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ABSTRACT: Detection of carbon dioxide (CO2) is of
fundamental importance in diverse applications ranging from
environmental analysis to agricultural production. In this work,
a hybrid probe based on guanidinium-pendent oligofluorene
(G-OF) and water-soluble conjugated polythiophene (PTP)
has been developed for the turn on detection of CO2 with low
background signal, taking advantage of the efficient fluo-
rescence quenching of the tight aggregate of G-OF/PTP. In
the presence of CO2, the electrostatic repulsion between G-OF
and PTP can be effectively enhanced through protonation of
the side chains, leading to the disaggregation and thus the “turn-on” fluorescence. The strategy allows for the light-up visible
detection of CO2 with high sensitivity. Importantly, this system is capable of sensitively monitoring the concentration changes of
CO2 in the process of the photosynthesis, which represents a concept to monitor the photosynthesis based on water-soluble
conjugated polymers.

Carbon dioxide (CO2) is a greenhouse gas contributing
immeasurably to the global climate change and acts as an

asphyxiant with the maximal acceptable concentration defined
as 3.0%.1−3 CO2 also plays an essential role in plant
photosynthesis. A total of 90−95% of the dry weight of plants
derives from the assimilation of CO2 during photosynthesis.4,5

In this context, monitoring the photosynthesis of vegetation is
not only crucial for raising the productivity of agriculture but
also important for the better fixation of CO2. Therefore, the
detection of CO2, in particular during the process of
photosynthesis, is of great significance for global warming
monitoring,6,7 medical diagnosis,8,9 and agricultural produc-
tion.10 Optical CO2 detection methods have exhibited their
advantages including convenience, low cost, and fastness, over
the traditional analytical methodologies such as near-infrared
spectroscopy,11 gas chromatography/mass spectrometry,12,13

and electrochemical techniques.14 For example, several effective
fluorescent probes based on aggregate-induced emission (AIE)
have been recently developed for monitoring CO2.

15−19 Yoon
and coauthors realized colorimetric and fluorescent CO2

detection by applying polydiacetylene in aqueous solution
and in the solid state.20 However, most of the established
approaches have relatively high background fluorescence signal
or require additional accessory molecules.20 Moreover, to the
best of our knowledge, very few examples of optical sensors
have been reported to detect the changes of CO2 in the process
of photosynthesis, which is highly desirable.

Water-soluble conjugated polyelectrolytes are characterized
by their delocalized π-electronic backbones and extraordinary
light-harvesting capacities, exhibiting a signal amplification
effect.21−24 In the past few years, water-soluble conjugated
polymers have been widely employed as an efficient platform
for the detection of small molecules25−27 and biomolecules
such as DNA,28−30 protein,31−33 and enzymes,34,35 with
specificity and high sensitivity. They have been further
developed into promising materials for broad biological
applications in disease diagnosis,36 drug screening and
delivery,37,38 cell imaging,39 and antimicrobial susceptibility
testing.40−42 Inspired by these studies, we illustrate here a
fluorescent, visible and “turn-on” detection system for CO2 in
dissolved and gaseous states as well as in plant photosynthesis,
by hybridizing the guanidinium-pendent oligofluorene (G-OF)
and water-soluble conjugated polymer poly(3-(2′-N,N-dipro-
panoic acid-ethylamino)-2,5-thiophene) (PTP). As illustrated
in Scheme 1, PTP is designed to be functionalized with one
amino group and two carboxylate groups in each repeat unit,
while G-OF has guanidinium groups in the side chains. In the
absence of CO2, the guanidinium group of G-OF is partly
protonated and the polymer exhibits positive charges,
interacting with anionic PTP by tight electrostatic and π−π
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stacking interactions, forming micrometer-sized supramolecu-
larly assembled aggregates. These strong supramolecular
interactions dramatically quenches (turn-off) the fluorescence
of both polymers. When CO2 is bubbled into the solution, the
guanidinium groups of G-OF are completely protonated and
the polymers become positively charged. At the same time,
both the amino and the carboxyl groups of PTP are protonated,
endows the polymer also with positive charges. Thus, the
electrostatic repulsion between G-OF and PTP dominates and
leads to the break of the G-OF/PTP aggregates, resulting in the
fluorescence recovery of G-OF and PTP (turn-on). The system
is so sensitive that it can be effectively applied to monitor the
concentration changes of CO2 in the process of plant
photosynthesis, which continuously converts CO2 into
carbohydrate by the assimilation of sunlight and H2O and
converts.45,46 The fluorescence of G-OF/PTP is gradually
quenched as the plant photosynthesis is consuming the CO2.
Furthermore, the CO2 detection can be visualized directly in
view of color changes of G-OF/PTP in aqueous medium under
UV light.

