Kleijn, de Hond, and Martinez-Rubi (2016). Table 1 offers a summary.

5.3.1. Desktop windows application
The developed desktop Windows application is based on OpenSceneGraph (http://www.
openscenegraph.org/) and requires the point clouds, polygonal meshes and pictures to be converted
to the OpenSceneGraph binary format. This conversion has already been done as part of the data
acquisition and processing workflow. A snapshot of the application is depicted in Figure 5.

This application requires a copy of the converted data to be downloaded from the server to the
user computer. The same application performs the download before launching the 3D viewer using
the Xenon library. The application requires a configuration file, which is generated from the database
and also downloaded by Xenon.

As mentioned in Section 4.5, any modification to the data is made at the server using the devel-
oped Python management scripts. The only exception is that users can change the position and the
scale of the visualized objects in this application. In this case the data modification at the database in
the server is done by remotely executing one of the management scripts containing information of
the edited location. This is done automatically by the desktop application when the tool is quit using
the Xenon library.

This tool is targeted at advanced users, is fully featured and very versatile. However, it is the only
component of the Via Appia 3D DEA which is not FOSS. The reason is that it is a modified version of
an existing commercial tool. In addition to the already commented functionality, the application has
the following features:

Table 1. Relationship between the user requirements and the developed front-end client applications. Extracted and adapted from
de Kleijn, de Hond, and Martinez-Rubi (2016).

User requirements Desktop application Web Application

(i) to visualize a detailed reality-based model of
the study area, and to perform accurate
measurements on and between structures and
objects. This means:
• Acquiring and processing highly accurate
reality-based model

DRIVE-MAP combined with
SfM and referencing
algorithms

DRIVE-MAP combined with SfM and
referencing algorithms

• Visualizing complex landscapes with the
various objects and structures integrated in
one 3D viewer

Integrated point cloud
viewer and polygonal
models

Point cloud web viewer accompanied with
separate polygonal viewer (3DHOP)

• Providing tools to measure distances and
volumes

Distances, angles and
volumes

distances, angles and volumes

(ii) to perform spatio-temporal analysis by
querying the objects and structures based on
attributive information (such as dating and
type of decoration)

SQL query builder Keyword search on characteristics in all or
selected fields

(iii) to position historical images within the virtual
3D environment (over the last three hundred
years the Via Appia has been the subject of
numerous paintings, drawings and
photographs). This allows archaeologists to
analyze (a) relatively recent changes within
the landscape and the archaeological objects
in it, and (b) how the road was perceived in
more recent times

Integrated functionality to
add, move and visualize
historical images

Not available

(iv) to integrate 2D GIS data. This allows
archaeologists to compare the various 2D GIS
data sources that are collected during the
project (georeferenced historical maps, aerial
photographs, vector excavation data, remote
sensing data, and geophysics data).

Not available A mini-map interacting with the viewing
position in 3D is included. It allows
integrating OGC mapping services (to
integrate other relevant 2D GIS data)

INTERNATIONAL JOURNAL OF DIGITAL EARTH 1145

http://www.openscenegraph.org/
http://www.openscenegraph.org/


. It shows the different types of data (i.e. point clouds, polygonal meshes, and pictures) in the same
3D scene.

. It contains measurement tools to measure distances and volumes as well as labeling tools to add
visual labels into the 3D scene.

. A query constructor tool is available. This allows to execute custom queries directly in the data-
base for selecting sites and objects based on attributive data while being able to visualize the results
in the 3D scene.

Limitations to the desktop application are that the data needs to be synchronized with the server,
which means that significant disc-space at the user computer needs to be available. Furthermore,
since users experienced the installation of the desktop application and the interface and functionality
to be complicated, the desktop application is mostly used by IT-experienced users, and not usable for
the entire targeted user group of the Via Appia 3D DEA.