■ EXPERIMENTAL SECTION
Materials and Measurements. G-OF and PTP were

synthesized referring to the procedure reported in the
literature.44,47 All chemicals were purchased from Acros,
Aladdin, or Alfa Aesar and used as received if not specially
stated. All organic solvent were purchased from Tianjin
Guangfu Ltd. CO2, N2, and O2 were certified food grade
(99.99% purity) and obtained from Tianjin Lianbo Ltd. All
solutions were prepared with precooling Milli-Q water at 4 °C.
The fluorescence spectra were taken on a Hitachi F-4500
fluorimeter equipped with a xenon lamp excitation source at 4
°C which was controlled by recirculating chiller F-305

(BÜCHI). Dynamic light scattering (DLS) experiments and ζ
potentials were carried out on Nano-S90 (Malvern Instru-
ments, U.K.).

Detection of CO2 in Water. To 400.0 μL of ddH2O was
added G-OF (0.8 μM) and bubbled with different volumes of
CO2 at a constant flow rate of 1.5 mL/min, and then 875.0 nM
(in repeat units) of PTP was added and mixed gently. After 5.0
min of incubation, the fluorescence spectra were measured in
quartz cuvettes by applying a Hitachi F-4500 fluorimeter at 4
°C. The excitation wavelength was 378 nm.

Preparation for Different Ratios of CO2/ N2 Mixtures.
The flow rate of CO2 and N2 were controlled by standard
flowmeter and mixed in a sampling bag.

Detection of CO2 by Composite Film. G-OF solution
(10.0 μM) was sprayed on the cellulose ester film. After 5.0 min
of exposure to a CO2 atmosphere, the PTP (8.0 μM) was
sprayed, and then the images were taken under UV light (λ =
365 nm).

Detection of CO2 in Photosynthesis. An airtight chamber
(500 × 500 × 500 mm3) was designed with an inlet, an outlet,
lamps (300 W), and a delivery window. Zea mays were grown
in vermiculite for 14 days in a greenhouse. We eliminated the
air in chamber through the method of vacuum and then filled
with CO2 to 1.0 atm. The 1.0 mL of detection solution
contained with G-OF ([G-OF] = 0.8 μM) was put in the
chamber after different time of illumination. After 12 h of
equilibrium, 875.0 nM (in repeat units) of PTP was added, and
the fluorescence spectra were measured.

■ RESULTS AND DISCUSSION
PTP and G-OF were synthesized referring to the reported
procedures.44,47 The detection of CO2 by the G-OF/PTP
hybrid probe is based on the efficient fluorescence quenching of
both polymers. G-OF emits bright blue light in aqueous
solution with the fluorescence spectrum maximized at 420 nm,
while PTP emits yellow fluorescence with a maximum at 560
nm. The fluorescence of G-OF ([G-OF] = 0.8 μM) was
quenched upon addition of PTP ([PTP] = 0−875.0 nM in
repeat units) in water. As shown in Figure 1a, the emission of

G-OF was decreased gradually with successive addition of PTP
and the fluorescence of G-OF was efficiently quenched by
97.2% in the presence of PTP ([PTP] = 875.0 nM). The
quenching efficiency was calculated by measuring the
fluorescent changes of G-OF via the Stern−Volmer equation
(eq 1):48

= +I I K/ 1 [Q]0 SV (1)

Scheme 1. (a) Charge Changes of G-OF and PTP upon
Bubbling with CO2

a and (b) Schematic Representation of G-
OF/PTP Hybrid Probe for CO2 Detection in Plant
Photosynthesisb

aThe charge changes of G-OF and PTP according to the different pKa
values of each side chain, the guanidinium, tertiary amine and carboxyl
groups with pKa values of 13.6, 9.54, and 2.2, respectively.43,44 bThe
fluorescence of both polymers is quenched upon the formation of the
tight aggregate of G-OF/PTP but gets efficiently recovered in the
presence of CO2.