5.3.2. Web viewer
The web application (van Meersbergen et al. 2016) is based on Potree (http://potree.org/) to display
the multiple point clouds. The Potree basic renderer has been adapted to be able to display multiple
point clouds in the same 3D scene with the option to select which ones are visible. The web appli-
cation also uses 3DHOP (http://vcg.isti.cnr.it/3dhop/) developed by Potenziani et al. (2015) to dis-
play the polygonal meshes. This requires the point clouds to be converted to the Potree format and
the polygonal meshes to be converted to the Nexus format used by 3DHOP. This conversion has
already been done as part of the data acquisition and processing workflow.

Figure 6 depicts a snapshot of the web viewer with the point clouds being displayed using Potree
in the main scene and the polygonal meshes being displayed using 3DHOP in a different window.

The web viewer does not require a copy of any directory structure before its execution. Like the
desktop viewer, it requires a configuration file generated from the database. The configuration file
and the Potree and Nexus converted data required for the visualization are provided to the web
viewer through the NGINX HTTP server.

The web viewer is suited for all types of users. The interface is experienced as easy to use, and since
it does not require additional installations it is easy to distribute. In addition to displaying the point
clouds and polygonal meshes, the web viewer has the following features:

Figure 5. Snapshot of the desktop Windows application depicting the graphical user interface showing a reconstruction mesh (de
Hond 2014) on top of the background point cloud. The user interface depicts the tab with the database query constructor tool.
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. It does not require any installation, only a modern web browser (tested successfully in Apple
Safari, Google Chrome, Microsoft Edge, and Mozilla Firefox).

. Measurement tools are available to measure distances and volumes. Additionally, Potree offers the
option to make cross sections.

. It has a 2D mini-map where multiple imagery layers can be used. This also contains a field of view
depiction that is related to the current view point in the 3D scene.

. The search bar allows to easily focus on a particular site. The site information box shows an over-
view of the attributive data of a site. The search bar can also be used to perform simple queries
which are only based on a sample of the full attributive data, for example to search the sites
whose description contains the word ‘basalt’.

Limitations of the web viewer are that the different types of data cannot be visualized in the same
3D scene and pictures cannot be visualized at all; only thumbnails are used for the sites in the site
information box. The web application does not allow moving and scaling the visualized data and it
does not contain a direct database connection for complex custom site and object queries. However,
this is not considered to be an issue since the desktop application provides these features. Note that
these limitations are due to lack of time for implementation, not because of any technical limitations.

In addition to Potree and 3DHOP, the viewer also uses OpenLayers for the 2D orientation mini-
map and AngularJS as JavaScript framework. Therefore, all the components of this tool, including
the web viewer itself, are FOSS.

6. Conclusions

This article contributes to the concept of 3D digital earth by identifying, describing and addressing
the challenges that arise when using 3D technologies in DEAs to study complex sites. These contain
objects that have heterogeneous shapes and that are enriched with structured semantic information.

The article aims to provide technological insights for the development of future 3D DEAs. It states
that the future of DEAs is in modularity, i.e. in creating DEAs that combine multiple applications.
These applications integrate state-of-the-art technologies, interface between each other, and are, ide-
ally, FOSS. It also suggests that the DEAs have multi-tier architectures to simultaneously serve mul-
tiple users with different skills and goals. For DEAs requiring high reliability in the 3D
measurements, it proposes to use point clouds directly as 3D digital earth representations instead

Figure 6. Snapshot of the web viewer showing a point cloud of a selected site on top of the background point cloud, a mesh on a
different 3D scene and the site information box with attributive data of the selected site.
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of derived models such as polygonal meshes. For the development of DEAs, it proposes to follow a
workflow that consists of (i) data acquisition and processing, (ii) data management, (iii) data analysis
and (iv) data visualization.

As case study, this article discusses the Mapping the Via Appia project for which we have devel-
oped a specific modular 3D DEA. The 3D DEA has a multi-tier architecture and combines a set of
components that can be re-used individually or as a whole for other projects as almost all the devel-
oped tools are FOSS. This targets not only other archaeology projects but also other domains where
the digital earth is studied in 3D.

The article presents methods to create a data acquisition and processing workflow to obtain and
process different types of data. It suggests to combine long-range and short-range capturing methods
to obtain more complete 3D digital earth representations. Additionally, the article identifies the need
to automate the processes as much as possible.

We propose to use a HDMS, which combines a database and directory structures, to handle
the data. The point clouds and the other data are kept in the directory structures in the various
formats used by the client applications. Their references (file locations) are imported into the
database. This is done to provide the most efficient access to the client applications. We suggest
to keep the multiple point clouds obtained from the various acquisition methods separated to ease
the refinement of the registration of various point clouds and to ease the addition of new sites
and objects. The database also contains the semantic information of the sites and objects. This
approach gives the possibility to query data based on semantic and spatial selections. All the
data are stored and managed in a cloud-based server which is part of the two-tier server/client
architecture of the system. This allows multiple researchers to visualize and analyze the data sim-
ultaneously from different locations.

The client applications download copies of the data on demand. The article explores the cur-
rent alternatives in visualization and analytic tools for client applications. Due to the lack of sol-
utions with the required functionality, i.e. the visualization of all collected 3D data combined with
a visual interface to the semantic and analytic functionality, it suggests to chose easy-to-extend
options to which the missing functionality can be added. For the case study, two different
front-end applications have been developed and presented. The first one exploits the mature
state of desktop-based 3D applications to provide a tool which is rich in functionality. The
second one benefits from the recent improvements in 3D web visualization technologies, such
as Potree and 3DHOP, to provide an easy-to-use 3D web viewer. By having multiple clients
for various purposes, the proposed system is able to target users with different levels of IT
expertise.

The proposed workflow for the development of DEAs is an iterative process where each com-
ponent learns from every other. Each new iteration of the process brings new challenges that
need addressing. From that perspective, this article must be seen as a first step. This paper has ident-
ified and addressed the challenges that arose in the first iterations of the process. Therefore, future
steps will be to follow the described iterative process and, in parallel, to keep track of the new devel-
opments in software, with focus on FOSS, on these rapidly changing technologies. The described
methodologies are reusable in other applications and domains where we expect that they will pro-
duce new generic challenges that need to be solved.
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Appendix. Entity–relationship diagram of viaappiadb

Figure A1— depicts the entity–relationship diagram of the viaappiadb database implemented as part of the HDMS of
the Via Appia 3D DEA (see Section 4.5).

Figure A1. Entity–relationship diagram of the viaappiadb, showing the most relevant tables and table columns as well as the direct
connections between the tables from the different categories. The table ITEM contains the physical entities under study and two
types are distinguished. First, a site item (from now on site) is used for an archaeological site of interest and, second,background
item (from now on background) is used to define the whole study area as a single entity. An item can contain multiple parts or
objects which are stored in the table ITEM_OBJECT (note that each archaeological structure of the study area is considered an
item itself and not an item_object of the background). The ATTR category contains the attributive data of theitems and their item_-
objects. The RAW category contains the locations of the point clouds, polygonal meshes and pictures in their raw file formats while
the POTREE, NEXUS and OSG categories contain the file locations of the converted data. The POTREE category contains point
cloud data and the NEXUS category contains mesh data, which are used by the web viewer application. On the other hand,
the OSG category contains point clouds, polygonal meshes and pictures, which are used by the desktop Windows application.
This application also allows updating the position and the scale of the objects in the 3D scene (which is not possible in the
web viewer), thus a table to store the position of moved and scaled objects is required and has been included. Note that some
of the relationships are ‘1 to 0..n’ or ‘1 to 0..1’ (with black points) instead of the usual ‘1 to 1..n’. This is to illustrate that some
items and item_objects may have entries in some tables but not in others. (e.g. it is possible to have a site in the ITEM table
which has no entry in the attributes table (ITEM_ATTR) because attributive information of that site has not been collected yet.)
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