Figure 1. (a) Fluorescence spectra of G-OF in water with successive
additions of PTP. (b) KSV plot of G-OF in the presence of PTP. [G-
OF] = 0.8 μM, [PTP] = 0−875.0 nM (in repeat units). I and I0
represent the emission intensity of G-OF at 420 nm in the presence
and absence of PTP. Measurements were performed at 4 °C in sterile
water. The excitation wavelength was 378 nm.
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The Stern−Volmer constant (KSV) value was deduced to be
1.38 × 107 M−1 from the linear Stern−Volmer plot with low
concentrations of PTP (0−25.0 nM) (Figure 1b), indicating
the superquenching of G-OF by PTP. The intense electrostatic
and π−π stacking interactions between G-OF and PTP were
attributed to drive the formation of the tight aggregation of G-
OF/PTP complex and to induce the superquenching behavior.
The sensitivity of the assembled G-OF/PTP complex to

CO2 was first examined in the solution state, by bubbling CO2
into the aqueous solution of G-OF in the presence of PTP and
the results are summarized in Figure 2. As shown in Figure 2a,

the emission intensity of G-OF has been recovered by
approximately 20 times after reacting with CO2. The recovery
rate is dependent on the bubbling volumes of CO2. As shown
in Figure 2b, the fluorescence intensity of G-OF/PTP at 420
nm increases with the amount of CO2 bubbled and the
detection limit can be as lower as 75.0 μL. Importantly, the
detection of CO2 can be directly visualized through the color
changes of G-OF/PTP from dark blue to bright blue under UV
irradiation upon bubbling with CO2, as shown in the images in

Figure 2c. Control experiments were carried out to check the
effect of CO2 on the emitting behaviors of G-OF and PTP. CO2
was found to induce very little effect on the emission spectra of
G-OF in the absence of PTP (Figure 2d), while the emission of
PTP was decreased with the addition of CO2 (see Figure S3 in
the Supporting Information). This is consistent with the
working mechanism proposed in Scheme 1, where the net
charges of PTP is decreased and the dominating interchain π−π
stacking leads to the formation of aggregates and results in the
self-quenching of PTP, with the increasing amount of CO2.

49,50

The ζ potentials provide further evidence for the interactions
between G-OF and PTP in the presence and absence of CO2
(Figure 2e). ζ potentials of G-OF and PTP became more
positive upon reaction with CO2 because the guanidinium
groups of G-OF and the amino and carboxylate groups of PTP
became completely protonated. Additionally, the dynamic light
scattering (DLS) measurements were also conducted. As
shown in Figure 2f, the average hydrodynamic radius of G-
OF/PTP aggregates is 842.2 nm, which is much larger than
that in the presence of CO2 (104.1 nm). This is a direct
indication that the G-OF/PTP aggregates were separated due
to the electrostatic repulsion between G-OF and PTP. In order
to further study the mechanism of our system, the fluorescence
recovery of the hybrid probe G-OF/PTP with other gases in
water was measured. As illustrated in Figure S4 in the
Supporting Information, no fluorescence recovery was
produced by N2 or O2, indicating little interference from
other gases in atmosphere. Moreover, the interference of SO2
was checked as well. As illustrated in Figure S5, the emission of
G-OF/PTP cannot be recovered in the presence of SO2,
possibly resulting from the total quenching of G-OF by SO2
which is different from that in the presence of CO2. Therefore,
these results demonstrate a fluorescent, visible, and turn-on
detection for CO2 with high sensitivity and selectivity.
Taking the practicality into consideration, CO2 is always

present in the atmosphere and acts as an asphyxiant. Therefore,
the fluorescence spectra of the G-OF/PTP hybrid probe before
and after bubbling with CO2/N2 with different ratios were
examined. As illustrated in Figure 3, the emission was recovered
gradually with the increasing ratio of CO2 in a series of CO2/N2
mixtures and the detected minimum ratio of CO2 was 1.0%
(Figure 3b). In practical terms, the maximal acceptable
concentration was defined under 3.0%.3 Furthermore, the
hybrid probe G-OF/PTP was also applied for solid-state

Figure 2. (a) Fluorescence spectra of G-OF in the presence of PTP
with and without CO2. (b) Fluorescence intensity of G-OF at 420 nm
in the presence of PTP after bubbling with different volumes of CO2 in
water at 4 °C. I0 and I represent the emission intensity of G-OF at 420
nm in the presence of PTP without and with CO2, respectively, and
ΔI/I0 is equal to (I − I0)/I0. All data were presented as mean values ±
standard deviation of three separate experiments. Error bars represent
standard deviations of data from three separate measurements. (c)
Fluorescence images of G-OF in the presence of PTP in water with
and without CO2, under UV light excitatiom (λ = 365 nm). (d)
Emission spectra of G-OF in water with and without CO2. (e) ζ
Potentials of G-OF and PTP with and without CO2 in water. (f) Size
distribution histograms of G-OF in the presence of PTP with and
without CO2 resulting from dynamic light scattering measurement.
[G-OF] = 0.8 μM, [PTP] = 875.0 nM (in repeat units), the bubbling
volumes of CO2 increase from 0 to 30.0 mL at a constant flow rate of
1.5 mL/min. Measurements were performed at 4 °C in sterile water.
The excitation wavelength was 378 nm.

Figure 3. (a) Fluorescence spectra of G-OF in the presence of PTP
before and after bubbling with CO2/N2 mixtures with different ratios
for 2 min at a constant flow rate of 1.5 mL/min. (b) Plot of the
fluorescence intensity of G-OF at 420 nm in the presence of PTP as a
function of the ratio of CO2 in CO2/N2 mixtures. [G-OF] = 0.8 μM,
[PTP] = 875.0 nM (in repeat units), the volume ratios of CO2/N2
change from 0 to 100.0%. Error bars represent standard deviations of
data from three separate measurements. Measurements were
performed at 4 °C in water. The excitation wavelength was 378 nm.
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sensing of CO2. G-OF/PTP was sprayed onto a substrate of
the cellulose ester film, and a dark blue to bright blue color
change was observed under UV light upon exposure to CO2
atmosphere (see Figure S6 in the Supporting Information).
Therefore, our probe system offers a CO2 detection approach
allows for the assessment of the asphyxial risk.
Furthermore, the G-OF/PTP-based detection for CO2 in

gaseous phase was studied in confined spaces. As shown in
Figure 4a, the detection solution of G-OF in water was placed

in a confined chamber with CO2 atmosphere (1.0 atm) for 12
h, and then the emission spectra of the G-OF/PTP hybrid
probe was measured. Figure 4b exhibits that the gaseous CO2
induces the significant recovery of emission through the
absorption to the detection solution. Additionally, the different
volume ratios of CO2/N2 mixtures in confined spaces were also
detected, and the detected minimum ratio of CO2 was 1.0% as
well (see Figure S7 in the Supporting Information). In this way,
the G-OF/PTP-based system allows for the detection of the
gaseous CO2 in confined spaces, which is extremely important
for the workers in closed spaces to avoid the risk of asphyxia.
Finally, the CO2 was monitored in the process of

photosynthesis. It is well-known that plant photosynthesis
converts CO2 into carbohydrate by assimilation of sunlight and
H2O. Here, we employed Zea mays, a C4-photosynthetic plant
with high photosynthetic rate,51,52 as a model system to study
the response of the G-OF/PTP-based probe to monitor the
CO2 changes in plant photosynthesis. As exhibited in Figure 4c,
Zea mays was placed in the confined chamber with light and
CO2, and the fluorescence intensity of the G-OF/PTP hybrid
probe was decreased gradually with the increase of the
illumination time (Figure 4d), indicating the assimilation of
CO2 by photosynthesis. Therefore, our CO2 detection strategy

can be applied to monitor CO2 changes in plant photosyn-
thesis.

■ CONCLUSIONS
In summary, we have designed a hybrid probe comprising
guanidinium-pendent oligofluorene (G-OF) and water-soluble
conjugated polythiophene derivative (PTP) for sensing CO2
with very low background signal. This detection strategy takes
advantage of the superquenching property of G-OF by PTP in
the tight aggregates of G-OF/PTP, and the CO2 controlled
aggregation induces the turn-on signal of fluorescence. The
new, simple, and light-up visible CO2 assay system has several
unique characteristics. First, the G-OF/PTP-based hybrid
probe realizes the quantitative detection of CO2 in both
gaseous and dissolved phase. Second, the strategy can be
applied for assessment of asphyxial risk in confined spaces.
Furthermore, our CO2 optical detection system enables the
monitoring of CO2 in plant photosynthesis. Therefore, the G-
OF/PTP-based turn-on approach for CO2 detection provides
meaningful applications in asphyxia diagnosis and monitoring
plant photosynthesis.
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